|
1
|
César-Razquin A, Snijder B,
Frappier-Brinton T, Isserlin R, Gyimesi G, Bai X, Reithmeier RA,
Hepworth D, Hediger MA, Edwards AM and Superti-Furga G: A call for
systematic research on solute carriers. Cell. 162:478–87. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Hediger MA, Romero MF, Peng JB, Rolfs A,
Takanaga H and Bruford EA: The ABCs of solute carriers:
Physiological, pathological and therapeutic implications of human
membrane transport proteinsIntroduction. Pflugers Arch.
447:465–468. 2004. View Article : Google Scholar
|
|
3
|
Xia R, Peng HF, Zhang X and Zhang HS:
Comprehensive review of amino acid transporters as therapeutic
targets. Int J Biol Macromol. 260(Pt 2): 1296462024. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Nwosu ZC, Song MG, di Magliano MP,
Lyssiotis CA and Kim SE: Nutrient transporters: connecting cancer
metabolism to therapeutic opportunities. Oncogene. 42:711–724.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Vander Heiden MG, Cantley LC and Thompson
CB: Understanding the Warburg effect: the metabolic requirements of
cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Lin L, Yee SW, Kim RB and Giacomini KM:
SLC transporters as therapeutic targets: emerging opportunities.
Nat Rev Drug Discov. 14:543–560. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Schlessinger A, Zatorski N, Hutchinson K
and Colas C: Targeting SLC transporters: Small molecules as
modulators and therapeutic opportunities. Trends Biochem Sci.
48:801–814. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Dvorak V and Superti-Furga G: Structural
and functional annotation of solute carrier transporters:
Implication for drug discovery. Expert Opin Drug Discov.
18:1099–1115. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Xie T, Chi X, Huang B, Ye F, Zhou Q and
Huang J: Rational exploration of fold atlas for human solute
carrier proteins. Structure. 30:1321–1330.e5. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Perland E and Fredriksson R:
Classification systems of secondary active transporters. Trends
Pharmacol Sci. 38:305–315. 2017. View Article : Google Scholar
|
|
11
|
Nishimura M and Naito S: Tissue-specific
mRNA expression profiles of human solute carrier transporter
superfamilies. Drug Metab Pharmacokinet. 23:22–44. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Morioka S, Perry JSA, Raymond MH, Medina
CB, Zhu Y, Zhao L, Serbulea V, Onengut-Gumuscu S, Leitinger N,
Kucenas S, et al: Efferocytosis induces a novel SLC program to
promote glucose uptake and lactate release. Nature. 563:714–718.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
O'Hagan S, Wright Muelas M, Day PJ,
Lundberg E and Kell DB: GeneGini: Assessment via the Gini
Coefficient of Reference 'Housekeeping' genes and diverse human
transporter expression profiles. Cell Syst. 6:230–244.e1. 2018.
View Article : Google Scholar
|
|
14
|
Li J, Li J and Jiang W: Effects of
different surgical extents on prognosis of patients with malignant
ovarian sex cord-stromal tumors: A retrospective cohort study. Sci
Rep. 14:226302024. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Kostov S, Watrowski R, Kornovski Y,
Dzhenkov D, Slavchev S, Ivanova Y and Yordanov A: Hereditary
gynecologic cancer syndromes-A narrative review. Onco Targets Ther.
15:381–405. 2022. View Article : Google Scholar :
|
|
16
|
González-Martín A, Harter P, Leary A,
Lorusso D, Miller RE, Pothuri B, Ray-Coquard I, Tan DSP, Bellet E,
Oaknin A, et al: Newly diagnosed and relapsed epithelial ovarian
cancer: ESMO Clinical Practice Guideline for diagnosis, treatment
and follow-up. Ann Oncol. 34:833–848. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Quaresima B, Romeo F, Faniello MC, Di
Sanzo M, Liu CG, Lavecchia A, Taccioli C, Gaudio E, Baudi F,
Trapasso F, et al: BRCA1 5083del19 mutant allele selectively
up-regulates periostin expression in vitro and in vivo. Clin Cancer
Res. 14:6797–6803. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Crugliano T, Quaresima B, Gaspari M,
Faniello MC, Romeo F, Baudi F, Cuda G, Costanzo F and Venuta S:
Specific changes in the proteomic pattern produced by the
BRCA1-Ser1841Asn missense mutation. Int J Biochem Cell Biol.
39:220–226. 2007. View Article : Google Scholar
|
|
19
|
Wei X, Sun L, Slade E, Fierheller CT,
Oxley S, Kalra A, Sia J, Sideris M, McCluggage WG, Bromham N, et
al: Cost-Effectiveness of Gene-Specific Prevention Strategies for
Ovarian and Breast Cancer. JAMA Netw Open. 7:e23553242024.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Hanson H, Kulkarni A, Loong L, Kavanaugh
G, Torr B, Allen S, Ahmed M, Antoniou AC, Cleaver R, Dabir T, et
al: UK consensus recommendations for clinical management of cancer
risk for women with germline pathogenic variants in cancer
predisposition genes: RAD51C, RAD51D, BRIP1 and PALB2. J Med Genet.
60:417–429. 2023. View Article : Google Scholar
|
|
21
|
Scicchitano S, Faniello MC and Mesuraca M:
Zinc Finger 521 Modulates the Nrf2-notch signaling pathway in human
ovarian carcinoma. Int J Mol Sci. 24:147552023. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Scicchitano S, Montalcini Y, Lucchino V,
Melocchi V, Gigantino V, Chiarella E, Bianchi F, Weisz A and
Mesuraca M: Enhanced ZNF521 expression induces an aggressive
phenotype in human ovarian carcinoma cell lines. PLoS One.
17:e02747852022. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Chen Y, He Z, Yang S, Chen C, Xiong W, He
Y and Liu S: RUNX1 knockdown induced apoptosis and impaired EMT in
high-grade serous ovarian cancer cells. J Transl Med. 21:8862023.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Collet L, Hanvic B, Turinetto M, Treilleux
I, Chopin N, Le Saux O and Ray-Coquard I: BRCA1/2 alterations and
reversion mutations in the area of PARP inhibitors in high grade
ovarian cancer: State of the art and forthcoming challenges. Front
Oncol. 14:13544272024. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Wang L, Wang X, Zhu X, Zhong L, Jiang Q,
Wang Y, Tang Q, Li Q, Zhang C, Wang H and Zou D: Drug resistance in
ovarian cancer: From mechanism to clinical trial. Mol Cancer.
23:662024. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Marjamaa A, Gibbs B, Kotrba C and Masamha
CP: The role and impact of alternative polyadenylation and miRNA
regulation on the expression of the multidrug resistance-associated
protein 1 (MRP-1/ABCC1) in epithelial ovarian cancer. Sci Rep.
13:174762023. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Elsnerova K, Bartakova A, Tihlarik J,
Bouda J, Rob L, Skapa P, Hruda M, Gut I, Mohelnikova-Duchonova B,
Soucek P and Vaclavikova R: Gene expression profiling reveals novel
candidate markers of ovarian carcinoma intraperitoneal metastasis.
J Cancer. 8:3598–3606. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Teng QX, Lei ZN, Wang JQ, Yang Y, Wu ZX,
Acharekar ND, Zhang W, Yoganathan S, Pan Y, Wurpel J, et al:
Overexpression of ABCC1 and ABCG2 confers resistance to talazoparib
a poly (ADP-Ribose) polymerase inhibitor. Drug Resist Updat.
73:1010282024. View Article : Google Scholar
|
|
29
|
Sniegowski T, Korac K, Bhutia YD and
Ganapathy V: SLC6A14 and SLC38A5 Drive the Glutaminolysis and
Serine-Glycine-One-Carbon Pathways in Cancer. Pharmaceuticals.
14:2162021. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Chiarella E, Aloisio A, Scicchitano S,
Todoerti K, Cosentino EG, Lico D, Neri A, Amodio N, Bond HM and
Mesuraca M: ZNF521 Enhances MLL-AF9-Dependent hematopoietic stem
cell transformation in acute myeloid leukemias by altering the gene
expression landscape. Int J Mol Sci. 22:108142021. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Bharadwaj R, Jaiswal S, Velarde de la Cruz
EE and Thakare RP: Targeting solute carrier transporters (SLCs) as
a therapeutic target in different cancers. Diseases. 12:632024.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Kaira K, Nakamura K, Hirakawa T, Imai H,
Tominaga H, Oriuchi N, Nagamori S, Kanai Y, Tsukamoto N, Oyama T,
et al: Prognostic significance of L-type amino acid transporter 1
(LAT1) expression in patients with ovarian tumors. Am J Transl Res.
7:1161–1171. 2015.PubMed/NCBI
|
|
33
|
Guo H, Xu Y, Wang F, Shen Z, Tuo X, Qian
H, Wang H and Wang K: Clinical associations between ASCT2 and
p-mTOR in the pathogenesis and prognosis of epithelial ovarian
cancer. Oncol Rep. 40:3725–3733. 2018.PubMed/NCBI
|
|
34
|
Huang X, Luo Y and Li X: Circ_0072995
promotes ovarian cancer progression through regulating
miR-122-5p/SLC1A5 Axis. Biochem Genet. 60:153–172. 2022. View Article : Google Scholar
|
|
35
|
Ma H, Qu S, Zhai Y and Yang X:
circ_0025033 promotes ovarian cancer development via regulating the
hsa_miR-370-3p/SLC1A5 axis. Cell Mol Biol Lett. 27:942022.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Villagomez FR, Lang J, Rosario FJ,
Nunez-Avellaneda D, Webb P, Neville M, Woodruff ER and Bitler BG:
Claudin-4 Modulates Autophagy via SLC1A5/LAT1 as a Mechanism to
Regulate Micronuclei. Cancer Res Commun. 4:1625–1642. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Zhang C, Shafaq-Zadah M, Pawling J,
Hesketh GG, Dransart E, Pacholczyk K, Longo J, Gingras AC, Penn LZ,
Johannes L and Dennis JW: SLC3A2 N-glycosylation and Golgi
remodeling regulate SLC7A amino acid exchangers and stress
mitigation. J Biol Chem. 299:1054162023. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Milkereit R, Persaud A, Vanoaica L, Guetg
A, Verrey F and Rotin D: LAPTM4b recruits the LAT1-4F2hc Leu
transporter to lysosomes and promotes mTORC1 activation. Nat
Commun. 6:72502015. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Park E, Kim H, Yoon S and Jang B: The role
of CD98 heavy chain in cancer development. Histol Histopathol.
16:187492024.
|
|
40
|
He J, Liu D, Liu M, Tang R and Zhang D:
Characterizing the role of SLC3A2 in the molecular landscape and
immune microenvironment across human tumors. Front Mol Biosci.
9:9614102022. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Cui Y, Qin L, Tian D, Wang T, Fan L, Zhang
P and Wang Z: ZEB1 Promotes Chemoresistance to Cisplatin in Ovarian
Cancer Cells by Suppressing SLC3A2. Chemotherapy. 63:262–271. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Zhou XY, Li JY, Tan JT, HuangLi YL, Nie XC
and Xia P: Clinical significance of the CD98hc-CD147 complex in
ovarian cancer: A bioinformatics analysis. J Obstet Gynaecol.
43:21880852023. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Qin L, Li T and Liu Y: High SLC4A11
expression is an independent predictor for poor overall survival in
grade 3/4 serous ovarian cancer. PLoS One. 12:e01873852017.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Estrella V, Chen T, Lloyd M, Wojtkowiak J,
Cornnell HH, Ibrahim-Hashim A, Bailey K, Balagurunathan Y, Rothberg
JM, Sloane BF, et al: Acidity generated by the tumor
microenvironment drives local invasion. Cancer Res. 73:1524–1535.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Gatenby RA, Gawlinski ET, Gmitro AF,
Kaylor B and Gillies RJ: Acid-mediated tumor invasion: A
multidisciplinary study. Cancer Res. 66:5216–5223. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Sanhueza C, Araos J, Naranjo L, Toledo F,
Beltrán AR, Ramírez MA, Gutiérrez J, Pardo F, Leiva A and Sobrevia
L: Sodium/proton exchanger isoform 1 regulates intracellular pH and
cell proliferation in human ovarian cancer. Biochim Biophys Acta
Mol Basis Dis. 1863:81–91. 2017. View Article : Google Scholar
|
|
47
|
Gong W, Chen Y and Zhang Y: Prognostic and
clinical significance of Solute Carrier Family 7 Member 1 in
ovarian cancer. Transl Cancer Res. 10:602–612. 2021. View Article : Google Scholar
|
|
48
|
Hushmandi K, Einollahi B, Saadat SH, Lee
EHC, Farani MR, Okina E, Huh YS, Nabavi N, Salimimoghadam S and
Kumar AP: Amino acid transporters within the solute carrier
superfamily: Underappreciated proteins and novel opportunities for
cancer therapy. Mol Metab. 84:1019522024. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
You S, Zhu X, Yang Y, Du X, Song K, Zheng
Q, Zeng P and Yao Q: SLC7A1 overexpression is involved in energy
metabolism reprogramming to induce tumor progression in epithelial
ovarian cancer and is associated with immune-infiltrating cells. J
Oncol. 2022:58648262022. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Sun T, Bi F, Liu Z and Yang Q: SLC7A2
serves as a potential biomarker and therapeutic target for ovarian
cancer. Aging (Albany NY). 12:13281–13296. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Jeckelmann JM, Zaugg J, Morozova V, Müller
J, Kantipudi S, Schroeder M, Graff J, Albrecht C, Altmann KH,
Gertsch J and Fotiadis D: Structure, Function and Pharmacology of
SLC7 Family Members and Homologues. Chimia (Aarau). 76:1011–1018.
2022. View Article : Google Scholar
|
|
52
|
Jiang S, Zou J, Dong J, Shi H, Chen J, Li
Y, Duan X and Li W: Lower SLC7A2 expression is associated with
enhanced multidrug resistance, less immune infiltrates and worse
prognosis of NSCLC. Cell Commun Signal. 21:92023. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Wu X, Shen S, Qin J, Fei W, Fan F, Gu J,
Shen T, Zhang T and Cheng X: High co-expression of SLC7A11 and GPX4
as a predictor of platinum resistance and poor prognosis in
patients with epithelial ovarian cancer. BJOG. 129(Suppl 2):
S40–S49. 2022. View Article : Google Scholar
|
|
54
|
Fantone S, Piani F, Olivieri F, Rippo MR,
Sirico A, Di Simone N, Marzioni D and Tossetta G: Role of
SLC7A11/xCT in Ovarian Cancer. Int J Mol Sci. 25:5872024.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Zhang Y, Dong K, Jia X, Du S, Wang D, Wang
L, Qu H, Zhu S, Wang Y, Wang Z, et al: A novel extrachromosomal
circular DNA related genes signature for overall survival
prediction in patients with ovarian cancer. BMC Med Genomics.
16:1402023. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Fan X, Ross DD, Arakawa H, Ganapathy V,
Tamai I and Nakanishi T: Impact of system L amino acid transporter
1 (LAT1) on proliferation of human ovarian cancer cells: A possible
target for combination therapy with anti-proliferative
aminopeptidase inhibitors. Biochem Pharmacol. 80:811–818. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Kaji M, Kabir-Salmani M, Anzai N, Jin CJ,
Akimoto Y, Horita A, Sakamoto A, Kanai Y, Sakurai H and Iwashita M:
Properties of L-type amino acid transporter 1 in epidermal ovarian
cancer. Int J Gynecol Cancer. 20:329–336. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Sato K, Miyamoto M, Takano M, Furuya K and
Tsuda H: Significant relationship between the LAT1 expression
pattern and chemoresistance in ovarian clear cell carcinoma.
Virchows Arch. 474:701–710. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Baczewska M, Supruniuk E, Bojczuk K, Guzik
P, Milewska P, Konończuk K, Dobroch J, Chabowski A and Knapp P:
Energy substrate transporters in high-grade ovarian cancer: Gene
expression and clinical implications. Int J Mol Sci. 23:89682022.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Sekine M, Koh I, Nakamoto K, Nosaka S,
Tomono K, Sugimoto J and Kudo Y: Selective inhibition of L-type
amino acid transporter 1 suppresses cell proliferation in ovarian
clear cell carcinoma. Anticancer Res. 43:2509–2517. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Li S, Yi Z, Li M and Zhu Z: Baicalein
improves the chemoresistance of ovarian cancer through regulation
of CirSLC7A6. J Ovarian Res. 16:2122023. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Wang X, Chen Y, Wang X, Tian H, Wang Y,
Jin J, Shan Z, Liu Y, Cai Z, Tong X, et al: Stem Cell Factor SOX2
Confers Ferroptosis Resistance in Lung Cancer via Upregulation of
SLC7A11. Cancer Res. 81:5217–5229. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Yang J, Zhou Y, Xie S, Wang J, Li Z, Chen
L, Mao M, Chen C, Huang A, Chen Y, et al: Metformin induces
Ferroptosis by inhibiting UFMylation of SLC7A11 in breast cancer. J
Exp Clin Cancer Res. 40:2062021. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Cao N, Zhang F, Yin J, Zhang J, Bian X,
Zheng G, Li N, Lin Y and Luo L: LPCAT2 inhibits colorectal cancer
progression via the PRMT1/SLC7A11 axis. Oncogene. 43:1714–1725.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Lee J and Roh JL: SLC7A11 as a gateway of
metabolic perturbation and ferroptosis vulnerability in cancer.
Antioxidants (Basel). 11:24442022. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Škubník J, Svobodová Pavlíčková V, Ruml T
and Rimpelová S: Autophagy in cancer resistance to paclitaxel:
Development of combination strategies. Biomed Pharmacother.
161:1144582023. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Jyotsana N, Ta KT and DelGiorno KE: The
Role of Cystine/Glutamate Antiporter SLC7A11/xCT in the
Pathophysiology of Cancer. Front Oncol. 12:8584622022. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Yang J, Wang C, Cheng S, Zhang Y, Jin Y,
Zhang N and Wang Y: Construction and validation of a novel
ferroptosis-related signature for evaluating prognosis and immune
microenvironment in ovarian cancer. Front Genet. 13:10944742023.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Cong Y, Cai G, Ding C, Zhang H, Chen J,
Luo S and Liu J: Disulfidptosis-related signature elucidates the
prognostic, immunologic, and therapeutic characteristics in ovarian
cancer. Front Genet. 15:13789072024. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Yin F, Yi S, Wei L, Zhao B, Li J, Cai X,
Dong C and Liu X: Microarray-based identification of genes
associated with prognosis and drug resistance in ovarian cancer. J
Cell Biochem. 120:6057–6070. 2019. View Article : Google Scholar
|
|
71
|
Ke Y, Chen X, Su Y, Chen C, Lei S, Xia L,
Wei D, Zhang H, Dong C, Liu X and Yin F: Low Expression of SLC7A11
Confers Drug Resistance and Worse Survival in Ovarian Cancer via
Inhibition of Cell Autophagy as a Competing Endogenous RNA. Front
Oncol. 11:7449402021. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Zhang X, Zheng X, Ying X, Xie W, Yin Y and
Wang X: CEBPG suppresses ferroptosis through transcriptional
control of SLC7A11 in ovarian cancer. J Transl Med. 21:3342023.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Ogiwara H, Takahashi K, Sasaki M, Kuroda
T, Yoshida H, Watanabe R, Maruyama A, Makinoshima H, Chiwaki F,
Sasaki H, et al: Targeting the Vulnerability of Glutathione
Metabolism in ARID1A-Deficient Cancers. Cancer Cell. 35:177–190.e8.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Han Y, Fu L, Kong Y, Jiang C, Huang L and
Zhang H: STEAP3 Affects Ovarian Cancer Progression by Regulating
Ferroptosis through the p53/SLC7A11 Pathway. Mediators Inflamm.
2024:40485272024. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Jin Y, Chen L, Li L, Huang G, Huang H and
Tang C: SNAI2 promotes the development of ovarian cancer through
regulating ferroptosis. Bioengineered. 13:6451–6463. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Wang Y, Wang S and Zhang W: HRD1 functions
as a tumor suppressor in ovarian cancer by facilitating
ubiquitination-dependent SLC7A11 degradation. Cell Cycle.
22:1116–1126. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Chiarella E, Aloisio A, Scicchitano S,
Bond HM and Mesuraca M: Regulatory Role of microRNAs Targeting the
Transcription Co-Factor ZNF521 in Normal Tissues and Cancers. Int J
Mol Sci. 22:84612021. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Cai L, Hu X, Ye L, Bai P, Jie Y and Shu K:
Long non-coding RNA ADAMTS9-AS1 attenuates ferroptosis by Targeting
microRNA-587/solute carrier family 7 member 11 axis in epithelial
ovarian cancer. Bioengineered. 13:8226–8239. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Sun B, Zhang L, Wu B and Luo X: A
Morpholine Derivative N-(4-Morpholinomethylene) ethanesulfonamide
induces ferroptosis in tumor cells by targeting NRF2. Biol Pharm
Bull. 47:417–426. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Shen X, Peng Y, Zhou H, Ye X, Han Z and
Shi X: A Pt(II) complex bearing N-heterocycle ring induced
ferroptotic cell death in ovarian cancer. J Inorg Biochem.
253:1125022024. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Zhang W, Liu T, Jiang L, Chen J, Li Q and
Wang J: Immunogenic cell death-related gene landscape predicts the
overall survival and immune infiltration status of ovarian cancer.
Front Genet. 13:10012392022. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Szadvari I, Hudecova S, Chovancova B,
Matuskova M, Cholujova D, Lencesova L, Valerian D, Ondrias K,
Babula P and Krizanova O: Sodium/calcium exchanger is involved in
apoptosis induced by H2S in tumor cells through
decreased levels of intracellular pH. Nitric Oxide. 87:1–9. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Wang H, Long X, Wang D, Lou M, Zou D, Chen
R, Nian W and Zhou Q: Increased expression of Na+/H+ exchanger
isoform 1 predicts tumor aggressiveness and unfavorable prognosis
in epithelial ovarian cancer. Oncol Lett. 16:6713–6720.
2018.PubMed/NCBI
|
|
84
|
Yuan S, He SH, Li LY, Xi S, Weng H, Zhang
JH, Wang DQ, Guo MM, Zhang H, Wang SY, et al: A potassium-chloride
co-transporter promotes tumor progression and castration resistance
of prostate cancer through m6A reader YTHDC1. Cell Death Dis.
14:72023. View Article : Google Scholar :
|
|
85
|
Liu JY, Dai YB, Li X, Cao K, Xie D, Tong
ZT, Long Z, Xiao H, Chen MK, Ye YL, et al: Solute carrier family 12
member 5 promotes tumor invasion/metastasis of bladder urothelial
carcinoma by enhancing NF-κB/MMP-7 signaling pathway. Cell Death
Dis Mar. 8:e26912017. View Article : Google Scholar
|
|
86
|
Tong Q, Qin W, Li ZH, Liu C, Wang ZC, Chu
Y and Xu XD: SLC12A5 promotes hepatocellular carcinoma growth and
ferroptosis resistance by inducing ER stress and cystine transport
changes. Cancer Med. 12:8526–8541. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Xu L, Li X, Cai M, Chen J, Li X, Wu WK,
Kang W, Tong J, To KF, Guan XY, et al: Increased expression of
Solute carrier family 12 member 5 via gene amplification
contributes to tumour progression and metastasis and associates
with poor survival in colorectal cancer. Gut. 65:635–646. 2016.
View Article : Google Scholar
|
|
88
|
Jiang Y, Liao HL and Chen LY: A Pan-Cancer
Analysis of SLC12A5 Reveals Its Correlations with Tumor Immunity.
Dis Markers. 2021:30626062021. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Yang GP, He WP, Tan JF, Yang ZX, Fan RR,
Ma NF, Wang FW, Chen L, Li Y, Shen HW, et al: Overexpression of
SLC12A5 is associated with tumor progression and poor survival in
ovarian carcinoma. Int J Gynecol Cancer. 29:1280–1284. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Fisel P, Schaeffeler E and Schwab M:
Clinical and functional relevance of the Monocarboxylate
transporter family in disease pathophysiology and drug therapy.
Clin Transl Sci. 11:352–364. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Hanahan D: Hallmarks of Cancer: New
Dimensions. Cancer Discov. 12:31–46. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Navarro C, Ortega Á, Santeliz R, Garrido
B, Chacín M, Galban N, Vera I, De Sanctis JB and Bermúdez V:
Metabolic Reprogramming in Cancer Cells: Emerging molecular
mechanisms and novel therapeutic approaches. pharmaceutics.
14:13032022. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Latif A, Chadwick AL, Kitson SJ, Gregson
HJ, Sivalingam VN, Bolton J, McVey RJ, Roberts SA, Marshall KM,
Williams KJ, et al: Monocarboxylate transporter 1 (MCT1) is an
independent prognostic biomarker in endometrial cancer. BMC Clin
Pathol. 17:272017. View Article : Google Scholar
|
|
94
|
Sohrabi E, Moslemi M, Rezaie E, Nafissi N,
Khaledi M, Afkhami H, Fathi J and Zekri A: The tissue expression of
MCT3, MCT8, and MCT9 genes in women with breast cancer. Genes
Genomics. 43:1065–1077. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Chatterjee P, Bhowmik D and Roy SS: A
systemic analysis of monocarboxylate transporters in ovarian cancer
and possible therapeutic interventions. Channels (Austin).
17:22730082023. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Cheng L, Lu W, Kulkarni B, Pejovic T, Yan
X, Chiang JH, Hood L, Odunsi K and Lin B: Analysis of chemotherapy
response programs in ovarian cancers by the next-generation
sequencing technologies. Gynecol Oncol. 11:159–169. 2010.
View Article : Google Scholar
|
|
97
|
Januchowski R, Zawierucha P, Ruciński M,
Andrzejewska M, Wojtowicz K, Nowicki M and Zabel M: Drug
transporter expression profiling in chemoresistant variants of the
A2780 ovarian cancer cell line. Biomed Pharmacother. 68:447–453.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Lee J, Peña MM, Nose Y and Thiele DJ:
Biochemical characterization of the human copper transporter Ctr1.
J Biol Chem. 277:4380–4387. 2002. View Article : Google Scholar
|
|
99
|
Puris E, Fricker G and Gynther M: The role
of solute carrier transporters in efficient anticancer drug
delivery and therapy. Pharmaceutics. 15:3642023. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Wu G, Peng H, Tang M, Yang M, Wang J, Hu
Y, Li Z, Li J, Li Z and Song L: ZNF711 down-regulation promotes
CISPLATIN resistance in epithelial ovarian cancer via interacting
with JHDM2A and suppressing SLC31A1 expression. EBioMedicine.
71:1035582021. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Banerjee S, Drapkin R, Richardson DL and
Birrer M: Targeting NaPi2b in ovarian cancer. Cancer Treat Rev.
112:1024892023. View Article : Google Scholar
|
|
102
|
Bondeson DP, Paolella BR, Asfaw A,
Rothberg MV, Skipper TA, Langan C, Mesa G, Gonzalez A, Surface LE,
Ito K, et al: Phosphate dysregulation via the XPR1-KIDINS220
protein complex is a therapeutic vulnerability in ovarian cancer.
Nat Cancer. 3:681–695. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Vlasenkova R, Nurgalieva A, Akberova N,
Bogdanov M and Kiyamova R: Characterization of SLC34A2 as a
potential prognostic marker of oncological diseases. Biomolecules.
11:18782021. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Stiles LI, Ferrao K and Mehta KJ: Role of
zinc in health and disease. Clin Exp Med. 24:382024. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Chen B, Yu P, Chan WN, Xie F, Zhang Y,
Liang L, Leung KT, Lo KW, Yu J, Tse GMK, et al: Cellular zinc
metabolism and zinc signaling: from biological functions to
diseases and therapeutic targets. Signal Transduct Target Ther.
9:62024. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Vogel-González M, Musa-Afaneh D, Rivera
Gil P and Vicente R: Zinc Favors Triple-negative breast cancer's
microenvironment modulation and cell plasticity. Int J Mol Sci.
22:91882021. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Liu M, Yang J, Zhang Y, Zhou Z, Cui X,
Zhang L, Fung KM, Zheng W, Allard FD, Yee EU, et al: ZIP4 Promotes
Pancreatic Cancer Progression by Repressing ZO-1 and Claudin-1
through a ZEB1-Dependent Transcriptional Mechanism. Clin Cancer
Res. 24:3186–3196. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Fan Q, Zhang W, Emerson RE and Xu Y: ZIP4
is a novel cancer stem cell marker in high-grade serous ovarian
cancer. Cancers (Basel). 12:36922020. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Scheiter A, Evert K, Reibenspies L,
Cigliano A, Annweiler K, Müller K, Pöhmerer LM, Xu H, Cui G, Itzel
T, et al: RASSF1A independence and early galectin-1 upregulation in
PIK3CA-induced hepatocarcinogenesis: New therapeutic venues. Mol
Oncol. 16:1091–1118. 2022. View Article : Google Scholar
|
|
110
|
Fan Q, Cai Q, Li P, Wang W, Wang J, Gerry
E, Wang TL, Shih IM, Nephew KP and Xu Y: The novel ZIP4 regulation
and its role in ovarian cancer. Oncotarget. 8:90090–90107. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Cai Q, Fan Q, Buechlein A, Miller D,
Nephew KP, Liu S, Wan J and Xu Y: Changes in mRNA/protein
expression and signaling pathways in in vivo passaged mouse ovarian
cancer cells. PLoS One. 13:e01974042018. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Cheng X, Wang J, Liu C, Jiang T, Yang N,
Liu D, Zhao H and Xu Z: Zinc transporter SLC39A13/ZIP13 facilitates
the metastasis of human ovarian cancer cells via activating Src/FAK
signaling pathway. J Exp Clin Cancer Res. 40:1992021. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Akasu-Nagayoshi Y, Hayashi T, Kawabata A,
Shimizu N, Yamada A, Yokota N, Nakato R, Shirahige K, Okamoto A and
Akiyama T: PHOSPHATE exporter XPR1/SLC53A1 is required for the
tumorigenicity of epithelial ovarian cancer. Cancer Sci.
113:2034–2043. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Chandra A, Pius C, Nabeel M, Nair M,
Vishwanatha JK, Ahmad S and Basha R: Ovarian cancer: Current status
and strategies for improving therapeutic outcomes. Cancer Med.
8:7018–7031. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Sato S, Shoji T, Jo A, Otsuka H, Abe M,
Tatsuki S, Chiba Y, Takatori E, Kaido Y, Nagasawa T, et al:
Antibody-Drug Conjugates: The new treatment approaches for ovarian
cancer. Cancers (Basel). 16:25452024. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Karpel HC, Powell SS and Pothuri B:
Antibody-Drug Conjugates in Gynecologic Cancer. Am Soc Clin Oncol
Educ Book. 43:e3907722023. View Article : Google Scholar : PubMed/NCBI
|