Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
March-2025 Volume 55 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2025 Volume 55 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Recent advances in nanomaterials for the detection of mycobacterium tuberculosis (Review)

  • Authors:
    • Jianmeng Zhu
    • Hongqin Wang
    • Lili Chen
  • View Affiliations / Copyright

    Affiliations: Clinical Laboratory of Chun'an First People's Hospital, Zhejiang Provincial People's Hospital Chun'an Branch, Affiliated Chun'an Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 311700, P.R. China, Orthopedics of Chun'an First People's Hospital, Zhejiang Provincial People's Hospital Chun'an Branch, Affiliated Chun'an Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 311700, P.R. China
    Copyright: © Zhu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 36
    |
    Published online on: December 24, 2024
       https://doi.org/10.3892/ijmm.2024.5477
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The world's leading infectious disease killer tuberculosis (TB) has >10 million new cases and ~1.5 million mortalities yearly. Effective TB control and management depends on accurate and timely diagnosis to improve treatment, curb transmission and reduce the burden on the medical system. Current clinical diagnostic methods for tuberculosis face the shortcomings of limited accuracy and sensitivity, time consumption and high cost of equipment and reagents. Nanomaterials have markedly enhanced the sensitivity, specificity and speed of TB detection in recent years, owing to their distinctive physical and chemical features. They offer several biomolecular binding sites, enabling the simultaneous identification of multiple TB biomarkers. Biosensors utilizing nanomaterials are often compact, user‑friendly and well‑suited for detecting TB on location and in settings with limited resources. The present review aimed to review the advances that have occurred during the last five years in the application of nanomaterials for TB diagnostics, focusing on their detection capabilities, structures, working principles and the significance of key nanomaterials. The current review addressed the limitations and challenges of nanomaterials‑based TB diagnostics, along with potential solutions.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

View References

1 

Bagcchi S: WHO's global tuberculosis report 2022. Lancet Microbe. 4:e202023. View Article : Google Scholar

2 

Asadi L, Croxen M, Heffernan C, Dhillon M, Paulsen C, Egedahl ML, Tyrrell G, Doroshenko A and Long R: How much do smear-negative patients really contribute to tuberculosis transmissions? Re-examining an old question with new tools. EClinicalMedicine. 43:1012502022. View Article : Google Scholar : PubMed/NCBI

3 

Meriki HD, Wung NH, Tufon KA, Tony NJ, Ane-Anyangwe I and Cho-Ngwa F: Evaluation of the performance of an in-house duplex PCR assay targeting the IS6110 and rpoB genes for tuberculosis diagnosis in Cameroon. BMC Infect Dis. 20:7912020. View Article : Google Scholar : PubMed/NCBI

4 

Natarajan S, Ranganathan M, Hanna LE and Tripathy S: Transcriptional profiling and deriving a seven-gene signature that discriminates active and latent tuberculosis: An integrative bioinformatics approach. Genes (Basel). 13:6162022. View Article : Google Scholar : PubMed/NCBI

5 

Molloy A, Harrison J, McGrath JS, Owen Z, Smith C, Liu X, Li X and Cox JAG: Microfluidics as a novel technique for tuberculosis: From diagnostics to drug discovery. Microorganisms. 9:23302021. View Article : Google Scholar : PubMed/NCBI

6 

Meier JP, Möbus S, Heigl F, Asbach-Nitzsche A, Niller HH, Plentz A, Avsar K, Heiß-Neumann M, Schaaf B, Cassens U, et al: Performance of T-Track® TB, a novel dual marker RT-qPCR-based whole-blood test for improved detection of active tuberculosis. Diagnostics (Basel). 13:7582023. View Article : Google Scholar

7 

Çiftci İH and Karakeçe E: Comparative evaluation of TK SLC-L, a rapid liquid mycobacterial culture medium, with the MGIT system. BMC Infect Dis. 14:1302014. View Article : Google Scholar : PubMed/NCBI

8 

Okoi C anderson STB, Antonio M, Mulwa SN, Gehre F and Adetifa IMO: Non-tuberculous mycobacteria isolated from pulmonary samples in sub-Saharan Africa-a systematic review and meta analyses. Sci Rep. 7:120022017. View Article : Google Scholar

9 

Reed JL, Walker ZJ, Basu D, Allen V, Nicol MP, Kelso DM and McFall SM: Highly sensitive sequence specific qPCR detection of Mycobacterium tuberculosis complex in respiratory specimens. Tuberculosis (Edinb). 101:114–124. 2016. View Article : Google Scholar : PubMed/NCBI

10 

Yang X, Fan S, Ma Y, Chen H, Xu JF, Pi J, Wang W and Chen G: Current progress of functional nanobiosensors for potential tuberculosis diagnosis: The novel way for TB control? Front Bioeng Biotechnol. 10:10366782022. View Article : Google Scholar :

11 

Lyu M, Zhou J, Zhou Y, Chong W, Xu W, Lai H, Niu L, Hai Y, Yao X, Gong S, et al: From tuberculosis bedside to bench: UBE2B splicing as a potential biomarker and its regulatory mechanism. Signal Transduct Target Ther. 8:822023. View Article : Google Scholar : PubMed/NCBI

12 

Metcalf T, Soria J, Montano SM, Ticona E, Evans CA, Huaroto L, Kasper M, Ramos ES, Mori N, Jittamala P, et al: Evaluation of the GeneXpert MTB/RIF in patients with presumptive tuberculous meningitis. PLoS One. 13:e01986952018. View Article : Google Scholar : PubMed/NCBI

13 

Tu Phan LM, Tufa LT, Kim HJ, Lee J and Park TJ: Trends in diagnosis for active tuberculosis using nanomaterials. Curr Med Chem. 26:1946–1959. 2019. View Article : Google Scholar

14 

Joshi H, Kandari D, Maitra SS and Bhatnagar R: Biosensors for the detection of Mycobacterium tuberculosis: A comprehensive overview. Crit Rev Microbiol. 48:784–812. 2022. View Article : Google Scholar : PubMed/NCBI

15 

Pourakbari R, Shadjou N, Yousefi H, Isildak I, Yousefi M, Rashidi MR and Khalilzadeh B: Recent progress in nanomaterial-based electrochemical biosensors for pathogenic bacteria. Mikrochim Acta. 186:8202019. View Article : Google Scholar : PubMed/NCBI

16 

Uhuo OV, Waryo TT, Douman SF, Januarie KC, Nwambaekwe KC, Ndipingwi MM, Ekwere P and Iwuoha EI: Bioanalytical methods encompassing label-free and labeled tuberculosis aptasensors: A review. Anal Chim Acta. 1234:3403262022. View Article : Google Scholar : PubMed/NCBI

17 

Xu K, Liang ZC, Ding X, Hu H, Liu S, Nurmik M, Bi S, Hu F, Ji Z, Ren J, et al: Nanomaterials in the prevention, diagnosis, and treatment of Mycobacterium tuberculosis infections. Adv Healthc Mater. 7:17005092018. View Article : Google Scholar

18 

Tan P, Li H, Wang J and Gopinath SCB: Silver nanoparticle in biosensor and bioimaging: Clinical perspectives. Biotechnol Appl Biochem. 68:1236–1242. 2021.

19 

Muthukrishnan L: Multidrug resistant tuberculosis-diagnostic challenges and its conquering by nanotechnology approach-an overview. Chem Biol Interact. 337:1093972021. View Article : Google Scholar

20 

Zhou B, Zhu M, Hao Y and Yang P: Potential-resolved electrochemiluminescence for simultaneous determination of triple latent tuberculosis infection markers. ACS Appl Mater Interfaces. 9:30536–30542. 2017. View Article : Google Scholar : PubMed/NCBI

21 

Dykman L and Khlebtsov N: Gold nanoparticles in biomedical applications: Recent advances and perspectives. Chem Soc Rev. 41:2256–2282. 2012. View Article : Google Scholar

22 

Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH and Medintz IL: Functionalizing nanoparticles with biological molecules: Developing chemistries that facilitate nanotechnology. Chem Rev. 113:1904–2074. 2013. View Article : Google Scholar : PubMed/NCBI

23 

Drain PK, Bajema KL, Dowdy D, Dheda K, Naidoo K, Schumacher SG, Ma S, Meermeier E, Lewinsohn DM and Sherman DR: Incipient and subclinical tuberculosis: A clinical review of early stages and progression of infection. Clin Microbiol Rev. 31:e00021–18. 2018. View Article : Google Scholar : PubMed/NCBI

24 

Rosi NL and Mirkin CA: Nanostructures in biodiagnostics. Chem Rev. 105:1547–1562. 2005. View Article : Google Scholar : PubMed/NCBI

25 

Singh V and Chibale K: Strategies to combat multi-drug resistance in tuberculosis. Acc Chem Res. 54:2361–2376. 2021. View Article : Google Scholar : PubMed/NCBI

26 

Golichenari B, Nosrati R, Farokhi-Fard A, Abnous K, Vaziri F and Behravan J: Nano-biosensing approaches on tuberculosis: Defy of aptamers. Biosens Bioelectron. 117:319–331. 2018. View Article : Google Scholar : PubMed/NCBI

27 

Eivazzadeh-Keihan R, Saadatidizaji Z, Mahdavi M, Maleki A, Irani M and Zare I: Recent advances in gold nanoparticles-based biosensors for tuberculosis determination. Talanta. 275:1260992024. View Article : Google Scholar : PubMed/NCBI

28 

Golichenari B, Nosrati R, Farokhi-Fard A, Faal Maleki M, Gheibi Hayat SM, Ghazvini K, Vaziri F and Behravan J: Electrochemical-based biosensors for detection of Mycobacterium tuberculosis and tuberculosis biomarkers. Crit Rev Biotechnol. 39:1056–1077. 2019. View Article : Google Scholar : PubMed/NCBI

29 

Seele PP, Dyan B, Skepu A, Maserumule C and Sibuyi NRS: Development of gold-nanoparticle-based lateral flow immunoassays for rapid detection of TB ESAT-6 and CFP-10. Biosensors (Basel). 13:3542023. View Article : Google Scholar : PubMed/NCBI

30 

Kamra E, Prasad T, Rais A, Dahiya B, Sheoran A, Soni A, Sharma S and Mehta PK: Diagnosis of genitourinary tuberculosis: Detection of mycobacterial lipoarabinomannan and MPT-64 biomarkers within urine extracellular vesicles by nano-based immuno-PCR assay. Sci Rep. 13:115602023. View Article : Google Scholar : PubMed/NCBI

31 

Dahiya B, Prasad T, Rais A, Sheoran A, Kamra E, Mor P, Soni A, Sharma S and Mehta PK: Quantification of mycobacterial proteins in extrapulmonary tuberculosis cases by nano-based real-time immuno-PCR. Future Microbiol. 18:771–783. 2023. View Article : Google Scholar : PubMed/NCBI

32 

Tripathi A, Jain R and Dandekar P: Rapid visual detection of Mycobacterium tuberculosis DNA using gold nanoparticles. Anal Methods. 15:2497–2504. 2023. View Article : Google Scholar : PubMed/NCBI

33 

Huang H, Chen Y, Zuo J, Deng C, Fan J, Bai L and Guo S: MXene-incorporated C60NPs and Au@Pt with dual-electric signal outputs for accurate detection of Mycobacterium tuberculosis ESAT-6 antigen. Biosens Bioelectron. 242:1157342023. View Article : Google Scholar

34 

Patnaik N and Dey RJ: Label-free citrate-stabilized silver nanoparticles-based, highly sensitive, cost-effective, and rapid visual method for the differential detection of Mycobacterium tuberculosis and mycobacterium bovis. ACS Infect Dis. 10:426–435. 2024. View Article : Google Scholar

35 

Pei X, Hong H, Liu S and Li N: Nucleic acids detection for Mycobacterium tuberculosis based on gold nanoparticles counting and rolling-circle amplification. Biosensors (Basel). 12:4482022. View Article : Google Scholar : PubMed/NCBI

36 

León-Janampa N, Shinkaruk S, Gilman RH, Kirwan DE, Fouquet E, Szlosek M, Sheen P and Zimic M: Biorecognition and detection of antigens from Mycobacterium tuberculosis using a sandwich ELISA associated with magnetic nanoparticles. J Pharm Biomed Anal. 215:1147492022. View Article : Google Scholar : PubMed/NCBI

37 

Zhang J and He F: Mycobacterium tuberculosis piezoelectric sensor based on AuNPs-mediated enzyme assisted signal amplification. Talanta. 236:1229022022. View Article : Google Scholar

38 

Xie J, Mu Z, Yan B, Wang J, Zhou J and Bai L: An electrochemical aptasensor for Mycobacterium tuberculosis ESAT-6 antigen detection using bimetallic organic framework. Mikrochim Acta. 188:4042021. View Article : Google Scholar : PubMed/NCBI

39 

Prabowo BA, Purwidyantri A, Liu B, Lai HC and Liu KC: Gold nanoparticle-assisted plasmonic enhancement for DNA detection on a graphene-based portable surface plasmon resonance sensor. Nanotechnology. 32:0955032021. View Article : Google Scholar

40 

Tai MJY, Perumal V, Gopinath SCB, Raja PB, Ibrahim MNM, Jantan IN, Suhaimi NSH and Liu WW: Laser-scribed graphene nanofiber decorated with oil palm lignin capped silver nanoparticles: A green biosensor. Sci Rep. 11:54752021. View Article : Google Scholar : PubMed/NCBI

41 

Mohd Azmi UZ, Yusof NA, Abdullah J, Alang Ahmad SA, Mohd Faudzi FN, Ahmad Raston NH, Suraiya S, Ong PS, Krishnan D and Sahar NK: Portable electrochemical immunosensor for detection of Mycobacterium tuberculosis secreted protein CFP10-ESAT6 in clinical sputum samples. Mikrochim Acta. 188:202021. View Article : Google Scholar : PubMed/NCBI

42 

Gupta S, Bhatter P and Kakkar V: Point-of-care detection of tuberculosis using magnetoresistive biosensing chip. Tuberculosis (Edinb). 127:1020552021. View Article : Google Scholar : PubMed/NCBI

43 

León-Janampa N, Zimic M, Shinkaruk S, Quispe-Marcatoma J, Gutarra A, Le Bourdon G, Gayot M, Changanaqui K, Gilman RH, Fouquet E, et al: Synthesis, characterization and bio-functionalization of magnetic nanoparticles to improve the diagnosis of tuberculosis. Nanotechnology. 31:1751012020. View Article : Google Scholar : PubMed/NCBI

44 

Terefinko D, Dzimitrowicz A, Bielawska-Pohl A, Klimczak A, Pohl P and Jamroz P: The influence of cold atmospheric pressure plasma-treated media on the cell viability, motility, and induction of apoptosis in in human non-metastatic (MCF7) and metastatic (MDA-MB-231) breast cancer cell lines. Int J Mol Sci. 22:38552021. View Article : Google Scholar

45 

Gupta AK, Singh A and Singh S: Diagnosis of Tuberculosis: Nanodiagnostics Approaches. Saxena S and Khurana S: NanoBioMedicine. Springer; Singapore: pp. 261–283. 2020, View Article : Google Scholar

46 

Cordeiro M, Ferreira Carlos F, Pedrosa P, Lopez A and Baptista PV: Gold nanoparticles for diagnostics: Advances towards points of care. Diagnostics (Basel). 6:432016. View Article : Google Scholar : PubMed/NCBI

47 

Wang Y, Yu L, Kong X and Sun L: Application of nanodiagnostics in point-of-care tests for infectious diseases. Int J Nanomedicine. 12:4789–4803. 2017. View Article : Google Scholar : PubMed/NCBI

48 

Chowdhury NK, Choudhury R, Gogoi B, Chang CM and Pandey RP: Microbial synthesis of gold nanoparticles and their application. Curr Drug Targets. 23:752–760. 2022. View Article : Google Scholar : PubMed/NCBI

49 

Lopes TS, Alves GG, Pereira MR, Granjeiro JM and Leite PEC: Advances and potential application of gold nanoparticles in nanomedicine. J Cell Biochem. 120:16370–16378. 2019. View Article : Google Scholar : PubMed/NCBI

50 

Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J and Van Duyne RP: Biosensing with plasmonic nanosensors. Nat Mater. 7:442–453. 2008. View Article : Google Scholar : PubMed/NCBI

51 

Datta M, Desai D and Kumar A: Gene specific DNA sensors for diagnosis of pathogenic infections. Indian J Microbiol. 57:139–147. 2017. View Article : Google Scholar : PubMed/NCBI

52 

Mi X, He F, Xiang M, Lian Y and Yi S: Novel phage amplified multichannel series piezoelectric quartz crystal sensor for rapid and sensitive detection of Mycobacterium tuberculosis. Anal Chem. 84:939–946. 2012. View Article : Google Scholar

53 

Zhang X, Feng Y, Duan S, Su L, Zhang J and He F: Mycobacterium tuberculosis strain H37Rv electrochemical sensor mediated by aptamer and AuNPs-DNA. ACS Sens. 4:849–855. 2019. View Article : Google Scholar : PubMed/NCBI

54 

Teengam P, Siangproh W, Tuantranont A, Vilaivan T, Chailapakul O and Henry CS: Multiplex paper-based colorimetric DNA sensor using pyrrolidinyl peptide nucleic acid-induced AgNPs aggregation for detecting MERS-CoV, MTB, and HPV oligonucleotides. Anal Chem. 89:5428–5435. 2017. View Article : Google Scholar : PubMed/NCBI

55 

Pascu B, Negrea A, Ciopec M, Duteanu N, Negrea P, Bumm LA, Grad mBuriac O, Nemeş NS, Mihalcea C and Duda-Seiman DM: Silver nanoparticle synthesis via photochemical reduction with sodium citrate. Int J Mol Sci. 24:2552022. View Article : Google Scholar

56 

Iravani S, Korbekandi H, Mirmohammadi SV and Zolfaghari B: Synthesis of silver nanoparticles: Chemical, physical and biological methods. Res Pharm Sci. 9:385–406. 2014.

57 

Salvador M, Marqués-Fernandez JL, Martinez-Garcia JC, Fiorani D, Arosio P, Avolio M, Brero F, Balanean F, Guerrini A, Sangregorio C, et al: Double-layer fatty acid nanoparticles as a multiplatform for diagnostics and therapy. Nanomaterials (Basel). 12:2052022. View Article : Google Scholar : PubMed/NCBI

58 

Cheon HJ, Lee SM, Kim SR, Shin HY, Seo YH, Cho YK, Lee SP and Kim MI: Colorimetric detection of MPT64 antibody based on an aptamer adsorbed magnetic nanoparticles for diagnosis of tuberculosis. J Nanosci Nanotechnol. 19:622–626. 2019. View Article : Google Scholar

59 

Yan Z, Gan N, Zhang H, Wang D, Qiao L, Cao Y, Li T and Hu F: A sandwich-hybridization assay for simultaneous determination of HIV and tuberculosis DNA targets based on signal amplification by quantum dots-PowerVision™ polymer coding nanotracers. Biosens Bioelectron. 71:207–213. 2015. View Article : Google Scholar : PubMed/NCBI

60 

Chen P, Meng Y, Liu T, Peng W, Gao Y, He Y, Qu R, Zhang C, Hu W and Ying B: Sensitive urine immunoassay for visualization of lipoarabinomannan for noninvasive tuberculosis diagnosis. ACS Nano. 17:6998–7006. 2023. View Article : Google Scholar : PubMed/NCBI

61 

Hu O, Li Z, Wu J, Tan Y, Chen Z and Tong Y: A multicomponent nucleic acid enzyme-cleavable quantum dot nanobeacon for highly sensitive diagnosis of tuberculosis with the naked eye. ACS Sens. 8:254–262. 2023. View Article : Google Scholar

62 

He Q, Cai S, Wu J, Hu O, Liang L and Chen Z: Determination of tuberculosis-related volatile organic biomarker methyl nicotinate in vapor using fluorescent assay based on quantum dots and cobalt-containing porphyrin nanosheets. Mikrochim Acta. 189:1082022. View Article : Google Scholar : PubMed/NCBI

63 

Hu O, Li Z, He Q, Tong Y, Tan Y and Chen Z: Fluorescence biosensor for one-step simultaneous detection of Mycobacterium tuberculosis multidrug-resistant genes using nanoCoTPyP and double quantum dots. Anal Chem. 94:7918–7927. 2022. View Article : Google Scholar : PubMed/NCBI

64 

Kabwe KP, Nsibande SA, Lemmer Y, Pilcher LA and Forbes PBC: Synthesis and characterisation of quantum dots coupled to mycolic acids as a water-soluble fluorescent probe for potential lateral flow detection of antibodies and diagnosis of tuberculosis. Luminescence. 37:278–289. 2022. View Article : Google Scholar

65 

Shi T, Jiang P, Peng W, Meng Y, Ying B and Chen P: Nucleic acid and nanomaterial synergistic amplification enables dual targets of ultrasensitive fluorescence quantification to improve the efficacy of clinical tuberculosis diagnosis. ACS Appl Mater Interfaces. 16:14510–14519. 2024. View Article : Google Scholar : PubMed/NCBI

66 

Kabwe KP, Nsibande SA, Pilcher LA and Forbes PBC: Development of a mycolic acid-graphene quantum dot probe as a potential tuberculosis biosensor. Luminescence. 37:1881–1890. 2022. View Article : Google Scholar : PubMed/NCBI

67 

Liang L, Chen M, Tong Y, Tan W and Chen Z: Detection of Mycobacterium tuberculosis IS6110 gene fragment by fluorescent biosensor based on FRET between two-dimensional metal-organic framework and quantum dots-labeled DNA probe. Anal Chim Acta. 1186:3390902021. View Article : Google Scholar : PubMed/NCBI

68 

Mohd Bakhori N, Yusof NA, Abdullah J, Wasoh H, Ab Rahman SK and Abd Rahman SF: Surface enhanced CdSe/ZnS QD/SiNP electrochemical immunosensor for the detection of Mycobacterium tuberculosis by combination of CFP10-ESAT6 for better diagnostic specificity. Materials (Basel). 13:1492019. View Article : Google Scholar

69 

Qian J, Cui H, Lu X, Wang C, An K, Hao N and Wang K: Bi-color FRET from two nano-donors to a single nano-acceptor: A universal aptasensing platform for simultaneous determination of dual targets. Chem Eng J. 401:1260172020. View Article : Google Scholar

70 

Zhang LM, Li R, Zhao XC, Zhang Q and Luo XL: Increased transfusion of fresh frozen plasma is associated with mortality or worse functional outcomes after severe traumatic brain injury: A retrospective study. World Neurosurg. 104:381–389. 2017. View Article : Google Scholar : PubMed/NCBI

71 

Zhang X, Hu Y, Yang X, Tang Y, Han S, Kang A, Deng H, Chi Y, Zhu D and Lu Y: FÖrster resonance energy transfer (FRET)-based biosensors for biological applications. Biosens Bioelectron. 138:1113142019. View Article : Google Scholar

72 

Chen S, Yu YL and Wang JH: Inner filter effect-based fluorescent sensing systems: A review. Anal Chim Acta. 999:13–26. 2018. View Article : Google Scholar

73 

Afsari HS, Cardoso Dos Santos M, Lindén S, Chen T, Qiu X, van Bergen En Henegouwen PM, Jennings TL, Susumu K, Medintz IL, Hildebrandt N and Miller LW: Time-gated FRET nanoassemblies for rapid and sensitive intra- and extracellular fluorescence imaging. Sci Adv. 2:e16002652016. View Article : Google Scholar : PubMed/NCBI

74 

Gliddon HD, Howes PD, Kaforou M, Levin M and Stevens MM: A nucleic acid strand displacement system for the multiplexed detection of tuberculosis-specific mRNA using quantum dots. Nanoscale. 8:10087–10095. 2016. View Article : Google Scholar : PubMed/NCBI

75 

Futane A, Narayanamurthy V, Jadhav P and Srinivasan A: Aptamer-based rapid diagnosis for point-of-care application. Microfluid Nanofluidics. 27:152023. View Article : Google Scholar : PubMed/NCBI

76 

Kumar S, Wang Z, Zhang W, Liu X, Li M, Li G, Zhang B and Singh R: Optically active nanomaterials and its biosensing applications-a review. Biosensors (Basel). 13:852023. View Article : Google Scholar : PubMed/NCBI

77 

Sharifi S, Vahed SZ, Ahmadian E, Dizaj SM, Eftekhari A, Khalilov R, Ahmadi M, Hamidi-Asl E and Labib M: Detection of pathogenic bacteria via nanomaterials-modified aptasensors. Biosens Bioelectron. 150:1119332020. View Article : Google Scholar

78 

Pornprom T, Phusi N, Thongdee P, Pakamwong B, Sangswan J, Kamsri P, Punkvang A, Suttisintong K, Leanpolchareanchai J, Hongmanee P, et al: Toward the early diagnosis of tuberculosis: A gold particle-decorated graphene-modified paper-based electrochemical biosensor for Hsp16.3 detection. Talanta. 267:1252102024. View Article : Google Scholar

79 

Wang J, Shao W, Liu Z, Kesavan G, Zeng Z, Shurin MR and Star A: Diagnostics of tuberculosis with single-walled carbon nanotube-based field-effect transistors. ACS Sens. 9:1957–1966. 2024. View Article : Google Scholar : PubMed/NCBI

80 

Le TN, Descanzo MJN, Hsiao WWW, Soo PC, Peng WP and Chang HC: Fluorescent nanodiamond immunosensors for clinical diagnostics of tuberculosis. J Mater Chem B. 12:3533–3542. 2024. View Article : Google Scholar : PubMed/NCBI

81 

Bisht N, Patel M, Dwivedi N, Kumar P, Mondal DP, Srivastava AK and Dhand C: Bio-inspired polynorepinephrine based nanocoatings for reduced graphene oxide/gold nanoparticles composite for high-performance biosensing of Mycobacterium tuberculosis. Environ Res. 227:1156842023. View Article : Google Scholar : PubMed/NCBI

82 

Seo G, Lee G, Kim W, An I, Choi M, Jang S, Park YJ, Lee JO, Cho D and Park EC: Ultrasensitive biosensing platform for Mycobacterium tuberculosis detection based on functionalized graphene devices. Front Bioeng Biotechnol. 11:13134942023. View Article : Google Scholar

83 

Mogha NK, Sahu V, Sharma RK and Masram DT: Reduced graphene oxide nanoribbon immobilized gold nanoparticle based electrochemical DNA biosensor for the detection of Mycobacterium tuberculosis. J Mater Chem B. 6:5181–5187. 2018. View Article : Google Scholar : PubMed/NCBI

84 

Li Y, Peng D, Guo S, Yang B, Zhou J, Zhou J, Zhang Q and Bai L: Aptasensor for Mycobacterium tuberculosis antigen MPT64 detection using anthraquinone derivative confined in ordered mesoporous carbon as a new redox nanoprobe. Bioelectrochemistry. 147:1082092022. View Article : Google Scholar : PubMed/NCBI

85 

Rizi KS, Hatamluyi B, Rezayi M, Meshkat Z, Sankian M, Ghazvini K, Farsiani H and Aryan E: Response surface methodology optimized electrochemical DNA biosensor based on HAPNPTs/PPY/MWCNTs nanocomposite for detecting Mycobacterium tuberculosis. Talanta. 226:1220992021. View Article : Google Scholar : PubMed/NCBI

86 

Javed A, Abbas SR, Hashmi MU, Babar NUA and Hussain I: Graphene oxide based electrochemical genosensor for label free detection of mycobacterium tuberculosis from raw clinical samples. Int J Nanomedicine. 16:7339–7352. 2021. View Article : Google Scholar : PubMed/NCBI

87 

Omar RA, Verma N and Arora PK: Development of ESAT-6 based immunosensor for the detection of mycobacterium tuberculosis. Front Immunol. 12:6538532021. View Article : Google Scholar : PubMed/NCBI

88 

Jaroenram W, Kampeera J, Arunrut N, Karuwan C, Sappat A, Khumwan P, Jaitrong S, Boonnak K, Prammananan T, Chaiprasert A, et al: Graphene-based electrochemical genosensor incorporated loop-mediated isothermal amplification for rapid on-site detection of Mycobacterium tuberculosis. J Pharm Biomed Anal. 186:1133332020. View Article : Google Scholar : PubMed/NCBI

89 

Kahng SJ, Soelberg SD, Fondjo F, Kim JH, Furlong CE and Chung JH: Carbon nanotube-based thin-film resistive sensor for point-of-care screening of tuberculosis. Biomed Microdevices. 22:502020. View Article : Google Scholar : PubMed/NCBI

90 

Hidayah NMS, Liu WW, Lai CW, Noriman NZ, Khe CS, Hashim U and Lee HC: Comparison on graphite, graphene oxide and reduced graphene oxide: Synthesis and characterization. AIP Conf Proc. 1892:1500022017. View Article : Google Scholar

91 

Ping J, Zhou Y, Wu Y, Papper V, Boujday S, Marks RS and Steele TW: Recent advances in aptasensors based on graphene and graphene-like nanomaterials. Biosens Bioelectron. 64:373–385. 2015. View Article : Google Scholar

92 

Raccichini R, Varzi A, Passerini S and Scrosati B: The role of graphene for electrochemical energy storage. Nat Mater. 14:271–279. 2015. View Article : Google Scholar

93 

Yan Q, Zhi N, Yang L, Xu G, Feng Q, Zhang Q and Sun S: A highly sensitive uric acid electrochemical biosensor based on a nano-cube cuprous oxide/ferrocene/uricase modified glassy carbon electrode. Sci Rep. 10:106072020. View Article : Google Scholar : PubMed/NCBI

94 

Barra A, Nunes C, Ruiz-Hitzky E and Ferreira P: Green carbon nanostructures for functional composite materials. Int J Mol Sci. 23:18482022. View Article : Google Scholar : PubMed/NCBI

95 

Chaturvedi M, Patel M, Bisht N, Shruti, Das Mukherjee M, Tiwari A, Mondal DP, Srivastava AK, Dwivedi N and Dhand C: Reduced graphene oxide-polydopamine-gold nanoparticles: A ternary nanocomposite-based electrochemical genosensor for rapid and early Mycobacterium tuberculosis detection. Biosensors (Basel). 13:3422023. View Article : Google Scholar : PubMed/NCBI

96 

Tian J, Deng SY, Li DL, Shan D, He W, Zhang XJ and Shi Y: Bioinspired polydopamine as the scaffold for the active AuNPs anchoring and the chemical simultaneously reduced graphene oxide: Characterization and the enhanced biosensing application. Biosens Bioelectron. 49:466–471. 2013. View Article : Google Scholar : PubMed/NCBI

97 

Li Y, Shi S, Cao H, Zhao Z, Su C and Wen H: Improvement of the antifouling performance and stability of an anion exchange membrane by surface modification with graphene oxide (GO) and polydopamine (PDA). J Memb Sci. 566:44–53. 2018. View Article : Google Scholar

98 

Xia L, Vemuri B, Gadhamshetty V and Kilduff J: Poly (ether sulfone) membrane surface modification using norepinephrine to mitigate fouling. J Memb Sci. 598:1176572020. View Article : Google Scholar

99 

Dhand C, Ong ST, Dwivedi N, Diaz SM, Venugopal JR, Navaneethan B, Fazil MH, Liu S, Seitz V, Wintermantel E, et al: Bio-inspired in situ crosslinking and mineralization of electrospun collagen scaffolds for bone tissue engineering. Biomaterials. 104:323–338. 2016. View Article : Google Scholar : PubMed/NCBI

100 

Teengam P, Siangproh W, Tuantranont A, Vilaivan T, Chailapakul O and Henry CS: Electrochemical impedance-based DNA sensor using pyrrolidinyl peptide nucleic acids for tuberculosis detection. Anal Chim Acta. 1044:102–109. 2018. View Article : Google Scholar : PubMed/NCBI

101 

Thangamuthu M, Hsieh KY, Kumar PV and Chen GY: Graphene- and graphene oxide-based nanocomposite platforms for electrochemical biosensing applications. Int J Mol Sci. 20:29752019. View Article : Google Scholar : PubMed/NCBI

102 

Vu CA and Chen WY: Field-effect transistor biosensors for biomedical applications: Recent advances and future prospects. Sensors (Basel). 19:42142019. View Article : Google Scholar : PubMed/NCBI

103 

Chen S and Bashir R: Advances in field-effect biosensors towards point-of-use. Nanotechnology. 34:4920022023. View Article : Google Scholar :

104 

Szunerits S, Rodrigues T, Bagale R, Happy H, Boukherroub R and Knoll W: Graphene-based field-effect transistors for biosensing: Where is the field heading to? Anal Bioanal Chem. 416:2137–2150. 2024. View Article : Google Scholar

105 

Krishnan SK, Nataraj N, Meyyappan M and Pal U: Graphene-based field-effect transistors in biosensing and neural interfacing applications: Recent advances and prospects. Anal Chem. 95:2590–2622. 2023. View Article : Google Scholar : PubMed/NCBI

106 

Gong X, Shuai L, Beingessner RL, Yamazaki T, Shen J, Kuehne M, Jones K, Fenniri H and Strano MS: Size selective corona interactions from self-assembled rosette and single-walled carbon nanotubes. Small. 18:e21049512022. View Article : Google Scholar : PubMed/NCBI

107 

Kumar THV, Rajendran J, Atchudan R, Arya S, Govindasamy M, Habila MA and Sundramoorthy AK: Cobalt ferrite/semiconducting single-walled carbon nanotubes based field-effect transistor for determination of carbamate pesticides. Environ Res. 238:1171932023. View Article : Google Scholar : PubMed/NCBI

108 

Liu H, Liu F, Sun Z, Cai X, Sun H, Kai Y, Chen L and Jiang C: Single layer aligned semiconducting single-walled carbon nanotube array with high linear density. Nanotechnology. 33:3753012022. View Article : Google Scholar

109 

Wang Y, Liu D, Zhang H, Wang J, Du R, Li TT, Qian J, Hu Y and Huang S: Methylation-induced reversible metallic-semiconducting transition of single-walled carbon nanotube arrays for high-performance field-effect transistors. Nano Lett. 20:496–501. 2020. View Article : Google Scholar

110 

Tran TT, Clark K, Ma W and Mulchandani A: Detection of a secreted protein biomarker for citrus Huanglongbing using a single-walled carbon nanotubes-based chemiresistive biosensor. Biosens Bioelectron. 147:1117662020. View Article : Google Scholar

111 

Shao W, Shurin MR, Wheeler SE, He X and Star A: Rapid detection of SARS-CoV-2 Antigens using high-purity semiconducting single-walled carbon nanotube-based field-effect transistors. ACS Appl Mater Interfaces. 13:10321–10327. 2021. View Article : Google Scholar : PubMed/NCBI

112 

Li T, Liang Y, Li J, Yu Y, Xiao MM, Ni W, Zhang Z and Zhang GJ: Carbon nanotube field-effect transistor biosensor for ultrasensitive and label-free detection of breast cancer exosomal miRNA21. Anal Chem. 93:15501–15507. 2021. View Article : Google Scholar : PubMed/NCBI

113 

Chen H, Xiao M, He J, Zhang Y, Liang Y, Liu H and Zhang Z: Aptamer-functionalized carbon nanotube field-effect transistor biosensors for Alzheimer's disease serum biomarker detection. ACS Sens. 7:2075–2083. 2022. View Article : Google Scholar : PubMed/NCBI

114 

Hui YY, Chen OJ, Lin HH, Su YK, Chen KY, Wang CY, Hsiao WW and Chang HC: Magnetically modulated fluorescence of nitrogen-vacancy centers in nanodiamonds for ultrasensitive biomedical analysis. Anal Chem. 93:7140–7147. 2021. View Article : Google Scholar : PubMed/NCBI

115 

Boruah A and Saikia BK: Synthesis, characterization, properties and novel applications of fluorescent nanodiamonds. J Fluoresc. 32:863–885. 2022. View Article : Google Scholar : PubMed/NCBI

116 

Mzyk A, Sigaeva A and Schirhagl R: Relaxometry with nitrogen vacancy (NV) centers in diamond. Acc Chem Res. 55:3572–3580. 2022. View Article : Google Scholar : PubMed/NCBI

117 

Daniel MC and Astruc D: Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 104:293–346. 2004. View Article : Google Scholar : PubMed/NCBI

118 

Medintz IL, Uyeda HT, Goldman ER and Mattoussi H: Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater. 4:435–446. 2005. View Article : Google Scholar : PubMed/NCBI

119 

Wei Y and Yang R: Nanomechanics of graphene. Natl Sci Rev. 6:324–348. 2019. View Article : Google Scholar : PubMed/NCBI

120 

Eckhardt S, Brunetto PS, Gagnon J, Priebe M, Giese B and Fromm KM: Nanobio silver: Its interactions with peptides and bacteria, and its uses in medicine. Chem Rev. 113:4708–4754. 2013. View Article : Google Scholar : PubMed/NCBI

121 

Zhao P, Xu Q, Tao J, Jin Z, Pan Y, Yu C and Yu Z: Near infrared quantum dots in biomedical applications: Current status and future perspective. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 10:e14832018. View Article : Google Scholar

122 

Laurent S, Bridot JL, Elst LV and Muller RN: Magnetic iron oxide nanoparticles for biomedical applications. Future Med Chem. 2:427–449. 2010. View Article : Google Scholar

123 

Haiss W, Thanh NT, Aveyard J and Fernig DG: Determination of size and concentration of gold nanoparticles from UV-vis spectra. Anal Chem. 79:4215–4221. 2007. View Article : Google Scholar : PubMed/NCBI

124 

Kim D, Shin K, Kwon SG and Hyeon T: Synthesis and biomedical applications of multifunctional nanoparticles. Adv Mater. 30:e18023092018. View Article : Google Scholar : PubMed/NCBI

125 

Sobhanan J, Anas A and Biju V: Nanomaterials for fluorescence and multimodal bioimaging. Chem Rec. 23:e2022002532023. View Article : Google Scholar : PubMed/NCBI

126 

Katz E and Willner I: Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties, and applications. Angew Chem Int Ed Engl. 43:6042–6108. 2004. View Article : Google Scholar : PubMed/NCBI

127 

Li B, Wang W, Zhao L, Wu Y, Li X, Yan D, Gao Q, Yan Y, Zhang J, Feng Y, et al: Photothermal therapy of tuberculosis using targeting pre-activated macrophage membrane-coated nanoparticles. Nat Nanotechnol. 19:834–845. 2024. View Article : Google Scholar : PubMed/NCBI

128 

Nair A, Greeny A, Nandan A, Sah RK, Jose A, Dyawanapelly S, Junnuthula V, K V A and Sadanandan P: Advanced drug delivery and therapeutic strategies for tuberculosis treatment. J Nanobiotechnology. 21:4142023. View Article : Google Scholar : PubMed/NCBI

129 

El-Samadony H, Althani A, Tageldin MA and Azzazy HME: Nanodiagnostics for tuberculosis detection. Expert Rev Mol Diagn. 17:427–443. 2017. View Article : Google Scholar : PubMed/NCBI

130 

Li M, Singh R, Wang Y, Marques C, Zhang B and Kumar S: Advances in novel nanomaterial-based optical fiber biosensors-a review. Biosensors (Basel). 12:8432022. View Article : Google Scholar : PubMed/NCBI

131 

Vu CQ and Arai S: Quantitative imaging of genetically encoded fluorescence lifetime biosensors. Biosensors (Basel). 13:9392023. View Article : Google Scholar : PubMed/NCBI

132 

Hemmerová E and Homola J: Combining plasmonic and electrochemical biosensing methods. Biosens Bioelectron. 251:1160982024. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhu J, Wang H and Chen L: Recent advances in nanomaterials for the detection of mycobacterium tuberculosis (Review). Int J Mol Med 55: 36, 2025.
APA
Zhu, J., Wang, H., & Chen, L. (2025). Recent advances in nanomaterials for the detection of mycobacterium tuberculosis (Review). International Journal of Molecular Medicine, 55, 36. https://doi.org/10.3892/ijmm.2024.5477
MLA
Zhu, J., Wang, H., Chen, L."Recent advances in nanomaterials for the detection of mycobacterium tuberculosis (Review)". International Journal of Molecular Medicine 55.3 (2025): 36.
Chicago
Zhu, J., Wang, H., Chen, L."Recent advances in nanomaterials for the detection of mycobacterium tuberculosis (Review)". International Journal of Molecular Medicine 55, no. 3 (2025): 36. https://doi.org/10.3892/ijmm.2024.5477
Copy and paste a formatted citation
x
Spandidos Publications style
Zhu J, Wang H and Chen L: Recent advances in nanomaterials for the detection of mycobacterium tuberculosis (Review). Int J Mol Med 55: 36, 2025.
APA
Zhu, J., Wang, H., & Chen, L. (2025). Recent advances in nanomaterials for the detection of mycobacterium tuberculosis (Review). International Journal of Molecular Medicine, 55, 36. https://doi.org/10.3892/ijmm.2024.5477
MLA
Zhu, J., Wang, H., Chen, L."Recent advances in nanomaterials for the detection of mycobacterium tuberculosis (Review)". International Journal of Molecular Medicine 55.3 (2025): 36.
Chicago
Zhu, J., Wang, H., Chen, L."Recent advances in nanomaterials for the detection of mycobacterium tuberculosis (Review)". International Journal of Molecular Medicine 55, no. 3 (2025): 36. https://doi.org/10.3892/ijmm.2024.5477
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team