Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
February-2025 Volume 55 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2025 Volume 55 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Emerging role of small RNAs in inflammatory bowel disease and associated colorectal cancer (Review)

  • Authors:
    • Wei Qiu
    • Francis Atim Akanyibah
    • Yuxuan Xia
    • Dickson Kofi Wiredu Ocansey
    • Fei Mao
    • Yuelan Liang
  • View Affiliations / Copyright

    Affiliations: Department of Laboratory Medicine, Nanjing Drum Tower Hospital Group Suqian Hospital, Suqian, Jiangsu 223800, P.R. China, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China, Department of Laboratory Medicine, Suzhou Wuzhong People's Hospital, Suzhou, Jiangsu 215128, P.R. China
    Copyright: © Qiu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 33
    |
    Published online on: December 18, 2024
       https://doi.org/10.3892/ijmm.2024.5474
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Inflammatory bowel diseases (IBDs), which encompasses Crohn's disease and ulcerative colitis, is a chronic inflammatory condition associated with an increased risk of colorectal cancer (CRC). Small RNAs have been linked to various illnesses, including IBD and CRC. These small RNAs also serve as potential biomarkers for these diseases, offering a cutting‑edge approach to investigating possible treatments. To date, treatments involving oral nucleic acid usage are still unachievable due to the instability of medications in the gastrointestinal tract (GIT), their lack of ability to effectively target disease tissues and their notable adverse effects. However, nanoparticle or exosome delivery systems of nucleic acid medications effectively target disease tissues by overcoming the instability of the GIT, resulting in an effective outcome. In the present review, the biogenesis of small RNAs (tRNA‑derived small RNA, microRNA, small nucleolar RNA and p‑element‑induced wimpy testis‑interacting RNA), their roles in the pathogenesis of IBD and CRC as well as their application as possible diagnostic and prognostic biomarkers in IBD and CRC are discussed.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Yang L, Wu G, Wu Q, Peng L and Yuan L: METTL3 overexpression aggravates LPS-induced cellular inflammation in mouse intestinal epithelial cells and DSS-induced IBD in mice. Cell Death Discov. 8:622022.

2 

Patankar JV, Müller TM, Kantham S, Acera MG, Mascia F, Scheibe K, Mahapatro M, Heichler C, Yu Y, Li W, et al: E-type prostanoid receptor 4 drives resolution of intestinal inflammation by blocking epithelial necroptosis. Nat Cell Biol. 23:796–807. 2021.

3 

Krause JL, Engelmann B, Schaepe SS, Rolle-Kampczyk U, Jehmlich N, Chang HD, Slanina U, Hoffman M, Lehmann J, Zenclussen AC, et al: DSS treatment does not affect murine colonic microbiota in absence of the host. Gut Microbes. 16:22978312024.

4 

Steinwurz F, Machado MB, Veitia G De Paula JA, Bautista Martinez S, Vergara BI, Capdevielle B, Martinez Silva FA and Ramirez AL: Latin America consensus statement inflammatory bowel disease: Importance of timely access to diagnosis and treatment. Therap Adv Gastroenterol. 16:175628482312073122023.

5 

Wang S, Dong Z and Wan X: Global, regional, and national burden of inflammatory bowel disease and its associated anemia, 1990 to 2019 and predictions to 2050: An analysis of the global burden of disease study 2019. Autoimmun Rev. 23:1034982023.

6 

Shah SC and Itzkowitz SH: Colorectal cancer in inflammatory bowel disease: Mechanisms and management. Gastroenterology. 162:715–730.e3. 2022.

7 

Liu Y, Zhao C, Sun J, Wang G, Ju S, Qian C and Wang X: Overexpression of small nucleolar RNA SNORD1C is associated with unfavorable outcome in colorectal cancer. Bioengineered. 12:8943–8952. 2021.

8 

Kishore C and Karunagaran D: Non-coding RNAs as emerging regulators and biomarkers in colorectal cancer. Mol Cell Biochem. 477:1817–1828. 2022.

9 

Bastet L, Korepanov AP, Jagodnik J, Grondin JP, Lamontagne AM, Guillier M and Lafontaine DA: Riboswitch and small RNAs modulate btuB translation initiation in Escherichia coli and trigger distinct mRNA regulatory mechanisms. Nucleic Acids Res. 52:5852–5865. 2024.

10 

Xiong Q and Zhang Y: Small RNA modifications: Regulatory molecules and potential applications. J Hematol Oncol. 16:642023.

11 

Kharaz YA, Zamboulis DE, Fang Y, Welting TJM, Peffers MJ and Comerford EJ: Small RNA signatures of the anterior cruciate ligament from patients with knee joint osteoarthritis. Front Mol Biosci. 10:12660882023.

12 

Soroosh A, Koutsioumpa M, Pothoulakis C and Iliopoulos D: Functional role and therapeutic targeting of microRNAs in inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol. 314:G256–G262. 2018.

13 

Huang X, Zhu X, Yu Y, Zhu W, Jin L, Zhang X, Li S, Zou P, Xie C and Cui R: Dissecting miRNA signature in colorectal cancer progression and metastasis. Cancer Lett. 501:66–82. 2021.

14 

Yang X, Li Y, Li L, Liu J, Wu M and Ye M: SnoRNAs are involved in the progression of ulcerative colitis and colorectal cancer. Dig Liver Dis. 49:545–551. 2017.

15 

Lan YZ, Wu Z, Chen WJ, Fang ZX, Yu XN, Wu HT and Liu J: Small nucleolar RNA and its potential role in the oncogenesis and development of colorectal cancer. World J Gastroenterol. 30:115–127. 2024.

16 

Iyer DN, Wan TM, Man JH, Sin RW, Li X, Lo OS, Foo DC, Pang RW, Law WL and Ng L: Small RNA profiling of piRNAs in colorectal cancer identifies consistent overexpression of piR-24000 that correlates clinically with an aggressive disease phenotype. Cancers (Basel). 12:1882020.

17 

Li Y, Zhang Y, Li X, Li X, Gu X and Ju S: Serum tRF-27-FDXX-E6XRK45 as a promising biomarker for the clinical diagnosis in gastric cancer. Int J Med Sci. 20:1189–1201. 2023.

18 

Dowdy SF: Endosomal escape of RNA therapeutics: How do we solve this rate-limiting problem? RNA. 29:396–401. 2023.

19 

Zhang Y, Belaid M, Luo X, Daci A, Limani R, Mantaj J, Zilbauer M, Nayak K and Vllasaliu D: Probing milk extracellular vesicles for intestinal delivery of RNA therapies. J Nanobiotechnology. 21:4062023.

20 

Zhang M, Xu C, Liu D, Han MK, Wang L and Merlin D: Oral delivery of nanoparticles loaded with ginger active compound, 6-shogaol, attenuates ulcerative colitis and promotes wound healing in a murine model of ulcerative colitis. J Crohns Colitis. 12:217–229. 2018.

21 

Vaghari-Tabari M, Targhazeh N, Moein S, Qujeq D, Alemi F, Majidina M, Younesi S, Asemi Z and Yousefi B: From inflammatory bowel disease to colorectal cancer: What's the role of miRNAs? Cancer Cell Int. 22:1462022.

22 

Porter RJ, Arends MJ, Churchhouse AMD and Din S: Inflammatory bowel disease-associated colorectal cancer: Translational risks from mechanisms to medicines. J Crohns Colitis. 15:2131–2141. 2021.

23 

Alotaibi AG, Li JV and Gooderham NJ: Tumour necrosis Factor-alpha (TNF-α)-induced metastatic phenotype in colorectal cancer epithelial cells: Mechanistic support for the role of MicroRNA-21. Cancers (Basel). 15:6272023.

24 

Fan W, Maoqing W, Wangyang C, Fulan H, Dandan L, Jiaojiao R, Xinshu D, Binbin C and Yashuang Z: Relationship between the polymorphism of tumor necrosis factor-α-308 G>A and susceptibility to inflammatory bowel diseases and colorectal cancer: A meta-analysis. Eur J Hum Genet. 19:432–437. 2011.

25 

Al Obeed OA, Alkhayal KA, Al Sheikh A, Zubaidi AM, Vaali-Mohammed MA, Boushey R, Mckerrow JH and Abdulla MH: Increased expression of tumor necrosis factor-α is associated with advanced colorectal cancer stages. World J Gastroenterol. 20:18390–18396. 2014.

26 

Verna G, Liso M, Cavalcanti E, Armentano R, Miraglia A, Monsurrò V, Chieppa M and De Santis S: Deletion of TNF in Winnie-APCMin/+ Mice reveals its dual role in the onset and progression of colitis-associated colorectal cancer. Int J Mol Sci. 23:151452022.

27 

Wang S, Liu Z, Wang L and Zhang X: NF-kappaB signaling pathway, inflammation and colorectal cancer. Cell Mol Immunol. 6:327–334. 2009.

28 

Gregório H, Raposo TP, Queiroga FL, Prada J and Pires I: Investigating associations of cyclooxygenase-2 expression with angiogenesis, proliferation, macrophage and T-lymphocyte infiltration in canine melanocytic tumours. Melanoma Res. 26:338–347. 2016.

29 

Agoff SN, Brentnall TA, Crispin DA, Taylor SL, Raaka S, Haggitt RC, Reed MW, Afonina IA, Rabinovitch PS, Stevens AC, et al: The role of cyclooxygenase 2 in ulcerative colitis-associated neoplasia. Am J Pathol. 157:737–745. 2000.

30 

Di Mari JF, Saada JI, Mifflin RC, Valentich JD and Powell DW: HETEs enhance IL-1-mediated COX-2 expression via augmentation of message stability in human colonic myofibroblasts. Am J Physiol Gastrointest Liver Physiol. 293:G719–G728. 2007.

31 

Liu M, Xie W, Wan X and Deng T: Clostridium butyricum modulates gut microbiota and reduces colitis associated colon cancer in mice. Int Immunopharmacol. 88:1068622020.

32 

Widjaja AA and Cook SA: Nonspecific inhibition of IL6 family cytokine signalling by soluble gp130. Int J Mol Sci. 25:13632024.

33 

Rose-John S, Winthrop K and Calabrese L: The role of IL-6 in host defence against infections: Immunobiology and clinical implications. Nat Rev Rheumatol. 13:399–409. 2017.

34 

Kishimoto T: IL-6: From its discovery to clinical applications. Int Immunol. 22:347–352. 2010.

35 

Wu MY, Luo YX, Jia WX, Wang DD, Sun DL, Song J, Wang J, Niu WW and Zhang XL: miRNA-320 inhibits colitis-associated colorectal cancer by regulating the IL-6R/STAT3 pathway in mice. J Gastrointest Oncol. 13:695–709. 2022.

36 

Li Y, de Haar C, Chen M, Deuring J, Gerrits MM, Smits R, Xia B, Kuipers EJ and van der Woude CJ: Disease-related expression of the IL6/STAT3/SOCS3 signalling pathway in ulcerative colitis and ulcerative colitis-related carcinogenesis. Gut. 59:227–235. 2010.

37 

Tian X, Wang S, Zhang C, Prakash YS and Vassallo R: Blocking IL-23 signaling mitigates cigarette smoke-induced murine emphysema. Environ Toxicol. 39:5334–5346. 2024.

38 

Blauvelt A, Chen Y, Branigan PJ, Liu X, DePrimo S, Keyes BE, Leung M, Fakharzadeh S, Yang YW, Muñoz-Elías EJ, et al: Differential pharmacodynamic effects on psoriatic biomarkers by guselkumab versus secukinumab correlate with Long-Term efficacy: An ECLIPSE substudy. JID Innov. 4:1002972024.

39 

Miyake Y, Tanaka K, Nagata C, Furukawa S, Andoh A, Yokoyama T, Yoshimura N, Mori K, Ninomiya T, Yamamoto Y, et al: Case-control study of IL23R rs76418789 polymorphism, smoking, and ulcerative colitis in Japan. Cytokine. 183:1567432024.

40 

Jacobse J, Pilat JM, Li J, Brown RE, Kwag A, Buendia MA, Choksi YA, Washington MK, Williams CS, Markham NO, et al: Distinct roles for interleukin-23 receptor signaling in regulatory T cells in sporadic and inflammation-associated carcinogenesis. Front Oncol. 13:12767432023.

41 

Ljujic B, Radosavljevic G, Jovanovic I, Pavlovic S, Zdravkovic N, Milovanovic M, Acimovic L, Knezevic M, Bankovic D, Zdravkovic D and Arsenijevic N: Elevated serum level of IL-23 correlates with expression of VEGF in human colorectal carcinoma. Arch Med Res. 41:182–189. 2010.

42 

Wu H, Wu Z, Qiu Y, Zhao F, Liao M, Zhong Z, Chen J, Zeng Y and Liu R: Supplementing a specific synbiotic suppressed the incidence of AOM/DSS-induced colorectal cancer in mice. iScience. 26:1069792023.

43 

Hughes CE and Nibbs RJB: A guide to chemokines and their receptors. FEBSJ. 285:2944–2971. 2018.

44 

Kłósek M, Kurek-Górecka A, Balwierz R, Krawczyk-Łebek A, Kostrzewa-Susłow E, Bronikowska J, Jaworska D and Czuba ZP: The effect of Methyl-derivatives of flavanone on MCP-1, MIP-1β, RANTES, and eotaxin release by activated RAW264.7 macrophages. Molecules. 29:22392024.

45 

Mrowicki J, Przybylowska-Sygut K, Dziki L, Dziki L, Sygut A, Chojnacki J, Dziki A and Majsterek I: The role of polymorphisms of genes CXCL12/CXCR4 and MIF in the risk development IBD the Polish population. Mol Biol Rep. 41:4639–4652. 2014.

46 

Gaines T, Garcia F, Virani S, Liang Z, Yoon Y, Oum YH, Shim H and Mooring SR: Synthesis and evaluation of 2,5-furan, 2,5-thiophene and 3,4-thiophene-based derivatives as CXCR4 inhibitors. Eur J Med Chem. 181:1115622019.

47 

Ottaiano A, Franco R, Aiello Talamanca A, Liguori G, Tatangelo F, Delrio P, Nasti G, Barletta E, Facchini G, Daniele B, et al: Overexpression of both CXC chemokine receptor 4 and vascular endothelial growth factor proteins predicts early distant relapse in stage II-III colorectal cancer patients. Clin Cancer Res. 12:2795–2803. 2006.

48 

Fellhofer-Hofer J, Franz C, Vey JA, Kahlert C, Kalkum E, Mehrabi A, Halama N, Probst P and Klupp F: Chemokines as prognostic factor in colorectal cancer patients: A systematic review and meta-analysis. Int J Mol Sci. 25:53742024.

49 

Cheng Y, Yang X, Liang L, Xin H, Dong X, Li W, Li J, Guo X, Li Y, He J, et al: Elevated expression of CXCL3 in colon cancer promotes malignant behaviors of tumor cells in an ERK-dependent manner. BMC Cancer. 23:11622023.

50 

Zhang H, Shi Y, Lin C, He C, Wang S, Li Q, Sun Y and Li M: Overcoming cancer risk in inflammatory bowel disease: New insights into preventive strategies and pathogenesis mechanisms including interactions of immune cells, cancer signaling pathways, and gut microbiota. Front Immunol. 14:13389182023.

51 

Wunderlich CM, Acker mann PJ, Oster mann AL, Adams-Quack P, Vogt MC, Tran ML, Nikolajev A, Waisman A, Garbers C, Theurich S, et al: Obesity exacerbates colitis-associated cancer via IL-6-regulated macrophage polarisation and CCL-20/CCR-6-mediated lymphocyte recruitment. Nat Commun. 9:16462018.

52 

Wang Y, Liu H, Zhang Z, Bian D, Shao K, Wang S and Ding Y: G-MDSC-derived exosomes mediate the differentiation of M-MDSC into M2 macrophages promoting colitis-to-cancer transition. J Immunother Cancer. 11:e0061662023.

53 

Zhang C, Zhang J, Zhang Y, Song Z, Bian J, Yi H and Ma Z: Identifying neutrophil-associated subtypes in ulcerative colitis and confirming neutrophils promote colitis-associated colorectal cancer. Front Immunol. 14:10950982023.

54 

Burrello C, Pellegrino G, Giuffrè MR, Lovati G, Magagna I, Bertocchi A, Cribiù FM, Boggio F, Botti F, Trombetta E, et al: Mucosa-associated microbiota drives pathogenic functions in IBD-derived intestinal iNKT cells. Life Sci Alliance. 2:e2018002292019.

55 

Díaz-Basabe A, Lattanzi G, Perillo F, Amoroso C, Baeri A, Farini A, Torrente Y, Penna G, Rescigno M, Ghidini M, et al: Porphyromonas gingivalis fuels colorectal cancer through CHI3L1-mediated iNKT cell-driven immune evasion. Gut Microbes. 16:23888012024.

56 

Peng Q, Pan T, He R, Yi M, Feng L, Cui Z, Gao R, Wang H, Feng X, Li H, et al: BTNL2 promotes colitis-associated tumorigenesis in mice by regulating IL-22 production. EMBO Rep. 24:e560342023.

57 

Li Y, Shi J, Liu Z, Lin Y, Xie A, Sun W, Liu J and Liang J: Regulation of the migration of colorectal cancer stem cells via the TLR4/MyD88 signaling pathway by the novel surface marker CD14 following LPS stimulation. Oncol Lett. 27:602024.

58 

Quandt J, Arnovitz S, Haghi L, Woehlk J, Mohsin A, Okoreeh M, Mathur PS, Emmanuel AO, Osman A, Krishnan M, et al: Wnt-β-catenin activation epigenetically reprograms T(reg) cells in inflammatory bowel disease and dysplastic progression. Nat Immunol. 22:471–484. 2021.

59 

Lo Presti E, Mocciaro F, Mitri RD, Corsale AM, Di Simone M, Vieni S, Scibetta N, Unti E, Dieli F and Meraviglia S: Analysis of colon-infiltrating γδ T cells in chronic inflammatory bowel disease and in colitis-associated cancer. J Leukoc Biol. 108:749–760. 2020.

60 

D'Este F, Della Pietra E, Badillo Pazmay GV, Xodo LE and Rapozzi V: Role of nitric oxide in the response to photooxidative stress in prostate cancer cells. Biochem Pharmacol. 182:1142052020.

61 

Aslan M, Nazligul Y, Bolukbas C, Bolukbas FF, Horoz M, Dulger AC, Erdur FM, Celik H and Kocyigit A: Peripheral lymphocyte DNA damage and oxidative stress in patients with ulcerative colitis. Pol Arch Med Wewn. 121:223–229. 2011.

62 

Dincer Y, Erzin Y, Himmetoglu S, Gunes KN, Bal K and Akcay T: Oxidative DNA damage and antioxidant activity in patients with inflammatory bowel disease. Dig Dis Sci. 52:1636–1641. 2007.

63 

Wang H, Wang L, Xie Z, Zhou S, Li Y, Zhou Y and Sun M: Nitric oxide (NO) and no synthases (NOS)-Based targeted therapy for colon cancer. Cancers (Basel). 12:18812020.

64 

Lechner M, Lirk P and Rieder J: Inducible nitric oxide synthase (iNOS) in tumor biology: The two sides of the same coin. Semin Cancer Biol. 15:277–289. 2005.

65 

Wang C, Gong G, Sheh A, Muthupalani S, Bryant EM, Puglisi DA, Holcombe H, Conaway EA, Parry NAP, Bakthavatchalu V, et al: Interleukin-22 drives nitric oxide-dependent DNA damage and dysplasia in a murine model of colitis-associated cancer. Mucosal Immunol. 10:1504–1517. 2017.

66 

Erdman SE, Rao VP, Poutahidis T, Rogers AB, Taylor CL, Jackson EA, Ge Z, Lee CW, Schauer DB, Wogan GN, et al: Nitric oxide and TNF-alpha trigger colonic inflammation and carcinogenesis in Helicobacter hepaticus-infected, Rag2-deficient mice. Proc Natl Acad Sci USA. 106:1027–1032. 2009.

67 

Huang Y, Jiao Z, Fu Y, Hou Y, Sun J, Hu F, Yu S, Gong K, Liu Y and Zhao G: An overview of the functions of p53 and drugs acting either on wild- or mutant-type p53. Eur J Med Chem. 265:1161212024.

68 

Perri F, Pisconti S and Della Vittoria Scarpati G: P53 mutations and cancer: A tight linkage. Ann Transl Med. 4:5222016.

69 

Du L, Kim JJ, Shen J, Chen B and Dai N: KRAS and TP53 mutations in inflammatory bowel disease-associated colorectal cancer: A meta-analysis. Oncotarget. 8:22175–22186. 2017.

70 

Sangodkar J, Shi J, DiFeo A, Schwartz R, Bromberg R, Choudhri A, McClinch K, Hatami R, Scheer E, Kremer-Tal S, et al: Functional role of the KLF6 tumour suppressor gene in gastric cancer. Eur J Cancer. 45:666–676. 2009.

71 

Reeves HL, Narla G, Ogunbiyi O, Haq AI, Katz A, Benzeno S, Hod E, Harpaz N, Goldberg S, Tal-Kremer S, et al: Kruppel-like factor 6 (KLF6) is a tumor-suppressor gene frequently inactivated in colorectal cancer. Gastroenterology. 126:1090–1103. 2004.

72 

Cooke J, Zhang H, Greger L, Silva AL, Massey D, Dawson C, Metz A, Ibrahim A and Parkes M: Mucosal genome-wide methylation changes in inflammatory bowel disease. Inflamm Bowel Dis. 18:2128–2137. 2012.

73 

Yoshimi K, Tanaka T, Serikawa T and Kuramoto T: Tumor suppressor APC protein is essential in mucosal repair from colonic inflammation through angiogenesis. Am J Pathol. 182:1263–1274. 2013.

74 

Büki G, Antal G and Bene J: Rare germline variants in the adenomatous polyposis coli gene associated with dental and osseous anomalies. Int J Mol Sci. 25:81892024.

75 

Dhir M, Montgomery EA, Glöckner SC, Schuebel KE, Hooker CM, Herman JG, Baylin SB, Gearhart SL and Ahuja N: Epigenetic regulation of WNT signaling pathway genes in inflammatory bowel disease (IBD) associated neoplasia. J Gastrointest Surg. 12:1745–1753. 2008.

76 

Papadia C, Louwagie J, Del Rio P, Grooteclaes M, Coruzzi A, Montana C, Novelli M, Bordi C, de' Angelis GL, Bassett P, et al: FOXE1 and SYNE1 genes hypermethylation panel as promising biomarker in colitis-associated colorectal neoplasia. Inflamm Bowel Dis. 20:271–277. 2014.

77 

Kim TO, Park DI, Han YK, Kang K, Park SG, Park HR and Yi JM: Genome-wide analysis of the DNA methylation profile identifies the fragile histidine triad (FHIT) gene as a new promising biomarker of Crohn's disease. J Clin Med. 9:13382020.

78 

Bae JH, Park J, Yang KM, Kim TO and Yi JM: Detection of DNA hypermethylation in sera of patients with Crohn's disease. Mol Med Rep. 9:725–729. 2014.

79 

Yi JM, Dhir M, Guzzetta AA, Iacobuzio-Donahue CA, Heo K, Yang KM, Suzuki H, Toyota M, Kim HM and Ahuja N: DNA methylation biomarker candidates for early detection of colon cancer. Tumour Biol. 33:363–372. 2012.

80 

Gasaly N, de Vos P and Hermoso MA: Impact of bacterial metabolites on gut barrier function and host immunity: A focus on bacterial metabolism and its relevance for intestinal inflammation. Front Immunol. 12:6583542021.

81 

Wang M, Ma Y, Yu G, Zeng B, Yang W, Huang C, Dong Y, Tang B and Wu Z: Integration of microbiome, metabolomics and transcriptome for in-depth understanding of berberine attenuates AOM/DSS-induced colitis-associated colorectal cancer. Biomed Pharmacother. 179:1172922024.

82 

Uronis JM, Mühlbauer M, Herfarth HH, Rubinas TC, Jones GS and Jobin C: Modulation of the intestinal microbiota alters colitis-associated colorectal cancer susceptibility. PLoS One. 4:e60262009.

83 

Burgueño JF, Fritsch J, González EE, Landau KS, Santander AM, Fernández I, Hazime H, Davies JM, Santaolalla R, Phillips MC, et al: Epithelial TLR4 Signaling Activates DUOX2 to Induce Microbiota-Driven Tumorigenesis. Gastroenterology. 160:797–808.e6. 2021.

84 

Fukata M, Chen A, Vamadevan AS, Cohen J, Breglio K, Krishnareddy S, Hsu D, Xu R, Harpaz N, Dannenberg AJ, et al: Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors. Gastroenterology. 133:1869–1881. 2007.

85 

Viennois E, Chen F and Merlin D: NF-κB pathway in colitis-associated cancers. Transl Gastrointest Cancer. 2:21–29. 2013.

86 

Soleimani A, Rahmani F, Ferns GA, Ryzhikov M, Avan A and Hassanian SM: Role of the NF-κB signaling pathway in the pathogenesis of colorectal cancer. Gene. 726:1441322020.

87 

Lu Y, Huang R, Ying J, Li X, Jiao T, Guo L, Zhou H, Wang H, Tuersuntuoheti A, Liu J, et al: RING finger 138 deregulation distorts NF-кB signaling and facilities colitis Switch to aggressive malignancy. Signal Transduct Target Ther. 7:1852022.

88 

Li L, Liu H, Yu J, Sun Z, Jiang M, Yu H and Wang C: Intestinal microbiota and metabolomics reveal the role of auricularia delicate in regulating Colitis-associated colorectal cancer. Nutrients. 15:50112023.

89 

Kojima M, Morisaki T, Sasaki N, Nakano K, Mibu R, Tanaka M and Katano M: Increased nuclear factor-kB activation in human colorectal carcinoma and its correlation with tumor progression. Anticancer Res. 24:675–681. 2004.

90 

Onizawa M, Nagaishi T, Kanai T, Nagano K, Oshima S, Nemoto Y, Yoshioka A, Totsuka T, Okamoto R, Nakamura T, et al: Signaling pathway via TNF-alpha/NF-kappaB in intestinal epithelial cells may be directly involved in colitis-associated carcinogenesis. Am J Physiol Gastrointest Liver Physiol. 296:G850–G859. 2009.

91 

Massacesi C, Di Tomaso E, Urban P, Germa C, Quadt C, Trandafir L, Aimone P, Fretault N, Dharan B, Tavorath R and Hirawat S: PI3K inhibitors as new cancer therapeutics: Implications for clinical trial design. Onco Targets Ther. 9:203–210. 2016.

92 

Alzahrani AS: PI3K/Akt/mTOR inhibitors in cancer: At the bench and bedside. Semin Cancer Biol. 59:125–132. 2019.

93 

Wang D, Zhu L, Liu H, Feng X, Zhang C, Li T, Liu B, Liu L, Sun J, Chang H, et al: Huangqin tang alleviates colitis-associated colorectal cancer via amino acids homeostasisand PI3K/AKT/mtor pathway modulation. J Ethnopharmacol. 334:1185972024.

94 

Lu ZH, Ding Y, Wang YJ, Chen C, Yao XR, Yuan XM, Bu F, Bao H, Dong YW, Zhou Q, et al: Early administration of Wumei wan inhibit myeloid-derived suppressor cells via PI3K/Akt pathway and amino acids metabolism to prevent colitis-associated colorectal cancer. J Ethnopharmacol. 333:1182602024.

95 

Aigner P, Just V and Stoiber D: STAT3 isoforms: Alternative fates in cancer? Cytokine. 118:27–34. 2019.

96 

Liu LQ, Nie SP, Shen MY, Hu JL, Yu Q, Gong D and Xie MY: Tea polysaccharides inhibit colitis-associated colorectal cancer via interleukin-6/STAT3 pathway. J Agric Food Chem. 66:4384–4393. 2018.

97 

Saadatdoust Z, Pandurangan AK, Ananda Sadagopan SK, Mohd Esa N, Ismail A and Mustafa MR: Dietary cocoa inhibits colitis associated cancer: A crucial involvement of the IL-6/STAT3 pathway. J Nutr Biochem. 26:1547–1558. 2015.

98 

Andersen PR, Tirian L, Vunjak M and Brennecke J: A heterochromatin-dependent transcription machinery drives piRNA expression. Nature. 549:54–59. 2017.

99 

Ipsaro JJ, Haase AD, Knott SR, Joshua-Tor L and Hannon GJ: The structural biochemistry of Zucchini implicates it as a nuclease in piRNA biogenesis. Nature. 491:279–283. 2012.

100 

Mohn F, Handler D and Brennecke J: Noncoding RNA. piRNA-guided slicing specifies transcripts for Zucchini-dependent, phased piRNA biogenesis. Science. 348:812–817. 2015.

101 

Hayashi R, Schnabl J, Handler D, Mohn F, Ameres SL and Brennecke J: Genetic and mechanistic diversity of piRNA 3′-end formation. Nature. 539:588–592. 2016.

102 

Vourekas A, Zheng K, Fu Q, Maragkakis M, Alexiou P, Ma J, Pillai RS, Mourelatos Z and Wang PJ: The RNA helicase MOV10L1 binds piRNA precursors to initiate piRNA processing. Genes Dev. 29:617–629. 2015.

103 

Kawaoka S, Hayashi N, Suzuki Y, Abe H, Sugano S, Tomari Y, Shimada T and Katsuma S: The Bombyx ovary-derived cell line endogenously expresses PIWI/PIWI-interacting RNA complexes. RNA. 15:1258–1264. 2009.

104 

Murota Y, Ishizu H, Nakagawa S, Iwasaki YW, Shibata S, Kamatani MK, Saito K, Okano H, Siomi H and Siomi MC: Yb integrates piRNA intermediates and processing factors into perinuclear bodies to enhance piRISC assembly. Cell Rep. 8:103–113. 2014.

105 

Izumi N, Shoji K, Suzuki Y, Katsuma S and Tomari Y: Zucchini consensus motifs determine the mechanism of pre-piRNA production. Nature. 578:311–316. 2020.

106 

Izumi N, Shoji K, Sakaguchi Y, Honda S, Kirino Y, Suzuki T, Katsuma S and Tomari Y: Identification and functional analysis of the Pre-piRNA 3′trimmer in silkworms. Cell. 164:962–973. 2016.

107 

Kamminga LM, Luteijn MJ, den Broeder MJ, Redl S, Kaaij LJ, Roovers EF, Ladurner P, Berezikov E and Ketting RF: Hen1 is required for oocyte development and piRNA stability in zebrafish. EMBO J. 29:3688–3700. 2010.

108 

Brown JW, Clark GP, Leader DJ, Simpson CG and Lowe T: Multiple snoRNA gene clusters from Arabidopsis. RNA. 7:1817–1832. 2001.

109 

Tycowski KT and Steitz JA: Non-coding snoRNA host genes in drosophila: Expression strategies for modification guide snoRNAs. Eur J Cell Biol. 80:119–125. 2001.

110 

Deryusheva S and Gall JG: scaRNAs and snoRNAs: Are they limited to specific classes of substrate RNAs? RNA. 25:17–22. 2019.

111 

Stepanov GA, Filippova JA, Komissarov AB, Kuligina EV, Richter VA and Semenov DV: Regulatory role of small nucleolar RNAs in human diseases. Biomed Res Int. 2015:2068492015.

112 

O'Brien J, Hayder H, Zayed Y and Peng C: Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 9:4022018.

113 

Denli AM, Tops BB, Plasterk RH, Ketting RF and Hannon GJ: Processing of primary microRNAs by the Microprocessor complex. Nature. 432:231–235. 2004.

114 

Han J, Lee Y, Yeom KH, Kim YK, Jin H and Kim VN: The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 18:3016–3027. 2004.

115 

Medley JC, Panzade G and Zinovyeva AY: microRNA strand selection: Unwinding the rules. Wiley Interdiscip Rev RNA. 12:e16272021.

116 

Yoda M, Kawamata T, Paroo Z, Ye X, Iwasaki S, Liu Q and Tomari Y: ATP-dependent human RISC assembly pathways. Nat Struct Mol Biol. 17:17–23. 2010.

117 

Frédérick PM and Simard MJ: Regulation and different functions of the animal microRNA-induced silencing complex. Wiley Interdiscip Rev RNA. 13:e17012022.

118 

Tu M, Zuo Z, Chen C, Zhang X, Wang S, Chen C and Sun Y: Transfer RNA-derived small RNAs (tsRNAs) sequencing revealed a differential expression landscape of tsRNAs between glioblastoma and low-grade glioma. Gene. 855:1471142023.

119 

Chu X, He C, Sang B, Yang C, Yin C, Ji M, Qian A and Tian Y: Transfer RNAs-derived small RNAs and their application potential in multiple diseases. Front Cell Dev Biol. 10:9544312022.

120 

Shen Y, Yu X, Zhu L, Li T, Yan Z and Guo J: Transfer RNA-derived fragments and tRNA halves: Biogenesis, biological functions and their roles in diseases. J Mol Med (Berl). 96:1167–1176. 2018.

121 

Jiang X, Liu B, Nie Z, Duan L, Xiong Q, Jin Z, Yang C and Chen Y: The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther. 6:742021.

122 

Alarcón CR, Lee H, Goodarzi H, Halberg N and Tavazoie SF: N6-methyladenosine marks primary microRNAs for processing. Nature. 519:482–485. 2015.

123 

Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, Jia G, Yu M, Lu Z, Deng X, et al: A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. 10:93–95. 2014.

124 

Schöller E, Weichmann F, Treiber T, Ringle S, Treiber N, Flatley A, Feederle R, Bruckmann A and Meister G: Interactions, localization, and phosphorylation of the m6A generating METTL3-METTL14-WTAP complex. RNA. 24:499–512. 2018.

125 

Patil DP, Chen CK, Pickering BF, Chow A, Jackson C, Guttman M and Jaffrey SR: m(6)A RNA methylation promotes XIST-mediated transcriptional repression. Nature. 537:369–373. 2016.

126 

Su R, Dong L, Li Y, Gao M, He PC, Liu W, Wei J, Zhao Z, Gao L, Han L, et al: METTL16 exerts an m6A-independent function to facilitate translation and tumorigenesis. Nat Cell Biol. 24:205–216. 2022.

127 

Knuckles P, Lence T, Haussmann IU, Jacob D, Kreim N, Carl SH, Masiello I, Hares T, Villaseñor R, Hess D, et al: Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA-binding factor Rbm15/Spenito to the m6A machinery component Wtap/Fl(2)d. Genes Dev. 32:415–429. 2018.

128 

Zhang X, Li MJ, Xia L and Zhang H: The biological function of m6A methyltransferase KIAA1429 and its role in human disease. PeerJ. 10:e143342022.

129 

Bawankar P, Lence T, Paolantoni C, Haussmann IU, Kazlauskiene M, Jacob D, Heidelberger JB, Richter FM, Nallasivan MP, Morin V, et al: Hakai is required for stabilization of core components of the m6A mRNA methylation machinery. Nat Commun. 12:37782021.

130 

Pinto R, Vågbø CB, Jakobsson ME, Kim Y, Baltissen MP, O'Donohue MF, Guzmán UH, Małecki JM, Wu J, Kirpekar F, et al: The human methyltransferase ZCCHC4 catalyses N6-methyladenosine modification of 28S ribosomal RNA. Nucleic Acids Res. 48:830–846. 2020.

131 

Shen D, Wang B, Gao Y, Zhao L, Bi Y, Zhang J, Wang N, Kang H, Pang J, Liu Y, et al: Detailed resume of RNA m6A demethylases. Acta Pharm Sin B. 12:2193–2205. 2022.

132 

Xu C, Liu K, Tempel W, Demetriades M, Aik W, Schofield CJ and Min J: Structures of human ALKBH5 demethylase reveal a unique binding mode for specific single-stranded N6-methyladenosine RNA demethylation. J Biol Chem. 289:17299–17311. 2014.

133 

Shishodia S, Demetriades M, Zhang D, Tam NY, Maheswaran P, Clunie-O'Connor C, Tumber A, Leung IKH, Ng YM, Leissing TM, et al: Structure-based design of selective fat mass and obesity associated protein (FTO) inhibitors. J Med Chem. 64:16609–16625. 2021.

134 

Zhou L, Zhang L, Lv Y, Qian J, Huang L and Qu C: YTHDC1 inhibits autophagy-dependent NF-κB signaling by stabilizing Beclin1 mRNA in macrophages. J Inflamm (Lond). 21:222024.

135 

Alarcón CR, Goodarzi H, Lee H, Liu X, Tavazoie S and Tavazoie SF: HNRNPA2B1 Is a mediator of m(6)A-dependent nuclear RNA processing events. Cell. 162:1299–1308. 2015.

136 

Zaccara S and Jaffrey SR: A Unified model for the function of YTHDF proteins in regulating m6A-Modified mRNA. Cell. 181:1582–1595.e18. 2020.

137 

Elcheva IA, Gowda CP, Bogush D, Gornostaeva S, Fakhardo A, Sheth N, Kokolus KM, Sharma A, Dovat S, Uzun, et al: IGF2BP family of RNA-binding proteins regulate innate and adaptive immune responses in cancer cells and tumor microenvironment. Front Immunol. 14:12245162023.

138 

Zhang Y, Wan X, Yang X, Liu X, Huang Q, Zhou L, Zhang S, Liu S, Xiong Q, Wei M, et al: eIF3i promotes colorectal cancer cell survival via augmenting PHGDH translation. J Biol Chem. 299:1051772023.

139 

Li Y, Yi Y, Gao X, Wang X, Zhao D, Wang R, Zhang LS, Gao B, Zhang Y, Zhang L, et al: 2′-O-methylation at internal sites on mRNA promotes mRNA stability. Mol Cell. 84:2320–2336.e26. 2024.

140 

Zhou KI, Pecot CV and Holley CL: 2′-O-methylation (Nm) in RNA: Progress, challenges, and future directions. RNA. 30:570–582. 2024.

141 

Khoshnevis S, Dreggors-Walker RE, Marchand V, Motorin Y and Ghalei H: Ribosomal RNA 2′-O-methylations regulate translation by impacting ribosome dynamics. Proc Natl Acad Sci USA. 119:e21173341192022.

142 

Li J, Yang Z, Yu B, Liu J and Chen X: Methylation protects miRNAs and siRNAs from a 3′-end uridylation activity in Arabidopsis. Curr Biol. 15:1501–1507. 2005.

143 

Hajieghrari B and Niazi A: Phylogenetic and evolutionary analysis of plant small RNA 2′-O-Methyltransferase (HEN1) protein family. J Mol Evol. 91:424–440. 2023.

144 

Saito K, Sakaguchi Y, Suzuki T, Suzuki T, Siomi H and Siomi MC: Pimet, the Drosophila homolog of HEN1, mediates 2′-O-methylation of Piwi-interacting RNAs at their 3′ends. Genes Dev. 21:1603–1608. 2007.

145 

Sklias A, Cruciani S, Marchand V, Spagnuolo M, Lavergne G, Bourguignon V, Brambilla A, Dreos R, Marygold SJ, Novoa EM, et al: Comprehensive map of ribosomal 2′-O-methylation and C/D box snoRNAs in Drosophila melanogaster. Nucleic Acids Res. 52:2848–2864. 2024.

146 

Kassab MA, Chen Y, Wang X, He B, Brown EJ and Yu X: RNA 2′-O-methylation promotes persistent R-loop formation and AID-mediated IgH class switch recombination. BMC Biol. 22:1512024.

147 

Zhang T, Zhao F, Li J, Sun X, Zhang X, Wang H, Fan P, Lai L, Li Z and Sui T: Programmable RNA 5-methylcytosine (m5C) modification of cellular RNAs by dCasRx conjugated methyltransferase and demethylase. Nucleic Acids Res. 52:2776–2791. 2024.

148 

Zhao Y, Xing C and Peng H: ALYREF (Aly/REF export factor): A potential biomarker for predicting cancer occurrence and therapeutic efficacy. Life Sci. 338:1223722024.

149 

Wu P, Gao J, Lan G and Wang Y: The role of RNA m5C modification in central nervous system diseases. Discov Med. 36:1555–1571. 2024.

150 

Van Haute L, Lee SY, McCann BJ, Powell CA, Bansal D, Vasiliauskaitė L, Garone C, Shin S, Kim JS, Frye M, et al: NSUN2 introduces 5-methylcytosines in mammalian mitochondrial tRNAs. Nucleic Acids Res. 47:8720–8733. 2019.

151 

Yang X, Yang Y, Sun BF, Chen YS, Xu JW, Lai WY, Li A, Wang X, Bhattarai DP, Xiao W, et al: 5-methylcytosine promotes mRNA export-NSUN2 as the methyltransferase and ALYREF as an m5C reader. Cell Res. 27:606–625. 2017.

152 

Deng M, Chen B, Liu Z, Wan Y, Li D, Yang Y and Wang F: YBX1 mediates alternative splicing and maternal mRNA decay during pre-implantation development. Cell Biosci. 12:122022.

153 

He C, Bozler J, Janssen KA, Wilusz JE, Garcia BA, Schorn AJ and Bonasio R: TET2 chemically modifies tRNAs and regulates tRNA fragment levels. Nat Struct Mol Biol. 28:62–70. 2021.

154 

Mao XL, Li ZH, Huang MH, Wang JT, Zhou JB, Li QR, Xu H, Wang XJ and Zhou XL: Mutually exclusive substrate selection strategy by human m3C RNA transferases METTL2A and METTL6. Nucleic Acids Res. 49:8309–8323. 2021.

155 

Li S, Zhou H, Liao S, Wang X, Zhu Z, Zhang J and Xu C: Structural basis for METTL6-mediated m3C RNA methylation. Biochem Biophys Res Commun. 589:159–164. 2022.

156 

Ignatova VV, Kaiser S, Ho JSY, Bing X, Stolz P, Tan YX, Lee CL, Gay FPH, Lastres PR, Gerlini R, et al: METTL6 is a tRNA m3C methyltransferase that regulates pluripotency and tumor cell growth. Sci Adv. 6:eaaz45512020.

157 

Xu L, Liu X, Sheng N, Oo KS, Liang J, Chionh YH, Xu J, Ye F, Gao YG, Dedon PC and Fu XY: Three distinct 3-methylcytidine (m3C) methyltransferases modify tRNA and mRNA in mice and humans. J Biol Chem. 292:14695–14703. 2017.

158 

Su A, Song R and Wong JJ: Pan-Cancer analysis links altered RNA m7G methyltransferase expression to oncogenic pathways, immune cell infiltrations and overall survival. Cancer Rep (Hoboken). 7:e21382024.

159 

Han M, Huang Q, Li X, Chen X, Zhu H, Pan Y and Zhang B: M7G-related tumor immunity: novel insights of RNA modification and potential therapeutic targets. Int J Biol Sci. 20:1238–1255. 2024.

160 

Orellana EA, Liu Q, Yankova E, Pirouz M, De Braekeleer E, Zhang W, Lim J, Aspris D, Sendinc E, Garyfallos DA, et al: METTL1-mediated m7G modification of Arg-TCT tRNA drives oncogenic transformation. Mol Cell. 81:3323–3338.e14. 2021.

161 

Zhang X, Zhu WY, Shen SY, Shen JH and Chen XD: Biological roles of RNA m7G modification and its implications in cancer. Biol Direct. 18:582023.

162 

Kataoka N: The nuclear Cap-binding complex, a multi-tasking binding partner of RNA polymerase II transcripts. J Biochem. 175:9–15. 2023.

163 

Fu Y, Jiang F, Zhang X, Pan Y, Xu R, Liang X, Wu X, Li X, Lin K, Shi R, et al: Perturbation of METTL1-mediated tRNA N7-methylguanosine modification induces senescence and aging. Nat Commun. 15:57132024.

164 

Xiong W, Zhao Y, Wei Z, Zhao R, Ge J and Shi B: N1-methyladenosine formation, gene regulation, biological functions, and clinical relevance. Mol Ther. 31:308–330. 2023.

165 

Li J, Zhang H and Wang H: N1-methyladenosine modification in cancer biology: Current status and future perspectives. Comput Struct Biotechnol J. 20:6578–6585. 2022.

166 

Fukuda H, Chujo T, Wei FY, Shi SL, Hirayama M, Kaitsuka T, Yamamoto T, Oshiumi H and Tomizawa K: Cooperative methylation of human tRNA3Lys at positions A58 and U54 drives the early and late steps of HIV-1 replication. Nucleic Acids Res. 49:11855–11867. 2021.

167 

Dai X, Wang T, Gonzalez G and Wang Y: Identification of YTH Domain-containing proteins as the readers for N1-Methyladenosine in RNA. Anal Chem. 90:6380–6384. 2018.

168 

Seo KW and Kleiner RE: YTHDF2 recognition of N1-Methyladenosine (m1A)-modified RNA is associated with transcript destabilization. ACS Chem Biol. 15:132–139. 2020.

169 

Schaening-Burgos C, LeBlanc H, Fagre C, Li GW and Gilbert WV: RluA is the major mRNA pseudouridine synthase in Escherichia coli. PLoS Genet. 20:e10111002024.

170 

Zhao Y, Ma X, Ye C, Li W, Pajdzik K, Dai Q, Sun HL and He C: Pseudouridine detection and quantification using bisulfite incorporation hindered ligation. ACS Chem Biol. 19:1813–1819. 2024.

171 

Pichot F, Marchand V, Helm M and Motorin Y: Data analysis pipeline for detection and quantification of pseudouridine (ψ) in RNA by HydraPsiSeq. Methods Mol Biol. 2624:207–223. 2023.

172 

Li Y, Wu S and Ye K: Landscape of RNA pseudouridylation in archaeon Sulfolobus islandicus. Nucleic Acids Res. 52:4644–4658. 2024.

173 

Chang Y, Jin H, Cui Y, Yang F, Chen K, Kuang W, Huo C, Xu Z, Li Y, Lin A, et al: PUS7-dependent pseudouridylation of ALKBH3 mRNA inhibits gastric cancer progression. Clin Transl Med. 14:e18112024.

174 

Guzzi N, Cieśla M, Ngoc PCT, Lang S, Arora S, Dimitriou M, Pimková K, Sommarin MNE, Munita R, Lubas M, et al: Pseudouridylation of tRNA-derived fragments steers translational control in stem cells. Cell. 173:1204–1216.e26. 2018.

175 

Ding J, Bansal M, Cao Y, Ye B, Mao R, Gupta A, Sudarshan S and Ding HF: MYC Drives mRNA pseudouridylation to mitigate proliferation-induced cellular stress during cancer development. Cancer Res. 84:4031–4048. 2024.

176 

Rayford KJ, Cooley A, Rumph JT, Arun A, Rachakonda G, Villalta F, Lima MF, Pratap S, Misra S and Nde PN: piRNAs as modulators of disease pathogenesis. Int J Mol Sci. 22:23732021.

177 

Yao Y, Li Y, Zhu X, Zhao C, Yang L, Huang X and Wang L: The emerging role of the piRNA/PIWI complex in respiratory tract diseases. Respir Res. 24:762023.

178 

Nandi S, Chandramohan D, Fioriti L, Melnick AM, Hébert JM, Mason CE, Rajasethupathy P and Kandel ER: Roles for small noncoding RNAs in silencing of retrotransposons in the mammalian brain. Proc Natl Acad Sci USA. 113:12697–12702. 2016.

179 

Wu D, Fu H, Zhou H, Su J, Zhang F and Shen J: Effects of novel ncRNA molecules, p15-piRNAs, on the methylation of DNA and histone H3 of the CDKN2B promoter region in U937 Cells. J Cell Biochem. 116:2744–2754. 2015.

180 

Ding X, Li Y, Lü J, Zhao Q, Guo Y, Lu Z, Ma W, Liu P, Pestell RG, Liang C and Yu Z: piRNA-823 is involved in cancer stem cell regulation through altering DNA methylation in association with luminal breast cancer. Front Cell Dev Biol. 9:6410522021.

181 

Lee SA, Liu F, Yuwono C, Phan M, Chong S, Biazik J, Tay ACY, Janitz M, Riordan SM, Lan R, et al: Emerging Aeromonas enteric infections: Their association with inflammatory bowel disease and novel pathogenic mechanisms. Microbiol Spectr. 11:e01088232023.

182 

Huang X, Wang C, Zhang T, Li R, Chen L, Leung KL, Lakso M, Zhou Q, Zhang H and Wong G: PIWI-interacting RNA expression regulates pathogenesis in a Caenorhabditis elegans model of Lewy body disease. Nat Commun. 14:61372023.

183 

Xie L, Zhao Z, Xia H, Su S, He L, Huang Z, Li Y, Gao M, Chen J, Peng J and Ruan Y: A novel tsRNA-5008a promotes ferroptosis in cardiomyocytes that causes atrial structural remodeling predisposed to atrial fibrillation. Exp Cell Res. 435:1139232024.

184 

Chen X, Li QH, Xie BM, Ji YM, Han Y and Zhao Y: SNORA73B promotes endometrial cancer progression through targeting MIB1 and regulating host gene RCC1 alternative splicing. J Cell Mol Med. 27:2890–2905. 2023.

185 

Li J, Niu C, Ai H, Li X, Zhang L, Lang Y, Wang S, Gao F, Mei X, Yu C, et al: TSP50 attenuates DSS-induced colitis by regulating TGF-β signaling mediated maintenance of intestinal mucosal barrier integrity. Adv Sci (Weinh). 11:e23058932024.

186 

Chelakkot C, Ghim J and Ryu SH: Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp Mol Med. 50:1–9. 2018.

187 

Zhao Y, Ma T, Chen W, Chen Y, Li M, Ren L, Chen J, Cao R, Feng Y, Zhang H and Shi R: MicroRNA-124 promotes intestinal inflammation by targeting aryl hydrocarbon receptor in Crohn's disease. J Crohns Colitis. 10:703–712. 2016.

188 

Guz M, Dworzański T, Jeleniewicz W, Cybulski M, Kozicka J, Stepulak A and Celiński K: Elevated miRNA inversely correlates with E-cadherin gene expression in tissue biopsies from crohn disease patients in contrast to ulcerative colitis patients. Biomed Res Int. 2020:42503292020.

189 

Daulagala AC, Bridges MC and Kourtidis A: E-cadherin beyond structure: A signaling hub in colon homeostasis and disease. Int J Mol Sci. 20:27562019.

190 

He C, Yu T, Shi Y, Ma C, Yang W, Fang L, Sun M, Wu W, Xiao F, Guo F, et al: MicroRNA 301A promotes intestinal inflammation and Colitis-Associated cancer development by inhibiting BTG1. Gastroenterology. 152:1434–1448.e15. 2017.

191 

Zou T, Jaladanki SK, Liu L, Xiao L, Chung HK and Wang JY, Xu Y, Gorospe M and Wang JY: H19 long noncoding RNA regulates intestinal epithelial barrier function via MicroRNA 675 by interacting with RNA-Binding protein HuR. Mol Cell Biol. 36:1332–1341. 2016.

192 

Zhao X, Cui DJ, Yang LC, Yuan WQ and Yan F: Long Noncoding RNA FBXL19-AS1-mediated ulcerative colitis-associated intestinal epithelial barrier defect. Tissue Eng Regen Med. 19:1077–1088. 2022.

193 

Ma D, Cao Y, Wang Z, He J, Chen H, Xiong H, Ren L, Shen C, Zhang X, Yan Y, et al: CCAT1 lncRNA promotes inflammatory bowel disease malignancy by destroying intestinal barrier via downregulating miR-185-3p. Inflamm Bowel Dis. 25:862–874. 2019.

194 

Shen Y, Zhou M, Yan J, Gong Z, Xiao Y, Zhang C, Du P and Chen Y: miR-200b inhibits TNF-α-induced IL-8 secretion and tight junction disruption of intestinal epithelial cells in vitro. Am J Physiol Gastrointest Liver Physiol. 312:G123–G132. 2017.

195 

Tian Y, Xu J, Li Y, Zhao R, Du S, Lv C, Wu W, Liu R, Sheng X, Song Y, et al: MicroRNA-31 reduces inflammatory signaling and promotes regeneration in colon epithelium, and delivery of mimics in microspheres reduces colitis in mice. Gastroenterology. 156:2281–2296.e6. 2019.

196 

Chu XQ, Wang J, Chen GX, Zhang GQ, Zhang DY and Cai YY: Overexpression of microRNA-495 improves the intestinal mucosal barrier function by targeting STAT3 via inhibition of the JAK/STAT3 signaling pathway in a mouse model of ulcerative colitis. Pathol Res Pract. 214:151–162. 2018.

197 

Chen T, Xue H, Lin R and Huang Z: MiR-34c and PlncRNA1 mediated the function of intestinal epithelial barrier by regulating tight junction proteins in inflammatory bowel disease. Biochem Biophys Res Commun. 486:6–13. 2017.

198 

Zhao L, Wang P, Liu Y, Ma J and Xue Y: miR-34c regulates the permeability of blood-tumor barrier via MAZ-mediated expression changes of ZO-1, occludin, and claudin-5. J Cell Physiol. 230:716–731. 2015.

199 

Aggeletopoulou I, Mouzaki A, Thomopoulos K and Triantos C: miRNA Molecules-late breaking treatment for inflammatory bowel diseases? Int J Mol Sci. 24:22332023.

200 

Liu C, Yu C, Song G, Fan X, Peng S, Zhang S, Zhou X, Zhang C, Geng X, Wang T, et al: Comprehensive analysis of miRNA-mRNA regulatory pairs associated with colorectal cancer and the role in tumor immunity. BMC Genomics. 24:7242023.

201 

Raisch J, Darfeuille-Michaud A and Nguyen HT: Role of microRNAs in the immune system, inflammation and cancer. World J Gastroenterol. 19:2985–2996. 2013.

202 

Kim HY, Kwon HY, Ha Thi HT, Lee HJ, Kim GI, Hahm KB and Hong S: MicroRNA-132 and microRNA-223 control positive feedback circuit by regulating FOXO3a in inflammatory bowel disease. J Gastroenterol Hepatol. 31:1727–1735. 2016.

203 

Zhao X, Li J, Ma J, Jiao C, Qiu X, Cui X, Wang D and Zhang H: MiR-124a mediates the impairment of intestinal epithelial integrity by targeting aryl hydrocarbon receptor in Crohn's disease. Inflammation. 43:1862–1875. 2020.

204 

Huang Z, Shi T, Zhou Q, Shi S, Zhao R, Shi H, Dong L, Zhang C, Zeng K, Chen J and Zhang J: miR-141 Regulates colonic leukocytic trafficking by targeting CXCL12β during murine colitis and human Crohn's disease. Gut. 63:1247–1257. 2014.

205 

Peng Y, Wang Q, Yang W, Yang Q, Pei Y and Zhang W: MiR-98-5p expression inhibits polarization of macrophages to an M2 phenotype by targeting Trib1 in inflammatory bowel disease. Acta Biochim Pol. 67:157–163. 2020.

206 

Qiao C, Yang L, Wan J, Liu X, Pang C, You W and Zhao G: Long noncoding RNA ANRIL contributes to the development of ulcerative colitis by miR-323b-5p/TLR4/MyD88/NF-κB pathway. Biochem Biophys Res Commun. 508:217–224. 2019.

207 

Liu T, Zhang L, Joo D and Sun SC: NF-κB signaling in inflammation. Signal Transduct Target Ther. 2:170232017.

208 

Wu W, He C, Liu C, Cao AT, Xue X, Evans-Marin HL, Sun M, Fang L, Yao S, Pinchuk IV, et al: miR-10a inhibits dendritic cell activation and Th1/Th17 cell immune responses in IBD. Gut. 64:1755–1764. 2015.

209 

Lin Z, Xie X, Gu M, Chen Q, Lu G, Jia X, Xiao W, Zhang J, Yu D and Gong W: microRNA-144/451 decreases dendritic cell bioactivity via targeting interferon-regulatory factor 5 to limit DSS-induced colitis. Front Immunol. 13:9285932022.

210 

Cheng X, Zhang X, Su J, Zhang Y, Zhou W, Zhou J, Wang C, Liang H, Chen X, Shi R, et al: miR-19b downregulates intestinal SOCS3 to reduce intestinal inflammation in Crohn's disease. Sci Rep. 5:103972015.

211 

Fukata T, Mizushima T, Nishimura J, Okuzaki D, Wu X, Hirose H, Yokoyama Y, Kubota Y, Nagata K, Tsujimura N, et al: The supercarbonate apatite-microRNA complex inhibits dextran sodium sulfate-induced colitis. Mol Ther Nucleic Acids. 12:658–671. 2018.

212 

Wang Y, Wang N, Cui L, Li Y, Cao Z, Wu X, Wang Q, Zhang B, Ma C and Cheng Y: Long Non-coding RNA MEG3 alleviated ulcerative colitis through upregulating miR-98-5p-sponged IL-10. Inflammation. 44:1049–1059. 2021.

213 

Hu D, Wang L, Chen X, Lin Y, Zhang S, Fan Z and Peng F: Impact of PIWIL1 single nucleotide polymorphisms on gastric cancer risk in a Chinese population. Genet Test Mol Biomarkers. 27:185–192. 2023.

214 

Lin X, Xia Y, Hu D, Mao Q, Yu Z, Zhang H, Li C, Chen G, Liu F, Zhu W, et al: Transcriptome-wide piRNA profiling in human gastric cancer. Oncol Reps. 41:3089–3099. 2019.

215 

Sadoughi F, Mirhashemi SM and Asemi Z: Epigenetic roles of PIWI proteins and piRNAs in colorectal cancer. Cancer Cell Int. 21:3282021.

216 

Liu Q, Chen Q, Zhou Z, Tian Z, Zheng X and Wang K: piRNA-18 inhibition cell proliferation, migration and invasion in colorectal cancer. Biochem Genet. 61:1881–1897. 2023.

217 

Ray SK and Mukherjee S: Piwi-interacting RNAs (piRNAs) and colorectal carcinoma: Emerging non-invasive diagnostic biomarkers with potential therapeutic target based clinical implications. Curr Mol Med. 23:300–311. 2023.

218 

Tong Y, Guan B, Sun Z, Dong X, Chen Y, Li Y, Jiang Y and Li J: Ratiometric fluorescent detection of exosomal piRNA-823 based on Au NCs/UiO-66-NH2 and target-triggered rolling circle amplification. Talanta. 257:1243072023.

219 

Yin J, Jiang XY, Qi W, Ji CG, Xie XL, Zhang DX, Cui ZJ, Wang CK, Bai Y, Wang J and Jiang HQ: piR-823 contributes to colorectal tumorigenesis by enhancing the transcriptional activity of HSF1. Cancer Sci. 108:1746–1756. 2017.

220 

Cheng J, Deng H, Xiao B, Zhou H, Zhou F, Shen Z and Guo J: piR-823, a novel non-coding small RNA, demonstrates in vitro and in vivo tumor suppressive activity in human gastric cancer cells. Cancer Lett. 315:12–17. 2012.

221 

Mai D, Ding P, Tan L, Zhang J, Pan Z, Bai R, Li C, Li M, Zhou Y, Tan W, et al: PIWI-interacting RNA-54265 is oncogenic and a potential therapeutic target in colorectal adenocarcinoma. Theranostics. 8:5213–5230. 2018.

222 

Shen L, Lin C, Lu W, He J, Wang Q, Huang Y, Zheng X and Wang Z: Involvement of the oncogenic small nucleolar RNA SNORA24 in regulation of p53 stability in colorectal cancer. Cell Biol Toxicol. 39:1377–1394. 2023.

223 

Zhang Z, Tao Y, Hua Q, Cai J, Ye X and Li H: SNORA71A promotes colorectal cancer cell proliferation, migration, and invasion. Biomed Res Int. 2020:82845762020.

224 

Li X, Zhang Y, Li Y, Gu X and Ju S: A comprehensive evaluation of serum tRF-29-R9J8909NF5JP as a novel diagnostic and prognostic biomarker for gastric cancer. Mol Carcinog. 62:1504–1517. 2023.

225 

Lu S, Wei X, Tao L, Dong D, Hu W, Zhang Q, Tao Y, Yu C, Sun D and Cheng H: A novel tRNA-derived fragment tRF-3022b modulates cell apoptosis and M2 macrophage polarization via binding to cytokines in colorectal cancer. J Hematol Oncol. 15:1762022.

226 

Huang T, Chen C, Du J, Zheng Z, Ye S, Fang S and Liu K: A tRF-5a fragment that regulates radiation resistance of colorectal cancer cells by targeting MKNK1. J Cell Mol Med. 27:4021–4033. 2023.

227 

Chen H, Xu Z, Cai H, Peng Y, Yang L and Wang Z: Identifying differentially expressed tRNA-Derived small fragments as a biomarker for the progression and metastasis of colorectal cancer. Dis Markers. 2022:26461732022.

228 

Tao EW, Wang HL, Cheng WY, Liu QQ, Chen YX and Gao QY: A specific tRNA half, 5′tiRNA-His-GTG, responds to hypoxia via the HIF1α/ANG axis and promotes colorectal cancer progression by regulating LATS2. J Exp Clin Cancer Res. 40:672021.

229 

Umezu T, Tanaka S, Kubo S, Enomoto M, Tamori A, Ochiya T, Taguchi YH, Kuroda M and Murakami Y: Characterization of circulating miRNAs in the treatment of primary liver tumors. Cancer Rep (Hoboken). 7:e19642024.

230 

Bi L, Zhou Y, Zhang Y and Zhang X: MiR-27a-3p exacerbates cell migration and invasion in right-sided/left-sided colorectal cancer by targeting TGFBR2/TCF7L2. Cell Mol Biol (Noisy-le-Grand). 70:148–154. 2024.

231 

Lai PS, Chang WM, Chen YY, Lin YF, Liao HF and Chen CY: Circulating microRNA-762 upregulation in colorectal cancer may be accompanied by Wnt-1/β-catenin signaling. Cancer Biomark. 32:111–122. 2021.

232 

Li T, Lai Q, Wang S, Cai J, Xiao Z, Deng D, He L, Jiao H, Ye Y, Liang L, et al: MicroRNA-224 sustains Wnt/β-catenin signaling and promotes aggressive phenotype of colorectal cancer. J Exp Clin Cancer Res. 35:212016.

233 

Yu FB, Sheng J, Yu JM, Liu JH, Qin XX and Mou B: MiR-19a-3p regulates the Forkhead box F2-mediated Wnt/β-catenin signaling pathway and affects the biological functions of colorectal cancer cells. World J Gastroenterol. 26:627–644. 2020.

234 

Avsar R, Gurer T and Aytekin A: Bioinformatics and expression analyses of miR-639, miR-641, miR-1915-3p and miR-3613-3p in colorectal cancer pathogenesis. J Cancer. 14:2399–2409. 2023.

235 

Raonić J, Ždralević M, Vučković L, Šunjević M, Todorović V, Vukmirović F, Marzano F, Tullo A, Giannattasio S and Radunović M: miR-29a expression negatively correlates with Bcl-2 levels in colorectal cancer and is correlated with better prognosis. Pathol Res Pract. 262:1554912024.

236 

Tang W, Zhu Y, Gao J, Fu J, Liu C, Liu Y, Song C, Zhu S, Leng Y, Wang G, et al: MicroRNA-29a promotes colorectal cancer metastasis by regulating matrix metalloproteinase 2 and E-cadherin via KLF4. Br J Cancer. 110:450–458. 2014.

237 

Ciesla M, Skrzypek K, Kozakowska M, Loboda A, Jozkowicz A and Dulak J: MicroRNAs as biomarkers of disease onset. Anal Bioanal Chem. 401:2051–2061. 2011.

238 

Elamir A, Shaker O, Kamal M, Khalefa A, Abdelwahed M, Abd El Reheem F, Ahmed T, Hassan E and Ayoub S: Expression profile of serum LncRNA THRIL and MiR-125b in inflammatory bowel disease. PLoS One. 17:e02752672022.

239 

Abdelazim SA, Shaker OG, Ali O, El-Tawil M and Senousy MA: Differential expression of serum miR-486 and miR-25 in ulcerative colitis and Crohn's disease: Correlations with disease activity, extent, and location. Pathol Res Pract. 252:1549102023.

240 

Valmiki S, Ahuja V and Paul J: MicroRNA exhibit altered expression in the inflamed colonic mucosa of ulcerative colitis patients. World J Gastroenterol. 23:5324–5332. 2017.

241 

Zhu L, Li J, Gong Y, Wu Q, Tan S, Sun D, Xu X, Zuo Y, Zhao Y, Wei YQ, et al: Exosomal tRNA-derived small RNA as a promising biomarker for cancer diagnosis. Mol Cancer. 18:742019.

242 

Xue M, Shi M, Xie J, Zhang J, Jiang L, Deng X, Peng C, Shen B, Xu H and Chen H: Serum tRNA-derived small RNAs as potential novel diagnostic biomarkers for pancreatic ductal adenocarcinoma. Am J Cancer Res. 11:837–848. 2021.

243 

Wang X and Hu Z: tRNA derived fragment tsRNA-14783 promotes M2 polarization of macrophages in keloid. Biochem Biophys Res Commun. 636:119–127. 2022.

244 

Cai A, Hu Y, Zhou Z, Qi Q, Wu Y, Dong P, Chen L and Wang F: PIWI-interacting RNAs (piRNAs): promising applications as emerging biomarkers for digestive system cancer. Front Mol Biosci. 9:8481052022.

245 

Sabbah NA, Abdalla WM, Mawla WA, AbdAlMonem N, Gharib AF, Abdul-Saboor A, Abdelazem AS and Raafat N: piRNA-823 is a unique potential diagnostic Non-invasive biomarker in colorectal cancer patients. Genes (Basel). 12:5982021.

246 

Wang Z, Yang H, Ma D, Mu Y, Tan X, Hao Q, Feng L, Liang J, Xin W, Chen Y, et al: Serum PIWI-Interacting RNAs piR-020619 and piR-020450 are promising novel biomarkers for early detection of colorectal cancer. Cancer Epidemiol Biomarkers Prev. 29:990–998. 2020.

247 

Yin J, Qi W, Ji CG, Zhang DX, Xie XL, Ding Q, Jiang XY, Han J and Jiang HQ: Small RNA sequencing revealed aberrant piRNA expression profiles in colorectal cancer. Oncol Rep. 42:263–272. 2019.

248 

Mai D, Zheng Y, Guo H, Ding P, Bai R, Li M, Ye Y, Zhang J, Huang X, Liu D, et al: Serum piRNA-54265 is a New Biomarker for early detection and clinical surveillance of Human Colorectal Cancer. Theranostics. 10:8468–8478. 2020.

249 

Weng W, Liu N, Toiyama Y, Kusunoki M, Nagasaka T, Fujiwara T, Wei Q, Qin H, Lin H, Ma Y and Goel A: Novel evidence for a PIWI-interacting RNA (piRNA) as an oncogenic mediator of disease progression, and a potential prognostic biomarker in colorectal cancer. Mol Cancer. 17:162018.

250 

Feng J, Yang M, Wei Q, Song F, Zhang Y, Wang X, Liu B and Li J: Novel evidence for oncogenic piRNA-823 as a promising prognostic biomarker and a potential therapeutic target in colorectal cancer. J Cell Mol Med. 24:9028–9040. 2020.

251 

Sahami-Fard MH, Kheirandish S and Sheikhha MH: Expression levels of miR-143-3p and -424-5p in colorectal cancer and their clinical significance. Cancer Biomark. 24:291–297. 2019.

252 

Touchaei AZ, Vahidi S and Samadani AA: Decoding the interaction between miR-19a and CBX7 focusing on the implications for tumor suppression in cancer therapy. Med Oncol. 41:212023.

253 

Gil-Kulik P, Petniak A, Kluz N, Wallner G, Skoczylas T, Ciechański A and Kocki J: Influence of clinical factors on miR-3613-3p expression in colorectal cancer. Int J Mol Sci. 24:140232023.

254 

Zhang H, Zhu M, Shan X, Zhou X, Wang T, Zhang J, Tao J, Cheng W, Chen G, Li J, et al: A panel of seven-miRNA signature in plasma as potential biomarker for colorectal cancer diagnosis. Gene. 687:246–254. 2019.

255 

Koopaie M, Manifar S, Talebi MM, Kolahdooz S, Razavi AE, Davoudi M and Pourshahidi S: Assessment of salivary miRNA, clinical, and demographic characterization in colorectal cancer diagnosis. Transl Oncol. 41:1018802024.

256 

Xu Q, Lu X, Li J, Feng Y, Tang J, Zhang T, Mao Y, Lan Y, Luo H, Zeng L, et al: Fusobacterium nucleatum induces excess methyltransferase-like 3-mediated microRNA-4717-3p maturation to promote colorectal cancer cell proliferation. Cancer Sci. 113:3787–3800. 2022.

257 

Toiyama Y, Okugawa Y, Tanaka K, Araki T, Uchida K, Hishida A, Uchino M, Ikeuchi H, Hirota S, Kusunoki M, et al: A panel of methylated MicroRNA biomarkers for identifying High-Risk patients with ulcerative Colitis-associated colorectal cancer. Gastroenterology. 153:1634–1646.e8. 2017.

258 

Koike Y, Yin C, Sato Y, Nagano Y, Yamamoto A, Kitajima T, Shimura T, Kawamura M, Matsushita K, Okugawa Y, et al: Promoter methylation levels of microRNA-124 in non-neoplastic rectal mucosa as a potential biomarker for ulcerative colitis-associated colorectal cancer in pediatric-onset patients. Surg Today. 54:347–355. 2023.

259 

Bian Z, Xu C, Xie Y, Wang X, Chen Y, Mao S, Wu Q, Zhu J, Huang N, Zhang Y, et al: SNORD11B-mediated 2′-O-methylation of primary let-7a in colorectal carcinogenesis. Oncogene. 42:3035–3046. 2023.

260 

Okugawa Y, Toiyama Y, Toden S, Mitoma H, Nagasaka T, Tanaka K, Inoue Y, Kusunoki M, Boland CR and Goel A: Clinical significance of SNORA42 as an oncogene and a prognostic biomarker in colorectal cancer. Gut. 66:107–117. 2017.

261 

Liu Y, Zhao C, Wang G, Chen J, Ju S, Huang J and Wang X: SNORD1C maintains stemness and 5-FU resistance by activation of Wnt signaling pathway in colorectal cancer. Cell Death Discov. 8:2002022.

262 

Shen L, Lu W, Huang Y, He J, Wang Q, Zheng X and Wang Z: SNORD15B and SNORA5C: Novel diagnostic and prognostic biomarkers for colorectal cancer. Biomed Res Int. 2022:82608002022.

263 

Xu C, Bian Z, Wang X, Niu N, Liu L, Xiao Y, Zhu J, Huang N, Zhang Y, Chen Y, et al: SNORA56-mediated pseudouridylation of 28 S rRNA inhibits ferroptosis and promotes colorectal cancer proliferation by enhancing GCLC translation. J Exp Clin Cancer Res. 42:3312023.

264 

Chen Q, Li D, Jiang L, Wu Y, Yuan H, Shi G, Liu F, Wu P and Jiang K: Biological functions and clinical significance of tRNA-derived small fragment (tsRNA) in tumors: Current state and future perspectives. Cancer Lett. 587:2167012024.

265 

Lee S, Kim J, Valdmanis PN and Kim HK: Emerging roles of tRNA-derived small RNAs in cancer biology. Exp Mol Med. 55:1293–1304. 2023.

266 

Wang XY, Zhou YJ, Chen HY, Chen JN, Chen SS, Chen HM and Li XB: 5′tiRNA-Pro-TGG, a novel tRNA halve, promotes oncogenesis in sessile serrated lesions and serrated pathway of colorectal cancer. World J Gastrointest Oncol. 15:1005–1018. 2023.

267 

Tsiakanikas P, Adamopoulos PG, Tsirba D, Artemaki PI, Papadopoulos IN, Kontos CK and Scorilas A: High expression of a tRNA(Pro) derivative associates with poor survival and independently predicts colorectal cancer recurrence. Biomedicines. 10:11202022.

268 

Xie Y, Zhang S, Yu X, Ye G and Guo J: Transfer RNA-derived fragments as novel biomarkers of the onset and progression of gastric cancer. Exp Biol Med (Maywood). 248:1095–1102. 2023.

269 

Jin F, Yang L, Wang W, Yuan N, Zhan S, Yang P, Chen X, Ma T and Wang Y: A novel class of tsRNA signatures as biomarkers for diagnosis and prognosis of pancreatic cancer. Mol Cancer. 20:952021.

270 

Liu CX, Qiao XJ, Xing ZW and Hou MX: The SNORA21 expression is upregulated and acts as a novel independent indicator in human gastric cancer prognosis. Eur Rev Med Pharmacol Sci. 22:5519–5524. 2018.

271 

Ding Y, Sun Z, Zhang S, Zhou L, Xu Q, Zhou D, Li Y, Han X, Xu H, Bai Y, et al: Identification of snoRNA SNORA71A as a novel biomarker in prognosis of hepatocellular carcinoma. Dis Markers. 2020:88799442020.

272 

Kitagawa T, Taniuchi K, Tsuboi M, Sakaguchi M, Kohsaki T, Okabayashi T and Saibara T: Circulating pancreatic cancer exosomal RNAs for detection of pancreatic cancer. Mol Oncol. 13:212–227. 2019.

273 

Kumata Y, Iinuma H, Suzuki Y, Tsukahara D, Midorikawa H, Igarashi Y, Soeda N, Kiyokawa T, Horikawa M and Fukushima R: Exosome-encapsulated microRNA-23b as a minimally invasive liquid biomarker for the prediction of recurrence and prognosis of gastric cancer patients in each tumor stage. Oncol Rep. 40:319–330. 2018.

274 

Moshiri F, Salvi A, Gramantieri L, Sangiovanni A, Guerriero P, De Petro G, Bassi C, Lupini L, Sattari A, Cheung D, et al: Circulating miR-106b-3p, miR-101-3p and miR-1246 as diagnostic biomarkers of hepatocellular carcinoma. Oncotarget. 9:15350–15364. 2018.

275 

Huang D, Chu Y, Qiu J, Chen X, Zhao J, Zhang Y, Li S, Cheng Y, Shi H, Han L and Wang J: A novel diagnostic signature of circulating tsRNAs and miRNAs in esophageal squamous cell carcinoma detected with a microfluidic platform. Anal Chim Acta. 1272:3415202023.

276 

Zhou X, Liu J, Meng A, Zhang L, Wang M, Fan H, Peng W and Lu J: Gastric juice piR-1245: A promising prognostic biomarker for gastric cancer. J Clin Lab Anal. 34:e231312020.

277 

Rui T, Wang K, Xiang A, Guo J, Tang N, Jin X, Lin Y, Liu J and Zhang X: Serum Exosome-derived piRNAs could be promising biomarkers for HCC diagnosis. Int J Nanomedicine. 18:1989–2001. 2023.

278 

Raimondo TM, Reed K, Shi D, Langer R and Anderson DG: Delivering the next generation of cancer immunotherapies with RNA. Cell. 186:1535–1540. 2023.

279 

Zabeti Touchaei A and Vahidi S: MicroRNAs as regulators of immune checkpoints in cancer immunotherapy: Targeting PD-1/PD-L1 and CTLA-4 pathways. Cancer Cell Int. 24:1022024.

280 

He X and Xu C: Immune checkpoint signaling and cancer immunotherapy. Cell Res. 30:660–669. 2020.

281 

Shiravand Y, Khodadadi F, Kashani SMA, Hosseini-Fard SR, Hosseini S, Sadeghirad H, Ladwa R, O'Byrne K and Kulasinghe A: Immune checkpoint inhibitors in cancer therapy. Curr Oncol. 29:3044–3060. 2022.

282 

Liu Q, Guan Y and Li S: Programmed death receptor (PD-)1/PD-ligand (L)1 in urological cancers: The 'all-around warrior' in immunotherapy. Mol Cancer. 23:1832024.

283 

Roshani Asl E, Rasmi Y and Baradaran B: MicroRNA-124-3p suppresses PD-L1 expression and inhibits tumorigenesis of colorectal cancer cells via modulating STAT3 signaling. J Cell Physiol. 236:7071–7087. 2021.

284 

Gao T, Lin YQ, Ye HY and Lin WM: miR-124 delivered by BM-MSCs-derived exosomes targets MCT1 of tumor-infiltrating treg cells and improves ovarian cancer immunotherapy. Neoplasma. 70:713–721. 2023.

285 

Jin Y, Zhan X, Zhang B, Chen Y, Liu C and Yu L: Polydatin exerts an antitumor effect through regulating the miR-382/PD-L1 axis in colorectal cancer. Cancer Biother Radiopharm. 35:83–91. 2020.

286 

Jiang W, Li T, Wang J, Jiao R, Shi X, Huang X and Ji G: miR-140-3p suppresses cell growth and induces apoptosis in colorectal cancer by targeting PD-L1. Onco Targets Ther. 12:10275–10285. 2019.

287 

Chen X, Hu J, Lai J, Zhang Z and Tang Z: Dexmedetomidine attenuates LPS-Stimulated alveolar type II cells' Injury through upregulation of miR-140-3p and partial suppression of PD-L1 involving inactivating JNK-Bnip3 pathway. Can Respir J. 2022:84339602022.

288 

Chen YL, Wang GX, Lin BA and Huang JS: MicroRNA-93-5p expression in tumor tissue and its tumor suppressor function via targeting programmed death ligand-1 in colorectal cancer. Cell Biol Int. 44:1224–1236. 2020.

289 

Yang M, Xiao R, Wang X, Xiong Y, Duan Z, Li D and Kan Q: MiR-93-5p regulates tumorigenesis and tumor immunity by targeting PD-L1/CCND1 in breast cancer. Ann Transl Med. 10:2032022.

290 

Liu C, Liu R, Wang B, Lian J, Yao Y, Sun H, Zhang C, Fang L, Guan X, Shi J, et al: Blocking IL-17A enhances tumor response to anti-PD-1 immunotherapy in microsatellite stable colorectal cancer. J Immunother Cancer. 9:e0018952021.

291 

Ashizawa M, Okayama H, Ishigame T, Thar Min AK, Saito K, Ujiie D, Murakami Y, Kikuchi T, Nakayama Y, Noda M, et al: miRNA-148a-3p regulates immunosuppression in DNA mismatch Repair-deficient colorectal cancer by targeting PD-L1. Mol Cancer Res. 17:1403–1413. 2019.

292 

Zhao L, Yu H, Yi S, Peng X, Su P, Xiao Z, Liu R, Tang A, Li X, Liu F and Shen S: The tumor suppressor miR-138-5p targets PD-L1 in colorectal cancer. Oncotarget. 7:45370–45384. 2016.

293 

Luo Q, Shen F, Zhao S, Dong L, Wei J, Hu H, Huang Q, Wang Q, Yang P, Liang W, et al: LINC00460/miR-186-3p/MYC feedback loop facilitates colorectal cancer immune escape by enhancing CD47 and PD-L1 expressions. J Exp Clin Cancer Res. 43:2252024.

294 

Zhang DJ, Fu ZM, Guo YY, Guo F, Wan YN and Guan GF: Circ_0000052/miR-382-3p axis induces PD-L1 expression and regulates cell proliferation and immune evasion in head and neck squamous cell carcinoma. J Cell Mol Med. 27:113–126. 2023.

295 

Cheung VTF, Gupta T, Olsson-Brown A, Subramanian S, Sasson SC, Heseltine J, Fryer E, Collantes E, Sacco JJ, Pirmohamed M, et al: Immune checkpoint inhibitor-related colitis assessment and prognosis: Can IBD scoring point the way? Br J Cancer. 123:207–215. 2020.

296 

Ye R, Zheng H, Yang D, Lin J, Li L, Li Y, Pan H, Dai H, Zhao L, Zhou Y, et al: irAE-colitis induced by CTLA-4 and PD-1 blocking were ameliorated by TNF blocking and modulation of gut microbial. Biomed Pharmacother. 177:1169992024.

297 

Grover S, Ruan AB, Srivoleti P, Giobbie-Hurder A, Braschi-Amirfarzan M, Srivastava A, Buchbinder EI, Ott PA, Kehl KL, Awad MM, et al: Safety of immune checkpoint inhibitors in patients with pre-existing inflammatory bowel disease and microscopic colitis. JCO Oncol Pract. 16:e933–e942. 2020.

298 

Abu-Sbeih H, Faleck DM, Ricciuti B, Mendelsohn RB, Naqash AR, Cohen JV, Sellers MC, Balaji A, Ben-Betzalel G, Hajir I, et al: Immune checkpoint inhibitor therapy in patients with preexisting inflammatory bowel disease. J Clin Oncol. 38:576–583. 2020.

299 

Perez-Ruiz E, Minute L, Otano I, Alvarez M, Ochoa MC, Belsue V, de Andrea C, Rodriguez-Ruiz ME, Perez-Gracia JL, Marquez-Rodas I, et al: Prophylactic TNF blockade uncouples efficacy and toxicity in dual CTLA-4 and PD-1 immunotherapy. Nature. 569:428–432. 2019.

300 

Perez-Sanchez C, Barbera Betancourt A, Lyons PA, Zhang Z, Suo C, Lee JC, McKinney EF, Modis LK, Ellson C and Smith KGC: miR-374a-5p regulates inflammatory genes and monocyte function in patients with inflammatory bowel disease. J Exp Med. 219:e202113662022.

301 

Zu M, Ma Y, Cannup B, Xie D, Jung Y, Zhang J, Yang C, Gao F, Merlin D and Xiao B: Oral delivery of natural active small molecules by polymeric nanoparticles for the treatment of inflammatory bowel diseases. Adv Drug Deliv Rev. 176:1138872021.

302 

Kumar S, Dilbaghi N, Saharan R and Bhanjana G: Nanotechnology as emerging tool for enhancing solubility of poorly water-soluble drugs. Bionanoscience. 2:227–250. 2012.

303 

Gao M, Yang C, Wu C, Chen Y, Zhuang H, Wang J and Cao Z: Hydrogel-metal-organic-framework hybrids mediated efficient oral delivery of siRNA for the treatment of ulcerative colitis. J Nanobiotechnol. 20:4042022.

304 

Wei Y, Li X, Lin J, Zhou Y, Yang J, Hou M, Wu F, Yan J, Ge C, Hu D and Yin L: Oral delivery of siRNA using fluorinated, small-sized nanocapsules toward anti-inflammation treatment. Adv Mater. 35:e22068212023.

305 

Xu F, Ye ML, Zhang YP, Li WJ, Li MT, Wang HZ, Qiu X, Xu Y, Yin JW, Hu Q, et al: MicroRNA-375-3p enhances chemosensitivity to 5-fluorouracil by targeting thymidylate synthase in colorectal cancer. Cancer Sci. 111:1528–1541. 2020.

306 

Huang CZ, Zhou Y, Tong QS, Duan QJ, Zhang Q, Du JZ and Yao XQ: Precision medicine-guided co-delivery of ASPN siRNA and oxaliplatin by nanoparticles to overcome chemoresistance of colorectal cancer. Biomaterials. 290:1218272022.

307 

Ball RL, Bajaj P and Whitehead KA: Oral delivery of siRNA lipid nanoparticles: Fate in the GI tract. Sci Rep. 8:21782018.

308 

Wang G, Yuan J, Cai X, Xu Z, Wang J, Ocansey DKW, Yan Y, Qian H, Zhang X, Xu W and Mao F: HucMSC-exosomes carrying miR-326 inhibit neddylation to relieve inflammatory bowel disease in mice. Clin Transl Med. 10:e1132020.

309 

Keller S, Ridinger J, Rupp AK, Janssen JW and Altevogt P: Body fluid derived exosomes as a novel template for clinical diagnostics. J Transl Med. 9:862011.

310 

He C, Zheng S, Luo Y and Wang B: Exosome theranostics: Biology and translational medicine. Theranostics. 8:237–255. 2018.

311 

Wang D, Xue H, Tan J, Liu P, Qiao C, Pang C and Zhang L: Bone marrow mesenchymal stem cells-derived exosomes containing miR-539-5p inhibit pyroptosis through NLRP3/caspase-1 signalling to alleviate inflammatory bowel disease. Inflamm Res. 71:833–846. 2022.

312 

Deng F, Yan J, Lu J, Luo M, Xia P, Liu S, Wang X, Zhi F and Liu D: M2 macrophage-derived exosomal miR-590-3p attenuates DSS-induced mucosal damage and promotes epithelial repair via the LATS1/YAP/β-catenin signalling axis. J Crohns Colitis. 15:665–677. 2021.

313 

Lampropoulou DI, Pliakou E, Aravantinos G, Filippou D and Gazouli M: The role of exosomal non-coding RNAs in colorectal cancer drug resistance. Int J Mol Sci. 23:14732022.

314 

Liang G, Zhu Y, Ali DJ, Tian T, Xu H, Si K, Sun B, Chen B and Xiao Z: Engineered exosomes for targeted co-delivery of miR-21 inhibitor and chemotherapeutics to reverse drug resistance in colon cancer. J Nanobiotechnol. 18:102020.

315 

Dasgupta I and Chatterjee A: Recent advances in miRNA delivery systems. Methods Protoc. 4:102021.

316 

Guo J, Jiang X and Gui S: RNA interference-based nanosystems for inflammatory bowel disease therapy. Int J Nanomedicine. 11:5287–5310. 2016.

317 

Maliborska S, Holotiuk V, Partykevych Y and Rossylna O: Prognostic significance of microRNA-100, -125b, and -200b in patients with colorectal cancer. Exp Oncol. 45:443–450. 2024.

318 

Jones BL and Wilcox MH: Aeromonas infections and their treatment. J Antimicrob Chemother. 35:453–461. 1995.

319 

Luo S, Yue M, Wang D, Lu Y, Wu Q and Jiang J: Breaking the barrier: Epigenetic strategies to combat platinum resistance in colorectal cancer. Drug Resist Updat. 77:1011522024.

320 

Dong W, Wang F, Liu Q, Wang T, Yang Y, Guo P, Li X and Wei B: Downregulation of miRNA-14669 reverses vincristine resistance in colorectal cancer cells through PI3K/AKT signaling pathway. Recent Pat Anticancer Drug Discov. 17:178–186. 2022.

321 

Guo X, Li Q, Wang YF, Wang TY, Chen SJ and Tian ZW: Reduced lipocalin 2 expression contributes to vincristine resistance in human colon cancer cells. Recent Pat Anticancer Drug Discov. 13:248–254. 2018.

322 

Saurav S, Karfa S, Vu T, Liu Z, Datta A, Manne U, Samuel T and Datta PK: Overcoming irinotecan resistance by targeting its downstream signaling pathways in colon cancer. Cancers (Basel). 16:34912024.

323 

Yuan M, Chen T, Jin L, Zhang P, Xie L, Zhou S, Fan L, Wang L, Zhang C, Tang N, et al: A carrier-free supramolecular nano-twin-drug for overcoming irinotecan-resistance and enhancing efficacy against colorectal cancer. J Nanobiotechnol. 21:3932023.

324 

Chen M, Wang L, Wang F, Li F, Xia W, Gu H and Chen Y: Quick synthesis of a novel combinatorial delivery system of siRNA and doxorubicin for a synergistic anticancer effect. Int J Nanomedicine. 14:3557–3569. 2019.

325 

Liu S, Wang W, Ning Y, Zheng H, Zhan Y, Wang H, Yang Y, Luo J, Wen Q, Zang H, et al: Exosome-mediated miR-7-5p delivery enhances the anticancer effect of Everolimus via blocking MNK/eIF4E axis in non-small cell lung cancer. Cell Death Dis. 13:1292022.

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Qiu W, Akanyibah FA, Xia Y, Ocansey DK, Mao F and Liang Y: Emerging role of small RNAs in inflammatory bowel disease and associated colorectal cancer (Review). Int J Mol Med 55: 33, 2025.
APA
Qiu, W., Akanyibah, F.A., Xia, Y., Ocansey, D.K., Mao, F., & Liang, Y. (2025). Emerging role of small RNAs in inflammatory bowel disease and associated colorectal cancer (Review). International Journal of Molecular Medicine, 55, 33. https://doi.org/10.3892/ijmm.2024.5474
MLA
Qiu, W., Akanyibah, F. A., Xia, Y., Ocansey, D. K., Mao, F., Liang, Y."Emerging role of small RNAs in inflammatory bowel disease and associated colorectal cancer (Review)". International Journal of Molecular Medicine 55.2 (2025): 33.
Chicago
Qiu, W., Akanyibah, F. A., Xia, Y., Ocansey, D. K., Mao, F., Liang, Y."Emerging role of small RNAs in inflammatory bowel disease and associated colorectal cancer (Review)". International Journal of Molecular Medicine 55, no. 2 (2025): 33. https://doi.org/10.3892/ijmm.2024.5474
Copy and paste a formatted citation
x
Spandidos Publications style
Qiu W, Akanyibah FA, Xia Y, Ocansey DK, Mao F and Liang Y: Emerging role of small RNAs in inflammatory bowel disease and associated colorectal cancer (Review). Int J Mol Med 55: 33, 2025.
APA
Qiu, W., Akanyibah, F.A., Xia, Y., Ocansey, D.K., Mao, F., & Liang, Y. (2025). Emerging role of small RNAs in inflammatory bowel disease and associated colorectal cancer (Review). International Journal of Molecular Medicine, 55, 33. https://doi.org/10.3892/ijmm.2024.5474
MLA
Qiu, W., Akanyibah, F. A., Xia, Y., Ocansey, D. K., Mao, F., Liang, Y."Emerging role of small RNAs in inflammatory bowel disease and associated colorectal cancer (Review)". International Journal of Molecular Medicine 55.2 (2025): 33.
Chicago
Qiu, W., Akanyibah, F. A., Xia, Y., Ocansey, D. K., Mao, F., Liang, Y."Emerging role of small RNAs in inflammatory bowel disease and associated colorectal cancer (Review)". International Journal of Molecular Medicine 55, no. 2 (2025): 33. https://doi.org/10.3892/ijmm.2024.5474
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team