Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
February-2025 Volume 55 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2025 Volume 55 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Expansion of B10 cells in vitro: Pathways, techniques and applications in transplantation (Review)

  • Authors:
    • Dayue Zhao
    • Guoli Huai
    • Yuan Yuan
    • Yuanyuan Cui
    • Yinglin Yuan
    • Gaoping Zhao
  • View Affiliations / Copyright

    Affiliations: Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China, Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
    Copyright: © Zhao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 29
    |
    Published online on: December 10, 2024
       https://doi.org/10.3892/ijmm.2024.5470
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cellular immunotherapy represents a pivotal treatment modality in clinical practice. Regulatory B cells (Bregs), a key subset of B lymphocytes, hold promise in the management of autoimmune diseases, cancer and transplantation immunity. The expansion of Bregs for cell therapy is a promising strategy to alleviate inflammation and promote immune tolerance. Achieving immune tolerance relies on balance between regulatory and effector cells. One primary objective of cellular therapy is to shift this balance towards Bregs, fostering a more tolerant immune microenvironment. The adoptive transfer of Bregs not only increases their quantity but also modulates the number and function of other immune cells. Maximizing in vitro expansion of Bregs and enhancing their regulatory functions are key focuses in transplant immunology. However, the precise mechanisms underlying the in vitro expansion of IL‑10‑secreting B cells (B10) remain inadequately understood. The present review aims to provide a comprehensive overview of the signaling pathways involved in B10 activation and expansion, as well as to highlight the techniques for in vitro amplification and development of adoptive B10 therapy in transplantation, which aims to advance the field of cellular therapy targeting Bregs.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Neu SD and Dittel BN: Characterization of definitive regulatory B cell subsets by cell surface phenotype, function and context. Front Immunol. 12:7874642021. View Article : Google Scholar

2 

Mohib K, Cherukuri A, Zhou Y, Ding Q, Watkins SC and Rothstein DM: Antigen-dependent interactions between regulatory B cells and T cells at the T:B border inhibit subsequent T cell interactions with DCs. Am J Transplant. 20:52–63. 2020. View Article : Google Scholar

3 

Amu S, Saunders SP, Kronenberg M, Mangan NE, Atzberger A and Fallon PG: Regulatory B cells prevent and reverse allergic airway inflammation via FoxP3-positive T regulatory cells in a murine model. J Allergy Clin Immunol. 125:1114–1124.e8. 2010. View Article : Google Scholar : PubMed/NCBI

4 

Vomhof-DeKrey EE, Yates J, Hägglöf T, Lanthier P, Amiel E, Veerapen N, Besra GS, Karlsson MC and Leadbetter EA: Cognate interaction with iNKT cells expands IL-10-producing B regulatory cells. Proc Natl Acad Sci USA. 112:12474–12479. 2015. View Article : Google Scholar : PubMed/NCBI

5 

Boldison J, Da Rosa LC, Davies J, Wen L and Wong FS: Dendritic cells license regulatory B cells to produce IL-10 and mediate suppression of antigen-specific CD8 T cells. Cell Mol Immunol. 17:843–855. 2020. View Article : Google Scholar :

6 

Geladaris A, Häusser-Kinzel S, Pretzsch R, Nissimov N, Lehmann-Horn K, Häusler D and Weber MS: IL-10-providing B cells govern pro-inflammatory activity of macrophages and microglia in CNS autoimmunity. Acta Neuropathol. 145:461–477. 2023. View Article : Google Scholar : PubMed/NCBI

7 

Yanaba K, Bouaziz JD, Haas KM, Poe JC, Fujimoto M and Tedder TF: A regulatory B cell subset with a unique CD1dhiCD5+ phenotype controls T cell-dependent inflammatory responses. Immunity. 28:639–650. 2008. View Article : Google Scholar : PubMed/NCBI

8 

Rosser EC and Mauri C: Regulatory B cells: Origin, phenotype, and function. Immunity. 42:607–612. 2015. View Article : Google Scholar : PubMed/NCBI

9 

Shang J, Zha H and Sun Y: Phenotypes, Functions, and Clinical Relevance of Regulatory B Cells in Cancer. Front Immunol. 11:5826572020. View Article : Google Scholar : PubMed/NCBI

10 

Hong J, Fang J, Lan R, Tan Q, Tian Y, Zhang M, Okunieff P, Zhang L, Lin J and Han D: TLR9 mediated regulatory B10 cell amplification following sub-total body irradiation: Implications in attenuating EAE. Mol Immunol. 83:52–61. 2017. View Article : Google Scholar : PubMed/NCBI

11 

Zheremyan EA, Ustiugova AS, Karamushka NM, Uvarova AN, Stasevich EM, Bogolyubova AV, Kuprash DV and Korneev KV: Breg-Mediated Immunoregulation in the Skin. Int J Mol Sci. 25:5832024. View Article : Google Scholar : PubMed/NCBI

12 

Mauri C and Menon M: Human regulatory B cells in health and disease: therapeutic potential. J Clin Invest. 127:772–779. 2017. View Article : Google Scholar : PubMed/NCBI

13 

Yu CR, Choi JK, Uche AN and Egwuagu CE: Production of IL-35 by Bregs is mediated through binding of BATF-IRF-4-IRF-8 complex to il12a and ebi3 promoter elements. J Leukoc Biol. 104:1147–1157. 2018. View Article : Google Scholar : PubMed/NCBI

14 

Oleinika K, Mauri C and Salama AD: Effector and regulatory B cells in immune-mediated kidney disease. Nat Rev Nephrol. 15:11–26. 2019. View Article : Google Scholar

15 

Elias C, Chen C and Cherukuri A: Regulatory B cells in solid organ transplantation: From immune monitoring to immunotherapy. Transplantation. 108:1080–1089. 2024.

16 

Juneja T, Kazmi M, Mellace M and Saidi RF: Utilization of Treg Cells in Solid Organ Transplantation. Front Immunol. 13:7468892022. View Article : Google Scholar : PubMed/NCBI

17 

Kessel A, Haj T, Peri R, Snir A, Melamed D, Sabo E and Toubi E: Human CD19(+)CD25(high) B regulatory cells suppress proliferation of CD4(+) T cells and enhance Foxp3 and CTLA-4 expression in T-regulatory cells. Autoimmun Rev. 11:670–677. 2012. View Article : Google Scholar

18 

Lee KM, Stott RT, Zhao G, SooHoo J, Xiong W, Lian MM, Fitzgerald L, Shi S, Akrawi E, Lei J, et al: TGF-β-producing regulatory B cells induce regulatory T cells and promote transplantation tolerance. Eur J Immunol. 44:1728–1736. 2014. View Article : Google Scholar : PubMed/NCBI

19 

Deng S, Moore DJ, Huang X, Lian MM, Mohiuddin M, Velededeoglu E, Lee MK IV, Sonawane S, Kim J, Wang J, et al: Cutting edge: Transplant tolerance induced by anti-CD45RB requires B lymphocytes. J Immunol. 178:6028–6032. 2007. View Article : Google Scholar : PubMed/NCBI

20 

Singh A, Carson WF IV, Secor ER Jr, Guernsey LA, Flavell RA, Clark RB, Thrall RS and Schramm CM: Regulatory role of B cells in a murine model of allergic airway disease. J Immunol. 180:7318–7326. 2008. View Article : Google Scholar : PubMed/NCBI

21 

Zhao G, Moore DJ, Lee KM, Kim JI, Duff PE, O'Connor MR, Hirohashi T, Lei J, Yang M, Markmann JF and Deng S: An unexpected counter-regulatory role of IL-10 in B-lymphocyte-mediated transplantation tolerance. Am J Transplant. 10:796–801. 2010. View Article : Google Scholar : PubMed/NCBI

22 

Lal G, Nakayama Y, Sethi A, Singh AK, Burrell BE, Kulkarni N, Brinkman CC, Iwami D, Zhang T and Bromberg JS: Interleukin-10 From Marginal Zone Precursor B-Cell Subset Is Required for Costimulatory Blockade-Induced Transplantation Tolerance. Transplantation. 99:1817–1828. 2015. View Article : Google Scholar : PubMed/NCBI

23 

Fillatreau S, Gray D and Anderton SM: Not always the bad guys: B cells as regulators of autoimmune pathology. Nat Rev Immunol. 8:391–397. 2008. View Article : Google Scholar : PubMed/NCBI

24 

Anderton SM and Fillatreau S: Activated B cells in autoimmune diseases: the case for a regulatory role. Nat Clin Pract Rheumatol. 4:657–666. 2008. View Article : Google Scholar : PubMed/NCBI

25 

Lanzavecchia A and Sallusto F: Toll-like receptors and innate immunity in B-cell activation and antibody responses. Curr Opin Immunol. 19:268–274. 2007. View Article : Google Scholar : PubMed/NCBI

26 

Zindel J and Kubes P: DAMPs, PAMPs, and LAMPs in immunity and sterile inflammation. Annu Rev Pathol. 15:493–518. 2020. View Article : Google Scholar

27 

Romani L: Immunity to fungal infections. Nat Rev Immunol. 11:275–288. 2011. View Article : Google Scholar : PubMed/NCBI

28 

Kumar V and Sharma A: Innate immunity in sepsis pathogenesis and its modulation: New immunomodulatory targets revealed. J Chemother. 20:672–683. 2008. View Article : Google Scholar

29 

Iwasaki A and Medzhitov R: Regulation of adaptive immunity by the innate immune system. Science. 327:291–295. 2010. View Article : Google Scholar : PubMed/NCBI

30 

Sîrbulescu RF, Mamidi A, Chan SY, Jin G, Boukhali M, Sobell D, Ilieş I, Chung JY, Haas W, Whalen MJ, et al: B cells support the repair of injured tissues by adopting MyD88-dependent regulatory functions and phenotype. FASEB J. 35:e220192021. View Article : Google Scholar : PubMed/NCBI

31 

Xu Y, Wu K, Han S, Ding S, Lu G, Lin Z, Zhang Y, Xiao W, Gong W, Ding Y and Deng B: Astilbin combined with lipopolysaccharide induces IL-10-producing regulatory B cells via the STAT3 signalling pathway. Biomed Pharmacother. 129:1104502020. View Article : Google Scholar : PubMed/NCBI

32 

Lampropoulou V, Hoehlig K, Roch T, Neves P, Calderón Gómez E, Sweenie CH, Hao Y, Freitas AA, Steinhoff U, Anderton SM and Fillatreau S: TLR-activated B cells suppress T cell-mediated autoimmunity. J Immunol. 180:4763–4773. 2008. View Article : Google Scholar : PubMed/NCBI

33 

Liu BS, Cao Y, Huizinga TW, Hafler DA and Toes RE: TLR-mediated STAT3 and ERK activation controls IL-10 secretion by human B cells. Eur J Immunol. 44:2121–2129. 2014. View Article : Google Scholar : PubMed/NCBI

34 

Kawai T and Akira S: The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 11:373–384. 2010. View Article : Google Scholar : PubMed/NCBI

35 

Pasare C and Medzhitov R: Control of B-cell responses by Toll-like receptors. Nature. 438:364–368. 2005. View Article : Google Scholar : PubMed/NCBI

36 

Yoshizaki A, Miyagaki T, DiLillo DJ, Matsushita T, Horikawa M, Kountikov EI, Spolski R, Poe JC, Leonard WJ and Tedder TF: Regulatory B cells control T-cell autoimmunity through IL-21-dependent cognate interactions. Nature. 491:264–268. 2012. View Article : Google Scholar : PubMed/NCBI

37 

Barr TA, Brown S, Ryan G, Zhao J and Gray D: TLR-mediated stimulation of APC: Distinct cytokine responses of B cells and dendritic cells. Eur J Immunol. 37:3040–3053. 2007. View Article : Google Scholar : PubMed/NCBI

38 

Hao Y, O'Neill P, Naradikian MS, Scholz JL and Cancro MP: A B-cell subset uniquely responsive to innate stimuli accumulates in aged mice. Blood. 118:1294–1304. 2011. View Article : Google Scholar : PubMed/NCBI

39 

Takeda K and Akira S: TLR signaling pathways. Semin Immunol. 16:3–9. 2004. View Article : Google Scholar : PubMed/NCBI

40 

Tian F, Xian K, Yang B, Duan Q, Qian L and Shi C: Deficiency in TLR4 impairs regulatory B cells production induced by Schistosome soluble egg antigen. Mol Biochem Parasitol. 253:1115322023. View Article : Google Scholar

41 

Oladipupo FO, Yu CR, Olumuyide E, Jittaysothorn Y, Choi JK and Egwuagu CE: STAT3 deficiency in B cells exacerbates uveitis by promoting expansion of pathogenic lymphocytes and suppressing regulatory B cells (Bregs) and Tregs. Sci Rep. 10:161882020. View Article : Google Scholar : PubMed/NCBI

42 

Shankar S, Stolp J, Juvet SC, Beckett J, Macklin PS, Issa F, Hester J and Wood KJ: Ex vivo-expanded human CD19+TIM-1+ regulatory B cells suppress immune responses in vivo and are dependent upon the TIM-1/STAT3 axis. Nat Commun. 13:31212022. View Article : Google Scholar :

43 

Bauer S, Kirschning CJ, Häcker H, Redecke V, Hausmann S, Akira S, Wagner H and Lipford GB: Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc Natl Acad Sci USA. 98:9237–9242. 2001. View Article : Google Scholar : PubMed/NCBI

44 

Ohto U, Shibata T, Tanji H, Ishida H, Krayukhina E, Uchiyama S, Miyake K and Shimizu T: Structural basis of CpG and inhibitory DNA recognition by Toll-like receptor 9. Nature. 520:702–705. 2015. View Article : Google Scholar : PubMed/NCBI

45 

Akkaya M, Akkaya B, Kim AS, Miozzo P, Sohn H, Pena M, Roesler AS, Theall BP, Henke T, Kabat J, et al: Toll-like receptor 9 antagonizes antibody affinity maturation. Nat Immunol. 19:255–266. 2018. View Article : Google Scholar : PubMed/NCBI

46 

Alaqla A, Hu Y, Huang S, Ruiz S, Kawai T and Han X: TLR9 signaling is required for the porphyromonas gingivalis-induced activation of IL-10-expressing B cells. Int J Mol Sci. 24:66932023. View Article : Google Scholar : PubMed/NCBI

47 

Ohto U and Shimizu T: Structural aspects of nucleic acid-sensing Toll-like receptors. Biophys Rev. 8:33–43. 2016. View Article : Google Scholar : PubMed/NCBI

48 

Hu Q, Li H, Wang L, Gu H and Fan C: DNA Nanotechnology-Enabled drug delivery systems. Chem Rev. 119:6459–6506. 2019. View Article : Google Scholar

49 

Mutwiri G, van Drunen Littel-van den Hurk S and Babiuk LA: Approaches to enhancing immune responses stimulated by CpG oligodeoxynucleotides. Adv Drug Deliv Rev. 61:226–232. 2009. View Article : Google Scholar : PubMed/NCBI

50 

Kawai T and Akira S: Signaling to NF-kappaB by Toll-like receptors. Trends Mol Med. 13:460–469. 2007. View Article : Google Scholar : PubMed/NCBI

51 

Uematsu S, Sato S, Yamamoto M, Hirotani T, Kato H, Takeshita F, Matsuda M, Coban C, Ishii KJ, Kawai T, et al: Interleukin-1 receptor-associated kinase-1 plays an essential role for Toll-like receptor (TLR)7- and TLR9-mediated interferon-{alpha} induction. J Exp Med. 201:915–923. 2005. View Article : Google Scholar : PubMed/NCBI

52 

Walsh MC, Lee J and Choi Y: Tumor necrosis factor receptor-associated factor 6 (TRAF6) regulation of development, function, and homeostasis of the immune system. Immunol Rev. 266:72–92. 2015. View Article : Google Scholar : PubMed/NCBI

53 

O'Neill LA and Bowie AG: The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol. 7:353–364. 2007. View Article : Google Scholar : PubMed/NCBI

54 

Sato S, Sanjo H, Takeda K, Ninomiya-Tsuji J, Yamamoto M, Kawai T, Matsumoto K, Takeuchi O and Akira S: Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat Immunol. 6:1087–1095. 2005. View Article : Google Scholar : PubMed/NCBI

55 

Yang M, Sun L, Wang S, Ko KH, Xu H, Zheng BJ, Cao X and Lu L: Novel function of B cell-activating factor in the induction of IL-10-producing regulatory B cells. J Immunol. 184:3321–3325. 2010. View Article : Google Scholar : PubMed/NCBI

56 

Huang X and Yang Y: Targeting the TLR9-MyD88 pathway in the regulation of adaptive immune responses. Expert Opin Ther Targets. 14:787–796. 2010. View Article : Google Scholar : PubMed/NCBI

57 

Honke N, Lowin T, Opgenoorth B, Shaabani N, Lautwein A, Teijaro JR, Schneider M and Pongratz G: Endogenously produced catecholamines improve the regulatory function of TLR9-activated B cells. PLoS Biol. 20:e30015132022. View Article : Google Scholar : PubMed/NCBI

58 

Pongratz G, Melzer M and Straub RH: The sympathetic nervous system stimulates anti-inflammatory B cells in collagen-type II-induced arthritis. Ann Rheum Dis. 71:432–439. 2012. View Article : Google Scholar

59 

Darnell JE Jr: STATs and gene regulation. Science. 277:1630–1635. 1997. View Article : Google Scholar : PubMed/NCBI

60 

Levy DE and Darnell JE Jr: Stats: Transcriptional control and biological impact. Nat Rev Mol Cell Biol. 3:651–662. 2002. View Article : Google Scholar : PubMed/NCBI

61 

Bromberg J: Stat proteins and oncogenesis. J Clin Invest. 109:1139–1142. 2002. View Article : Google Scholar : PubMed/NCBI

62 

Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C and Darnell JE Jr: Stat3 as an oncogene. Cell. 98:295–303. 1999. View Article : Google Scholar : PubMed/NCBI

63 

Wang YH, Tsai DY, Ko YA, Yang TT, Lin IY, Hung KH and Lin KI: Blimp-1 Contributes to the Development and Function of Regulatory B Cells. Front Immunol. 10:19092019. View Article : Google Scholar : PubMed/NCBI

64 

Diehl SA, Schmidlin H, Nagasawa M, van Haren SD, Kwakkenbos MJ, Yasuda E, Beaumont T, Scheeren FA and Spits H: STAT3-mediated up-regulation of BLIMP1 Is coordinated with BCL6 down-regulation to control human plasma cell differentiation. J Immunol. 180:4805–4815. 2008. View Article : Google Scholar : PubMed/NCBI

65 

Michée-Cospolite M, Boudigou M, Grasseau A, Simon Q, Mignen O, Pers JO, Cornec D, Le Pottier L and Hillion S: Molecular Mechanisms Driving IL-10- Producing B Cells Functions: STAT3 and c-MAF as Underestimated Central Key Regulators? Front Immunol. 13:8188142022. View Article : Google Scholar : PubMed/NCBI

66 

Jin G, Hamaguchi Y, Matsushita T, Hasegawa M, Le Huu D, Ishiura N, Naka K, Hirao A, Takehara K and Fujimoto M: B-cell linker protein expression contributes to controlling allergic and autoimmune diseases by mediating IL-10 production in regulatory B cells. J Allergy Clin Immunol. 131:1674–1682. 2013. View Article : Google Scholar : PubMed/NCBI

67 

Zhou M, Wen Z, Cheng F, Ma J, Li W, Ren H, Sheng Y, Dong H, Lu L, Hu HM and Wang LX: Tumor-released autophagosomes induce IL-10-producing B cells with suppressive activity on T lymphocytes via TLR2-MyD88-NF-κB signal pathway. Oncoimmunology. 5:e11804852016. View Article : Google Scholar

68 

Wang K, Tao L, Su J, Zhang Y, Zou B, Wang Y, Zou M, Chen N, Lei L and Li X: TLR4 supports the expansion of FasL + CD5 + CD1d hi regulatory B cells, which decreases in contact hypersensitivity. Mol Immunol. 87:188–199. 2017. View Article : Google Scholar : PubMed/NCBI

69 

Lee MB, Lee JH, Hong SH, You JS, Nam ST, Kim HW, Park YH, Lee D, Min KY, Park YM, et al: JQ1, a BET inhibitor, controls TLR4-induced IL-10 production in regulatory B cells by BRD4-NF-κB axis. BMB Rep. 50:640–646. 2017. View Article : Google Scholar : PubMed/NCBI

70 

Pore D, Matsui K, Parameswaran N and Gupta N: Cutting Edge: Ezrin Regulates Inflammation by Limiting B Cell IL-10 Production. J Immunol. 196:558–562. 2016. View Article : Google Scholar

71 

Mishima Y, Oka A, Liu B, Herzog JW, Eun CS, Fan TJ, Bulik-Sullivan E, Carroll IM, Hansen JJ, Chen L, et al: Microbiota maintain colonic homeostasis by activating TLR2/MyD88/PI3K signaling in IL-10-producing regulatory B cells. J Clin Invest. 129:3702–3716. 2019. View Article : Google Scholar : PubMed/NCBI

72 

Lanzavecchia A: Antigen-specific interaction between T and B cells. Nature. 314:537–539. 1985. View Article : Google Scholar : PubMed/NCBI

73 

Clark MR, Campbell KS, Kazlauskas A, Johnson SA, Hertz M, Potter TA, Pleiman C and Cambier JC: The B cell antigen receptor complex: Association of Ig-alpha and Ig-beta with distinct cytoplasmic effectors. Science. 258:123–126. 1992. View Article : Google Scholar : PubMed/NCBI

74 

Reth M: Antigen receptor tail clue. Nature. 338:383–384. 1989. View Article : Google Scholar : PubMed/NCBI

75 

Niiro H and Clark EA: Regulation of B-cell fate by antigen-receptor signals. Nat Rev Immunol. 2:945–956. 2002. View Article : Google Scholar : PubMed/NCBI

76 

Dal Porto JM, Gauld SB, Merrell KT, Mills D, Pugh-Bernard AE and Cambier J: B cell antigen receptor signaling 101. Mol Immunol. 41:599–613. 2004. View Article : Google Scholar : PubMed/NCBI

77 

Saijo K, Schmedt C, Su IH, Karasuyama H, Lowell CA, Reth M, Adachi T, Patke A, Santana A and Tarakhovsky A: Essential role of Src-family protein tyrosine kinases in NF-kappaB activation during B cell development. Nat Immunol. 4:274–279. 2003. View Article : Google Scholar : PubMed/NCBI

78 

Carter RH and Fearon DT: CD19: lowering the threshold for antigen receptor stimulation of B lymphocytes. Science. 256:105–107. 1992. View Article : Google Scholar : PubMed/NCBI

79 

Baracho GV, Miletic AV, Omori SA, Cato MH and Rickert RC: Emergence of the PI3-kinase pathway as a central modulator of normal and aberrant B cell differentiation. Curr Opin Immunol. 23:178–183. 2011. View Article : Google Scholar : PubMed/NCBI

80 

Fujimoto M, Fujimoto Y, Poe JC, Jansen PJ, Lowell CA, DeFranco AL and Tedder TF: CD19 regulates Src family protein tyrosine kinase activation in B lymphocytes through processive amplification. Immunity. 13:47–57. 2000. View Article : Google Scholar : PubMed/NCBI

81 

Gold MR, Law DA and DeFranco AL: Stimulation of protein tyrosine phosphorylation by the B-lymphocyte antigen receptor. Nature. 345:810–813. 1990. View Article : Google Scholar : PubMed/NCBI

82 

Fillatreau S, Sweenie CH, McGeachy MJ, Gray D and Anderton SM: B cells regulate autoimmunity by provision of IL-10. Nat Immunol. 3:944–950. 2002. View Article : Google Scholar : PubMed/NCBI

83 

Yanaba K, Bouaziz JD, Matsushita T, Tsubata T and Tedder TF: The development and function of regulatory B cells expressing IL-10 (B10 cells) requires antigen receptor diversity and TLR signals. J Immunol. 182:7459–7472. 2009. View Article : Google Scholar : PubMed/NCBI

84 

Hussain S and Delovitch TL: Intravenous transfusion of BCR-activated B cells protects NOD mice from type 1 diabetes in an IL-10-dependent manner. J Immunol. 179:7225–7232. 2007. View Article : Google Scholar : PubMed/NCBI

85 

Adori M, Khoenkhoen S, Zhang J, Dopico XC and Karlsson Hedestam GB: Enhanced B Cell Receptor Signaling Partially Compensates for Impaired Toll-like Receptor 4 Responses in LPS-Stimulated IκBNS-Deficient B Cells. Cells. 12:12292023. View Article : Google Scholar

86 

Tedder TF: B10 cells: A functionally defined regulatory B cell subset. J Immunol. 194:1395–1401. 2015. View Article : Google Scholar : PubMed/NCBI

87 

Parekh VV, Prasad DVR, Banerjee PP, Joshi BN, Kumar A and Mishra GC: B cells activated by lipopolysaccharide, but not by anti-Ig and anti-CD40 antibody, induce anergy in CD8+ T cells: role of TGF-beta 1. J Immunol. 170:5897–5911. 2003. View Article : Google Scholar : PubMed/NCBI

88 

Hazeki K, Nigorikawa K and Hazeki O: Role of phosphoinositide 3-kinase in innate immunity. Biol Pharm Bull. 30:1617–1723. 2007. View Article : Google Scholar : PubMed/NCBI

89 

Ruse M and Knaus UG: New players in TLR-mediated innate immunity: PI3K and small Rho GTPases. Immunol Res. 34:33–48. 2006. View Article : Google Scholar : PubMed/NCBI

90 

Tuveson DA, Carter RH, Soltoff SP and Fearon DT: CD19 of B cells as a surrogate kinase insert region to bind phosphatidylinositol 3-kinase. Science. 260:986–989. 1993. View Article : Google Scholar : PubMed/NCBI

91 

Ingham RJ, Holgado-Madruga M, Siu C, Wong AJ and Gold MR: The Gab1 protein is a docking site for multiple proteins involved in signaling by the B cell antigen receptor. J Biol Chem. 273:30630–30637. 1998. View Article : Google Scholar : PubMed/NCBI

92 

Okada T, Maeda A, Iwamatsu A, Gotoh K and Kurosaki T: BCAP: The tyrosine kinase substrate that connects B cell receptor to phosphoinositide 3-kinase activation. Immunity. 13:817–827. 2000. View Article : Google Scholar

93 

Panchamoorthy G, Fukazawa T, Miyake S, Soltoff S, Reedquist K, Druker B, Shoelson S, Cantley L and Band H: p120cbl is a major substrate of tyrosine phosphorylation upon B cell antigen receptor stimulation and interacts in vivo with Fyn and Syk tyrosine kinases, Grb2 and Shc adaptors, and the p85 subunit of phosphatidylinositol 3-kinase. J Biol Chem. 271:3187–3194. 1996. View Article : Google Scholar : PubMed/NCBI

94 

Gold MR: Intermediary signaling effectors coupling the B-cell receptor to the nucleus. Curr Top Microbiol Immunol. 245:77–134. 2000.

95 

Marshall AJ, Niiro H, Yun TJ and Clark EA: Regulation of B-cell activation and differentiation by the phosphatidylinositol 3-kinase and phospholipase Cgamma pathway. Immunol Rev. 176:30–46. 2000. View Article : Google Scholar : PubMed/NCBI

96 

Lemmon MA and Ferguson KM: Signal-dependent membrane targeting by pleckstrin homology (PH) domains. Biochem J. 350 Pt 1(Pt 1): 1–18. 2000.PubMed/NCBI

97 

Scheid MP and Woodgett JR: PKB/AKT: Functional insights from genetic models. Nat Rev Mol Cell Biol. 2:760–768. 2001. View Article : Google Scholar : PubMed/NCBI

98 

Cross DA, Alessi DR, Cohen P, Andjelkovich M and Hemmings BA: Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 378:785–789. 1995. View Article : Google Scholar : PubMed/NCBI

99 

Li J, Gao J, Zhou H, Zhou J, Deng Z, Lu Y, Rao J, Ji G, Gu J, Yang X, et al: Inhibition of glycogen synthase kinase 3β increases the proportion and suppressive function of CD19+CD24hiCD27+ breg cells. Front Immunol. 11:6032882020. View Article : Google Scholar

100 

Kaidanovich-Beilin O and Woodgett JR: GSK-3: Functional insights from cell biology and animal models. Front Mol Neurosci. 4:402011. View Article : Google Scholar : PubMed/NCBI

101 

Maurer U, Preiss F, Brauns-Schubert P, Schlicher L and Charvet C: GSK-3 - at the crossroads of cell death and survival. J Cell Sci. 127(Pt 7): 1369–1378. 2014. View Article : Google Scholar : PubMed/NCBI

102 

Gold MR, Scheid MP, Santos L, Dang-Lawson M, Roth RA, Matsuuchi L, Duronio V and Krebs DL: The B cell antigen receptor activates the Akt (protein kinase B)/glycogen synthase kinase-3 signaling pathway via phosphatidylinositol 3-kinase. J Immunol. 163:1894–1905. 1999. View Article : Google Scholar : PubMed/NCBI

103 

Cheng H, Wang L, Yang B, Li D, Wang X, Liu X, Tian N, Huang Q, Feng R, Wang Z, et al: Cutting edge: Inhibition of glycogen synthase kinase 3 activity induces the generation and enhanced suppressive function of human IL-10+ FOXP3+-induced regulatory T Cells. J Immunol. 205:1497–1502. 2020. View Article : Google Scholar : PubMed/NCBI

104 

Mielle J, Morel J, Elhmioui J, Combe B, Macia L, Dardalhon V, Taylor N, Audo R and Daien C: Glutamine promotes the generation of B10+ cells via the mTOR/GSK3 pathway. Eur J Immunol. 52:418–430. 2022. View Article : Google Scholar

105 

Chen Z and Wang JH: How the signaling crosstalk of B cell receptor (BCR) and Co-receptors regulates antibody class switch recombination: A new perspective of checkpoints of BCR signaling. Front Immunol. 12:6634432021. View Article : Google Scholar : PubMed/NCBI

106 

Tsubata T, Wu J and Honjo T: B-cell apoptosis induced by antigen receptor crosslinking is blocked by a T-cell signal through CD40. Nature. 364:645–648. 1993. View Article : Google Scholar : PubMed/NCBI

107 

Xu J, Foy TM, Laman JD, Elliott EA, Dunn JJ, Waldschmidt TJ, Elsemore J, Noelle RJ and Flavell RA: Mice deficient for the CD40 ligand. Immunity. 1:423–431. 1994. View Article : Google Scholar : PubMed/NCBI

108 

Wang SP, Iwata S, Nakayamada S, Niiro H, Jabbarzadeh-Tabrizi S, Kondo M, Kubo S, Yoshikawa M and Tanaka Y: Amplification of IL-21 signalling pathway through Bruton's tyrosine kinase in human B cell activation. Rheumatology (Oxford). 54:1488–1497. 2015. View Article : Google Scholar : PubMed/NCBI

109 

Bishop GA and Hostager BS: Signaling by CD40 and its mimics in B cell activation. Immunol Res. 24:97–109. 2001. View Article : Google Scholar : PubMed/NCBI

110 

Poe JC, Smith SH, Haas KM, Yanaba K, Tsubata T, Matsushita T and Tedder TF: Amplified B lymphocyte CD40 signaling drives regulatory B10 cell expansion in mice. PLoS One. 6:e224642011. View Article : Google Scholar : PubMed/NCBI

111 

Chen C, Ma J, Pi C, Huang W, Zhang T, Fu C, Liu W and Yang YG: PPARδ inhibition blocks the induction and function of tumor-induced IL-10+ regulatory B cells and enhances cancer immunotherapy. Cell Discov. 9:542023. View Article : Google Scholar

112 

Durand J, Huchet V, Merieau E, Usal C, Chesneau M, Remy S, Heslan M, Anegon I, Cuturi MC, Brouard S and Chiffoleau E: Regulatory B cells with a partial defect in CD40 signaling and overexpressing granzyme B transfer allograft tolerance in rodents. J Immunol. 195:5035–5044. 2015. View Article : Google Scholar : PubMed/NCBI

113 

Jansen K, Cevhertas L, Ma S, Satitsuksanoa P, Akdis M and Van De Veen W: Regulatory B cells, A to Z. Allergy. 76:2699–2715. 2021. View Article : Google Scholar : PubMed/NCBI

114 

Fu Q, Lee KM, Huai G, Deng K, Agarwal D, Rickert CG, Feeney N, Matheson R, Yang H, LeGuern C, et al: Properties of regulatory B cells regulating B cell targets. Am J Transplant. 21:3847–3857. 2021. View Article : Google Scholar : PubMed/NCBI

115 

Matsumoto M, Baba A, Yokota T, Nishikawa H, Ohkawa Y, Kayama H, Kallies A, Nutt SL, Sakaguchi S, Takeda K, et al: Interleukin-10-producing plasmablasts exert regulatory function in autoimmune inflammation. Immunity. 41:1040–1051. 2014. View Article : Google Scholar : PubMed/NCBI

116 

Baba Y, Matsumoto M and Kurosaki T: Signals controlling the development and activity of regulatory B-lineage cells. Int Immunol. 27:487–493. 2015. View Article : Google Scholar : PubMed/NCBI

117 

Bankó Z, Pozsgay J, Szili D, Tóth M, Gáti T, Nagy G, Rojkovich B and Sármay G: Induction and differentiation of IL-10-producing regulatory B cells from healthy blood donors and rheumatoid arthritis patients. J Immunol. 198:1512–1520. 2017. View Article : Google Scholar : PubMed/NCBI

118 

Inaba A, Tuong ZK, Zhao TX, Stewart AP, Mathews R, Truman L, Sriranjan R, Kennet J, Saeb-Parsy K, Wicker L, et al: Low-dose IL-2 enhances the generation of IL-10-producing immunoregulatory B cells. Nat Commun. 14:20712023. View Article : Google Scholar : PubMed/NCBI

119 

Rosser EC, Oleinika K, Tonon S, Doyle R, Bosma A, Carter NA, Harris KA, Jones SA, Klein N and Mauri C: Regulatory B cells are induced by gut microbiota-driven interleukin-1β and interleukin-6 production. Nat Med. 20:1334–1339. 2014. View Article : Google Scholar : PubMed/NCBI

120 

Liu X, Huang H, Gao H, Wu X, Zhang W, Yu B and Dou X: Regulatory B cells induced by ultraviolet B through toll-like receptor 4 signalling contribute to the suppression of contact hypersensitivity responses in mice. Contact Dermatitis. 78:117–130. 2018. View Article : Google Scholar

121 

Poe JC, Haas KM, Uchida J, Lee Y, Fujimoto M and Tedder TF: Severely impaired B lymphocyte proliferation, survival, and induction of the c-Myc:Cullin 1 ubiquitin ligase pathway resulting from CD22 deficiency on the C57BL/6 genetic background. J Immunol. 172:2100–2110. 2004. View Article : Google Scholar : PubMed/NCBI

122 

Iwata Y, Matsushita T, Horikawa M, Dilillo DJ, Yanaba K, Venturi GM, Szabolcs PM, Bernstein SH, Magro CM, Williams AD, et al: Characterization of a rare IL-10-competent B-cell subset in humans that parallels mouse regulatory B10 cells. Blood. 117:530–541. 2011. View Article : Google Scholar :

123 

Li X, Zhong H, Bao W, Boulad N, Evangelista J, Haider MA, Bussel J and Yazdanbakhsh K: Defective regulatory B-cell compartment in patients with immune thrombocytopenia. Blood. 120:3318–3325. 2012. View Article : Google Scholar : PubMed/NCBI

124 

Khoder A, Sarvaria A, Alsuliman A, Chew C, Sekine T, Cooper N, Mielke S, de Lavallade H, Muftuoglu M, Fernandez Curbelo I, et al: Regulatory B cells are enriched within the IgM memory and transitional subsets in healthy donors but are deficient in chronic GVHD. Blood. 124:2034–2045. 2014. View Article : Google Scholar : PubMed/NCBI

125 

Lee KM, Fu Q, Huai G, Deng K, Lei J, Kojima L, Agarwal D, van Galen P, Kimura S, Tanimine N, et al: Suppression of allograft rejection by regulatory B cells induced via TLR signaling. JCI Insight. 7:e1522132022. View Article : Google Scholar : PubMed/NCBI

126 

Veh J, Mangold C, Felsen A, Ludwig C, Gerstner L, Reinhardt P, Schrezenmeier H, Fabricius D and Jahrsdörfer B: Phorbol-12-myristate-13-acetate is a potent enhancer of B cells with a granzyme B+ regulatory phenotype. Front Immunol. 14:11948802023. View Article : Google Scholar :

127 

Han Y, Yu C, Yu Y and Bi L: CD25+ B cells produced IL-35 and alleviated local inflammation during experimental periodontitis. Oral Dis. 28:2248–2257. 2022. View Article : Google Scholar

128 

Zeng R, Spolski R, Casas E, Zhu W, Levy DE and Leonard WJ: The molecular basis of IL-21-mediated proliferation. Blood. 109:4135–4142. 2007. View Article : Google Scholar : PubMed/NCBI

129 

Zheremyan EA, Ustiugova AS, Uvarova AN, Karamushka NM, Stasevich EM, Gogoleva VS, Bogolyubova AV, Mitkin NA, Kuprash DV and Korneev KV: Differentially activated B cells develop regulatory phenotype and show varying immunosuppressive features: A comparative study. Front Immunol. 14:11784452023. View Article : Google Scholar : PubMed/NCBI

130 

Chesneau M, Mai HL, Danger R, Le Bot S, Nguyen TV, Bernard J, Poullaouec C, Guerrif P, Conchon S, Giral M, et al: Efficient expansion of human granzyme B-expressing B cells with potent regulatory properties. J Immunol. 205:2391–2401. 2020. View Article : Google Scholar : PubMed/NCBI

131 

Thompson R and Cao X: Reassessing granzyme B: Unveiling perforin-independent versatility in immune responses and therapeutic potentials. Front Immunol. 15:13925352024. View Article : Google Scholar : PubMed/NCBI

132 

Menon M, Blair PA, Isenberg DA and Mauri C: A regulatory feedback between plasmacytoid dendritic cells and regulatory B cells is aberrant in systemic lupus erythematosus. Immunity. 44:683–697. 2016. View Article : Google Scholar : PubMed/NCBI

133 

Mohib K, Rothstein DM and Ding Q: Characterization and activity of TIM-1 and IL-10-reporter expressing regulatory B cells. Methods Mol Biol. 2270:179–202. 2021. View Article : Google Scholar : PubMed/NCBI

134 

Carvajal Alegria G, Cornec D, Saraux A, Devauchelle-Pensec V, Jamin C, Hillion S and Pochard P: Abatacept promotes regulatory B cell functions, enhancing their ability to reduce the Th1 response in rheumatoid arthritis patients through the production of IL-10 and TGF-β. J Immunol. 207:470–482. 2021. View Article : Google Scholar : PubMed/NCBI

135 

Song J, Xiao L, Du G, Gao Y, Chen W, Yang S, Fan W and Shi B: The role of regulatory B cells (Bregs) in the Tregs-amplifying effect of Sirolimus. Int Immunopharmacol. 38:90–96. 2016. View Article : Google Scholar : PubMed/NCBI

136 

Wu M, Yu S, Chen Y, Meng W, Chen H, He J, Shen J and Lin X: Acteoside promotes B cell-derived IL-10 production and ameliorates autoimmunity. J Leukoc Biol. 112:875–885. 2022. View Article : Google Scholar : PubMed/NCBI

137 

Mielle J, Audo R, Hahne M, Macia L, Combe B, Morel J and Daien C: IL-10 producing B cells ability to induce regulatory T cells is maintained in rheumatoid arthritis. Front Immunol. 9:9612018. View Article : Google Scholar : PubMed/NCBI

138 

Goretzki A, Lin YJ, Meier C, Dorn B, Wolfheimer S, Jamin A, Schott M, Wangorsch A, Vieths S, Jakob T, et al: Stimulation of naïve B cells with a fusion protein consisting of FlaA and Bet v 1 induces regulatory B cells ex vivo. Allergy. 78:663–681. 2023. View Article : Google Scholar

139 

Giacomini E, Rizzo F, Etna MP, Cruciani M, Mechelli R, Buscarinu MC, Pica F, D'Agostini C, Salvetti M, Coccia EM and Severa M: Thymosin-α1 expands deficient IL-10-producing regulatory B cell subsets in relapsing-remitting multiple sclerosis patients. Mult Scler. 24:127–139. 2018. View Article : Google Scholar

140 

Li W, Wang D, Yue R, Chen X, Liu A, Xu H, Teng P, Wang Z, Zou Y, Xu X, et al: Gut microbes enlarged the protective effect of transplanted regulatory B cells on rejection of cardiac allografts. J Heart Lung Transplant. 40:1502–1516. 2021. View Article : Google Scholar : PubMed/NCBI

141 

Liao W, Xiao H, He J, Huang L, Liao Y, Qin J, Yang Q, Ma F and Li S: B-Cell-activating factor contributes to elevation of the content of regulatory B cells in neonatal sepsis. Bull Exp Biol Med. 175:72–77. 2023. View Article : Google Scholar : PubMed/NCBI

142 

Saulep-Easton D, Vincent FB, Quah PS, Wei A, Ting SB, Croce CM, Tam C and Mackay F: The BAFF receptor TACI controls IL-10 production by regulatory B cells and CLL B cells. Leukemia. 30:163–172. 2016. View Article : Google Scholar

143 

Hua C, Audo R, Yeremenko N, Baeten D, Hahne M, Combe B, Morel J and Daïen C: A proliferation inducing ligand (APRIL) promotes IL-10 production and regulatory functions of human B cells. J Autoimmun. 73:64–72. 2016. View Article : Google Scholar : PubMed/NCBI

144 

Fehres CM, van Uden NO, Yeremenko NG, Fernandez L, Franco Salinas G, van Duivenvoorde LM, Huard B, Morel J, Spits H, Hahne M and Baeten DLP: APRIL induces a novel subset of IgA+ regulatory B cells that suppress inflammation via expression of IL-10 and PD-L1. Front Immunol. 10:13682019. View Article : Google Scholar :

145 

Planelles L, Carvalho-Pinto CE, Hardenberg G, Smaniotto S, Savino W, Gómez-Caro R, Alvarez-Mon M, de Jong J, Eldering E, Martínez-A C, et al: APRIL promotes B-1 cell-associated neoplasm. Cancer Cell. 6:399–408. 2004. View Article : Google Scholar : PubMed/NCBI

146 

Zhang Y, Li J, Zhou N, Zhang Y, Wu M, Xu J, Shen C, An X, Shen G, Yang M, et al: The unknown aspect of BAFF: Inducing IL-35 production by a CD5+CD1dhiFcγRIIbhi regulatory B-cell subset in lupus. J Invest Dermatol. 137:2532–2543. 2017. View Article : Google Scholar : PubMed/NCBI

147 

den Hartog G, van Osch TLJ, Vos M, Meijer B, Savelkoul HFJ, van Neerven RJJ and Brugman S: BAFF augments IgA2 and IL-10 production by TLR7/8 stimulated total peripheral blood B cells. Eur J Immunol. 48:283–292. 2018. View Article : Google Scholar

148 

Komlósi ZI, Kovács N, van de Veen W, Kirsch AI, Fahrner HB, Wawrzyniak M, Rebane A, Stanic B, Palomares O, Rückert B, et al: Human CD40 ligand-expressing type 3 innate lymphoid cells induce IL-10-producing immature transitional regulatory B cells. J Allergy Clin Immunol. 142:178–194.e11. 2018. View Article : Google Scholar

149 

Mu Y, Xu W, Liu J, Wang Y, Chen J and Zhou Q: Mesenchymal stem cells moderate experimental autoimmune uveitis by dynamic regulating Th17 and Breg cells response. J Tissue Eng Regen Med. 16:26–35. 2022. View Article : Google Scholar

150 

Franquesa M, Mensah FK, Huizinga R, Strini T, Boon L, Lombardo E, DelaRosa O, Laman JD, Grinyó JM, Weimar W, et al: Human adipose tissue-derived mesenchymal stem cells abrogate plasmablast formation and induce regulatory B cells independently of T helper cells. Stem Cells. 33:880–891. 2015. View Article : Google Scholar

151 

Luk F, de Witte SF, Korevaar SS, Roemeling-van Rhijn M, Franquesa M, Strini T, van den Engel S, Gargesha M, Roy D, Dor FJ, et al: Inactivated mesenchymal stem cells maintain immunomodulatory capacity. Stem Cells Dev. 25:1342–1354. 2016. View Article : Google Scholar : PubMed/NCBI

152 

Ye L, Zhang Q, Cheng Y, Chen X, Wang G, Shi M, Zhang T, Cao Y, Pan H, Zhang L, et al: Tumor-derived exosomal HMGB1 fosters hepatocellular carcinoma immune evasion by promoting TIM-1+ regulatory B cell expansion. J Immunother Cancer. 6:1452018. View Article : Google Scholar :

153 

Blache U, Tretbar S, Koehl U, Mougiakakos D and Fricke S: CAR T cells for treating autoimmune diseases. RMD Open. 9:e0029072023. View Article : Google Scholar : PubMed/NCBI

154 

Cremoni M, Massa F and Sicard A: Overcoming barriers to widespread use of CAR-Treg therapy in organ transplant recipients. HLA. 99:565–572. 2022. View Article : Google Scholar : PubMed/NCBI

155 

Calderón-Gómez E and Fillatreau S: Utilization of a lentiviral system for the generation of B cells with regulatory properties. Methods Mol Biol. 1190:105–113. 2014. View Article : Google Scholar : PubMed/NCBI

156 

Alonso-Guallart P, Llore N, Lopes E, Kofman SB, Ho SH, Stern J, Pierre G, Bruestle K, Tang Q, Sykes M and Griesemer A: CD40L-stimulated B cells for ex-vivo expansion of polyspecific non-human primate regulatory T cells for translational studies. Clin Exp Immunol. 203:480–492. 2021. View Article : Google Scholar

157 

Abreu TR, Fonseca NA, Gonçalves N and Moreira JN: Current challenges and emerging opportunities of CAR-T cell therapies. J Control Release. 319:246–261. 2020. View Article : Google Scholar : PubMed/NCBI

158 

Miliotou AN and Papadopoulou LC: CAR T-cell Therapy: A New Era in Cancer Immunotherapy. Curr Pharm Biotechnol. 19:5–18. 2018. View Article : Google Scholar : PubMed/NCBI

159 

Wilhelm A, Chambers D, Müller F, Bozec A, Grieshaber-Bouyer R, Winkler T, Mougiakakos D, Mackensen A, Schett G and Krönke G: Selective CAR T cell-mediated B cell depletion suppresses IFN signature in SLE. JCI Insight. 9:e1794332024. View Article : Google Scholar : PubMed/NCBI

160 

Wagner JC, Ronin E, Ho P, Peng Y and Tang Q: Anti-HLA-A2-CAR Tregs prolong vascularized mouse heterotopic heart allograft survival. Am J Transplant. 22:2237–2245. 2022. View Article : Google Scholar : PubMed/NCBI

161 

Mansourabadi AH, Mohamed Khosroshahi L, Noorbakhsh F and Amirzargar A: Cell therapy in transplantation: A comprehensive review of the current applications of cell therapy in transplant patients with the focus on Tregs, CAR Tregs, and Mesenchymal stem cells. Int Immunopharmacol. 97:1076692021. View Article : Google Scholar : PubMed/NCBI

162 

Montgomery RA, Tatapudi VS, Leffell MS and Zachary AA: HLA in transplantation. Nat Rev Nephrol. 14:558–570. 2018. View Article : Google Scholar : PubMed/NCBI

163 

Bodis G, Toth V and Schwarting A: Role of human leukocyte antigens (HLA) in autoimmune diseases. Rheumatol Ther. 5:5–20. 2018. View Article : Google Scholar : PubMed/NCBI

164 

Boardman DA, Philippeos C, Fruhwirth GO, Ibrahim MA, Hannen RF, Cooper D, Marelli-Berg FM, Watt FM, Lechler RI, Maher J, et al: Expression of a chimeric antigen receptor specific for donor HLA class I enhances the potency of human regulatory T cells in preventing human skin transplant rejection. Am J Transplant. 17:931–943. 2017. View Article : Google Scholar

165 

González-Galarza FF, Takeshita LY, Santos EJ, Kempson F, Maia MH, da Silva AL, Teles e Silva AL, Ghattaoraya GS, Alfirevic A, Jones AR and Middleton D: Allele frequency net 2015 update: new features for HLA epitopes, KIR and disease and HLA adverse drug reaction associations. Nucleic Acids Res. 43(Database Issue): D784–D788. 2015. View Article : Google Scholar :

166 

Ajith A, Mamouni K, Musa A, Horuzsko DD, Gani I, Mulloy LL and Horuzsko A: IL-10-producing memory B regulatory cells as a novel target for HLA-G to prolong human kidney allograft survival. Hum Immunol. 84:366–373. 2023. View Article : Google Scholar : PubMed/NCBI

167 

Bottomley MJ, Brook MO, Shankar S, Hester J and Issa F: Towards regulatory cellular therapies in solid organ transplantation. Trends Immunol. 43:8–21. 2022. View Article : Google Scholar

168 

McNee A, Kannan A, Jull P and Shankar S: Expanding human breg for cellular therapy in transplantation: Time for translation. Transplantation. Oct 23–2024.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI

169 

Geissler EK and Hutchinson JA: Cell therapy as a strategy to minimize maintenance immunosuppression in solid organ transplant recipients. Curr Opin Organ Transplant. 18:408–415. 2013. View Article : Google Scholar : PubMed/NCBI

170 

Chu Z, Zou W, Xu Y, Sun Q and Zhao Y: The regulatory roles of B cell subsets in transplantation. Expert Rev Clin Immunol. 14:115–125. 2018. View Article : Google Scholar : PubMed/NCBI

171 

Mohib K, Cherukuri A and Rothstein DM: Regulatory B cells and transplantation: Almost prime time? Curr Opin Organ Transplant. 23:524–532. 2018. View Article : Google Scholar : PubMed/NCBI

172 

Chesneau M, Michel L, Degauque N and Brouard S: Regulatory B cells and tolerance in transplantation: From animal models to human. Front Immunol. 4:4972013. View Article : Google Scholar

173 

Silva HM, Takenaka MC, Moraes-Vieira PM, Monteiro SM, Hernandez MO, Chaara W, Six A, Agena F, Sesterheim P, Barbé-Tuana FM, et al: Preserving the B-cell compartment favors operational tolerance in human renal transplantation. Mol Med. 18:733–743. 2012. View Article : Google Scholar : PubMed/NCBI

174 

Clatworthy MR, Watson CJ, Plotnek G, Bardsley V, Chaudhry AN, Bradley JA and Smith KG: B-cell-depleting induction therapy and acute cellular rejection. N Engl J Med. 360:2683–2685. 2009. View Article : Google Scholar : PubMed/NCBI

175 

Veh J, Ludwig C, Schrezenmeier H and Jahrsdörfer B: Regulatory B cells-immunopathological and prognostic potential in humans. Cells. 13:3572024. View Article : Google Scholar : PubMed/NCBI

176 

Le Huu D, Matsushita T, Jin G, Hamaguchi Y, Hasegawa M, Takehara K, Tedder TF and Fujimoto M: Donor-derived regulatory B cells are important for suppression of murine sclerodermatous chronic graft-versus-host disease. Blood. 121:3274–3283. 2013. View Article : Google Scholar : PubMed/NCBI

177 

Fang T, Koo TY, Lee JG, Jang JY, Xu Y, Hwang JH, Park S, Yan JJ, Ryu JH, Ryu YM, et al: Anti-CD45RB antibody therapy attenuates renal ischemia-reperfusion injury by inducing regulatory B cells. J Am Soc Nephrol. 30:1870–1885. 2019. View Article : Google Scholar : PubMed/NCBI

178 

Matsushita T: Regulatory and effector B cells: Friends or foes? J Dermatol Sci. 93:2–7. 2019. View Article : Google Scholar

179 

Zhao H, Feng R, Peng A, Li G and Zhou L: The expanding family of noncanonical regulatory cell subsets. J Leukoc Biol. 106:369–383. 2019. View Article : Google Scholar : PubMed/NCBI

180 

Natarajan P, Singh A, McNamara JT, Secor ER, Guernsey LA, Thrall RS and Schramm CM: Regulatory B cells from hilar lymph nodes of tolerant mice in a murine model of allergic airway disease are CD5+, express TGF-β, and co-localize with CD4+Foxp3+ T cells. Mucosal Immunol. 5:691–701. 2012. View Article : Google Scholar : PubMed/NCBI

181 

Khalil MI, Gurski CJ, Dittel LJ, Neu SD and Dittel BN: Discovery and Function of B-Cell IgD Low (BDL) B Cells in Immune Tolerance. J Mol Biol. 433:1665842021. View Article : Google Scholar

182 

Agbogan VA, Gastineau P, Tejerina E, Karray S and Zavala F: CpG-Activated regulatory B-cell progenitors alleviate murine graft-versus-host-disease. Front Immunol. 13:7905642022. View Article : Google Scholar : PubMed/NCBI

183 

Lal G, Kulkarni N, Nakayama Y, Singh AK, Sethi A, Burrell BE, Brinkman CC, Iwami D, Zhang T, Hehlgans T and Bromberg JS: IL-10 from marginal zone precursor B cells controls the differentiation of Th17, Tfh and Tfr cells in transplantation tolerance. Immunol Lett. 170:52–63. 2016. View Article : Google Scholar : PubMed/NCBI

184 

Bao Y and Xiu DR: Adaptive transfer of B10 cells: A novel therapy for chronic rejection after solid organ transplantation. Med Hypotheses. 81:101–103. 2013. View Article : Google Scholar : PubMed/NCBI

185 

Gorczynski RM, Farrokhi K, Gorczynski C, Sadozai H, Zhu F and Khatri I: Importance of B cells to development of regulatory T cells and prolongation of tissue allograft survival in recipients receiving autologous bone marrow transplantation. Immunology. 154:465–475. 2018. View Article : Google Scholar : PubMed/NCBI

186 

Lindner S, Dahlke K, Sontheimer K, Hagn M, Kaltenmeier C, Barth TF, Beyer T, Reister F, Fabricius D, Lotfi R, et al: Interleukin 21-induced granzyme B-expressing B cells infiltrate tumors and regulate T cells. Cancer Res. 73:2468–2479. 2013. View Article : Google Scholar : PubMed/NCBI

187 

Horikawa M, Weimer ET, DiLillo DJ, Venturi GM, Spolski R, Leonard WJ, Heise MT and Tedder TF: Regulatory B cell (B10 Cell) expansion during Listeria infection governs innate and cellular immune responses in mice. J Immunol. 190:1158–1168. 2013. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhao D, Huai G, Yuan Y, Cui Y, Yuan Y and Zhao G: Expansion of B10 cells <em>in vitro</em>: Pathways, techniques and applications in transplantation (Review). Int J Mol Med 55: 29, 2025.
APA
Zhao, D., Huai, G., Yuan, Y., Cui, Y., Yuan, Y., & Zhao, G. (2025). Expansion of B10 cells <em>in vitro</em>: Pathways, techniques and applications in transplantation (Review). International Journal of Molecular Medicine, 55, 29. https://doi.org/10.3892/ijmm.2024.5470
MLA
Zhao, D., Huai, G., Yuan, Y., Cui, Y., Yuan, Y., Zhao, G."Expansion of B10 cells <em>in vitro</em>: Pathways, techniques and applications in transplantation (Review)". International Journal of Molecular Medicine 55.2 (2025): 29.
Chicago
Zhao, D., Huai, G., Yuan, Y., Cui, Y., Yuan, Y., Zhao, G."Expansion of B10 cells <em>in vitro</em>: Pathways, techniques and applications in transplantation (Review)". International Journal of Molecular Medicine 55, no. 2 (2025): 29. https://doi.org/10.3892/ijmm.2024.5470
Copy and paste a formatted citation
x
Spandidos Publications style
Zhao D, Huai G, Yuan Y, Cui Y, Yuan Y and Zhao G: Expansion of B10 cells <em>in vitro</em>: Pathways, techniques and applications in transplantation (Review). Int J Mol Med 55: 29, 2025.
APA
Zhao, D., Huai, G., Yuan, Y., Cui, Y., Yuan, Y., & Zhao, G. (2025). Expansion of B10 cells <em>in vitro</em>: Pathways, techniques and applications in transplantation (Review). International Journal of Molecular Medicine, 55, 29. https://doi.org/10.3892/ijmm.2024.5470
MLA
Zhao, D., Huai, G., Yuan, Y., Cui, Y., Yuan, Y., Zhao, G."Expansion of B10 cells <em>in vitro</em>: Pathways, techniques and applications in transplantation (Review)". International Journal of Molecular Medicine 55.2 (2025): 29.
Chicago
Zhao, D., Huai, G., Yuan, Y., Cui, Y., Yuan, Y., Zhao, G."Expansion of B10 cells <em>in vitro</em>: Pathways, techniques and applications in transplantation (Review)". International Journal of Molecular Medicine 55, no. 2 (2025): 29. https://doi.org/10.3892/ijmm.2024.5470
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team