Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
February-2025 Volume 55 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2025 Volume 55 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

New insights into the role of ubiquitination in angiogenesis (Review)

  • Authors:
    • Tao Chen
    • Keyu Wang
    • Ziqiang Sun
  • View Affiliations / Copyright

    Affiliations: Department of Hepatobiliary and Vascular Surgery, Jining Third People's Hospital, Jining, Shandong 272100, P.R. China, Department of Vascular Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
    Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 32
    |
    Published online on: December 18, 2024
       https://doi.org/10.3892/ijmm.2024.5473
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Angiogenesis is a dynamic and complex mechanism for generating new blood vessels from existing ones. Angiogenesis occurs through all life stages and involves several physiological processes. It has an important physiological and pathological role including in cancer, wound healing and inflammation. The emerging role of ubiquitination in regulating angiogenesis highlights the importance of studying this pathway in an angiogenic setting. In angiogenic events, imbalances between pro‑ and anti‑angiogenic factors, induction of hypoxic signaling and stimulation of angiogenic signaling pathways play a central role. This review provides a comprehensive overview of the role of ubiquitination in angiogenesis. This includes angiogenic factors [VEGF, platelet‑derived growth factor, (basic) fibroblast growth factor and angiopoietin], vascular cells (pericytes, endothelial cells, vascular smooth muscle cells) and extracellular matrix and cell adhesion molecules, all of which have important roles in angiogenesis, hypoxic signaling (hypoxia‑inducible factor), which induces angiogenesis, and important vascular signaling pathways (Wnt and Notch). In addition, the molecular biological basis of angiogenesis is discussed and the potential therapeutic value of ubiquitination in angiogenesis‑related diseases is highlighted.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Qin W, Steinek C, Kolobynina K, Forné I, Imhof A, Cardoso MC and Leonhardt H: Probing protein ubiquitination in live cells. Nucleic Acids Res. 50:e1252022.

2 

Popovic D, Vucic D and Dikic I: Ubiquitination in disease pathogenesis and treatment. Nat Med. 20:1242–1253. 2014.

3 

Xu G and Jaffrey SR: The new landscape of protein ubiquitination. Nat Biotechnol. 29:1098–1100. 2011.

4 

Lacoursiere RE, Hadi D and Shaw GS: Acetylation, phosphorylation, ubiquitination (Oh My!): Following post-translational modifications on the ubiquitin road. Biomolecules. 12:4672022.

5 

Rape M: Ubiquitylation at the crossroads of development and disease. Nat Rev Mol Cell Biol. 19:59–70. 2018.

6 

Rieger J, Kaessmeyer S, Al Masri S, Hünigen H and Plendl J: Endothelial cells and angiogenesis in the horse in health and disease-A review. Anat Histol Embryol. 49:656–678. 2020.

7 

Akbarian M, Bertassoni LE and Tayebi L: Biological aspects in controlling angiogenesis: current progress. Cell Mol Life Sci. 79:3492022.

8 

Francescone R and Vendramini-Costa DB: In vitro models to study angiogenesis and vasculature. Methods Mol Biol. 2514:15–28. 2022.

9 

Ahmad A and Nawaz MI: Molecular mechanism of VEGF and its role in pathological angiogenesis. J Cell Biochem. 123:1938–1965. 2022.

10 

Mezu-Ndubuisi OJ and Maheshwari A: The role of integrins in inflammation and angiogenesis. Pediatr Res. 89:1619–1626. 2021.

11 

Li W, Wen L, Rathod B, Gingras AC, Ley K and Lee HS: Kindlin2 enables EphB/ephrinB bi-directional signaling to support vascular development. Life Sci Alliance. 6:e2022018002022.

12 

Rabquer BJ, Amin MA, Teegala N, Shaheen MK, Tsou PS, Ruth JH, Lesch CA, Imhof BA and Koch AE: Junctional adhesion molecule-C is a soluble mediator of angiogenesis. J Immunol. 185:1777–1785. 2010.

13 

Rizzi A, Benagiano V and Ribatti D: Angiogenesis versus arteriogenesis. Rom J Morphol Embryol. 58:15–19. 2017.

14 

Ashraf JV and Al Haj Zen A: Role of vascular smooth muscle cell phenotype switching in arteriogenesis. Int J Mol Sci. 22:105852021.

15 

Liu Y, Yang Y, Wang Z, Fu X, Chu XM, Li Y, Wang Q, He X, Li M, Wang K, et al: Insights into the regulatory role of circRNA in angiogenesis and clinical implications. Atherosclerosis. 298:14–26. 2020.

16 

Lugano R, Ramachandran M and Dimberg A: Tumor angiogenesis: Causes, consequences, challenges and opportunities. Cell Mol Life Sci. 77:1745–1770. 2020.

17 

Liu ZL, Chen HH, Zheng LL, Sun LP and Shi L: Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct Target Ther. 8:1982023.

18 

Anderson NM and Simon MC: The tumor microenvironment. Curr Biol. 30:R921–R925. 2020.

19 

Maxwell PH and Ratcliffe PJ: Oxygen sensors and angiogenesis. Semin Cell Dev Biol. 13:29–37. 2002.

20 

Bui QT, Hong JH, Kwak M, Lee JY and Lee PC: Ubiquitin-conjugating enzymes in cancer. Cells. 10:13832021.

21 

Omorphos NP, Gao C, Tan SS and Sangha MS: Understanding angiogenesis and the role of angiogenic growth factors in the vascularization of engineered tissues. Mol Biol Rep. 48:941–950. 2021.

22 

Hicklin DJ and Ellis LM: Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol. 23:1011–1027. 2005.

23 

Ferrara N: Vascular endothelial growth factor: Basic science and clinical progress. Endocr Rev. 25:581–611. 2004.

24 

Shah AA, Kamal MA and Akhtar S: Tumor Angiogenesis and VEGFR-2: Mechanism, pathways and current biological therapeutic interventions. Curr Drug Metab. 22:50–59. 2021.

25 

Rahimi N and Costello CE: Emerging roles of post-translational modifications in signal transduction and angiogenesis. Proteomics. 15:300–309. 2015.

26 

Rahimi N: The ubiquitin-proteasome system meets angiogenesis. Mol Cancer Ther. 11:538–548. 2012.

27 

Han D, Wang L, Jiang S and Yang Q: The ubiquitin-proteasome system in breast cancer. Trends Mol Med. 29:599–621. 2023.

28 

Meissner M, Reichenbach G, Stein M, Hrgovic I, Kaufmann R and Gille J: Down-regulation of vascular endothelial growth factor receptor 2 is a major molecular determinant of proteasome inhibitor-mediated antiangiogenic action in endothelial cells. Cancer Res. 69:1976–1984. 2009.

29 

Meyer RD, Srinivasan S, Singh AJ, Mahoney JE, Gharahassanlou KR and Rahimi N: PEST motif serine and tyrosine phosphorylation controls vascular endothelial growth factor receptor 2 stability and downregulation. Mol Cell Biol. 31:2010–2025. 2011.

30 

Xu D, Wu J, Dong L, Luo W, Li L, Tang D and Liu J: Serpinc1 acts as a tumor suppressor in hepatocellular carcinoma through inducing apoptosis and blocking macrophage polarization in an ubiquitin-proteasome manner. Front Oncol. 11:7386072021.

31 

Wiszniak S and Schwarz Q: Exploring the intracrine functions of VEGF-A. Biomolecules. 11:1282021.

32 

Wang Y and Yang C: Enhanced VEGF-A expression and mediated angiogenic differentiation in human gingival fibroblasts by stimulating with TNF-α in vitro. J Dent Sci. 17:876–881. 2022.

33 

Watari K, Shibata T, Fujita H, Shinoda A, Murakami Y, Abe H, Kawahara A, Ito H, Akiba J, Yoshida S, et al: NDRG1 activates VEGF-A-induced angiogenesis through PLCγ1/ERK signaling in mouse vascular endothelial cells. Commun Biol. 3:1072020.

34 

Husain A, Khadka A, Ehrlicher A, Saint-Geniez M and Krishnan R: Substrate stiffening promotes VEGF-A functions via the PI3K/Akt/mTOR pathway. Biochem Biophys Res Commun. 586:27–33. 2022.

35 

Critchley WR, Smith GA, Zachary IC, Harrison MA and Ponnambalam S: The E2 ubiquitin-conjugating enzymes UBE2D1 and UBE2D2 regulate VEGFR2 dynamics and endothelial function. J Cell Sci. 136:jcs2606572023.

36 

Smith GA, Fearnley GW, Abdul-Zani I, Wheatcroft SB, Tomlinson DC, Harrison MA and Ponnambalam S: Ubiquitination of basal VEGFR2 regulates signal transduction and endothelial function. Biol Open. 6:1404–1415. 2017.

37 

Murakami T, Felinski EA and Antonetti DA: Occludin phosphorylation and ubiquitination regulate tight junction trafficking and vascular endothelial growth factor-induced permeability. J Biol Chem. 284:21036–21046. 2009.

38 

Shaik S, Nucera C, Inuzuka H, Gao D, Garnaas M, Frechette G, Harris L, Wan L, Fukushima H, Husain A, et al: SCF(β-TRCP) suppresses angiogenesis and thyroid cancer cell migration by promoting ubiquitination and destruction of VEGF receptor 2. J Exp Med. 209:1289–1307. 2012.

39 

Tian X, Chen Y, Peng Z, Lin Q and Sun A: NEDD4 E3 ubiquitin ligases: Promising biomarkers and therapeutic targets for cancer. Biochem Pharmacol. 214:1156412023.

40 

Murdaca J, Treins C, Monthouël-Kartmann MN, Pontier-Bres R, Kumar S, Van Obberghen E and Giorgetti-Peraldi S: Grb10 prevents Nedd4-mediated vascular endothelial growth factor receptor-2 degradation. J Biol Chem. 279:26754–26761. 2004.

41 

Wu R, Gandhi S, Tokumaru Y, Asaoka M, Oshi M, Yan L, Ishikawa T and Takabe K: Intratumoral PDGFB gene predominantly expressed in endothelial cells is associated with angiogenesis and lymphangiogenesis, but not with metastasis in breast cancer. Breast Cancer Res Treat. 195:17–31. 2022.

42 

Liu W, Guo S, Tang Z, Wei X, Gao P, Wang N, Li X and Guo Z: Magnesium promotes bone formation and angiogenesis by enhancing MC3T3-E1 secretion of PDGF-BB. Biochem Biophys Res Commun. 528:664–670. 2020.

43 

Kim DY, Park G, Hong HS, Kim S and Son Y: Platelet-derived growth factor-BB priming enhances vasculogenic capacity of bone marrow-derived endothelial precursor like cells. Tissue Eng Regen Med. 20:695–704. 2023.

44 

Pinilla-Macua I and Sorkin A: Cbl and Cbl-b independently regulate EGFR through distinct receptor interaction modes. Mol Biol Cell. 34:ar1342023.

45 

Tang R, Langdon WY and Zhang J: Negative regulation of receptor tyrosine kinases by ubiquitination: Key roles of the Cbl family of E3 ubiquitin ligases. Front Endocrinol (Lausanne). 13:9711622022.

46 

Rorsman C, Tsioumpekou M, Heldin CH and Lennartsson J: The ubiquitin ligases c-Cbl and Cbl-b negatively regulate platelet-derived growth factor (PDGF) BB-induced chemotaxis by affecting PDGF receptor β (PDGFRβ) internalization and signaling. J Biol Chem. 291:11608–11618. 2016.

47 

Wang K, Papadopoulos N, Hamidi A, Lennartsson J and Heldin CH: SUMOylation of PDGF receptor α affects signaling via PLCγ and STAT3, and cell proliferation. BMC Mol Cell Biol. 24:192023.

48 

Tsioumpekou M, Cunha SI, Ma H, Åhgren A, Cedervall J, Olsson AK, Heldin CH and Lennartsson J: Specific targeting of PDGFRβ in the stroma inhibits growth and angiogenesis in tumors with high PDGF-BB expression. Theranostics. 10:1122–1135. 2020.

49 

Lv F, Li X and Wang Y: Lycorine inhibits angiogenesis by docking to PDGFRα. BMC Cancer. 22:8732022.

50 

Sang BT, Wang CD, Liu X, Guo JQ, Lai JY and Wu XM: PDGF-BB/PDGFRβ induces tumour angiogenesis via enhancing PKM2 mediated by the PI3K/AKT pathway in Wilms' tumour. Med Oncol. 40:2402023.

51 

Miyake S, Lupher ML Jr, Druker B and Band H: The tyrosine kinase regulator Cbl enhances the ubiquitination and degradation of the platelet-derived growth factor receptor alpha. Proc Natl Acad Sci USA. 95:7927–7932. 1998.

52 

Hatakeyama S: TRIM family proteins: Roles in autophagy, immunity, and carcinogenesis. Trends Biochem Sci. 42:297–311. 2017.

53 

Sarri N, Papadopoulos N, Lennartsson J and Heldin CH: The E3 ubiquitin ligase TRIM21 regulates basal levels of PDGFRβ. Int J Mol Sci. 24:77822023.

54 

Zahra FT, Sajib MS and Mikelis CM: Role of bFGF in acquired resistance upon anti-VEGF therapy in cancer. Cancers (Basel). Cancer (Basel). 13:14222021.

55 

Lei X, Li Z, Huang M, Huang L, Huang Y, Lv S, Zhang W, Chen Z, Ke Y, Li S, et al: Gli1-mediated tumor cell-derived bFGF promotes tumor angiogenesis and pericyte coverage in non-small cell lung cancer. J Exp Clin Cancer Res. 43:832024.

56 

Przybylski M: A review of the current research on the role of bFGF and VEGF in angiogenesis. J Wound Care. 18:516–519. 2009.

57 

Li L, Ma Q, Mou J, Wang M, Ye J and Sun G: Basic fibroblast growth factor gel preparation induces angiogenesis during wound healing. Int J Artif Organs. 46:171–181. 2023.

58 

Yu Y, Chen Y, Zheng YJ, Weng QH, Zhu SP and Zhou DS: LncRNA TUG1 promoted osteogenic differentiation through promoting bFGF ubiquitination. In Vitro Cell Dev Biol Anim. 56:42–48. 2020.

59 

Sukhthankar M, Yamaguchi K, Lee SH, McEntee MF, Eling TE, Hara Y and Baek SJ: A green tea component suppresses post-translational expression of basic fibroblast growth factor in colorectal cancer. Gastroenterology. 134:1972–1980. 2008.

60 

Wang R, Ma Y, Zhan S, Zhang G, Cao L, Zhang X, Shi T and Chen W: B7-H3 promotes colorectal cancer angiogenesis through activating the NF-κB pathway to induce VEGFA expression. Cell Death Dis. 11:552020.

61 

Xiong Z, Xu X, Zhang Y, Ma C, Hou C, You Z, Shu L, Ke Y and Liu Y: IFITM3 promotes glioblastoma stem cell-mediated angiogenesis via regulating JAK/STAT3/bFGF signaling pathway. Cell Death Dis. 15:452024.

62 

Akwii RG, Sajib MS, Zahra FT and Mikelis CM: Role of Angiopoietin-2 in vascular physiology and pathophysiology. Cells. 8:4712019.

63 

Skóra JP, Antkiewicz M, Kupczyńska D, Kulikowska K, Strzelec B, Janczak D and Barć P: Local intramuscular administration of ANG1 and VEGF genes using plasmid vectors mobilizes CD34+ cells to peripheral tissues and promotes angiogenesis in an animal model. Biomed Pharmacother. 143:1121862021.

64 

Zhou H, Chen T, Li Y, You J, Deng X, Chen N, Li T, Zheng Y, Li R, Luo M, et al: Glycation of Tie-2 inhibits angiopoietin-1 signaling activation and angiopoietin-1-induced angiogenesis. Int J Mol Sci. 23:71372022.

65 

Pan L, Liu Z, Chen Y, Yang B and Cheng B: Angiopoietin-1: Can be produced by endothelial cells and act in an autocrine agonistic manner? Clin Hemorheol Microcirc. 74:341–345. 2020.

66 

Scholz A, Plate KH and Reiss Y: Angiopoietin-2: A multifaceted cytokine that functions in both angiogenesis and inflammation. Ann N Y Acad Sci. 1347:45–51. 2015.

67 

Felcht M, Luck R, Schering A, Seidel P, Srivastava K, Hu J, Bartol A, Kienast Y, Vettel C, Loos EK, et al: Angiopoietin-2 differentially regulates angiogenesis through TIE2 and integrin signaling. J Clin Invest. 122:1991–2005. 2012.

68 

Vimalraj S: A concise review of VEGF, PDGF, FGF, Notch, angiopoietin, and HGF signalling in tumor angiogenesis with a focus on alternative approaches and future directions. Int J Biol Macromol. 221:1428–1438. 2022.

69 

Chaube B, Citrin KM, Sahraei M, Singh AK, de Urturi DS, Ding W, Pierce RW, Raaisa R, Cardone R, Kibbey R, et al: Suppression of angiopoietin-like 4 reprograms endothelial cell metabolism and inhibits angiogenesis. Nat Commun. 14:82512023.

70 

Thien CB and Langdon WY: Negative regulation of PTK signalling by Cbl proteins. Growth Factors. 23:161–167. 2005.

71 

Mohapatra B, Ahmad G, Nadeau S, Zutshi N, An W, Scheffe S, Dong L, Feng D, Goetz B, Arya P, et al: Protein tyrosine kinase regulation by ubiquitination: critical roles of Cbl-family ubiquitin ligases. Biochim Biophys Acta. 1833:122–139. 2013.

72 

Wehrle C, Van Slyke P and Dumont DJ: Angiopoietin-1-induced ubiquitylation of Tie2 by c-Cbl is required for internalization and degradation. Biochem J. 423:375–380. 2009.

73 

Augustin HG, Koh GY, Thurston G and Alitalo K: Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol. 10:165–177. 2009.

74 

Choi KS, Choi HJ, Lee JK, Im S, Zhang H, Jeong Y, Park JA, Lee IK, Kim YM and Kwon YG: The endothelial E3 ligase HECW2 promotes endothelial cell junctions by increasing AMOTL1 protein stability via K63-linked ubiquitination. Cell Signal. 28:1642–1651. 2016.

75 

Chiaverina G, di Blasio L, Monica V, Accardo M, Palmiero M, Peracino B, Vara-Messler M, Puliafito A and Primo L: Dynamic interplay between pericytes and endothelial cells during sprouting angiogenesis. Cells. 8:11092019.

76 

Armulik A, Genové G and Betsholtz C: Pericytes: Developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell. 21:193–215. 2011.

77 

Lee HW, Xu Y, He L, Choi W, Gonzalez D, Jin SW and Simons M: Role of venous endothelial cells in developmental and pathologic angiogenesis. Circulation. 144:1308–1322. 2021.

78 

Carmeliet P and Jain RK: Molecular mechanisms and clinical applications of angiogenesis. Nature. 473:298–307. 2011.

79 

van Splunder H, Villacampa P, Martínez-Romero A and Graupera M: Pericytes in the disease spotlight. Trends Cell Biol. 34:58–71. 2024.

80 

Rustenhoven J, Jansson D, Smyth LC and Dragunow M: Brain pericytes as mediators of neuroinflammation. Trends Pharmacol Sci. 38:291–304. 2017.

81 

Stevenson TJ, Johnson RH, Savistchenko J, Rustenhoven J, Woolf Z, Smyth LCD, Murray HC, Faull RLM, Correia J, Schweder P, et al: Pericytes take up and degrade α-synuclein but succumb to apoptosis under cellular stress. Sci Rep. 12:173142022.

82 

Chen CJ, Ou YC, Li JR, Chang CY, Pan HC, Lai CY, Liao SL, Raung SL and Chang CJ: Infection of pericytes in vitro by Japanese encephalitis virus disrupts the integrity of the endothelial barrier. J Virol. 88:1150–1161. 2014.

83 

Yang X, Chang L, Liu Z, Geng X, Wang R, Yin X, Fan W and Zhao BQ: Neddylation in the chronically hypoperfused corpus callosum: MLN4924 reduces blood-brain barrier injury via ERK5/KLF2 signaling. Exp Neurol. 371:1145872024.

84 

Huang F, Feng Y, Peterlin BM and Fujinaga K: P-TEFb is degraded by Siah1/2 in quiescent cells. Nucleic Acids Res. 50:5000–5013. 2022.

85 

Suarez S, McCollum GW, Jayagopal A and Penn JS: High glucose-induced retinal pericyte apoptosis depends on association of GAPDH and Siah1. J Biol Chem. 290:28311–28320. 2015.

86 

Liu C, Billadeau DD, Abdelhakim H, Leof E, Kaibuchi K, Bernabeu C, Bloom GS, Yang L, Boardman L, Shah VH and Kang N: IQGAP1 suppresses TβRII-mediated myofibroblastic activation and metastatic growth in liver. J Clin Invest. 123:1138–1156. 2013.

87 

Mosaddeghzadeh N and Ahmadian MR: The RHO family GTPases: mechanisms of regulation and signaling. Cells. 10:18312021.

88 

Majolée J, Kovačević I and Hordijk PL: Ubiquitin-based modifications in endothelial cell-cell contact and inflammation. J Cell Sci. 132:jcs2277282019.

89 

Majolée J, Podieh F, Hordijk PL and Kovačević I: The interplay of Rac1 activity, ubiquitination and GDI binding and its consequences for endothelial cell spreading. PLoS One. 16:e02543862021.

90 

Jin Q, Lin L, Zhao T, Yao X, Teng Y, Zhang D, Jin Y and Yang M: Overexpression of E3 ubiquitin ligase Cbl attenuates endothelial dysfunction in diabetes mellitus by inhibiting the JAK2/STAT4 signaling and Runx3-mediated H3K4me3. J Transl Med. 19:4692021.

91 

Qian H, Zhang N, Wu B, Wu S, You S, Zhang Y and Sun Y: The E3 ubiquitin ligase Smurf2 regulates PARP1 stability to alleviate oxidative stress-induced injury in human umbilical vein endothelial cells. J Cell Mol Med. 24:4600–4611. 2020.

92 

Zou J, Zhou L, Le Y, Fang Z, Zhong M, Nie F, Wei X, Zhang X, Chen Z, Cai L, et al: WWP2 drives the progression of gastric cancer by facilitating the ubiquitination and degradation of LATS1 protein. Cell Commun. Signal. 21:382023.

93 

Zhang N, Zhang Y, Wu B, You S and Sun Y: Role of WW domain E3 ubiquitin protein ligase 2 in modulating ubiquitination and Degradation of Septin4 in oxidative stress endothelial injury. Redox Biol. 30:1014192020.

94 

You S, Xu J, Yin Z, Wu B, Wang P, Hao M, Cheng C, Liu M, Zhao Y, Jia P, et al: Down-regulation of WWP2 aggravates type 2 diabetes mellitus-induced vascular endothelial injury through modulating ubiquitination and degradation of DDX3X. Cardiovasc Diabetol. 22:1072023.

95 

Qian Y, Wang Z, Lin H, Lei T, Zhou Z, Huang W, Wu X, Zuo L, Wu J, Liu Y, et al: TRIM47 is a novel endothelial activation factor that aggravates lipopolysaccharide-induced acute lung injury in mice via K63-linked ubiquitination of TRAF2. Signal Transduct Target Ther. 7:1482022.

96 

Liu J, Lu S, Zheng L, Guo Q, Cao L, Xiao Y, Chen D, Zou Y, Liu X, Deng C, et al: ATM-CHK2-TRIM32 axis regulates ATG7 ubiquitination to initiate autophagy under oxidative stress. Cell Rep. 42:1134022023.

97 

Cockram PE, Kist M, Prakash S, Chen SH, Wertz IE and Vucic D: Ubiquitination in the regulation of inflammatory cell death and cancer. Cell Death Differ. 28:591–605. 2021.

98 

Ullah K, Chen S, Lu J, Wang X, Liu Q, Zhang Y, Long Y, Hu Z and Xu G: The E3 ubiquitin ligase STUB1 attenuates cell senescence by promoting the ubiquitination and degradation of the core circadian regulator BMAL1. J Biol Chem. 295:4696–4708. 2020.

99 

Li X, Wang T, Tao Y, Wang X, Li L and Liu J: Inhibition of USP7 suppresses advanced glycation end-induced cell cycle arrest and senescence of human umbilical vein endothelial cells through ubiquitination of p53. Acta Biochim Biophys Sin (Shanghai). 54:311–320. 2022.

100 

Mason DE, Collins JM, Dawahare JH, Nguyen TD, Lin Y, Voytik-Harbin SL, Zorlutuna P, Yoder MC and Boerckel JD: YAP and TAZ limit cytoskeletal and focal adhesion maturation to enable persistent cell motility. J Cell Biol. 218:1369–1389. 2019.

101 

Uematsu A, Kido K, Takahashi H, Takahashi C, Yanagihara Y, Saeki N, Yoshida S, Maekawa M, Honda M, Kai T, et al: The E3 ubiquitin ligase MIB2 enhances inflammation by degrading the deubiquitinating enzyme CYLD. J Biol Chem. 294:14135–14148. 2019.

102 

Li R, Shao J, Jin YJ, Kawase H, Ong YT, Troidl K, Quan Q, Wang L, Bonnavion R, Wietelmann A, et al: Endothelial FAT1 inhibits angiogenesis by controlling YAP/TAZ protein degradation via E3 ligase MIB2. Nat Commun. 14:19802023.

103 

Gallemit PEM, Yoodee S, Malaitad T and Thongboonkerd V: Epigallocatechin-3-gallate plays more predominant roles than caffeine for inducing actin-crosslinking, ubiquitin/proteasome activity and glycolysis, and suppressing angiogenesis features of human endothelial cells. Biomed Pharmacother. 141:1118372021.

104 

Goyani S, Roy M and Singh R: TRIM-NHL as RNA binding ubiquitin E3 Ligase (RBUL): Implication in development and disease pathogenesis. Biochim Biophys Acta Mol Basis Dis. 1867:1660662021.

105 

Zhou ZX, Ma XF, Xiong WH, Ren Z, Jiang M, Deng NH, Zhou BB, Liu HT, Zhou K, Hu HJ, et al: TRIM65 promotes vascular smooth muscle cell phenotypic transformation by activating PI3K/Akt/mTOR signaling during atherogenesis. Atherosclerosis. 390:1174302024.

106 

Hu Z, Song Q, Ma H, Guo Y, Zhang T, Xie H and Luo X: TRIM32 inhibits the proliferation and migration of pulmonary artery smooth muscle cells through the inactivation of PI3K/Akt pathway in pulmonary arterial hypertension. J Bioenerg Biomembr. 53:309–320. 2021.

107 

Liu Y, Zhu L, Ming Y, Wu Z, Zhang L, Chen Q and Qi Y: A role of TRIM59 in pulmonary hypertension: Modulating the protein ubiquitylation modification. J Transl Med. 21:8212023.

108 

Wang Q, Shi W, Zhang Q, Feng W, Wang J, Zhai C, Yan X and Li M: Inhibition of Siah2 ubiquitin ligase ameliorates monocrotaline-induced pulmonary arterial remodeling through inactivation of YAP. Life Sci. 242:1171592020.

109 

Kitamura H: Ubiquitin-specific proteases (USPs) and metabolic disorders. Int J Mol Sci. 24:32192023.

110 

Zhu Y, Zhang Q, Yan X, Liu L, Zhai C, Wang Q, Chai L and Li M: Ubiquitin-specific protease 7 mediates platelet-derived growth factor-induced pulmonary arterial smooth muscle cells proliferation. Pulm Circ. 11:204589402110461312021.

111 

Zhou ZX, Ren Z, Yan BJ, Qu SL, Tang ZH, Wei DH, Liu LS, Fu MG and Jiang ZS: The role of ubiquitin E3 ligase in atherosclerosis. Curr Med Chem. 28:152–168. 2021.

112 

Matsumura Y, Sakai J and Skach WR: Endoplasmic reticulum protein quality control is determined by cooperative interactions between Hsp/c70 protein and the CHIP E3 ligase. J Biol Chem. 288:31069–31079. 2013.

113 

Cai Z, He X, Liu S, Bai Y, Pan B and Wu K: Linear ubiquitination modification of NR6A1 by LUBAC inhibits RIPK3 kinase activity and attenuates apoptosis of vascular smooth muscle cells. J Biochem Mol Toxicol. 36:e230912022.

114 

Dai Y, Li Y, Cheng R, Gao J, Li Y and Lou C: TRIM37 inhibits PDGF-BB-induced proliferation and migration of airway smooth muscle cells. Biomed Pharmacother. 101:24–29. 2018.

115 

Dong LH, Li L, Song Y, Duan ZL, Sun SG, Lin YL, Miao SB, Yin YJ, Shu YN, Li H, et al: TRAF6-mediated SM22α K21 ubiquitination promotes G6PD activation and NADPH production, contributing to GSH homeostasis and VSMC survival in vitro and in vivo. Circ Res. 117:684–694. 2015.

116 

Marchand M, Monnot C, Muller L and Germain S: Extracellular matrix scaffolding in angiogenesis and capillary homeostasis. Semin Cell Dev Biol. 89:147–156. 2019.

117 

Neve A, Cantatore FP, Maruotti N, Corrado A and Ribatti D: Extracellular matrix modulates angiogenesis in physiological and pathological conditions. Biomed Res Int. 2014:7560782014.

118 

Mongiat M, Andreuzzi E, Tarticchio G and Paulitti A: Extracellular matrix, a hard player in angiogenesis. Int J Mol Sci. 17:18222016.

119 

Pai FC, Huang HW, Tsai YL, Tsai WC, Cheng YC, Chang HH and Chen Y: Inhibition of FABP6 reduces tumor cell invasion and angiogenesis through the decrease in MMP-2 and VEGF in human glioblastoma cells. Cells. 10:27822021.

120 

Chen Y, Huang Y, Huang Y, Xia X, Zhang J, Zhou Y, Tan Y, He S, Qiang F, Li A, et al: JWA suppresses tumor angiogenesis via Sp1-activated matrix metalloproteinase-2 and its prognostic significance in human gastric cancer. Carcinogenesis. 35:442–451. 2014.

121 

Chen Y, Huang Y, Hou P, Zhang Z, Zhang Y, Wang W, Sun G, Xu L, Zhou J, Bai J and Zheng J: ING4 suppresses tumor angiogenesis and functions as a prognostic marker in human colorectal cancer. Oncotarget. 7:79017–79031. 2016.

122 

Chen JJ, Ren YL, Shu CJ, Zhang Y, Chen MJ, Xu J, Li J, Li AP, Chen DY, He JD, et al: JP3, an antiangiogenic peptide, inhibits growth and metastasis of gastric cancer through TRIM25/SP1/MMP2 axis. J Exp Clin Cancer Res. 39:1182020.

123 

Yang X, Rothman VL, L'Heureux DZ and Tuszynski G: Reduction of angiocidin expression in human umbilical vein endothelial cells via siRNA silencing inhibits angiogenesis. Exp Mol Pathol. 81:108–114. 2006.

124 

Huang MT, Mason JC, Birdsey GM, Amsellem V, Gerwin N, Haskard DO, Ridley AJ and Randi AM: Endothelial intercellular adhesion molecule (ICAM)-2 regulates angiogenesis. Blood. 106:1636–1643. 2005.

125 

Kitazume S, Imamaki R, Ogawa K and Taniguchi N: Sweet role of platelet endothelial cell adhesion molecule in understanding angiogenesis. Glycobiology. 24:1260–1264. 2014.

126 

Kummer D and Ebnet K: Junctional adhesion molecules (JAMs): The JAM-integrin connection. Cells. 7:252018.

127 

Kaur G, Sharma D, Bisen S, Mukhopadhyay CS, Gurdziel K and Singh NK: Vascular cell-adhesion molecule 1 (VCAM-1) regulates JunB-mediated IL-8/CXCL1 expression and pathological neovascularization. Commun Biol. 6:5162023.

128 

Hoer S, Smith L and Lehner PJ: MARCH-IX mediates ubiquitination and downregulation of ICAM-1. FEBS Lett. 581:45–51. 2007.

129 

Li Y, Huang X, Guo F, Lei T, Li S, Monaghan-Nichols P, Jiang Z, Xin HB and Fu M: TRIM65 E3 ligase targets VCAM-1 degradation to limit LPS-induced lung inflammation. J Mol Cell Biol. 12:190–201. 2020.

130 

Park S, Sorenson CM and Sheibani N: PECAM-1 isoforms, eNOS and endoglin axis in regulation of angiogenesis. Clin Sci (Lond). 129:217–234. 2015.

131 

Liu J, Yao Q, Xiao L, Li F, Ma W, Zhang Z, Xie X, Yang C, Cui Q, Tian Y, et al: APC/Cdh1 targets PECAM-1 for ubiquitination and degradation in endothelial cells. J Cell Physiol. 235:2521–2531. 2020.

132 

Wu L, Xiao J, Yi D, Ding H, Wang R, Duan Z, Liu Z, Shi X, Shen M and Sang J: Cytosolic Cadherin 4 promotes angiogenesis and metastasis in papillary thyroid cancer by suppressing the ubiquitination/degradation of β-catenin. J Transl Med. 22:2012024.

133 

Zimna A and Kurpisz M: Hypoxia-Inducible Factor-1 in physiological and pathophysiological angiogenesis: Applications and therapies. Biomed Res Int. 2015:5494122015.

134 

Tirpe AA, Gulei D, Ciortea SM, Crivii C and Berindan-Neagoe I: Hypoxia: Overview on hypoxia-mediated mechanisms with a focus on the role of HIF Genes. Int J Mol Sci. 20:61402019.

135 

Chen L, Endler A and Shibasaki F: Hypoxia and angiogenesis: Regulation of hypoxia-inducible factors via novel binding factors. Exp Mol Med. 41:849–857. 2009.

136 

Wicks EE and Semenza GL: Hypoxia-inducible factors: Cancer progression and clinical translation. J Clin Invest. 132:e1598392022.

137 

Ke Q and Costa M: Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol. 70:1469–1480. 2006.

138 

Kubaichuk K and Kietzmann T: Involvement of E3 ligases and deubiquitinases in the control of HIF-α subunit abundance. Cells. 8:5982019.

139 

Ajani JA, Xu Y, Huo L, Wang R, Li Y, Wang Y, Pizzi MP, Scott A, Harada K, Ma L, et al: YAP1 mediates gastric adenocarcinoma peritoneal metastases that are attenuated by YAP1 inhibition. Gut. 70:55–66. 2021.

140 

Koyasu S, Kobayashi M, Goto Y, Hiraoka M and Harada H: Regulatory mechanisms of hypoxia-inducible factor 1 activity: Two decades of knowledge. Cancer Sci. 109:560–571. 2018.

141 

Bora-Singhal N, Saha B, Mohankumar D, Padmanabhan J, Coppola D and Chellappan S: A novel PHD2/VHL-mediated regulation of YAP1 contributes to VEGF expression and angiogenesis. Cancer Res Commun. 2:624–638. 2022.

142 

Kim YJ, Zhao Y, Myung JK, Yi JM, Kim MJ and Lee SJ: Suppression of breast cancer progression by FBXL16 via oxygen-independent regulation of HIF1α stability. Cell Rep. 37:1099962021.

143 

Yueyang M, Yaqin H, Guolian X, Wenjian Z, Yang J, Chen L, Haiyan C, Min C, Jianping D, Penggao D, et al: Glioma angiogenesis is boosted by ELK3 activating the HIF-1[Formula: See text]/VEGF-A signaling axis. BMC Cancer. 23:6622023.

144 

Chen P, Duan X, Li X, Li J, Ba Q and Wang H: HIPK2 suppresses tumor growth and progression of hepatocellular carcinoma through promoting the degradation of HIF-1α. Oncogene. 39:2863–2876. 2012.

145 

Chen C, Wei M, Wang C, Sun D, Liu P, Zhong X, He Q and Yu W: The histone deacetylase HDAC1 activates HIF1α/VEGFA signal pathway in colorectal cancer. Gene. 754:1448512020.

146 

Hu L, Lv X, Li D, Zhang W, Ran G, Li Q and Hu J: The anti-angiogenesis role of FBXW7 in diabetic retinopathy by facilitating the ubiquitination degradation of c-Myc to orchestrate the HDAC2. J Cell Mol Med. 25:2190–2202. 2021.

147 

Deng Y, Li S, Li S, Yu C, Huang D, Chen H and Yin X: CircPDE4B inhibits retinal pathological angiogenesis via promoting degradation of HIF-1α though targeting miR-181c. IUBMB Life. 72:1920–1929. 2020.

148 

Pitulescu ME, Schmidt I, Giaimo BD, Antoine T, Berkenfeld F, Ferrante F, Park H, Ehling M, Biljes D, Rocha SF, et al: Dll4 and Notch signalling couples sprouting angiogenesis and artery formation. Nat Cell Biol. 19:915–927. 2017.

149 

Parmalee NL and Kitajewski J: Wnt signaling in angiogenesis. Curr Drug Targets. 9:558–564. 2008.

150 

Shaw P, Dwivedi SKD, Bhattacharya R, Mukherjee P and Rao G: VEGF signaling: Role in angiogenesis and beyond. Biochim Biophys Acta Rev Cancer. 1879:1890792024.

151 

Dutta D, Sharma V, Mutsuddi M and Mukherjee A: Regulation of notch signaling by E3 ubiquitin ligases. FEBS J. 289:937–954. 2022.

152 

Zhang B and Ma JX: Wnt pathway antagonists and angiogenesis. Protein Cell. 1:898–906. 2010.

153 

Choi HJ, Park H, Lee HW and Kwon YG: The Wnt pathway and the roles for its antagonists, DKKS, in angiogenesis. IUBMB Life. 64:724–731. 2012.

154 

Zerlin M, Julius MA and Kitajewski J: Wnt/Frizzled signaling in angiogenesis. Angiogenesis. 11:63–69. 2008.

155 

Dejana E: The role of wnt signaling in physiological and pathological angiogenesis. Circ Res. 107:943–952. 2010.

156 

Shi YN, Zhu N, Liu C, Wu HT, Gui Y, Liao DF and Qin L: Wnt5a and its signaling pathway in angiogenesis. Clin Chim Acta. 471:263–269. 2017.

157 

Mankuzhy P, Dharmarajan A, Perumalsamy LR, Sharun K, Samji P and Dilley RJ: The role of Wnt signaling in mesenchymal stromal cell-driven angiogenesis. Tissue Cell. 85:1022402023.

158 

van Loon K, Huijbers EJM and Griffioen AW: Secreted frizzled-related protein 2: A key player in noncanonical Wnt signaling and tumor angiogenesis. Cancer Metastasis Rev. 40:191–203. 2021.

159 

Park HB, Kim JW and Baek KH: Regulation of Wnt signaling through ubiquitination and deubiquitination in cancers. Int J Mol Sci. 21:39042020.

160 

Kikuchi A: Modulation of Wnt signaling by Axin and Axil. Cytokine Growth Factor Rev. 10:255–265. 1999.

161 

Huang SM, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA, Charlat O, Wiellette E, Zhang Y, Wiessner S, et al: Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature. 461:614–620. 2009.

162 

Law SM and Zheng JJ: Premise and peril of Wnt signaling activation through GSK-3β inhibition. iScience. 25:1041592022.

163 

MacDonald BT, Tamai K and He X: Wnt/beta-catenin signaling: Components, mechanisms, and diseases. Dev Cell. 17:9–26. 2009.

164 

Li Q, Luo H, Dai FQ, Wang RT, Fan XQ, Luo YY, Deng MS, Wang Y, Long T, Guo W, et al: SAMD9 promotes postoperative recurrence of esophageal squamous cell carcinoma by stimulating MYH9-Mediated GSK3β/β-Catenin signaling. Adv Sci (Weinh). 10:e22035732023.

165 

Lyle CL, Belghasem M and Chitalia VC: c-Cbl: An important regulator and a target in angiogenesis and tumorigenesis. Cells. 8:4982019.

166 

Shivanna S, Harrold I, Shashar M, Meyer R, Kiang C, Francis J, Zhao Q, Feng H, Edelman ER, Rahimi N and Chitalia VC: The c-Cbl ubiquitin ligase regulates nuclear β-catenin and angiogenesis by its tyrosine phosphorylation mediated through the Wnt signaling pathway. J Biol Chem. 290:12537–12546. 2015.

167 

Chitalia V, Shivanna S, Martorell J, Meyer R, Edelman E and Rahimi N: c-Cbl, a ubiquitin E3 ligase that targets active β-catenin: A novel layer of Wnt signaling regulation. J Biol Chem. 288:23505–23517. 2013.

168 

Kumaradevan S, Lee SY, Richards S, Lyle C, Zhao Q, Tapan U, Jiangliu Y, Ghumman S, Walker J, Belghasem M, et al: c-Cbl expression correlates with human colorectal cancer survival and Its Wnt/β-catenin suppressor function is regulated by Tyr371 phosphorylation. Am J Pathol. 188:1921–1933. 2018.

169 

Wang H, Deng G, Ai M, Xu Z, Mou T, Yu J, Liu H, Wang S and Li G: Hsp90ab1 stabilizes LRP5 to promote epithelial-mesenchymal transition via activating of AKT and Wnt/β-catenin signaling pathways in gastric cancer progression. Oncogene. 38:1489–1507. 2019.

170 

Chen C, Zhu D, Zhang H, Han C, Xue G, Zhu T, Luo J and Kong L: YAP-dependent ubiquitination and degradation of β-catenin mediates inhibition of Wnt signalling induced by Physalin F in colorectal cancer. Cell Death Dis. 9:5912018.

171 

Harper JA, Yuan JS, Tan JB, Visan I and Guidos CJ: Notch signaling in development and disease. Clin Genet. 64:461–472. 2003.

172 

Hasan SS and Fischer A: Notch signaling in the vasculature: Angiogenesis and angiocrine functions. Cold Spring Harb Perspect Med. 13:a0411662023.

173 

Tetzlaff F and Fischer A: Control of blood vessel formation by notch signaling. Adv Exp Med Biol. 1066:319–338. 2018.

174 

Luo Z, Shang X, Zhang H, Wang G, Massey PA, Barton SR, Kevil CG and Dong Y: Notch signaling in osteogenesis, osteoclastogenesis, and angiogenesis. Am J Pathol. 189:1495–1500. 2019.

175 

Sainson RC and Harris AL: Regulation of angiogenesis by homotypic and heterotypic notch signalling in endothelial cells and pericytes: From basic research to potential therapies. Angiogenesis. 11:41–51. 2008.

176 

Jiang N, Hu Y, Wang M, Zhao Z and Li M: The notch signaling pathway contributes to angiogenesis and tumor immunity in breast cancer. Breast Cancer (Dove Med Press). 14:291–309. 2022.

177 

Benedito R, Roca C, Sörensen I, Adams S, Gossler A, Fruttiger M and Adams RH: The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell. 137:1124–1135. 2009.

178 

Garcia A and Kandel JJ: Notch: A key regulator of tumor angiogenesis and metastasis. Histol Histopathol. 27:151–156. 2012.

179 

Ferrante F, Giaimo BD, Friedrich T, Sugino T, Mertens D, Kugler S, Gahr BM, Just S, Pan L, Bartkuhn M, et al: Hydroxylation of the NOTCH1 intracellular domain regulates Notch signaling dynamics. Cell Death Dis. 13:6002022.

180 

Zhou B, Lin W, Long Y, Yang Y, Zhang H, Wu K and Chu Q: Notch signaling pathway: architecture, disease, and therapeutics. Signal Transduct Target Ther. 7:952022.

181 

Revici R, Hosseini-Alghaderi S, Haslam F, Whiteford R and Baron M: E3 ubiquitin ligase regulators of notch receptor endocytosis: From flies to humans. Biomolecules. 12:2242022.

182 

Le Bras S, Loyer N and Le Borgne R: The multiple facets of ubiquitination in the regulation of notch signaling pathway. Traffic. 12:149–161. 2011.

183 

Koo BK, Yoon KJ, Yoo KW, Lim HS, Song R, So JH, Kim CH and Kong YY: Mind bomb-2 is an E3 ligase for Notch ligand. J Biol Chem. 280:22335–22342. 2005.

184 

Izumi N, Helker C, Ehling M, Behrens A, Herzog W and Adams RH: Fbxw7 controls angiogenesis by regulating endothelial Notch activity. PLoS One. 7:e411162012.

185 

Ohnuki H, Inoue H, Takemori N, Nakayama H, Sakaue T, Fukuda S, Miwa D, Nishiwaki E, Hatano M, Tokuhisa T, et al: BAZF, a novel component of cullin3-based E3 ligase complex, mediates VEGFR and Notch cross-signaling in angiogenesis. Blood. 119:2688–2698. 2012.

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Chen T, Wang K and Sun Z: New insights into the role of ubiquitination in angiogenesis (Review). Int J Mol Med 55: 32, 2025.
APA
Chen, T., Wang, K., & Sun, Z. (2025). New insights into the role of ubiquitination in angiogenesis (Review). International Journal of Molecular Medicine, 55, 32. https://doi.org/10.3892/ijmm.2024.5473
MLA
Chen, T., Wang, K., Sun, Z."New insights into the role of ubiquitination in angiogenesis (Review)". International Journal of Molecular Medicine 55.2 (2025): 32.
Chicago
Chen, T., Wang, K., Sun, Z."New insights into the role of ubiquitination in angiogenesis (Review)". International Journal of Molecular Medicine 55, no. 2 (2025): 32. https://doi.org/10.3892/ijmm.2024.5473
Copy and paste a formatted citation
x
Spandidos Publications style
Chen T, Wang K and Sun Z: New insights into the role of ubiquitination in angiogenesis (Review). Int J Mol Med 55: 32, 2025.
APA
Chen, T., Wang, K., & Sun, Z. (2025). New insights into the role of ubiquitination in angiogenesis (Review). International Journal of Molecular Medicine, 55, 32. https://doi.org/10.3892/ijmm.2024.5473
MLA
Chen, T., Wang, K., Sun, Z."New insights into the role of ubiquitination in angiogenesis (Review)". International Journal of Molecular Medicine 55.2 (2025): 32.
Chicago
Chen, T., Wang, K., Sun, Z."New insights into the role of ubiquitination in angiogenesis (Review)". International Journal of Molecular Medicine 55, no. 2 (2025): 32. https://doi.org/10.3892/ijmm.2024.5473
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team