|
1
|
Płudowski P, Kos-Kudła B, Walczak M, Fal
A, Zozulińska-Ziółkiewicz D, Sieroszewski P, Peregud-Pogorzelski J,
Lauterbach R, Targowski T, Lewiński A, et al: Guidelines for
preventing and treating vitamin D deficiency: A 2023 update in
Poland. Nutrients. 15:6952023. View Article : Google Scholar :
|
|
2
|
Miyakis S, Lockshin MD, Atsumi T, Branch
DW, Brey RL, Cervera R, Derksen RH, DE Groot PG, Koike T, Meroni
PL, et al: International consensus statement on an update of the
classification criteria for definite antiphospholipid syndrome
(APS). J Thromb Haemost. 4:295–306. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Sciascia S, Amigo MC, Roccatello D and
Khamashta M: Diagnosing antiphospholipid syndrome: 'extra-criteria'
manifestations and technical advances. Nat Rev Rheumatol.
13:548–560. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Sciascia S, Sanna G, Murru V, Roccatello
D, Khamashta MA and Bertolaccini ML: Anti-prothrombin (aPT) and
anti-phosphatidylserine/prothrombin (aPS/PT) antibodies and the
risk of thrombosis in the antiphospholipid syndrome. A systematic
review. Thromb Haemost. 111:354–364. 2014. View Article : Google Scholar
|
|
5
|
Kravvariti E, Konstantonis G, Tentolouris
N, Sfikakis PP and Tektonidou MG: Carotid and femoral
atherosclerosis in antiphospholipid syndrome: Equivalent risk with
diabetes mellitus in a case-control study. Semin Arthritis Rheum.
47:883–889. 2018. View Article : Google Scholar
|
|
6
|
Tektonidou MG, Vlachogiannis NI and
Sfikakis PP: T cell involvement in antiphospholipid syndrome. Clin
Immunol. 263:1102182024. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Della Nera G, Sabatino L, Gaggini M,
Gorini F and Vassalle C: Vitamin D determinants, status, and
antioxidant/anti-inflammatory-related effects in cardiovascular
risk and disease: Not the last word in the controversy.
Antioxidants (Basel). 12:9482023. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Aggeletopoulou I, Marangos M,
Assimakopoulos SF, Mouzaki A, Thomopoulos K and Triantos C: Vitamin
D and microbiome: molecular interaction in inflammatory bowel
disease pathogenesis. Am J Pathol. 193:656–668. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Muñoz A and Grant WB: Vitamin D and
cancer: An historical overview of the epidemiology and mechanisms.
Nutrients. 14:14482022. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Carlberg C and Muñoz A: An update on
vitamin D signaling and cancer. Semin Cancer Biol. 79:217–230.
2022. View Article : Google Scholar
|
|
11
|
Ao T, Kikuta J and Ishii M: The effects of
vitamin D on immune system and inflammatory diseases. Biomolecules.
11:16242021. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Boonstra A, Barrat FJ, Crain C, Heath VL,
Savelkoul HF and O'Garra A: 1alpha,25-Dihydroxyvitamin d3 has a
direct effect on naive CD4(+) T cells to enhance the development of
Th2 cells. J Immunol. 167:4974–4980. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Zhao H, Wei X and Yang X: A novel update
on vitamin D in recurrent pregnancy loss (Review). Mol Med Rep.
23:3822021. View Article : Google Scholar
|
|
14
|
Sayar Z, Moll R, Isenberg D and Cohen H:
Thrombotic antiphospholipid syndrome: A practical guide to
diagnosis and management. Thromb Res. 198:213–221. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Shah R, Mohammed YN, Koehler TJ, Kaur J,
Toufeili M, Pulipati P, Alqaysi A, Khan A, Khalid M, Lee Y, et al:
Antiphospholipid antibodies and vitamin D deficiency in COVID-19
infection with and without venous or arterial thrombosis: A pilot
case-control study. PLoS One. 17:e02694662022. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Zhang H, Ding X, Hu X, Cai YX, Chen H, Sun
C, Chen J, Li X, Zheng Z, Liao T, et al: Associations between 25
hydroxyvitamin D concentration and spontaneous abortion. BMC Public
Health. 24:18582024. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Chen C, Wang S, Zhang C, Wu X, Zhou L, Zou
X, Guan T, Zhang Z and Hao J: Association between serum vitamin D
level during pregnancy and recurrent spontaneous abortion: A
systematic review and meta-analysis. Am J Reprod Immunol.
88:e135822022. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Duarte-García A, Pham MM, Crowson CS, Amin
S, Moder KG, Pruthi RK, Warrington KJ and Matteson EL: The
epidemiology of antiphospholipid syndrome: A population-based
study. Arthritis Rheumatol. 71:1545–1552. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Petri M: Antiphospholipid syndrome. Transl
Res. 225:70–81. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Cashman KD, Dowling KG, Škrabáková Z,
Gonzalez-Gross M, Valtueña J, De Henauw S, Moreno L, Damsgaard CT,
Michaelsen KF, Mølgaard C, et al: Vitamin D deficiency in Europe:
Pandemic? Am J Clin Nutr. 103:1033–1044. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Cashman KD: Vitamin D deficiency:
defining, prevalence, causes, and strategies of addressing. Calcif
Tissue Int. 106:14–29. 2020. View Article : Google Scholar
|
|
22
|
Sarafin K, Durazo-Arvizu R, Tian L,
Phinney KW, Tai S, Camara JE, Merkel J, Green E, Sempos CT and
Brooks SP: Standardizing 25-hydroxyvitamin D values from the
Canadian health measures survey. Am J Clin Nutr. 102:1044–1050.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Amrein K, Scherkl M, Hoffmann M,
Neuwersch-Sommeregger S, Köstenberger M, Tmava Berisha A, Martucci
G, Pilz S and Malle O: Vitamin D deficiency 2.0: An update on the
current status worldwide. Eur J Clin Nutr. 74:1498–1513. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Md Isa Z, Mohd Nordin NR, Mahmud MH and
Hashim S: An Update on vitamin D deficiency status in Malaysia.
Nutrients. 14:5672022. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Islam MA, Ahmed S, Sultana S, Alam SS,
Hossan T, Gouda W, Alsaqabi F, Hassan R and Kotyla PJ: Vitamin D
status in patients with primary antiphospholipid syndrome (PAPS): A
systematic review and meta-analysis. Antibodies (Basel). 13:222024.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Fernando M, Ellery SJ, Marquina C, Lim S,
Naderpoor N and Mousa A: Vitamin D-binding protein in pregnancy and
reproductive health. Nutrients. 12:14892020. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Jäpelt RB and Jakobsen J: Vitamin D in
plants: A review of occurrence, analysis, and biosynthesis. Front
Plant Sci. 4:1362013. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Tsuprykov O, Chen X, Hocher CF, Skoblo R,
Yin L and Hocher B: Why should we measure free 25(OH) vitamin D? J
Steroid Biochem Mol Biol. 180:87–104. 2018. View Article : Google Scholar
|
|
29
|
Al-Ishaq RK, Kubatka P, Brozmanova M,
Gazdikova K, Caprnda M and Büsselberg D: Health implication of
vitamin D on the cardiovascular and the renal system. Arch Physiol
Biochem. 127:195–209. 2021. View Article : Google Scholar
|
|
30
|
Keane JT, Elangovan H, Stokes RA and
Gunton JE: Vitamin D and the liver-correlation or cause? Nutrients.
10:4962018. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
de Paula FJA and Rosen CJ: Vitamin D
safety and requirements. Arch Biochem Biophys. 523:64–72. 2012.
View Article : Google Scholar :
|
|
32
|
Zmijewski MA and Carlberg C: Vitamin D
receptor(s): In the nucleus but also at membranes? Exp Dermatol.
29:876–884. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Arora J, Wang J, Weaver V, Zhang Y and
Cantorna MT: Novel insight into the role of the vitamin D receptor
in the development and function of the immune system. J Steroid
Biochem Mol Biol. 219:1060842022. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Khundmiri SJ, Murray RD and Lederer E: PTH
and vitamin D. Compr Physiol. 6:561–601. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Li YC, Chen Y and Du J: Critical roles of
intestinal epithelial vitamin D receptor signaling in controlling
gut mucosal inflammation. J Steroid Biochem Mol Biol. 148:179–183.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Mohammad S, Mishra A and Ashraf MZ:
Emerging role of vitamin D and its associated molecules in pathways
related to pathogenesis of thrombosis. Biomolecules. 9:6492019.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Battault S, Whiting SJ, Peltier SL, Sadrin
S, Gerber G and Maixent JM: Vitamin D metabolism, functions and
needs: From science to health claims. Eur J Nutr. 52:429–441. 2013.
View Article : Google Scholar
|
|
38
|
Hewison M, Freeman L, Hughes SV, Evans KN,
Bland R, Eliopoulos AG, Kilby MD, Moss PA and Chakraverty R:
Differential regulation of vitamin D receptor and its ligand in
human monocyte-derived dendritic cells. J Immunol. 170:5382–5390.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Fritsche J, Mondal K, Ehrnsperger A,
Andreesen R and Kreutz M: Regulation of 25-hydroxyvitamin D3-1
alpha-hydroxylase and production of 1 alpha,25-dihydroxyvitamin D3
by human dendritic cells. Blood. 102:3314–3316. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Harrison SR, Li D, Jeffery LE, Raza K and
Hewison M: Vitamin D, autoimmune disease and rheumatoid arthritis.
Calcif Tissue Int. 106:58–75. 2020. View Article : Google Scholar :
|
|
41
|
Hewison M, Zehnder D, Chakraverty R and
Adams JS: Vitamin D and barrier function: A novel role for
extra-renal 1 alpha-hydroxylase. Mol Cell Endocrinol. 215:31–38.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Penna G and Adorini L: 1
Alpha,25-dihydroxyvitamin D3 inhibits differentiation, maturation,
activation, and survival of dendritic cells leading to impaired
alloreactive T cell activation. J Immunol. 164:2405–2411. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Bartels LE, Jørgensen SP, Agnholt J,
Kelsen J, Hvas CL and Dahlerup JF: 1,25-dihydroxyvitamin D3 and
dexamethasone increase interleukin-10 production in CD4+ T cells
from patients with Crohn's disease. Int Immunopharmacol.
7:1755–1764. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Széles L, Keresztes G, Töröcsik D,
Balajthy Z, Krenács L, Póliska S, Steinmeyer A, Zuegel U, Pruenster
M, Rot A and Nagy L: 1,25-dihydroxyvitamin D3 is an autonomous
regulator of the transcriptional changes leading to a tolerogenic
dendritic cell phenotype. J Immunol. 182:2074–2083. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Piemonti L, Monti P, Sironi M, Fraticelli
P, Leone BE, Dal Cin E, Allavena P and Di Carlo V: Vitamin D3
affects differentiation, maturation, and function of human
monocyte-derived dendritic cells. J Immunol. 164:4443–4451. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Hewison M: Vitamin D and immune function:
An overview. Proc Nutr Soc. 71:50–61. 2012. View Article : Google Scholar
|
|
47
|
Cantorna MT, Snyder L, Lin YD and Yang L:
Vitamin D and 1,25(OH)2D regulation of T cells. Nutrients.
7:3011–3021. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Cippitelli M, Fionda C, Di Bona D, Di Rosa
F, Lupo A, Piccoli M, Frati L and Santoni A: Negative regulation of
CD95 ligand gene expression by vitamin D3 in T lymphocytes. J
Immunol. 168:1154–1166. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Xie Z, Chen J, Zheng C, Wu J, Cheng Y, Zhu
S, Lin C, Cao Q, Zhu J and Jin T: 1,25-dihydroxyvitamin D3-induced
dendritic cells suppress experimental autoimmune encephalomyelitis
by increasing proportions of the regulatory lymphocytes and
reducing T helper type 1 and type 17 cells. Immunology.
152:414–424. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Bellan M, Andreoli L, Mele C, Sainaghi PP,
Rigamonti C, Piantoni S, De Benedittis C, Aimaretti G, Pirisi M and
Marzullo P: Pathophysiological role and therapeutic implications of
vitamin D in autoimmunity: Focus on chronic autoimmune diseases.
Nutrients. 12:7892020. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Zhou Q, Qin S, Zhang J, Zhon L, Pen Z and
Xing T: 1,25(OH)2D3 induces regulatory T cell
differentiation by influencing the VDR/PLC-γ1/TGF-β1/pathway. Mol
Immunol. 91:156–164. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Germain SJ, Sacks GP, Sooranna SR, Sargent
IL and Redman CW: Systemic inflammatory priming in normal pregnancy
and preeclampsia: The role of circulating syncytiotrophoblast
microparticles. J Immunol. 178:5949–5956. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Torchinsky A, Shepshelovich J, Orenstein
H, Zaslavsky Z, Savion S, Carp H, Fain A and Toder V: TNF-alpha
protects embryos exposed to developmental toxicants. Am J Reprod
Immunol. 49:159–168. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Piccinni MP, Raghupathy R, Saito S and
Szekeres-Bartho J: Cytokines, hormones and cellular regulatory
mechanisms favoring successful reproduction. Front Immunol.
12:7178082021. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Casazza RL, Lazear HM and Miner JJ:
Protective and pathogenic effects of interferon signaling during
pregnancy. Viral Immunol. 33:3–11. 2020. View Article : Google Scholar :
|
|
56
|
Yang X, Tian Y, Zheng L, Luu T and
Kwak-Kim J: The update immune-regulatory role of pro- and
anti-inflammatory cytokines in recurrent pregnancy losses. Int J
Mol Sci. 24:1322022. View Article : Google Scholar
|
|
57
|
Michimata T, Tsuda H, Sakai M, Fujimura M,
Nagata K, Nakamura M and Saito S: Accumulation of CRTH2-positive
T-helper 2 and T-cytotoxic 2 cells at implantation sites of human
decidua in a prostaglandin D(2)-mediated manner. Mol Hum Reprod.
8:181–187. 2002. View Article : Google Scholar
|
|
58
|
Mitchell RE, Hassan M, Burton BR, Britton
G, Hill EV, Verhagen J and Wraith DC: IL-4 enhances IL-10
production in Th1 cells: Implications for Th1 and Th2 regulation.
Sci Rep. 7:113152017. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Nakashima A, Ito M, Yoneda S, Shiozaki A,
Hidaka T and Saito S: Circulating and decidual Th17 cell levels in
healthy pregnancy. Am J Reprod Immunol. 63:104–109. 2010.
View Article : Google Scholar
|
|
60
|
Cua DJ and Tato CM: Innate IL-17-producing
cells: The sentinels of the immune system. Nat Rev Immunol.
10:479–489. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Cyprian F, Lef kou E, Varoudi K and
Girardi G: Immunomodulatory effects of vitamin D in pregnancy and
beyond. Front Immunol. 10:27392019. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Minton K: Vitamin D shuts down T
cell-mediated inflammation. Nat Rev Immunol. 22:12022. View Article : Google Scholar
|
|
63
|
Zhang H, Wang S, Tuo L, Zhai Q, Cui J,
Chen D and Xu D: Relationship between maternal vitamin D levels and
adverse outcomes. Nutrients. 14:42302022. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Schröder-Heurich B, Springer CJP and von
Versen-Höynck F: Vitamin D effects on the immune system from
periconception through pregnancy. Nutrients. 12:14322020.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Renaud SJ, Postovit LM,
Macdonald-Goodfellow SK, McDonald GT, Caldwell JD and Graham CH:
Activated macrophages inhibit human cytotrophoblast invasiveness in
vitro. Biol Reprod. 73:237–243. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Seki H, Matuoka K, Inooku H and Takeda S:
TNF-alpha from monocyte of patients with pre-eclampsia-induced
apoptosis in human trophoblast cell line. J Obstet Gynaecol Res.
33:408–416. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Lockwood CJ, Oner C, Uz YH, Kayisli UA,
Huang SJ, Buchwalder LF, Murk W, Funai EF and Schatz F: Matrix
metalloproteinase 9 (MMP9) expression in preeclamptic decidua and
MMP9 induction by tumor necrosis factor alpha and interleukin 1
beta in human first trimester decidual cells. Biol Reprod.
78:1064–1072. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Raphael I, Nalawade S, Eagar TN and
Forsthuber TG: T cell subsets and their signature cytokines in
autoimmune and inflammatory diseases. Cytokine. 74:5–17. 2015.
View Article : Google Scholar :
|
|
69
|
Jara LJ, Medina G, Cruz-Dominguez P,
Navarro C, Vera-Lastra O and Saavedra MA: Risk factors of systemic
lupus erythematosus flares during pregnancy. Immunol Res.
60:184–192. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Travis OK, White D, Pierce WA, Ge Y,
Stubbs CY, Spradley FT, Williams JM and Cornelius DC: Chronic
infusion of interleukin-17 promotes hypertension, activation of
cytolytic natural killer cells, and vascular dysfunction in
pregnant rats. Physiol Rep. 7:e140382019. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Idali F, Rezaii-Nia S, Golshahi H, Fatemi
R, Naderi MM, Goli LB, Zarnani AH and Jeddi-Tehrani M: Adoptive
cell therapy with induced regulatory T cells normalises the
abortion rate in abortion-prone mice. Reprod Fertil Dev.
33:220–228. 2021.
|
|
72
|
Benagiano M, Borghi MO, Romagnoli J,
Mahler M, Bella CD, Grassi A, Capitani N, Emmi G, Troilo A,
Silvestri E, et al: Interleukin-17/Interleukin-21 and interferon-γ
producing T cells specific for β2 glycoprotein I in atherosclerosis
inflammation of systemic lupus erythematosus patients with
antiphospholipid syndrome. Haematologica. 104:2519–2527. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Robert M, Miossec P and Hot A: The Th17
pathway in vascular inflammation: Culprit or consort? Front
Immunol. 13:8887632022. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Cremoni M, Brglez V, Perez S, Decoupigny
F, Zorzi K, Andreani M, Gérard A, Boyer-Suavet S, Ruetsch C,
Benzaken S, et al: Th17-immune response in patients with membranous
nephropathy is associated with thrombosis and relapses. Front
Immunol. 11:5749972020. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Rawal N and Pangburn MK: Formation of high
affinity C5 convertase of the classical pathway of complement. J
Biol Chem. 278:38476–38483. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Liu X, Hu Y, Yu X, Tan Y, Yu F, Chen M and
Zhao M: Differential contributions of the C5b-9 and C5a/C5aR
pathways to microvascular and macrovascular thrombosis in
complement-mediated thrombotic microangiopathy patients. Clin
Immunol. 259:1098712024. View Article : Google Scholar
|
|
77
|
Li H, Xie X, Bai G, Qiang D, Zhang L, Liu
H, He Y, Tang Y and Li L: Vitamin D deficiency leads to the
abnormal activation of the complement system. Immunol Res.
71:29–38. 2023. View Article : Google Scholar :
|
|
78
|
Skendros P, Mitsios A, Chrysanthopoulou A,
Mastellos DC, Metallidis S, Rafailidis P, Ntinopoulou M, Sertaridou
E, Tsironidou V, Tsigalou C, et al: Complement and tissue
factor-enriched neutrophil extracellular traps are key drivers in
COVID-19 immunothrombosis. J Clin Invest. 130:6151–6157. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Chen Y, Li X, Lin X, Liang H, Liu X, Zhang
X, Zhang Q, Zhou F, Yu C, Lei L and Xiu J: Complement C5a induces
the generation of neutrophil extracellular traps by inhibiting
mitochondrial STAT3 to promote the development of arterial
thrombosis. Thromb J. 20:242022. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Borghi MO, Raschi E, Grossi C, Chighizola
CB and Meroni PL: Toll-like receptor 4 and β2 glycoprotein I
interaction on endothelial cells. Lupus. 23:1302–1304. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Matias ML, Romao-Veiga M, Ribeiro VR,
Nunes PR, Gomes VJ, Devides AC, Borges VT, Romagnoli GG, Peracoli
JC and Peracoli MT: Progesterone and vitamin D downregulate the
activation of the NLRP1/NLRP3 inflammasomes and TLR4-MyD88-NF-κB
pathway in monocytes from pregnant women with preeclampsia. J
Reprod Immunol. 144:1032862021. View Article : Google Scholar
|
|
82
|
Martinez-Moreno JM, Herencia C, Montes de
Oca A, Muñoz-Castañeda JR, Rodríguez-Ortiz ME, Díaz-Tocados JM,
Peralbo-Santaella E, Camargo A, Canalejo A, Rodriguez M, et al:
Vitamin D modulates tissue factor and protease-activated receptor 2
expression in vascular smooth muscle cells. FASEB J. 30:1367–1376.
2016. View Article : Google Scholar
|
|
83
|
Chen SF: 1 alpha, 25-Dihydroxyvitamin D3
decreased ICAM-1 and ELAM-1 expressions on pulmonary microvascular
endothelial cells and neutrophil motivation. J Steroid Biochem Mol
Biol. 52:67–70. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Jamali N, Song YS, Sorenson CM and
Sheibani N: 1,25(OH)2D3 regulates the proangiogenic activity of
pericyte through VDR-mediated modulation of VEGF production and
signaling of VEGF and PDGF receptors. FASEB Bioadv. 1:415–434.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Aihara K, Azuma H and Matsumoto T: Vitamin
D-vitamin D receptor system regulates antithrombogenicity in vivo.
Clin Calcium. 16:1173–1179. 2006.In Japanese. PubMed/NCBI
|
|
86
|
Han T, Liu M and Yang S: DJ-1 alleviates
angiotensin II-induced endothelial progenitor cell damage by
activating the PPARγ/HO-1 pathway. J Cell Biochem. 119:392–400.
2018. View Article : Google Scholar
|
|
87
|
Haseda F, Imagawa A, Murase-Mishiba Y,
Terasaki J and Hanafusa T: CD4+ CD45RA−
FoxP3high activated regulatory T cells are functionally impaired
and related to residual insulin-secreting capacity in patients with
type 1 diabetes. Clin Exp Immunol. 173:207–216. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
He LP, Song YX, Zhu T, Gu W and Liu CW:
Progress in the relationship between vitamin D deficiency and the
incidence of type 1 diabetes mellitus in children. J Diabetes Res.
2022:59535622022. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Rak K and Bronkowska M: Immunomodulatory
effect of vitamin D and its potential role in the prevention and
treatment of type 1 diabetes mellitus-A narrative review.
Molecules. 24:532018. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Roep BO: The role of T-cells in the
pathogenesis of type 1 diabetes: From cause to cure. Diabetologia.
46:305–321. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Felício KM, de Souza ACCB, Neto JFA, de
Melo FTC, Carvalho CT, Arbage TP, de Rider Brito HA, Peixoto AS, de
Oliveira AF, de Souza Resende F, et al: Glycemic variability and
insulin needs in patients with type 1 diabetes mellitus
supplemented with vitamin D: A pilot study using continuous glucose
monitoring system. Curr Diabetes Rev. 14:395–403. 2018. View Article : Google Scholar
|
|
92
|
Treiber G, Prietl B, Fröhlich-Reiterer E,
Lechner E, Ribitsch A, Fritsch M, Rami-Merhar B,
Steigleder-Schweiger C, Graninger W, Borkenstein M and Pieber TR:
Cholecalciferol supplementation improves suppressive capacity of
regulatory T-cells in young patients with new-onset type 1 diabetes
mellitus-A randomized clinical trial. Clin Immunol. 161:217–224.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Giri D, Pintus D, Burnside G, Ghatak A,
Mehta F, Paul P and Senniappan S: Treating vitamin D deficiency in
children with type I diabetes could improve their glycaemic
control. BMC Res Notes. 10:4652017. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Janyga S, Marek B, Kajdaniuk D,
Ogrodowczyk-Bobik M, Urbanek A and Bułdak Ł: CD4+ cells in
autoimmune thyroid disease. Endokrynol Pol. 72:572–583. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Chahardoli R, Saboor-Yaraghi AA, Amouzegar
A, Khalili D, Vakili AZ and Azizi F: Can supplementation with
vitamin D modify thyroid autoantibodies (Anti-TPO Ab, Anti-Tg Ab)
and thyroid profile (T3, T4, TSH) in hashimoto's thyroiditis? A
double blind, randomized clinical trial. Horm Metab Res.
51:296–301. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Penna-Martinez M, Filmann N, Bogdanou D,
Shoghi F, Huenecke S, Schubert R, Herrmann E, Koehl U, Husebye ES
and Badenhoop K: High-dose vitamin D in Addison's disease regulates
T-cells and monocytes: A pilot trial. Nutrition. 49:66–73. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Lynde CW, Poulin Y, Vender R, Bourcier M
and Khalil S: Interleukin 17A: Toward a new understanding of
psoriasis pathogenesis. J Am Acad Dermatol. 71:141–150. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Kjær TN, Thorsen K, Jessen N, Stenderup K
and Pedersen SB: Resveratrol ameliorates imiquimod-induced
psoriasis-like skin inflammation in mice. PLoS One.
10:e01265992015. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Navegantes KC, de Souza Gomes R, Pereira
PAT, Czaikoski PG, Azevedo CHM and Monteiro MC: Immune modulation
of some autoimmune diseases: The critical role of macrophages and
neutrophils in the innate and adaptive immunity. J Transl Med.
15:362017. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Balato A, Schiattarella M, Lembo S, Mattii
M, Prevete N, Balato N and Ayala F: Interleukin-1 family members
are enhanced in psoriasis and suppressed by vitamin D and retinoic
acid. Arch Dermatol Res. 305:255–262. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Prtina A, Rašeta Simović N, Milivojac T,
Vujnić M, Grabež M, Djuric D, Stojiljković MP, Soldat Stanković V,
Čolić MJ and Škrbić R: The effect of three-month vitamin D
supplementation on the levels of homocysteine metabolism markers
and inflammatory cytokines in sera of psoriatic patients.
Biomolecules. 11:18652021. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Brożyna AA, Slominski RM, Nedoszytko B,
Zmijewski MA and Slominski AT: Vitamin D signaling in psoriasis:
Pathogenesis and therapy. Int J Mol Sci. 23:85752022. View Article : Google Scholar
|
|
103
|
Weyand CM and Goronzy JJ: The immunology
of rheumatoid arthritis. Nat Immunol. 22:10–18. 2021. View Article : Google Scholar :
|
|
104
|
van Hamburg JP, Asmawidjaja PS, Davelaar
N, Mus AMC, Cornelissen F, van Leeuwen JPTM, Hazes JM, Dolhain RJ,
Bakx PA, Colin EM and Lubberts E: TNF blockade requires 1,25(OH)2D3
to control human Th17-mediated synovial inflammation. Ann Rheum
Dis. 71:606–612. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Jeffery LE, Qureshi OS, Gardner D, Hou TZ,
Briggs Z, Soskic B, Baker J, Raza K and Sansom DM: Vitamin D
antagonises the suppressive effect of inflammatory cytokines on
CTLA-4 expression and regulatory function. PLoS One.
10:e01315392015. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Guan Y, Hao Y, Guan Y, Bu H and Wang H:
The effect of vitamin D supplementation on rheumatoid arthritis
patients: A systematic review and meta-analysis. Front Med
(Lausanne). 7:5960072020. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Nguyen Y, Sigaux J, Letarouilly JG,
Sanchez P, Czernichow S, Flipo RM, Soubrier M, Semerano L, Seror R,
Sellam J and Daïen C: Efficacy of oral vitamin supplementation in
inflammatory rheumatic disorders: A systematic review and
meta-analysis of randomized controlled trials. Nutrients.
13:1072020. View Article : Google Scholar
|
|
108
|
Pan L, Lu MP, Wang JH, Xu M and Yang SR:
Immunological pathogenesis and treatment of systemic lupus
erythematosus. World J Pediatr. 16:19–30. 2020. View Article : Google Scholar :
|
|
109
|
Berthelot JM, Le Goff B, Neel A, Maugars Y
and Hamidou M: NETosis: At the crossroads of rheumatoid arthritis,
lupus, and vasculitis. Joint Bone Spine. 84:255–262. 2017.
View Article : Google Scholar
|
|
110
|
Shan J, Jin H and Xu Y: T cell metabolism:
A new perspective on Th17/Treg cell imbalance in systemic lupus
erythematosus. Front Immunol. 11:10272020. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Terrier B, Derian N, Schoindre Y, Chaara
W, Geri G, Zahr N, Mariampillai K, Rosenzwajg M, Carpentier W,
Musset L, et al: Restoration of regulatory and effector T cell
balance and B cell homeostasis in systemic lupus erythematosus
patients through vitamin D supplementation. Arthritis Res Ther.
14:R2212012. View
Article : Google Scholar : PubMed/NCBI
|
|
112
|
Petri M, Bello KJ, Fang H and Magder LS:
Vitamin D in systemic lupus erythematosus: Modest association with
disease activity and the urine protein-to-creatinine ratio.
Arthritis Rheum. 65:1865–1871. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Ruiz-Irastorza G, Egurbide MV, Olivares N,
Martinez-Berriotxoa A and Aguirre C: Vitamin D deficiency in
systemic lupus erythematosus: Prevalence, predictors and clinical
consequences. Rheumatology (Oxford). 47:920–923. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Lima GL, Paupitz J, Aikawa NE, Takayama L,
Bonfa E and Pereira RMR: Vitamin D supplementation in adolescents
and young adults with juvenile systemic lupus erythematosus for
improvement in disease activity and fatigue scores: A randomized,
double-blind, placebo-controlled trial. Arthritis Care Res
(Hoboken). 68:91–98. 2016. View Article : Google Scholar
|
|
115
|
Galoppin M, Kari S, Soldati S, Pal A,
Rival M, Engelhardt B, Astier A and Thouvenot E: Full spectrum of
vitamin D immunomodulation in multiple sclerosis: Mechanisms and
therapeutic implications. Brain Commun. 4:fcac1712022. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Peelen E, Muris AH, Damoiseaux J,
Knippenberg S, Broens K, Smolders J, Cohen Tervaert JW, Hupperts R
and Thewissen M: GM-CSF production by CD4+ T cells in MS patients:
Regulation by regulatory T cells and vitamin D. J Neuroimmunol.
280:36–42. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Soilu-Hänninen M, Aivo J, Lindström BM,
Elovaara I, Sumelahti ML, Färkkilä M, Tienari P, Atula S, Sarasoja
T, Herrala L, et al: A randomised, double blind, placebo controlled
trial with vitamin D3 as an add on treatment to interferon β-1b in
patients with multiple sclerosis. J Neurol Neurosurg Psychiatry.
83:565–571. 2012. View Article : Google Scholar
|
|
118
|
Feige J, Moser T, Bieler L, Schwenker K,
Hauer L and Sellner J: Vitamin D supplementation in multiple
sclerosis: A critical analysis of potentials and threats.
Nutrients. 12:7832020. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Piantoni S, Andreoli L, Scarsi M, Zanola
A, Dall'Ara F, Pizzorni C, Cutolo M, Airò P and Tincani A:
Phenotype modifications of T-cells and their shift toward a Th2
response in patients with systemic lupus erythematosus supplemented
with different monthly regimens of vitamin D. Lupus. 24:490–498.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Kello N and Cho YM: Natural supplements in
antiphospholipid syndrome: A case for further study. Clin Immunol.
258:1098482024. View Article : Google Scholar
|
|
121
|
Agmon-Levin N, Blank M, Zandman-Goddard G,
Orbach H, Meroni PL, Tincani A, Doria A, Cervera R, Miesbach W,
Stojanovich L, et al: Vitamin D: An instrumental factor in the
anti-phospholipid syndrome by inhibition of tissue factor
expression. Ann Rheum Dis. 70:145–150. 2011. View Article : Google Scholar
|
|
122
|
Beer TM, Venner PM, Ryan CW, Petrylak DP,
Chatta G, Dean Ruether J, Chi KN, Curd JG and DeLoughery TG: High
dose calcitriol may reduce thrombosis in cancer patients. Br J
Haematol. 135:392–394. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Keaney JF Jr and Rosen CJ: VITAL signs for
dietary supplementation to prevent cancer and heart disease. N Engl
J Med. 380:91–93. 2019. View Article : Google Scholar
|
|
124
|
Cannegieter SC, Doggen CJ, van Houwelingen
HC and Rosendaal FR: Travel-related venous thrombosis: Results from
a large population-based case control study (MEGA study). PLoS Med.
3:e3072006. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Cohen H, Cuadrado MJ, Erkan D,
Duarte-Garcia A, Isenberg DA, Knight JS, Ortel TL, Rahman A, Salmon
JE, Tektonidou MG, et al: 16th International congress on
antiphospholipid antibodies task force report on antiphospholipid
syndrome treatment trends. Lupus. 29:1571–1593. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Ruiz-Irastorza G, Crowther M, Branch W and
Khamashta MA: Antiphospholipid syndrome. Lancet. 376:1498–1509.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Chighizola CB, Ubiali T and Meroni PL:
Treatment of thrombotic antiphospholipid syndrome: The rationale of
current management-an insight into future approaches. J Immunol
Res. 2015:9514242015. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Uludag G, Onghanseng N, Tran ANT, Hassan
M, Halim MS, Sepah YJ, Do DV and Nguyen QD: Current concepts in the
diagnosis and management of antiphospholipid syndrome and ocular
manifestations. J Ophthalmic Inflamm Infect. 11:112021. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
García-Carrasco M, Jiménez-Herrera EA,
Gálvez-Romero JL, Mendoza-Pinto C, Méndez-Martínez S,
Etchegaray-Morales I, Munguía-Realpozo P, Vázquez de Lara-Cisneros
L, Santa Cruz FJ and Cervera R: The anti-thrombotic effects of
vitamin D and their possible relationship with antiphospholipid
syndrome. Lupus. 27:2181–2189. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Ota K, Dambaeva S, Han AR, Beaman K,
Gilman-Sachs A and Kwak-Kim J: Vitamin D deficiency may be a risk
factor for recurrent pregnancy losses by increasing cellular
immunity and autoimmunity. Hum Reprod. 29:208–219. 2014. View Article : Google Scholar
|
|
131
|
Chen X, Yin B, Lian RC, Zhang T, Zhang HZ,
Diao LH, Li YY, Huang CY, Liang DS and Zeng Y: Modulatory effects
of vitamin D on peripheral cellular immunity in patients with
recurrent miscarriage. Am J Reprod Immunol. 76:432–438. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Jeffery LE, Burke F, Mura M, Zheng Y,
Qureshi OS, Hewison M, Walker LS, Lammas DA, Raza K and Sansom DM:
1,25-Dihydroxyvitamin D3 and IL-2 combine to inhibit T cell
production of inflammatory cytokines and promote development of
regulatory T cells expressing CTLA-4 and FoxP3. J Immunol.
183:5458–5467. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Rafiee M, Gharagozloo M, Ghahiri A,
Mehrabian F, Maracy MR, Kouhpayeh S, Pieper IL and Rezaei A:
Altered Th17/Treg ratio in recurrent miscarriage after treatment
with paternal lymphocytes and vitamin D3: A double-blind
placebo-controlled study. Iran J Immunol. 12:252–262.
2015.PubMed/NCBI
|
|
134
|
Ji J, Zhai H, Zhou H, Song S, Mor G and
Liao A: The role and mechanism of vitamin D-mediated regulation of
Treg/Th17 balance in recurrent pregnancy loss. Am J Reprod Immunol.
81:e131122019. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Piantoni S, Andreoli L, Allegri F, Meroni
PL and Tincani A: Low levels of vitamin D are common in primary
antiphospholipid syndrome with thrombotic disease. Reumatismo.
64:307–313. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Bećarević M, Sarić M, Stojanovich L,
Mirković D, Dopsaj V and Ignjatović S: Anti-annexin A5 antibodies
and 25-hydroxycholecalciferol in female patients with primary
antiphospholipid syndrome. Clin Rheumatol. 37:3359–3364. 2018.
View Article : Google Scholar
|
|
137
|
Hanley DA, Cranney A, Jones G, Whiting SJ,
Leslie WD, Cole DE, Atkinson SA, Josse RG, Feldman S, Kline GA, et
al: Vitamin D in adult health and disease: A review and guideline
statement from Osteoporosis Canada. CMAJ. 182:E610–E618. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Ross AC, Manson JE, Abrams SA, Aloia JF,
Brannon PM, Clinton SK, Durazo-Arvizu RA, Gallagher JC, Gallo RL,
Jones G, et al: The 2011 report on dietary reference intakes for
calcium and vitamin D from the Institute of Medicine: What
clinicians need to know. J Clin Endocrinol Metab. 96:53–58. 2011.
View Article : Google Scholar :
|
|
139
|
Marcinowska-Suchowierska E,
Kupisz-Urbańska M, Łukaszkiewicz J, Płudowski P and Jones G:
Vitamin D toxicity-A clinical perspective. Front Endocrinol
(Lausanne). 9:5502018. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Rolf L, Muris AH, Bol Y, Damoiseaux J,
Smolders J and Hupperts R: Vitamin D3 supplementation in
multiple sclerosis: Symptoms and biomarkers of depression. J Neurol
Sci. 378:30–35. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Alkundi A, Momoh R, Musa A and Nwafor N:
Vitamin D intoxication and severe hypercalcaemia complicating
nutritional supplements misuse. BMJ Case Rep. 15:e2505532022.
View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Fragoso YD, Adoni T, Damasceno A, de
Albuquerque Damasceno CA, Ferreira ML, Finkelzstejn A, Gomes S,
Goncalves MV, Grzesiuk AK, Lins S, et al: Unfavorable outcomes
during treatment of multiple sclerosis with high doses of vitamin
D. J Neurol Sci. 346:341–342. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
De Vincentis S, Russo A, Milazzo M,
Lonardo A, De Santis MC, Rochira V, Simoni M and Madeo B: How much
vitamin D is too much? A case report and review of the literature.
Endocr Metab Immune Disord Drug Targets. 21:1653–1659. 2021.
View Article : Google Scholar
|
|
144
|
Sanders KM, Stuart AL, Williamson EJ,
Simpson JA, Kotowicz MA, Young D and Nicholson GC: Annual high-dose
oral vitamin D and falls and fractures in older women: A randomized
controlled trial. JAMA. 303:1815–1822. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Smith H, Anderson F, Raphael H, Maslin P,
Crozier S and Cooper C: Effect of annual intramuscular vitamin D on
fracture risk in elderly men and women-a population-based,
randomized, double-blind, placebo-controlled trial. Rheumatology
(Oxford). 46:1852–1857. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Rocha PN, Santos CS, Avila MO, Neves CL
and Bahiense-Oliveira M: Hypercalcemia and acute kidney injury
caused by abuse of a parenteral veterinary compound containing
vitamins A, D, and E. J Bras Nefrol. 33:467–471. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Bischoff-Ferrari HA, Dawson-Hughes B, Orav
EJ, Staehelin HB, Meyer OW, Theiler R, Dick W, Willett WC and Egli
A: Monthly high-dose vitamin D treatment for the prevention of
functional decline: A randomized clinical trial. JAMA Intern Med.
176:175–183. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Benemei S, Gallo E, Giocaliere E,
Bartolucci G, Menniti-Ippolito F, Firenzuoli F, Mugelli A and
Vannacci A: It's time for new rules on vitamin D food supplements.
Br J Clin Pharmacol. 76:825–826. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
149
|
Kimball S and Vieth R: Self-prescribed
high-dose vitamin D3: Effects on biochemical parameters in two men.
Ann Clin Biochem. 45:106–110. 2008. View Article : Google Scholar : PubMed/NCBI
|