|
1
|
Dixon SJ and Stockwell BR: The role of
iron and reactive oxygen species in cell death. Nat Chem Biol.
10:9–17. 2014. View Article : Google Scholar
|
|
2
|
Schümann K, Ettle T, Szegner B, Elsenhans
B and Solomons NW: On risks and benefits of iron supplementation
recommendations for iron intake revisited. J Trace Elem Med Biol.
21:147–168. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Muckenthaler MU, Rivella S, Hentze MW and
Galy B: A red carpet for iron metabolism. Cell. 168:344–361. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Rodriguez R, Schreiber SL and Conrad M:
Persister cancer cells: Iron addiction and vulnerability to
ferroptosis. Mol Cell. 82:728–740. 2022. View Article : Google Scholar :
|
|
5
|
Gao M, Yi J, Zhu J, Minikes AM, Monian P,
Thompson CB and Jiang X: Role of mitochondria in ferroptosis. Mol
Cell. 73:354–363.e3. 2019. View Article : Google Scholar :
|
|
6
|
Kurz T, Eaton JW and Brunk UT: The role of
lysosomes in iron metabolism and recycling. Int J Biochem Cell
Biol. 43:1686–1697. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Silva B and Faustino P: An overview of
molecular basis of iron metabolism regulation and the associated
pathologies. Biochim Biophys Acta. 1852:1347–1359. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Liang C, Zhang X, Yang M and Dong X:
Recent progress in ferroptosis inducers for cancer therapy. Adv
Mater. 31:e19041972019. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Mu Q, Chen L, Gao X, Shen S, Sheng W, Min
J and Wang F: The role of iron homeostasis in remodeling immune
function and regulating inflammatory disease. Sci Bull (Beijing).
66:1806–1816. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Slominski RM, Raman C, Chen JY and
Slominski AT: How cancer hijacks the body's homeostasis through the
neuroendocrine system. Trends Neurosci. 46:263–275. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Slominski RM, Kim TK, Janjetovic Z,
Brożyna AA, Podgorska E, Dixon KM, Mason RS, Tuckey RC, Sharma R,
Crossman DK, et al: Malignant melanoma: An overview, new
perspectives, and vitamin D signaling. Cancers (Basel).
16:22622024. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Ajoolabady A, Tang D, Kroemer G and Ren J:
Ferroptosis in hepatocellular carcinoma: Mechanisms and targeted
therapy. Br J Cancer. 128:190–205. 2023. View Article : Google Scholar :
|
|
13
|
Yang M, Wu X, Hu J, Wang Y, Wang Y, Zhang
L, Huang W, Wang X, Li N, Liao L, et al: COMMD10 inhibits HIF1α/CP
loop to enhance ferroptosis and radiosensitivity by disrupting
Cu-Fe balance in hepatocellular carcinoma. J Hepatol. 76:1138–1150.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Chen F, Fan Y, Hou J, Liu B, Zhang B,
Shang Y, Chang Y, Cao P and Tan K: Integrated analysis identifies
TfR1 as a prognostic biomarker which correlates with immune
infiltration in breast cancer. Aging (Albany NY). 13:21671–21699.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Candelaria PV, Leoh LS, Penichet ML and
Daniels-Wells TR: Antibodies targeting the transferrin receptor 1
(TfR1) as direct anti-cancer agents. Front Immunol. 12:6076922021.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Soyer HP, Smolle J, Torne R and Kerl H:
Transferrin receptor expression in normal skin and in various
cutaneous tumors. J Cutan Pathol. 14:1–5. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Gammella E, Buratti P, Cairo G and
Recalcati S: The transferrin receptor: The cellular iron gate.
Metallomics. 9:1367–1375. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Kawabata H: Transferrin and transferrin
receptors update. Free Radic Biol Med. 133:46–54. 2019. View Article : Google Scholar
|
|
19
|
Thompson EB: The many roles of c-Myc in
apoptosis. Annu Rev Physiol. 60:575–600. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Chen BY, Pathak JL, Lin HY, Guo WQ, Chen
WJ, Luo G, Wang LJ, Sun XF, Ding Y, Li J, et al: Inflammation
triggers chondrocyte ferroptosis in TMJOA via HIF-1α/TFRC. J Dent
Res. 103:712–722. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Finley LWS, Carracedo A, Lee J, Souza A,
Egia A, Zhang J, Teruya-Feldstein J, Moreira PI, Cardoso SM, Clish
CB, et al: SIRT3 opposes reprogramming of cancer cell metabolism
through HIF1α destabilization. Cancer Cell. 19:416–428. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Chitambar CR, Al-Gizawiy MM, Alhajala HS,
Pechman KR, Wereley JP, Wujek R, Clark PA, Kuo JS, Antholine WE and
Schmainda KM: Gallium maltolate disrupts tumor iron metabolism and
retards the growth of glioblastoma by inhibiting mitochondrial
function and ribonucleotide reductase. Mol Cancer Ther.
17:1240–1250. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Kenneth NS, Mudie S, Naron S and Rocha S:
TfR1 interacts with the IKK complex and is involved in IKK-NF-κB
signalling. Biochem J. 449:275–284. 2013. View Article : Google Scholar
|
|
24
|
Jeong SM, Hwang S and Seong RH:
Transferrin receptor regulates pancreatic cancer growth by
modulating mitochondrial respiration and ROS generation. Biochem
Biophys Res Commun. 471:373–379. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Polak KZ, Schaffer P, Donaghy D, Zenk MC
and Olver CS: Iron, hepcidin, and microcytosis in canine
hepatocellular carcinoma. Vet Clin Pathol. 51:208–215. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Habashy HO, Powe DG, Staka CM, Rakha EA,
Ball G, Green AR, Aleskandarany M, Paish EC, Douglas Macmillan R,
Nicholson RI, et al: Transferrin receptor (CD71) is a marker of
poor prognosis in breast cancer and can predict response to
tamoxifen. Breast Cancer Res Treat. 119:283–293. 2010. View Article : Google Scholar
|
|
27
|
Yang DC, Wang F, Elliott RL and Head JF:
Expression of transferrin receptor and ferritin H-chain mRNA are
associated with clinical and histopathological prognostic
indicators in breast cancer. Anticancer Res. 21:541–549.
2001.PubMed/NCBI
|
|
28
|
Basuli D, Tesfay L, Deng Z, Paul B,
Yamamoto Y, Ning G, Xian W, McKeon F, Lynch M, Crum CP, et al: Iron
addiction: A novel therapeutic target in ovarian cancer. Oncogene.
36:4089–4099. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Chan KT, Choi MY, Lai KKY, Tan W, Tung LN,
Lam HY, Tong DK, Lee NP and Law S: Overexpression of transferrin
receptor CD71 and its tumorigenic properties in esophageal squamous
cell carcinoma. Oncol Rep. 31:1296–1304. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Ryschich E, Huszty G, Knaebel HP, Hartel
M, Büchler MW and Schmidt J: Transferrin receptor is a marker of
malignant phenotype in human pancreatic cancer and in
neuroendocrine carcinoma of the pancreas. Eur J Cancer.
40:1418–1422. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Kondo K, Noguchi M, Mukai K, Matsuno Y,
Sato Y, Shimosato Y and Monden Y: Transferrin receptor expression
in adenocarcinoma of the lung as a histopathologic indicator of
prognosis. Chest. 97:1367–1371. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Smith NW, Strutton GM, Walsh MD, Wright
GR, Seymour GJ, Lavin MF and Gardiner RA: Transferrin receptor
expression in primary superficial human bladder tumours identifies
patients who develop recurrences. Br J Urol. 65:339–344. 1990.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Jamnongkan W, Thanan R, Techasen A, Namwat
N, Loilome W, Intarawichian P, Titapun A and Yongvanit P:
Upregulation of transferrin receptor-1 induces cholangiocarcinoma
progression via induction of labile iron pool. Tumour Biol.
39:10104283177176552017. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Xu X, Liu T, Wu J, Wang Y, Hong Y and Zhou
H: Transferrin receptor-involved HIF-1 signaling pathway in
cervical cancer. Cancer Gene Ther. 26:356–365. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Wu H, Zhang J, Dai R, Xu J and Feng H:
Transferrin receptor-1 and VEGF are prognostic factors for
osteosarcoma. J Orthop Surg Res. 14:2962019. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Greene CJ, Attwood K, Sharma NJ, Gross KW,
Smith GJ, Xu B and Kauffman EC: Transferrin receptor 1 upregulation
in primary tumor and downregulation in benign kidney is associated
with progression and mortality in renal cell carcinoma patients.
Oncotarget. 8:107052–107075. 2017. View Article : Google Scholar :
|
|
37
|
Adachi M, Kai K, Yamaji K, Ide T, Noshiro
H, Kawaguchi A and Aishima S: Transferrin receptor 1 overexpression
is associated with tumour de-differentiation and acts as a
potential prognostic indicator of hepatocellular carcinoma.
Histopathology. 75:63–73. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Das Gupta A, Patil J and Shah VI:
Transferrin receptor expression by blast cells in acute
lymphoblastic leukemia correlates with white cell count &
immunophenotype. Indian J Med Res. 104:226–233. 1996.PubMed/NCBI
|
|
39
|
Hagag AA, Badraia IM, Abdelmageed MM,
Hablas NM, Hazzaa SME and Nosair NA: Prognostic value of
transferrin receptor-1 (CD71) expression in acute lymphoblastic
leukemia. Endocr Metab Immune Disord Drug Targets. 18:610–617.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Maguire A, Chen X, Wisner L, Ramsower C,
Glinsmann-Gibson B and Rimsza LM: Over-expression of transferrin
receptor (TFRC/CD71) and low expression of innate and adaptive
immune cell subsets in HIV-associated, GCB-DLBCL by digital gene
expression profiling. Blood. 134(Suppl 1): S27832019. View Article : Google Scholar
|
|
41
|
Joachim JH and Mehta KJ: Hepcidin in
hepatocellular carcinoma. Br J Cancer. 127:185–192. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Li P, Wu X, Chen P and Gu Z: Prognostic
significance of iron metabolism related genes in human lung
adenocarcinoma. Cancer Manag Res. 15:203–216. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Grunewald TGP, Bach H, Cossarizza A and
Matsumoto I: The STEAP protein family: Versatile oxidoreductases
and targets for cancer immunotherapy with overlapping and distinct
cellular functions. Biol Cell. 104:641–657. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Ohgami RS, Campagna DR, McDonald A and
Fleming MD: The steap proteins are metalloreductases. Blood.
108:1388–1394. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Ohgami RS, Campagna DR, Greer EL,
Antiochos B, McDonald A, Chen J, Sharp JJ, Fujiwara Y, Barker JE
and Fleming MD: Identification of a ferrireductase required for
efficient transferrin-dependent iron uptake in erythroid cells. Nat
Genet. 37:1264–1269. 2005. View
Article : Google Scholar : PubMed/NCBI
|
|
46
|
Scarl RT, Lawrence CM, Gordon HM and
Nunemaker CS: STEAP4: Its emerging role in metabolism and
homeostasis of cellular iron and copper. J Endocrinol.
234:R123–R134. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Muckenthaler MU, Galy B and Hentze MW:
Systemic iron homeostasis and the iron-responsive
element/iron-regulatory protein (IRE/IRP) regulatory network. Annu
Rev Nutr. 28:197–213. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Galy B, Conrad M and Muckenthaler M:
Mechanisms controlling cellular and systemic iron homeostasis. Nat
Rev Mol Cell Biol. 25:133–155. 2024. View Article : Google Scholar
|
|
49
|
Ke Q and Costa M: Hypoxia-inducible
factor-1 (HIF-1). Mol Pharmacol. 70:1469–1480. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Rashid M, Zadeh LR, Baradaran B, Molavi O,
Ghesmati Z, Sabzichi M and Ramezani F: Up-down regulation of HIF-1α
in cancer progression. Gene. 798:1457962021. View Article : Google Scholar
|
|
51
|
Yang L, Liu Q, Lu Q, Xiao JJ, Fu AY, Wang
S, Ni L, Hu JW, Yu H, Wu X and Zhang BF: Scavenger receptor class B
type I deficiency induces iron overload and ferroptosis in renal
tubular epithelial cells via hypoxia-inducible
factor-1α/transferrin receptor 1 signaling pathway. Antioxid Redox
Signal. 41:56–73. 2024. View Article : Google Scholar
|
|
52
|
Clérigues V, Murphy CL, Guillén MI and
Alcaraz MJ: Haem oxygenase-1 induction reverses the actions of
interleukin-1β on hypoxia-inducible transcription factors and human
chondrocyte metabolism in hypoxia. Clin Sci (Lond). 125:99–108.
2013. View Article : Google Scholar
|
|
53
|
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta
R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS,
et al: Ferroptosis: An iron-dependent form of nonapoptotic cell
death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Nakamura T, Naguro I and Ichijo H: Iron
homeostasis and iron-regulated ROS in cell death, senescence and
human diseases. Biochim Biophys Acta Gen Subj. 1863:1398–1409.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Rochette L, Dogon G, Rigal E, Zeller M,
Cottin Y and Vergely C: Lipid peroxidation and iron metabolism: Two
corner stones in the homeostasis control of ferroptosis. Int J Mol
Sci. 24:4492022. View Article : Google Scholar
|
|
56
|
Bhattacharyya A, Chattopadhyay R, Mitra S
and Crowe SE: Oxidative stress: An essential factor in the
pathogenesis of gastrointestinal mucosal diseases. Physiol Rev.
94:329–354. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Kiran KR, Deepika VB, Swathy PS, Prasad K,
Kabekkodu SP, Murali TS, Satyamoorthy K and Muthusamy A:
ROS-dependent DNA damage and repair during germination of NaCl
primed seeds. J Photochem Photobiol B. 213:1120502020. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Ursini F and Maiorino M: Lipid
peroxidation and ferroptosis: The role of GSH and GPx4. Free Radic
Biol Med. 152:175–185. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Xie Y, Kang R, Klionsky DJ and Tang D:
GPX4 in cell death, autophagy, and disease. Autophagy.
19:2621–2638. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Probst L, Dächert J, Schenk B and Fulda S:
Lipoxygenase inhibitors protect acute lymphoblastic leukemia cells
from ferroptotic cell death. Biochem Pharmacol. 140:41–52. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Shintoku R, Takigawa Y, Yamada K, Kubota
C, Yoshimoto Y, Takeuchi T, Koshiishi I and Torii S:
Lipoxygenase-mediated generation of lipid peroxides enhances
ferroptosis induced by erastin and RSL3. Cancer Sci. 108:2187–2194.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Chen W, Yang A, Jia J, Popov YV, Schuppan
D and You H: Lysyl oxidase (LOX) family members: rationale and
their potential as therapeutic targets for liver fibrosis.
Hepatology. 72:729–741. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Shah R, Shchepinov MS and Pratt DA:
Resolving the role of lipoxygenases in the initiation and execution
of ferroptosis. ACS Cent Sci. 4:387–396. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Yang Y, Karakhanova S, Hartwig W, D'Haese
JG, Philippov PP, Werner J and Bazhin AV: Mitochondria and
mitochondrial ROS in cancer: Novel targets for anticancer therapy.
J Cell Physiol. 231:2570–2581. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Chen L, Ma Y, Ma X, Liu L, Jv X, Li A,
Shen Q, Jia W, Qu L, Shi L and Xie J: TFEB regulates cellular
labile iron and prevents ferroptosis in a TfR1-dependent manner.
Free Radic Biol Med. 208:445–457. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Wang D, Liang W, Huo D, Wang H, Wang Y,
Cong C, Zhang C, Yan S, Gao M, Su X, et al: SPY1 inhibits neuronal
ferroptosis in amyotrophic lateral sclerosis by reducing lipid
peroxidation through regulation of GCH1 and TFR1. Cell Death
Differ. 30:369–382. 2023. View Article : Google Scholar :
|
|
67
|
Koppula P, Lei G, Zhang Y, Yan Y, Mao C,
Kondiparthi L, Shi J, Liu X, Horbath A, Das M, et al: A targetable
CoQ-FSP1 axis drives ferroptosis- and radiation-resistance in KEAP1
inactive lung cancers. Nat Commun. 13:22062022. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Liu J, Kuang F, Kroemer G, Klionsky DJ,
Kang R and Tang D: Autophagy-dependent ferroptosis: Machinery and
regulation. Cell Chem Biol. 27:420–435. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Yang Y, Luo M, Zhang K, Zhang J, Gao T,
Connell DO, Yao F, Mu C, Cai B, Shang Y and Chen W: Nedd4
ubiquitylates VDAC2/3 to suppress erastin-induced ferroptosis in
melanoma. Nat Commun. 11:4332020. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Li Y, Cao Y, Xiao J, Shang J, Tan Q, Ping
F, Huang W, Wu F, Zhang H and Zhang X: Inhibitor of
apoptosis-stimulating protein of p53 inhibits ferroptosis and
alleviates intestinal ischemia/reperfusion-induced acute lung
injury. Cell Death Differ. 27:2635–2650. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Kang R, Kroemer G and Tang D: The tumor
suppressor protein p53 and the ferroptosis network. Free Radic Biol
Med. 133:162–168. 2019. View Article : Google Scholar
|
|
72
|
Bellezza I, Giambanco I, Minelli A and
Donato R: Nrf2-Keap1 signaling in oxidative and reductive stress.
Biochim Biophys Acta Mol Cell Res. 1865:721–733. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Dodson M, Castro-Portuguez R and Zhang DD:
NRF2 plays a critical role in mitigating lipid peroxidation and
ferroptosis. Redox Biol. 23:1011072019. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Han P, Wang X, Zhou T, Cheng J, Wang C,
Sun F and Zhao X: Inhibition of ferroptosis attenuates oligospermia
in male Nrf2 knockout mice. Free Radic Biol Med. 193:421–429. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Yamaguchi Y, Kamai T, Higashi S, Murakami
S, Arai K, Shirataki H and Yoshida KI: Nrf2 gene mutation and
single nucleotide polymorphism rs6721961 of the Nrf2 promoter
region in renal cell cancer. BMC Cancer. 19:11372019. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Rojo de la Vega M, Chapman E and Zhang DD:
Nrf2 and the hallmarks of cancer. Cancer Cell. 34:21–43. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Tang YC, Hsiao JR, Jiang SS, Chang JY, Chu
PY, Liu KJ, Fang HL, Lin LM, Chen HH, Huang YW, et al:
c-MYC-directed NRF2 drives malignant progression of head and neck
cancer via glucose-6-phosphate dehydrogenase and transketolase
activation. Theranostics. 11:5232–5247. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Menegon S, Columbano A and Giordano S: The
dual roles of NRF2 in cancer. Trends Mol Med. 22:578–593. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Zhou Y, Jia Z, Wang J, Huang S, Yang S,
Xiao S, Xia D and Zhou Y: Curcumin reverses erastin-induced
chondrocyte ferroptosis by upregulating Nrf2. Heliyon.
9:e201632023. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Zhang T, Sun L, Hao Y, Suo C, Shen S, Wei
H, Ma W, Zhang P, Wang T, Gu X, et al: ENO1 suppresses cancer cell
ferroptosis by degrading the mRNA of iron regulatory protein 1. Nat
Cancer. 3:75–89. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Arabpour J, Rezaei K, Khojini JY, Razi S,
Hayati MJ and Gheibihayat SM: The potential role and mechanism of
circRNAs in Ferroptosis: A comprehensive review. Pathol Res Pract.
255:1552032024. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Zhao Y, Li M, Yao X, Fei Y, Lin Z, Li Z,
Cai K, Zhao Y and Luo Z: HCAR1/MCT1 regulates tumor ferroptosis
through the lactate-mediated AMPK-SCD1 activity and its therapeutic
implications. Cell Rep. 33:1084872020. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Ganz T: Macrophages and iron metabolism.
Microbiol Spectr. 4:2016. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Zhu L, Zhao Q, Yang T, Ding W and Zhao Y:
Cellular metabolism and macrophage functional polarization. Int Rev
Immunol. 34:82–100. 2015. View Article : Google Scholar
|
|
85
|
Cronin SJF, Woolf CJ, Weiss G and
Penninger JM: The role of iron regulation in immunometabolism and
immune-related disease. Front Mol Biosci. 6:1162019. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Arnhold J, Furtmüller PG and Obinger C:
Redox properties of myeloperoxidase. Redox Rep. 8:179–186. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Malerba M, Louis S, Cuvellier S, Shambat
SM, Hua C, Gomart C, Fouet A, Ortonne N, Decousser JW, Zinkernagel
AS, et al: Epidermal hepcidin is required for neutrophil response
to bacterial infection. J Clin Invest. 130:329–334. 2020.
View Article : Google Scholar :
|
|
88
|
Puri S, Kumar R, Rojas IG, Salvatori O and
Edgerton M: Iron chelator deferasirox reduces candida albicans
invasion of oral epithelial cells and infection levels in murine
oropharyngeal candidiasis. Antimicrob Agents Chemother.
63:e02152–18. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Littwitz-Salomon E, Moreira D, Frost JN,
Choi C, Liou KT, Ahern DK, O'Shaughnessy S, Wagner B, Biron CA,
Drakesmith H, et al: Metabolic requirements of NK cells during the
acute response against retroviral infection. Nat Commun.
12:53762021. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Yao L, Hou J, Wu X, Lu Y, Jin Z, Yu Z, Yu
B, Li J, Yang Z, Li C, et al: Cancer-associated fibroblasts impair
the cytotoxic function of NK cells in gastric cancer by inducing
ferroptosis via iron regulation. Redox Biol. 67:1029232023.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Li L, Xia Y, Yuan S, Li F, Xie X, Luo Y,
Yang XP and He R: Iron deprivation restrains the differentiation
and pathogenicity of T helper 17 cell. J Leukoc Biol.
110:1057–1067. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Kagan VE, Mao G, Qu F, Angeli JP, Doll S,
Croix CS, Dar HH, Liu B, Tyurin VA, Ritov VB, et al: Oxidized
arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem
Biol. 13:81–90. 2017. View Article : Google Scholar
|
|
93
|
Veglia F, Tyurin VA, Blasi M, De Leo A,
Kossenkov AV, Donthireddy L, To TKJ, Schug Z, Basu S, Wang F, et
al: Fatty acid transport protein 2 reprograms neutrophils in
cancer. Nature. 569:73–78. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Srivastava MK, Sinha P, Clements VK,
Rodriguez P and Ostrand-Rosenberg S: Myeloid-derived suppressor
cells inhibit T-cell activation by depleting cystine and cysteine.
Cancer Res. 70:68–77. 2010. View Article : Google Scholar
|
|
95
|
Ostrand-Rosenberg S: Myeloid-derived
suppressor cells: More mechanisms for inhibiting antitumor
immunity. Cancer Immunol Immunother. 59:1593–1600. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Wang W, Green M, Choi JE, Gijón M, Kennedy
PD, Johnson JK, Liao P, Lang X, Kryczek I, Sell A, et al:
CD8+ T cells regulate tumour ferroptosis during cancer
immunotherapy. Nature. 569:270–274. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Kong R, Wang N, Han W, Bao W and Lu J:
IFNγ-mediated repression of system xc− drives
vulnerability to induced ferroptosis in hepatocellular carcinoma
cells. J Leukoc Biol. 110:301–314. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Zhao L, Zhou X, Xie F and Zhang L, Yan H,
Huang J, Zhang C, Zhou F, Chen J and Zhang L: Ferroptosis in cancer
and cancer immunotherapy. Cancer Commun (Lond). 42:88–116. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Lei G, Zhang Y, Koppula P, Liu X, Zhang J,
Lin SH, Ajani JA, Xiao Q, Liao Z, Wang H and Gan B: The role of
ferroptosis in ionizing radiation-induced cell death and tumor
suppression. Cell Res. 30:146–162. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Zhai X, Lin Y, Zhu L, Wang Y, Zhang J, Liu
J, Li L and Lu X: Ferroptosis in cancer immunity and immunotherapy:
Multifaceted interplay and clinical implications. Cytokine Growth
Factor Rev. 75:101–109. 2024. View Article : Google Scholar
|
|
101
|
Stockwell BR: Ferroptosis turns 10:
Emerging mechanisms, physiological functions, and therapeutic
applications. Cell. 185:2401–2421. 2022. View Article : Google Scholar : PubMed/NCBI
|