You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
Zhao J, Nishiumi S, Tagawa R, Yano Y, Inoue J, Hoshi N, Yoshida M and Kodama Y: Adrenic acid induces oxidative stress in hepatocytes. Biochem Biophys Res Commun. 532:620–625. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Kopf PG, Zhang DX, Gauthier KM, Nithipatikom K, Yi XY, Falck JR and Campbell WB: Adrenic acid metabolites as endogenous endothelium-derived and zona glomerulosa-derived hyperpolarizing factors. Hypertension. 55:547–554. 2010. View Article : Google Scholar | |
|
Guijas C, Astudillo AM, Gil-de-Gómez L, Rubio JM, Balboa MA and Balsinde J: Phospholipid sources for adrenic acid mobilization in RAW 264.7 macrophages. Comparison with arachidonic acid. Biochim Biophys Acta. 1821:1386–1393. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Massey KA and Nicolaou A: Lipidomics of polyunsaturated-fatty-acid-derived oxygenated metabolites. Biochem Soc Trans. 39:1240–1246. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Horas H, Nababan S, Nishiumi S, Kawano Y, Kobayashi T, Yoshida M and Azuma T: Adrenic acid as an inflammation enhancer in non-alcoholic fatty liver disease. Arch Biochem Biophys. 623-624:64–75. 2017. View Article : Google Scholar | |
|
Delgado GE, März W, Lorkowski S, von Schacky C and Kleber ME: Omega-6 fatty acids: Opposing associations with risk-the ludwigshafen risk and cardiovascular health study. J Clin Lipidol. 11:1082–1090.e14. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Jarrar MH, Baranova A, Collantes R, Ranard B, Stepanova M, Bennett C, Fang Y, Elariny H, Goodman Z, Chandhoke V and Younossi ZM: Adipokines and cytokines in non-alcoholic fatty liver disease. Aliment Pharmacol Ther. 27:412–421. 2008. View Article : Google Scholar | |
|
Gavino VC, Miller JS, Dillman JM, Milo GE and Cornwell DG: Effect of exogenous adrenic acid on the proliferation and lipid metabolism of cells in tissue culture. Prog Lipid Res. 20:323–325. 1981. View Article : Google Scholar : PubMed/NCBI | |
|
Campbell WB, Falck JR, Okita JR, Johnson AR and Callahan KS: Synthesis of dihomoprostaglandins from adrenic acid (7,10,13,16-docosatetraenoic acid) by human endothelial cells. Biochim Biophys Acta. 837:67–76. 1985. View Article : Google Scholar : PubMed/NCBI | |
|
Duan JY, Lin X, Xu F, Shan SK, Guo B, Li FX, Wang Y, Zheng MH, Xu QS, Lei LM, et al: Ferroptosis and its potential role in metabolic diseases: A curse or revitalization? Front Cell Dev Biol. 9:7017882021. View Article : Google Scholar : PubMed/NCBI | |
|
López-Gómez C, Santiago-Fernández C, García-Serrano S, García-Escobar E, Gutiérrez-Repiso C, Rodríguez-Díaz C, Ho-Plágaro A, Martín-Reyes F, Garrido-Sánchez L, Valdés S, et al: Oleic acid protects against insulin resistance by regulating the genes related to the PI3K signaling pathway. J Clin Med. 99:26152020. View Article : Google Scholar | |
|
Zhao S, Fu H, Zhou T, Cai M, Huang Y, Gan Q, Zhang C, Qian C, Wang J, Zhang Z, et al: Alteration of bile acids and omega-6 PUFAs are correlated with the progression and prognosis of drug-induced liver injury. Front Immunol. 13:7723682022. View Article : Google Scholar : PubMed/NCBI | |
|
Caussy C, Chuang JC, Billin A, Hu T, Wang Y, Subramanian GM, Djedjos CS, Myers RP, Dennis EA and Loomba R: Plasma eicosanoids as noninvasive biomarkers of liver fibrosis in patients with nonalcoholic steatohepatitis. Therap Adv Gastroenterol. 13:17562848209239042020. View Article : Google Scholar : PubMed/NCBI | |
|
Medina S, Miguel-Elizaga ID, Oger C, Galano JM, Durand T, Martínez-Villanueva M, Castillo ML, Villegas-Martínez I, Ferreres F, Martínez-Hernández P and Gil-Izquierdo Á: Dihomo-isoprostanes-nonenzymatic metabolites of AdA-are higher in epileptic patients compared to healthy individuals by a new ultrahigh pressure liquid chromatography-triple quadrupole-tandem mass spectrometry method. Free Radic Biol Med. 79:154–163. 2015. View Article : Google Scholar | |
|
Ferré-González L, Peña-Bautista C, Baquero M and Cháfer-Pericás C: Assessment of lipid peroxidation in Alzheimer's disease differential diagnosis and prognosis. Antioxidants (Basel). 11:5512022. View Article : Google Scholar : PubMed/NCBI | |
|
De Las Heras-Gómez I, Medina S, Casas-Pina T, Marín-Soler L, Tomás A, Martínez-Hernández P, Oger C, Galano JM, Durand T, Jimeno L, et al: Potential applications of lipid peroxidation products-F4-neuroprostanes, F3-neuroprostanesn-6 DPA, F2-dihomo-isoprostanes and F2-isoprostanes-in the evaluation of the allograft function in renal transplantation. Free Radic Biol Med. 104:178–184. 2017. View Article : Google Scholar | |
|
Cao Y, Zhao R, Guo K, Ren S, Zhang Y, Lu Z, Tian L, Li T, Chen X and Wang Z: Potential metabolite biomarkers for early detection of stage-I pancreatic ductal adenocarcinoma. Front Oncol. 11:7446672022. View Article : Google Scholar : PubMed/NCBI | |
|
Yu Y, Lu Q and Chen F, Wang S, Niu C, Liao J, Wang H and Chen F: Serum untargeted metabolomics analysis of the mechanisms of evodiamine on type 2 diabetes mellitus model rats. Food Funct. 13:6623–6635. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Lu Y, Shao M, Xiang H, Zheng P, Wu T and Ji G: Integrative transcriptomics and metabolomics explore the mechanism of kaempferol on improving nonalcoholic steatohepatitis. Food Funct. 11:10058–10069. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Xu Y, Han J, Dong J, Fan X, Cai Y, Li J, Wang T, Zhou J and Shang J: Metabolomics characterizes the effects and mechanisms of quercetin in nonalcoholic fatty liver disease development. Int J Mol Sci. 20:12202019. View Article : Google Scholar : PubMed/NCBI | |
|
Song Y, Hu T, Gao H, Zhai J, Gong J, Zhang Y, Tao L, Sun J, Li Z and Qu X: Altered metabolic profiles and biomarkers associated with astragaloside IV-mediated protection against cisplatin-induced acute kidney injury in rats: An HPLC-TOF/MS-based untargeted metabolomics study. Biochem Pharmacol. 183:1142992021. View Article : Google Scholar | |
|
Dai Y, Chen Y, Mo D, Jin R, Huang Y, Zhang L, Zhang C, Gao H and Yan Q: Inhibition of ACSL4 ameliorates tubular ferroptotic cell death and protects against fibrotic kidney disease. Commun Biol. 6:9072023. View Article : Google Scholar : PubMed/NCBI | |
|
Galano JM, Lee JCY, Gladine C, Comte B, Le Guennec JY, Oger C and Durand T: Non-enzymatic cyclic oxygenated metabolites of adrenic, docosahexaenoic, eicosapentaenoic and α-linolenic acids; bioactivities and potential use as biomarkers. Biochim Biophys Acta. 1851:446–455. 2015. View Article : Google Scholar | |
|
Shanab SMM, Hafez RM and Fouad AS: A review on algae and plants as potential source of arachidonic acid. J Adv Res. 11:3–13. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Sánchez-Illana Á, Shah V, Piñeiro-Ramos JD, Di Fiore JM, Quintás G, Raffay TM, MacFarlane PM, Martin RJ and Kuligowski J: Adrenic acid non-enzymatic peroxidation products in biofluids of moderate preterm infants. Free Radic Biol Med. 142:107–112. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Visser WF, van Roermund CW, Ijlst L, Waterham HR and Wanders RJA: Metabolite transport across the peroxisomal membrane. Biochem J. 401:365–375. 2007. View Article : Google Scholar : | |
|
Monge P, Garrido A, Rubio JM, Magrioti V, Kokotos G, Balboa MA and Balsinde J: The contribution of cytosolic group iva and calcium-independent group VIA phospholipase A2s to adrenic acid mobilization in murine macrophages. Biomolecules. 10:5422020. View Article : Google Scholar | |
|
VanRollins M, Horrocks L and Sprecher H: Metabolism of 7,10,13,16-docosatetraenoic acid to dihomo-thromboxane, 14-hydroxy-7,10,12-nonadecatrienoic acid and hydroxy fatty acids by human platelets. Biochim Biophys Acta. 833:272–280. 1985. View Article : Google Scholar : PubMed/NCBI | |
|
Yi XY, Gauthier KM, Cui L, Nithipatikom K, Falck JR and Campbell WB: Metabolism of adrenic acid to vasodilatory 1alpha,1beta-dihomo-epoxyeicosatrienoic acids by bovine coronary arteries. Am J Physiol Heart Circ Physiol. 292:H2265–H2274. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Singh N, Barnych B, Wagner KM, Wan D, Morisseau C and Hammock BD: Adrenic acid-derived epoxy fatty acids are naturally occurring lipids and their methyl ester prodrug reduces endoplasmic reticulum stress and inflammatory pain. ACS Omega. 6:7165–7174. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Osmundsen H, Bremer J and Pedersen JI: Metabolic aspects of peroxisomal beta-oxidation. Biochim Biophys Acta. 1085:141–158. 1991. View Article : Google Scholar : PubMed/NCBI | |
|
Hagve TA and Christophersen BO: Evidence for peroxisomal retroconversion of adrenic acid [22:4(n-6)] and docosahexaenoic acids [22:6(n-3)] in isolated liver cells. Biochim Biophys Acta. 875:165–173. 1986. View Article : Google Scholar : PubMed/NCBI | |
|
Mann CJ, Kaduce TL, Figard PH and Spector AA: Docosatetraenoic acid in endothelial cells: Formation, retroconversion to arachidonic acid, and effect on prostacyclin production. Arch Biochem Biophys. 244:813–823. 1986. View Article : Google Scholar : PubMed/NCBI | |
|
Costello KR and Schones DE: Chromatin modifications in metabolic disease: Potential mediators of long-term disease risk. Wiley Interdiscip Rev Syst Biol Med. 10:e14162018. View Article : Google Scholar : PubMed/NCBI | |
|
Cell Metabolism editorial team: Preventing metabolic disease: Part I. Cell Metab. 36:2232024. View Article : Google Scholar : PubMed/NCBI | |
|
Chew NWS, Ng CH, Tan DJH, Kong G, Lin C, Chin YH, Lim WH, Huang DQ, Quek J, Fu CE, et al: The global burden of metabolic disease: Data from 2000 to 2019. Cell Metab. 35:414–428.e3. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Lee YS and Olefsky J: Chronic tissue inflammation and metabolic disease. Genes Dev. 35:307–328. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
O'Rourke RW: Adipose tissue and the physiologic underpinnings of metabolic disease. Surg Obes Relat Dis. 14:1755–1763. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Bhatti JS, Bhatti GK and Reddy PH: Mitochondrial dysfunction and oxidative stress in metabolic disorders-A step towards mitochondria based therapeutic strategies. Biochim Biophys Acta Mol Basis Dis. 1863:1066–1077. 2017. View Article : Google Scholar | |
|
Friedman SL, Neuschwander-Tetri BA, Rinella M and Sanyal AJ: Mechanisms of NAFLD development and therapeutic strategies. Nat Med. 24:908–922. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Pouwels S, Sakran N, Graham Y, Leal A, Pintar T, Yang W, Kassir R, Singhal R, Mahawar K and Ramnarain D: Non-alcoholic fatty liver disease (NAFLD): A review of pathophysiology, clinical management and effects of weight loss. BMC Endocr Disord. 22:632022. View Article : Google Scholar : PubMed/NCBI | |
|
Le MH, Le DM, Baez TC, Wu Y, Ito T, Lee EY, Lee K, Stave CD, Henry L, Barnett SD, et al: Global incidence of non-alcoholic fatty liver disease: A systematic review and meta-analysis of 63 studies and 1,201,807 persons. J Hepatol. 79:287–295. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Ye J, Tian X, Wang Q, Zheng J, Yang Y, Xu B, Zhang S, Yuan F and Yang Z: Monkfish peptides mitigate high fat diet-induced hepatic steatosis in mice. Mar Drugs. 20:3122022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang CH, Zhou BG, Sheng JQ, Chen Y, Cao YQ and Chen C: Molecular mechanisms of hepatic insulin resistance in nonalcoholic fatty liver disease and potential treatment strategies. Pharmacol Res. 159:1049842020. View Article : Google Scholar : PubMed/NCBI | |
|
Kowdley KV, Belt P, Wilson LA, Yeh MM, Neuschwander-Tetri BA, Chalasani N, Sanyal AJ and Nelson JE; NASH Clinical Research Network: Serum ferritin is an independent predictor of histologic severity and advanced fibrosis in patients with nonalcoholic fatty liver disease. Hepatology. 55:77–85. 2012. View Article : Google Scholar | |
|
Chen Z, Tian R, She Z, Cai J and Li H: Corrigendum to 'Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease' [Free Radic. Biol. Med. 152(2020) 116-141]. Free Radic Biol Med. 162:1742021. View Article : Google Scholar | |
|
Paradies G, Paradies V, Ruggiero FM and Petrosillo G: Oxidative stress, cardiolipin and mitochondrial dysfunction in nonalcoholic fatty liver disease. World J Gastroenterol. 20:14205–14218. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Vatner DF, Majumdar SK, Kumashiro N, Petersen MC, Rahimi Y, Gattu AK, Bears M, Camporez JP, Cline GW, Jurczak MJ, et al: Insulin-independent regulation of hepatic triglyceride synthesis by fatty acids. Proc Natl Acad Sci USA. 112:1143–1148. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Li C, Du X, Shen Z, Wei Y, Wang Y, Han X, Jin H, Zhang C, Li M, Zhang Z, et al: The critical and diverse roles of CD4−CD8− double negative T cells in nonalcoholic fatty liver disease. Cell Mol Gastroenterol Hepatol. 13:1805–1827. 2022. View Article : Google Scholar : | |
|
Masarone M, Rosato V, Dallio M, Gravina AG, Aglitti A, Loguercio C, Federico A and Persico M: Role of oxidative stress in pathophysiology of nonalcoholic fatty liver disease. Oxid Med Cell Longev. 2018:95476132018. View Article : Google Scholar : PubMed/NCBI | |
|
Mazur-Bialy AI, Kozlowska K, Pochec E, Bilski J and Brzozowski T: Myokine irisin-induced protection against oxidative stress in vitro. Involvement of heme oxygenase-1 and antioxidazing enzymes superoxide dismutase-2 and glutathione peroxidase. J Physiol Pharmacol. 69:117–125. 2018.PubMed/NCBI | |
|
Kania-Korwel I, Wu X, Wang K and Lehmler HJ: Identification of lipidomic markers of chronic 3,3′,4,4′,5-pentachlorobiphenyl (PCB 126) exposure in the male rat liver. Toxicology. 390:124–134. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Boucher MP, Lefebvre C and Chapados NA: The effects of PCB126 on intra-hepatic mechanisms associated with non alcoholic fatty liver disease. J Diabetes Metab Disord. 14:882015. View Article : Google Scholar : PubMed/NCBI | |
|
Lai I, Chai Y, Simmons D, Luthe G, Coleman MC, Spitz D, Haschek WM, Ludewig G and Robertson LW: Acute toxicity of 3,3′,4,4′,5-pentachlorobiphenyl (PCB 126) in male Sprague-Dawley rats: Effects on hepatic oxidative stress, glutathione and metals status. Environ Int. 36:918–923. 2010. View Article : Google Scholar | |
|
Gadupudi GS, Klaren WD, Olivier AK, Klingelhutz AJ and Robertson LW: PCB126-induced disruption in gluconeogenesis and fatty acid oxidation precedes fatty liver in male rats. Toxicol Sci. 149:98–110. 2016. View Article : Google Scholar : | |
|
Weinberg JM: Lipotoxicity. Kidney Int. 70:1560–1566. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Svegliati-Baroni G, Pierantonelli I, Torquato P, Marinelli R, Ferreri C, Chatgilialoglu C, Bartolini D and Galli F: Lipidomic biomarkers and mechanisms of lipotoxicity in non-alcoholic fatty liver disease. Free Radic Biol Med. 144:293–309. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Peiseler M, Schwabe R, Hampe J, Kubes P, Heikenwalder M and Tacke F: Immune mechanisms linking metabolic injury to inflammation and fibrosis in fatty liver disease-novel insights into cellular communication circuits. J Hepatol. 77:1136–1160. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Hillhouse EE and Lesage S: A comprehensive review of the phenotype and function of antigen-specific immunoregulatory double negative T cells. J Autoimmun. 40:58–65. 2013. View Article : Google Scholar | |
|
Brandt D and Hedrich CM: TCRαβ+CD3+CD4−CD8− (double negative) T cells in autoimmunity. Autoimmun Rev. 17:422–430. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Sun G, Zhao X, Li M, Zhang C, Jin H, Li C, Liu L, Wang Y, Shi W, Tian D, et al: CD4 derived double negative T cells prevent the development and progression of nonalcoholic steatohepatitis. Nat Commun. 12:6502021. View Article : Google Scholar : PubMed/NCBI | |
|
Roehlen N, Crouchet E and Baumert TF: Liver fibrosis: Mechanistic concepts and therapeutic perspectives. Cells. 9:8752020. View Article : Google Scholar : PubMed/NCBI | |
|
Zisser A, Ipsen DH and Tveden-Nyborg P: Hepatic stellate cell activation and inactivation in NASH-fibrosis-roles as putative treatment targets? Biomedicines. 9:3652021. View Article : Google Scholar : PubMed/NCBI | |
|
Mederacke I, Hsu CC, Troeger JS, Huebener P, Mu X, Dapito DH, Pradere JP and Schwabe RF: Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat Commun. 4:28232013. View Article : Google Scholar : PubMed/NCBI | |
|
Seki E, de Minicis S, Inokuchi S, Taura K, Miyai K, van Rooijen N, Schwabe RF and Brenner DA: CCR2 promotes hepatic fibrosis in mice. Hepatology. 50:185–197. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Schwabe RF, Bataller R and Brenner DA: Human hepatic stellate cells express CCR5 and RANTES to induce proliferation and migration. Am J Physiol Gastrointest Liver Physiol. 285:G949–G958. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Krenkel O and Tacke F: Macrophages in nonalcoholic fatty liver disease: A role model of pathogenic immunometabolism. Semin Liver Dis. 37:189–197. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Yan J, Nie Y, Liu Y, Li J, Wu L, Chen Z and He B: Yiqi-bushen-tiaozhi recipe attenuated high-fat and high-fructose diet induced nonalcoholic steatohepatitis in mice via gut microbiota. Front Cell Infect Microbiol. 12:8245972022. View Article : Google Scholar : PubMed/NCBI | |
|
Fan CY, Pan J, Usuda N, Yeldandi AV, Rao MS and Reddy JK: Steatohepatitis, spontaneous peroxisome proliferation and liver tumors in mice lacking peroxisomal fatty acyl-CoA oxidase. Implications for peroxisome proliferator-activated receptor alpha natural ligand metabolism. J Biol Chem. 273:15639–15645. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Mitsuyoshi H, Yasui K, Harano Y, Endo M, Tsuji K, Minami M, Itoh Y, Okanoue T and Yoshikawa T: Analysis of hepatic genes involved in the metabolism of fatty acids and iron in nonalcoholic fatty liver disease. Hepatol Res. 39:366–373. 2009. View Article : Google Scholar | |
|
Warner DR, Warner JB, Hardesty JE, Song YL, King TN, Kang JX, Chen CY, Xie S, Yuan F, Prodhan MAI, et al: Decreased ω-6:ω-3 PUFA ratio attenuates ethanol-induced alterations in intestinal homeostasis, microbiota, and liver injury. J Lipid Res. 60:2034–2049. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
de Almeida IT, Cortez-Pinto H, Fidalgo G, Rodrigues D and Camilo ME: Plasma total and free fatty acids composition in human non-alcoholic steatohepatitis. Clin Nutr. 21:219–223. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Muir K, Hazim A, He Y, Peyressatre M, Kim DY, Song X and Beretta L: Proteomic and lipidomic signatures of lipid metabolism in NASH-associated hepatocellular carcinoma. Cancer Res. 73:4722–4731. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Hua MC, Su HM, Yao TC, Kuo ML, Lai MW, Tsai MH and Huang JL: Alternation of plasma fatty acids composition and desaturase activities in children with liver steatosis. PLoS One. 12:e01822772017. View Article : Google Scholar : PubMed/NCBI | |
|
Ezaizi Y, Kabbany MN, Conjeevaram Selvakumar PK, Sarmini MT, Singh A, Lopez R, Nobili V and Alkhouri N: Comparison between non-alcoholic fatty liver disease screening guidelines in children and adolescents. JHEP Rep. 1:259–264. 2019. View Article : Google Scholar | |
|
Fan HN, Zhao ZM, Huang K, Wang XN, Dai YK and Liu CH: Serum metabolomics characteristics and fatty-acid-related mechanism of cirrhosis with histological response in chronic hepatitis B. Front Pharmacol. 14:13292662023. View Article : Google Scholar | |
|
Viitasalo A, Ågren J, Venäläinen T, Pihlajamäki J, Jääskeläinen J, Korkmaz A, Atalay M and Lakka TA: Association of plasma fatty acid composition with plasma irisin levels in normal weight and overweight/obese children. Pediatr Obes. 11:299–305. 2016. View Article : Google Scholar | |
|
Huang JP, Cheng ML, Hung CY, Wang CH, Hsieh PS, Shiao MS, Chen JK, Li DE and Hung LM: Docosapentaenoic acid and docosahexaenoic acid are positively associated with insulin sensitivity in rats fed high-fat and high-fructose diets. J Diabetes. 9:936–946. 2017. View Article : Google Scholar | |
|
Marco-Ramell A, Tulipani S, Palau-Rodriguez M, Gonzalez-Dominguez R, Miñarro A, Jauregui O, Sanchez-Pla A, Macias-Gonzalez M, Cardona F, Tinahones FJ and Andres-Lacueva C: Untargeted profiling of concordant/discordant phenotypes of high insulin resistance and obesity to predict the risk of developing diabetes. J Proteome Res. 17:2307–2317. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Lu Y, Day FR, Gustafsson S, Buchkovich ML, Na J, Bataille V, Cousminer DL, Dastani Z, Drong AW, Esko T, et al: New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk. Nat Commun. 7:104952016. View Article : Google Scholar : PubMed/NCBI | |
|
Ma ZA, Zhao Z and Turk J: Mitochondrial dysfunction and β-cell failure in type 2 diabetes mellitus. Exp Diabetes Res. 2012:7035382012. View Article : Google Scholar | |
|
Deng X, Wang J, Jiao L, Utaipan T, Tuma-Kellner S, Schmitz G, Liebisch G, Stremmel W and Chamulitrat W: iPLA2β deficiency attenuates obesity and hepatic steatosis in ob/ob mice through hepatic fatty-acyl phospholipid remodeling. Biochim Biophys Acta. 1861:449–461. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Su X, Mancuso DJ, Bickel PE, Jenkins CM and Gross RW: Small interfering RNA knockdown of calcium-independent phospholipases A2 beta or gamma inhibits the hormone-induced differentiation of 3T3-L1 preadipocytes. J Biol Chem. 279:21740–21748. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Asano T, Fujishiro M, Kushiyama A, Nakatsu Y, Yoneda M, Kamata H and Sakoda H: Role of phosphatidylinositol 3-kinase activation on insulin action and its alteration in diabetic conditions. Biol Pharm Bull. 30:1610–1616. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Bandyopadhyay GK, Yu JG, Ofrecio J and Olefsky JM: Increased p85/55/50 expression and decreased phosphotidylinositol 3-kinase activity in insulin-resistant human skeletal muscle. Diabetes. 54:2351–2359. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Takahashi R, Horrobin DF, Watanabe Y, Kyte V and Billard V: Short-term diabetes increases triacylglycerol arachidonic acid content in the rat liver. Biochim Biophys Acta. 921:151–153. 1987. View Article : Google Scholar : PubMed/NCBI | |
|
Chanussot B, Asdrubal P, Huang YS and Poisson JP: Adrenic acid delta4 desaturation and fatty acid composition in the liver of marine-oil fed streptozotocin diabetic rats. Prostaglandins Leukot Essent Fatty Acids. 57:539–544. 1997. View Article : Google Scholar | |
|
No authors listed. Type 2 diabetes mellitus. Nat Rev Dis Primers. 1:150392015. View Article : Google Scholar : PubMed/NCBI | |
|
Forouhi NG, Imamura F, Sharp SJ, Koulman A, Schulze MB, Zheng J, Ye Z, Sluijs I, Guevara M, Huerta JM, et al: Association of plasma phospholipid n-3 and n-6 polyunsaturated fatty acids with type 2 diabetes: The EPIC-interact case-cohort study. PLoS Med. 13:e10020942016. View Article : Google Scholar : PubMed/NCBI | |
|
Sha W, Hu F, Xi Y, Chu Y and Bu S: Mechanism of ferroptosis and its role in type 2 diabetes mellitus. J Diabetes Res. 2021:99996122021. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N, Sun B and Wang G: Ferroptosis: Past, present and future. Cell Death Dis. 11:882020. View Article : Google Scholar : PubMed/NCBI | |
|
Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS and Stockwell BR: Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci USA. 113:E4966–E4975. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Stoyanovsky DA, Tyurina YY, Shrivastava I, Bahar I, Tyurin VA, Protchenko O, Jadhav S, Bolevich SB, Kozlov AV, Vladimirov YA, et al: Iron catalysis of lipid peroxidation in ferroptosis: Regulated enzymatic or random free radical reaction? Free Radic Biol Med. 133:153–161. 2019. View Article : Google Scholar : | |
|
Shimbara-Matsubayashi S, Kuwata H, Tanaka N, Kato M and Hara S: Analysis on the Substrate specificity of recombinant human Acyl-CoA synthetase ACSL4 variants. Biol Pharm Bull. 42:850–855. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Igarashi Y and Kimura T: Adrenic acid content in rat adrenal mitochondrial phosphatidylethanolamine and its relation to ACTH-mediated stimulation of cholesterol side chain cleavage reaction. J Biol Chem. 261:14118–14124. 1986. View Article : Google Scholar : PubMed/NCBI | |
|
Weigand I, Schreiner J, Röhrig F, Sun N, Landwehr LS, Urlaub H, Kendl S, Kiseljak-Vassiliades K, Wierman ME, Angeli JPF, et al: Active steroid hormone synthesis renders adrenocortical cells highly susceptible to type II ferroptosis induction. Cell Death Dis. 11:1922020. View Article : Google Scholar : PubMed/NCBI | |
|
Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A, et al: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 13:91–98. 2017. View Article : Google Scholar : | |
|
Ansari IUH, Longacre MJ, Stoker SW, Kendrick MA, O'Neill LM, Zitur LJ, Fernandez LA, Ntambi JM and MacDonald MJ: Characterization of Acyl-CoA synthetase isoforms in pancreatic beta cells: Gene silencing shows participation of ACSL3 and ACSL4 in insulin secretion. Arch Biochem Biophys. 618:32–43. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Liu A, Chang J, Lin Y, Shen Z and Bernstein PS: Long-chain and very long-chain polyunsaturated fatty acids in ocular aging and age-related macular degeneration. J Lipid Res. 51:3217–3229. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Torres-Cuevas I, Millán I, Asensi M, Vento M, Oger C, Galano JM, Durand T and Ortega ÁL: Analysis of lipid peroxidation by UPLC-MS/MS and retinoprotective effects of the natural polyphenol pterostilbene. Antioxidants (Basel). 10:1682021. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan Q, Zhu S, Yue S, Han Y, Peng G, Li L, Sheng Y and Wang B: Alterations in faecal and serum metabolic profiles in patients with neovascular age-related macular degeneration. Nutrients. 15:29842023. View Article : Google Scholar : PubMed/NCBI | |
|
Rohm TV, Meier DT, Olefsky JM and Donath MY: Inflammation in obesity, diabetes, and related disorders. Immunity. 55:31–55. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Hussey B, Steel RP, Gyimah B, Reynolds JC, Taylor IM, Lindley MR and Mastana S: DNA methylation of tumour necrosis factor (TNF) alpha gene is associated with specific blood fatty acid levels in a gender-specific manner. Mol Genet Genomic Med. 9:e16792021. View Article : Google Scholar : PubMed/NCBI | |
|
Cole JB and Florez JC: Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol. 16:377–390. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Szczuko M, Kaczkan M, Małgorzewicz S, Rutkowski P, Dębska-Ślizień A and Stachowska E: The C18:3n6/C22:4n6 ratio is a good lipid marker of chronic kidney disease (CKD) progression. Lipids Health Dis. 19:772020. View Article : Google Scholar : PubMed/NCBI | |
|
Tardy B, Bordet JC, Berruyer M, Ffrench P and Dechavanne M: Priming effect of adrenic acid [22:4(n-6)] on tissue factor activity expressed by thrombin-stimulated endothelial cells. Atherosclerosis. 95:51–58. 1992. View Article : Google Scholar : PubMed/NCBI | |
|
Kong P, Cui ZY, Huang XF, Zhang DD, Guo RJ and Han M: Inflammation and atherosclerosis: Signaling pathways and therapeutic intervention. Signal Transduct Target Ther. 7:1312022. View Article : Google Scholar : PubMed/NCBI | |
|
Grootaert MOJ and Bennett MR: Vascular smooth muscle cells in atherosclerosis: Time for a re-assessment. Cardiovasc Res. 117:2326–2339. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Falk E: Pathogenesis of atherosclerosis. J Am Coll Cardiol. 47:C7–C12. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Campbell WB and Fleming I: Epoxyeicosatrienoic acids and endothelium-dependent responses. Pflugers Arch. 459:881–895. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Cagen LM and Baer PG: Adrenic acid inhibits prostaglandin syntheses. Life Sci. 26:765–770. 1980. View Article : Google Scholar : PubMed/NCBI | |
|
Shi F, Chowdhury R, Sofianopoulou E, Koulman A, Sun L, Steur M, Aleksandrova K, Dahm CC, Schulze MB, van der Schouw YT, et al: Association of circulating fatty acids with cardiovascular disease risk: Analysis of individual-level data in three large prospective cohorts and updated meta-analysis. Eur J Prev Cardiol. zwae3152024.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
|
Mazidi M, Shekoohi N, Katsiki N and Banach M: Omega-6 fatty acids and the risk of cardiovascular disease: Insights from a systematic review and meta-analysis of randomized controlled trials and a Mendelian randomization study. Arch Med Sci. 18:466–479. 2021. | |
|
Lee JCY, AlGhawas DS, Poutanen K, Leung KS, Oger C, Galano JM, Durand T and El-Nezami H: Dietary oat bran increases some proinflammatory polyunsaturated fatty-acid oxidation products and reduces anti-inflammatory products in apolipoprotein E−/− mice. Lipids. 53:785–796. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Henein MY, Vancheri S, Longo G and Vancheri F: The role of inflammation in cardiovascular disease. Int J Mol Sci. 23:129062022. View Article : Google Scholar : PubMed/NCBI | |
|
Stojkovic S, Kaun C, Basilio J, Rauscher S, Hell L, Krychtiuk KA, Bonstingl C, de Martin R, Gröger M, Ay C, et al: Tissue factor is induced by interleukin-33 in human endothelial cells: A new link between coagulation and inflammation. Sci Rep. 6:251712016. View Article : Google Scholar : PubMed/NCBI | |
|
ten Cate H: Tissue factor-driven thrombin generation and inflammation in atherosclerosis. Thromb Res. 129(Suppl 2): S38–S40. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Badimon L and Vilahur G: Thrombosis formation on atherosclerotic lesions and plaque rupture. J Intern Med. 276:618–632. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Brambilla M, Camera M, Colnago D, Marenzi G, De Metrio M, Giesen PL, Balduini A, Veglia F, Gertow K, Biglioli P and Tremoli E: Tissue factor in patients with acute coronary syndromes: Expression in platelets, leukocytes, and platelet-leukocyte aggregates. Arterioscler Thromb Vasc Biol. 28:947–953. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Grover SP and Mackman N: Tissue factor in atherosclerosis and atherothrombosis. Atherosclerosis. 307:80–86. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Libby P: The changing landscape of atherosclerosis. Nature. 592:524–533. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Engler MM, Bellenger-Germain SH, Engler MB, Narce MM and Poisson JP: Dietary docosahexaenoic acid affects stearic acid desaturation in spontaneously hypertensive rats. Lipids. 35:1011–1015. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Yu Z, Wang L, Wu S, Xue W, Zhao W and Li J: Potential mechanisms of the anti-hypertensive effects of RVPSL on spontaneously hypertensive rats using non-targeted serum metabolomics. Food Funct. 12:8561–8569. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Li D, Yu XM, Xie HB, Zhang YH, Wang Q, Zhou XQ, Yu P and Wang LJ: Platelet phospholipid n-3 PUFA negatively associated with plasma homocysteine in middle-aged and geriatric hyperlipaemia patients. Prostaglandins Leukot Essent Fatty Acids. 76:293–297. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Simon JA, Fong J, Bernert JT Jr and Browner WS: Relation of smoking and alcohol consumption to serum fatty acids. Am J Epidemiol. 144:325–334. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Yang LG, Song ZX, Yin H, Wang YY, Shu GF, Lu HX, Wang SK and Sun GJ: Low n-6/n-3 PUFA ratio improves lipid metabolism, inflammation, oxidative stress and endothelial function in rats using plant oils as n-3 fatty acid source. Lipids. 51:49–59. 2016. View Article : Google Scholar | |
|
Hurtubise J, McLellan K, Durr K, Onasanya O, Nwabuko D and Ndisang JF: The different facets of dyslipidemia and hypertension in atherosclerosis. Curr Atheroscler Rep. 18:822016. View Article : Google Scholar : PubMed/NCBI | |
|
Talmor-Barkan Y, Bar N, Shaul AA, Shahaf N, Godneva A, Bussi Y, Lotan-Pompan M, Weinberger A, Shechter A, Chezar-Azerrad C, et al: Metabolomic and microbiome profiling reveals personalized risk factors for coronary artery disease. Nat Med. 28:295–302. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Fan Y, Li Y, Chen Y, Zhao YJ, Liu LW, Li J, Wang SL, Alolga RN, Yin Y, Wang XM, et al: Comprehensive metabolomic characterization of coronary artery diseases. J Am Coll Cardiol. 68:1281–1293. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Smith ML, Bull CJ, Holmes MV, Davey Smith G, Sanderson E, Anderson EL and Bell JA: Distinct metabolic features of genetic liability to type 2 diabetes and coronary artery disease: A reverse Mendelian randomization study. EBioMedicine. 90:1045032023. View Article : Google Scholar : PubMed/NCBI | |
|
Chen H, Tan H, Wan J, Zeng Y, Wang J, Wang H and Lu X: PPAR-γ signaling in nonalcoholic fatty liver disease: Pathogenesis and therapeutic targets. Pharmacol Ther. 245:1083912023. View Article : Google Scholar | |
|
Scime NV, Turner S, Miliku K, Simons E, Moraes TJ, Field CJ, Turvey SE, Subbarao P, Mandhane PJ and Azad MB: Association of human milk fatty acid composition with maternal cardiometabolic diseases: An exploratory prospective cohort study. Breastfeed Med. 19:357–367. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Svennerholm L: Distribution and fatty acid composition of phosphoglycerides in normal human brain. J Lipid Res. 9:570–579. 1968. View Article : Google Scholar : PubMed/NCBI | |
|
Wilson R and Sargent JR: Lipid and fatty acid composition of brain tissue from adrenoleukodystrophy patients. J Neurochem. 61:290–297. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Wijendran V, Lawrence P, Diau GY, Boehm G, Nathanielsz PW and Brenna JT: Significant utilization of dietary arachidonic acid is for brain adrenic acid in baboon neonates. J Lipid Res. 43:762–767. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Rapoport SI: Translational studies on regulation of brain docosahexaenoic acid (DHA) metabolism in vivo. Prostaglandins Leukot Essent Fatty Acids. 88:79–85. 2013. View Article : Google Scholar | |
|
Yoshinaga K, Ishikawa H, Beppu F and Gotoh N: Incorporation of dietary arachidonic and docosatetraenoic acid into mouse brain. J Agric Food Chem. 69:2457–2461. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Grande de França NA, Díaz G, Lengelé L, Soriano G, Caspar-Bauguil S, Saint-Aubert L, Payoux P, Rouch L, Vellas B, de Souto Barreto P and Sourdet S: Associations between blood nutritional biomarkers and cerebral amyloid-β: Insights from the COGFRAIL cohort study. J Gerontol A Biol Sci Med Sci. 79:glad2482024. View Article : Google Scholar | |
|
Hammouda S, Ghzaiel I, Khamlaoui W, Hammami S, Mhenni SY, Samet S, Hammami M and Zarrouk A: Genetic variants in FADS1 and ELOVL2 increase level of arachidonic acid and the risk of Alzheimer's disease in the Tunisian population. Prostaglandins Leukot Essent Fatty Acids. 160:1021592020. View Article : Google Scholar : PubMed/NCBI | |
|
Durand T, De Felice C, Signorini C, Oger C, Bultel-Poncé V, Guy A, Galano JM, Leoncini S, Ciccoli L, Pecorelli A, et al: F(2)-Dihomo-isoprostanes and brain white matter damage in stage 1 Rett syndrome. Biochimie. 95:86–90. 2013. View Article : Google Scholar | |
|
Zhou K, Jia L, Mao Z, Si P, Sun C, Qu Z and Wang W: Integrated macrogenomics and metabolomics explore alterations and correlation between gut microbiota and serum metabolites in adult epileptic patients: A pilot study. Microorganisms. 11:26282023. View Article : Google Scholar : PubMed/NCBI | |
|
Xie J, Zhou F, Ouyang L, Li Q, Rao S, Su R, Yang S, Li J, Wan X, Yan L, et al: Insight into the effect of a heavy metal mixture on neurological damage in rats through combined serum metabolomic and brain proteomic analyses. Sci Total Environ. 895:1650092023. View Article : Google Scholar : PubMed/NCBI | |
|
Thapar A, Cooper M and Rutter M: Neurodevelopmental disorders. Lancet Psychiatry. 4:339–346. 2017. View Article : Google Scholar | |
|
Sumich AL, Matsudaira T, Heasman B, Gow RV, Ibrahimovic A, Ghebremeskel K, Crawford MA and Taylor E: Fatty acid correlates of temperament in adolescent boys with attention deficit hyperactivity disorder. Prostaglandins Leukot Essent Fatty Acids. 88:431–436. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Wu CH, Hsu WL, Tsai CC, Chao HR, Wu CY, Chen YH, Lai YR, Chen CH and Tsai MH: 7,10,13,16-Docosatetraenoic acid impairs neurobehavioral development by increasing reactive oxidative species production in Caenorhabditis elegans. Life Sci. 319:1215002023. View Article : Google Scholar : PubMed/NCBI | |
|
De Felice C, Signorini C, Durand T, Oger C, Guy A, Bultel-Poncé V, Galano JM, Ciccoli L, Leoncini S, D'Esposito M, et al: F2-dihomo-isoprostanes as potential early biomarkers of lipid oxidative damage in Rett syndrome. J Lipid Res. 52:2287–2297. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Khan S, Barve KH and Kumar MS: Recent advancements in pathogenesis, diagnostics and treatment of Alzheimer's disease. Curr Neuropharmacol. 18:1106–1125. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Liu RM: Aging, cellular senescence, and Alzheimer's disease. Int J Mol Sci. 23:19892022. View Article : Google Scholar : PubMed/NCBI | |
|
Kosicek M and Hecimovic S: Phospholipids and Alzheimer's disease: Alterations, mechanisms and potential biomarkers. Int J Mol Sci. 14:1310–1322. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Hancock SE, Friedrich MG, Mitchell TW, Truscott RJW and Else PL: Decreases in phospholipids containing adrenic and arachidonic acids occur in the human hippocampus over the adult lifespan. Lipids. 50:861–872. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Hancock SE, Friedrich MG, Mitchell TW, Truscott RJW and Else PL: Changes in phospholipid composition of the human cerebellum and motor cortex during normal ageing. Nutrients. 14:24952022. View Article : Google Scholar : PubMed/NCBI | |
|
Corrigan FM, Horrobin DF, Skinner ER, Besson JA and Cooper MB: Abnormal content of n-6 and n-3 long-chain unsaturated fatty acids in the phosphoglycerides and cholesterol esters of parahippocampal cortex from Alzheimer's disease patients and its relationship to acetyl CoA content. Int J Biochem Cell Biol. 30:197–207. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Cullen NC, Novak P, Tosun D, Kovacech B, Hanes J, Kontsekova E, Fresser M, Ropele S, Feldman HH, Schmidt R, et al: Efficacy assessment of an active tau immunotherapy in Alzheimer's disease patients with amyloid and tau pathology: A post hoc analysis of the 'ADAMANT' randomised, placebo-controlled, double-blind, multi-centre, phase 2 clinical trial. EBioMedicine. 99:1049232024. View Article : Google Scholar | |
|
Pascoal TA, Aguzzoli CS, Lussier FZ, Crivelli L, Suemoto CK, Fortea J, Rosa-Neto P, Zimmer ER, Ferreira PCL and Bellaver B: Insights into the use of biomarkers in clinical trials in Alzheimer's disease. EBioMedicine. 108:1053222024. View Article : Google Scholar : PubMed/NCBI | |
|
Skinner ER, Watt C, Besson JA and Best PV: Differences in the fatty acid composition of the grey and white matter of different regions of the brains of patients with Alzheimer's disease and control subjects. Brain. 116:717–725. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Miller E, Morel A, Saso L and Saluk J: Isoprostanes and neuroprostanes as biomarkers of oxidative stress in neurodegenerative diseases. Oxid Med Cell Longev. 2014:5724912014. View Article : Google Scholar : PubMed/NCBI | |
|
Roberts LJ II and Milne GL: Isoprostanes. J Lipid Res. 50(Suppl): S219–S223. 2009. View Article : Google Scholar : | |
|
Calo L, Wegrzynowicz M, Santivañez-Perez J and Grazia Spillantini M: Synaptic failure and α-synuclein. Mov Disord. 31:169–177. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Ugalde CL, Lawson VA, Finkelstein DI and Hill AF: The role of lipids in α-synuclein misfolding and neurotoxicity. J Biol Chem. 294:9016–9028. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Xylaki M, Boumpoureka I, Kokotou MG, Marras T, Papadimitriou G, Kloukina I, Magrioti V, Kokotos G, Vekrellis K and Emmanouilidou E: Changes in the cellular fatty acid profile drive the proteasomal degradation of α-synuclein and enhance neuronal survival. FASEB J. 34:15123–15145. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Malhi GS and Mann JJ: Depression. Lancet. 392:2299–2312. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Aguilar-Valles A, Kim J, Jung S, Woodside B and Luheshi GN: Role of brain transmigrating neutrophils in depression-like behavior during systemic infection. Mol Psychiatry. 19:599–606. 2014. View Article : Google Scholar | |
|
Zeng L, Lv H, Wang X, Xue R, Zhou C, Liu X and Yu H: Causal effects of fatty acids on depression: Mendelian randomization study. Front Nutr. 9:10104762022. View Article : Google Scholar : PubMed/NCBI | |
|
Vaz JS, Kac G, Nardi AE and Hibbeln JR: Omega-6 fatty acids and greater likelihood of suicide risk and major depression in early pregnancy. J Affect Disord. 152-154:76–82. 2014. View Article : Google Scholar | |
|
Chen H, Wang J, Zheng B, Xia W, Tan G, Wu H, Wang Y, Deng Z, Wang Y, Zhang J and Zhang H: Association of serum fatty acid pattern with depression in U.S. adults: Analysis of NHANES 2011-2012. Lipids Health Dis. 23:1772024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang M, Yan X, Li Y, Li Q, Xu Y, Huang J, Gan J and Yang W: Association between plasma polyunsaturated fatty acids and depressive among US adults. Front Nutr. 11:13423042024. View Article : Google Scholar : PubMed/NCBI | |
|
Liu T, Wang L, Guo J, Zhao T, Tang H, Dong F, Wang C, Chen J and Tang M: Erythrocyte membrane fatty acid composition as a potential biomarker for depression. Int J Neuropsychopharmacol. 26:385–395. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Pan J, Lu Y, Wang S, Ma T, Xue X, Zhang Z, Mao Q, Guo D and Ma K: Synergistic neuroprotective effects of two natural medicinal plants against CORT-induced nerve cell injury by correcting neurotransmitter deficits and inflammation imbalance. Phytomedicine. 121:1551022023. View Article : Google Scholar : PubMed/NCBI | |
|
Liu L, Wang H, Chen X, Zhang Y, Zhang H and Xie P: Gut microbiota and its metabolites in depression: From pathogenesis to treatment. EBioMedicine. 90:1045272023. View Article : Google Scholar : PubMed/NCBI | |
|
Shang Y, Wang M, Hao Q, Meng T, Li L, Shi J, Yang G, Zhang Z, Yang K and Wang J: Development of indole-2-carbonyl piperazine urea derivatives as selective FAAH inhibitors for efficient treatment of depression and pain. Bioorg Chem. 128:1060312022. View Article : Google Scholar : PubMed/NCBI | |
|
Tripathi RKP: A perspective review on fatty acid amide hydrolase (FAAH) inhibitors as potential therapeutic agents. Eur J Med Chem. 188:1119532020. View Article : Google Scholar : PubMed/NCBI | |
|
Oliveira-Lima OC, Carvalho-Tavares J, Rodrigues MF, Gomez MV, Oliveira ACP, Resende RR, Gomez RS, Vaz BG and Pinto MCX: Lipid dynamics in LPS-induced neuroinflammation by DESI-MS imaging. Brain Behav Immun. 79:186–194. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Celik O and Yildiz BO: Obesity and physical exercise. Minerva Endocrinol (Torino). 46:131–144. 2021. | |
|
Cassilhas RC, Tufik S and de Mello MT: Physical exercise, neuroplasticity, spatial learning and memory. Cell Mol Life Sci. 73:975–983. 2016. View Article : Google Scholar | |
|
Rodríguez-Cañamero S, Cobo-Cuenca AI, Carmona-Torres JM, Pozuelo-Carrascosa DP, Santacruz-Salas E, Rabanales-Sotos JA, Cuesta-Mateos T and Laredo-Aguilera JA: Impact of physical exercise in advanced-stage cancer patients: Systematic review and meta-analysis. Cancer Med. 11:3714–3727. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Dong G: Swimming exercise ameliorates liver insulin resistance in type 2 diabetic mice-the role of adrenic acid. Shanghai University of Sport; 2021, View Article : Google Scholar | |
|
Jurado-Fasoli L, Di X, Sanchez-Delgado G, Yang W, Osuna-Prieto FJ, Ortiz-Alvarez L, Krekels E, Harms AC, Hankemeier T, Schönke M, et al: Acute and long-term exercise differently modulate plasma levels of oxylipins, endocannabinoids, and their analogues in young sedentary adults: A sub-study and secondary analyses from the ACTIBATE randomized controlled-trial. EBioMedicine. 85:1043132022. View Article : Google Scholar : PubMed/NCBI | |
|
Gao Y, Sun YY, Bai D and Wu XX: Mechanism of the components compatibility of Scutellariae Radix and Coptidis Rhizoma on mice with hyperlipidemia by regulating the Cyp4a family. J Ethnopharmacol. 331:1182632024. View Article : Google Scholar : PubMed/NCBI | |
|
Mi Y, Yi N, Xu X, Zeng F, Li N, Tan X, Gong Z, Yan K, Kuang G and Lu M: Prebiotics alleviate cartilage degradation and inflammation in post-traumatic osteoarthritic mice by modulating the gut barrier and fecal metabolomics. Food Funct. 14:4065–4077. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Aukema HM and Holub BJ: Effect of dietary supplementation with a fish oil concentrate on the alkenylacyl class of ethanolamine phospholipid in human platelets. J Lipid Res. 30:59–64. 1989. View Article : Google Scholar : PubMed/NCBI | |
|
Hernández MC, Rojas P, Carrasco F, Basfi-Fer K, Valenzuela R, Codoceo J, Inostroza J and Ruz M: Fatty acid desaturation in red blood cell membranes of patients with type 2 diabetes is improved by zinc supplementation. J Trace Elem Med Biol. 62:1265712020. View Article : Google Scholar : PubMed/NCBI | |
|
Arcusa R, Carillo JÁ, Cerdá B, Durand T, Gil-Izquierdo Á, Medina S, Galano JM, Zafrilla MP and Marhuenda J: Ability of a polyphenol-rich nutraceutical to reduce central nervous system lipid peroxidation by analysis of oxylipins in urine: A randomized, double-blind, placebo-controlled clinical trial. Antioxidants (Basel). 12:7212023. View Article : Google Scholar : PubMed/NCBI | |
|
Flaskerud K, Bukowski M, Golovko M, Johnson L, Brose S, Ali A, Cleveland B, Picklo M Sr and Raatz S: Effects of cooking techniques on fatty acid and oxylipin content of farmed rainbow trout (Oncorhynchus mykiss). Food Sci Nutr. 5:1195–1204. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou D, Zaiger G, Ghebremeskel K, Crawford MA and Reifen R: Vitamin A deficiency reduces liver and colon docosahexaenoic acid levels in rats fed high linoleic and low alpha-linolenic acid diet. Prostaglandins Leukot Essent Fatty Acids. 71:383–389. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Martínez-Ramírez HR, Kramer JKG and de Lange CFM: Retention of n-3 polyunsaturated fatty acids in trimmed loin and belly is independent of timing of feeding ground flaxseed to growing-finishing female pigs. J Anim Sci. 92:238–249. 2014. View Article : Google Scholar | |
|
Jiao Y, Liu S, Zhou Y, Yang D, Li J and Cui Z: The effect of supplemental concentrate feeding on the morphological and functional development of the pancreas in early weaned yak calves. Animals (Basel). 12:25632022. View Article : Google Scholar : PubMed/NCBI | |
|
Dua TK, Dewanjee S, Khanra R, Joardar S, Barma S, Das S, Zia-Ul-Haq M and De Feo V: Cytoprotective and antioxidant effects of an edible herb, enhydra fluctuans lour. (Asteraceae), against experimentally induced lead acetate intoxication. PLoS One. 11:e01487572016. View Article : Google Scholar : PubMed/NCBI | |
|
Xia J, Lu L, Jin C, Wang S, Zhou J, Ni Y, Fu Z and Jin Y: Effects of short term lead exposure on gut microbiota and hepatic metabolism in adult zebrafish. Comp Biochem Physiol C Toxicol Pharmacol. 209:1–8. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Mateo R, Beyer WN, Spann JW and Hoffman DJ: Relation of fatty acid composition in lead-exposed mallards to fat mobilization, lipid peroxidation and alkaline phosphatase activity. Comp Biochem Physiol C Toxicol Pharmacol. 135:451–458. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Aléssio ML, Léger CL, Rasolonjanahary R, Wandscheer DE, Clauser H, Enjalbert A and Kordon C: Selective effect of a diet-induced decrease in the arachidonic acid membranephospholipid content on in vitro phospholipase C and adenylate cyclase-mediated pituitary response to angiotensin II. Neuroendocrinology. 60:400–409. 1994. View Article : Google Scholar | |
|
Stylianopoulou F and Clayton RB: Strain-dependent gonadal effects upon adrenal cholesterol ester concentration and composition in C57BL/10J and DBA/2J mice. Endocrinology. 99:1631–1637. 1976. View Article : Google Scholar : PubMed/NCBI | |
|
Marhuenda J, Medina S, Martínez-Hernández P, Arina S, Zafrilla P, Mulero J, Oger C, Galano JM, Durand T, Ferreres F and Gil-Izquierdo A: Melatonin and hydroxytyrosol protect against oxidative stress related to the central nervous system after the ingestion of three types of wine by healthy volunteers. Food Funct. 8:64–74. 2017. View Article : Google Scholar | |
|
Parada H Jr, Wu T, Hoh E, Rock CL and Martinez ME: Red blood cell polyunsaturated fatty acids and mortality following breast cancer. Cancer Epidemiol Biomarkers Prev. 33:944–952. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Dayaker G, Durand T and Balas L: Total synthesis of neuroprotectin D1 analogues derived from omega-6 docosapentaenoic acid (DPA) and adrenic acid (AdA) from a common pivotal, late-stage intermediate. J Org Chem. 79:2657–2665. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Bazan NG: Neuroprotectin D1 (NPD1): A DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress. Brain Pathol. 15:159–166. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Stark DT and Bazan NG: Neuroprotectin D1 induces neuronal survival and downregulation of amyloidogenic processing in Alzheimer's disease cellular models. Mol Neurobiol. 43:131–138. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Dayaker G, Durand T and Balas L: A versatile and stereocontrolled total synthesis of dihydroxylated docosatrienes containing a conjugated E,E,Z-triene. Chemistry. 20:2879–2887. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Messamore E, Hoffman WF and Yao JK: Niacin sensitivity and the arachidonic acid pathway in schizophrenia. Schizophr Res. 122:248–256. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Brouwers H, Jónasdóttir HS, Kuipers ME, Kwekkeboom JC, Auger JL, Gonzalez-Torres M, López-Vicario C, Clària J, Freysdottir J, Hardardottir I, et al: Anti-inflammatory and proresolving effects of the omega-6 polyunsaturated fatty acid adrenic acid. J Immunol. 205:2840–2849. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Song T and Kuang S: Adipocyte dedifferentiation in health and diseases. Clin Sci (Lond). 133:2107–2119. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Villarroya F, Cereijo R, Gavalda-Navarro A, Villarroya J and Giralt M: Inflammation of brown/beige adipose tissues in obesity and metabolic disease. J Intern Med. 284:492–504. 2018. View Article : Google Scholar : PubMed/NCBI |