Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
March-2025 Volume 55 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2025 Volume 55 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Iron metabolism and the tumor microenvironment: A new perspective on cancer intervention and therapy (Review)

  • Authors:
    • Xiaorui Bu
    • Lufang Wang
  • View Affiliations / Copyright

    Affiliations: Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
    Copyright: © Bu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 39
    |
    Published online on: December 31, 2024
       https://doi.org/10.3892/ijmm.2024.5480
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Iron metabolism plays a crucial role in the tumor microenvironment, influencing various aspects of cancer cell biology and tumor progression. This review discusses the regulatory mechanisms of iron metabolism within the tumor microenvironment and highlights how tumor cells and associated stromal cells manage iron uptake, accumulation and regulation. The sources of iron within tumors and the biological importance of ferroptosis in cancer were explored, focusing on its mechanisms, biological effects and, in particular, its tumor‑suppressive properties. Furthermore, the protective strategies employed by cancer cells to evade ferroptosis were examined. This review also delves into the intricate relationship between iron metabolism and immune modulation within the tumor microenvironment, detailing the impact on tumor‑associated immune cells and immune evasion. The interplay between ferroptosis and immunotherapy is discussed and potential strategies to enhance cancer immunotherapy by modulating iron metabolism are presented. Finally, the current ferroptosis‑based cancer therapeutic approaches were summarized and future directions for therapies that target iron metabolism were proposed.
View Figures

Figure 1

Figure 2

View References

1 

Dixon SJ and Stockwell BR: The role of iron and reactive oxygen species in cell death. Nat Chem Biol. 10:9–17. 2014. View Article : Google Scholar

2 

Schümann K, Ettle T, Szegner B, Elsenhans B and Solomons NW: On risks and benefits of iron supplementation recommendations for iron intake revisited. J Trace Elem Med Biol. 21:147–168. 2007. View Article : Google Scholar : PubMed/NCBI

3 

Muckenthaler MU, Rivella S, Hentze MW and Galy B: A red carpet for iron metabolism. Cell. 168:344–361. 2017. View Article : Google Scholar : PubMed/NCBI

4 

Rodriguez R, Schreiber SL and Conrad M: Persister cancer cells: Iron addiction and vulnerability to ferroptosis. Mol Cell. 82:728–740. 2022. View Article : Google Scholar :

5 

Gao M, Yi J, Zhu J, Minikes AM, Monian P, Thompson CB and Jiang X: Role of mitochondria in ferroptosis. Mol Cell. 73:354–363.e3. 2019. View Article : Google Scholar :

6 

Kurz T, Eaton JW and Brunk UT: The role of lysosomes in iron metabolism and recycling. Int J Biochem Cell Biol. 43:1686–1697. 2011. View Article : Google Scholar : PubMed/NCBI

7 

Silva B and Faustino P: An overview of molecular basis of iron metabolism regulation and the associated pathologies. Biochim Biophys Acta. 1852:1347–1359. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Liang C, Zhang X, Yang M and Dong X: Recent progress in ferroptosis inducers for cancer therapy. Adv Mater. 31:e19041972019. View Article : Google Scholar : PubMed/NCBI

9 

Mu Q, Chen L, Gao X, Shen S, Sheng W, Min J and Wang F: The role of iron homeostasis in remodeling immune function and regulating inflammatory disease. Sci Bull (Beijing). 66:1806–1816. 2021. View Article : Google Scholar : PubMed/NCBI

10 

Slominski RM, Raman C, Chen JY and Slominski AT: How cancer hijacks the body's homeostasis through the neuroendocrine system. Trends Neurosci. 46:263–275. 2023. View Article : Google Scholar : PubMed/NCBI

11 

Slominski RM, Kim TK, Janjetovic Z, Brożyna AA, Podgorska E, Dixon KM, Mason RS, Tuckey RC, Sharma R, Crossman DK, et al: Malignant melanoma: An overview, new perspectives, and vitamin D signaling. Cancers (Basel). 16:22622024. View Article : Google Scholar : PubMed/NCBI

12 

Ajoolabady A, Tang D, Kroemer G and Ren J: Ferroptosis in hepatocellular carcinoma: Mechanisms and targeted therapy. Br J Cancer. 128:190–205. 2023. View Article : Google Scholar :

13 

Yang M, Wu X, Hu J, Wang Y, Wang Y, Zhang L, Huang W, Wang X, Li N, Liao L, et al: COMMD10 inhibits HIF1α/CP loop to enhance ferroptosis and radiosensitivity by disrupting Cu-Fe balance in hepatocellular carcinoma. J Hepatol. 76:1138–1150. 2022. View Article : Google Scholar : PubMed/NCBI

14 

Chen F, Fan Y, Hou J, Liu B, Zhang B, Shang Y, Chang Y, Cao P and Tan K: Integrated analysis identifies TfR1 as a prognostic biomarker which correlates with immune infiltration in breast cancer. Aging (Albany NY). 13:21671–21699. 2021. View Article : Google Scholar : PubMed/NCBI

15 

Candelaria PV, Leoh LS, Penichet ML and Daniels-Wells TR: Antibodies targeting the transferrin receptor 1 (TfR1) as direct anti-cancer agents. Front Immunol. 12:6076922021. View Article : Google Scholar : PubMed/NCBI

16 

Soyer HP, Smolle J, Torne R and Kerl H: Transferrin receptor expression in normal skin and in various cutaneous tumors. J Cutan Pathol. 14:1–5. 1987. View Article : Google Scholar : PubMed/NCBI

17 

Gammella E, Buratti P, Cairo G and Recalcati S: The transferrin receptor: The cellular iron gate. Metallomics. 9:1367–1375. 2017. View Article : Google Scholar : PubMed/NCBI

18 

Kawabata H: Transferrin and transferrin receptors update. Free Radic Biol Med. 133:46–54. 2019. View Article : Google Scholar

19 

Thompson EB: The many roles of c-Myc in apoptosis. Annu Rev Physiol. 60:575–600. 1998. View Article : Google Scholar : PubMed/NCBI

20 

Chen BY, Pathak JL, Lin HY, Guo WQ, Chen WJ, Luo G, Wang LJ, Sun XF, Ding Y, Li J, et al: Inflammation triggers chondrocyte ferroptosis in TMJOA via HIF-1α/TFRC. J Dent Res. 103:712–722. 2024. View Article : Google Scholar : PubMed/NCBI

21 

Finley LWS, Carracedo A, Lee J, Souza A, Egia A, Zhang J, Teruya-Feldstein J, Moreira PI, Cardoso SM, Clish CB, et al: SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization. Cancer Cell. 19:416–428. 2011. View Article : Google Scholar : PubMed/NCBI

22 

Chitambar CR, Al-Gizawiy MM, Alhajala HS, Pechman KR, Wereley JP, Wujek R, Clark PA, Kuo JS, Antholine WE and Schmainda KM: Gallium maltolate disrupts tumor iron metabolism and retards the growth of glioblastoma by inhibiting mitochondrial function and ribonucleotide reductase. Mol Cancer Ther. 17:1240–1250. 2018. View Article : Google Scholar : PubMed/NCBI

23 

Kenneth NS, Mudie S, Naron S and Rocha S: TfR1 interacts with the IKK complex and is involved in IKK-NF-κB signalling. Biochem J. 449:275–284. 2013. View Article : Google Scholar

24 

Jeong SM, Hwang S and Seong RH: Transferrin receptor regulates pancreatic cancer growth by modulating mitochondrial respiration and ROS generation. Biochem Biophys Res Commun. 471:373–379. 2016. View Article : Google Scholar : PubMed/NCBI

25 

Polak KZ, Schaffer P, Donaghy D, Zenk MC and Olver CS: Iron, hepcidin, and microcytosis in canine hepatocellular carcinoma. Vet Clin Pathol. 51:208–215. 2022. View Article : Google Scholar : PubMed/NCBI

26 

Habashy HO, Powe DG, Staka CM, Rakha EA, Ball G, Green AR, Aleskandarany M, Paish EC, Douglas Macmillan R, Nicholson RI, et al: Transferrin receptor (CD71) is a marker of poor prognosis in breast cancer and can predict response to tamoxifen. Breast Cancer Res Treat. 119:283–293. 2010. View Article : Google Scholar

27 

Yang DC, Wang F, Elliott RL and Head JF: Expression of transferrin receptor and ferritin H-chain mRNA are associated with clinical and histopathological prognostic indicators in breast cancer. Anticancer Res. 21:541–549. 2001.PubMed/NCBI

28 

Basuli D, Tesfay L, Deng Z, Paul B, Yamamoto Y, Ning G, Xian W, McKeon F, Lynch M, Crum CP, et al: Iron addiction: A novel therapeutic target in ovarian cancer. Oncogene. 36:4089–4099. 2017. View Article : Google Scholar : PubMed/NCBI

29 

Chan KT, Choi MY, Lai KKY, Tan W, Tung LN, Lam HY, Tong DK, Lee NP and Law S: Overexpression of transferrin receptor CD71 and its tumorigenic properties in esophageal squamous cell carcinoma. Oncol Rep. 31:1296–1304. 2014. View Article : Google Scholar : PubMed/NCBI

30 

Ryschich E, Huszty G, Knaebel HP, Hartel M, Büchler MW and Schmidt J: Transferrin receptor is a marker of malignant phenotype in human pancreatic cancer and in neuroendocrine carcinoma of the pancreas. Eur J Cancer. 40:1418–1422. 2004. View Article : Google Scholar : PubMed/NCBI

31 

Kondo K, Noguchi M, Mukai K, Matsuno Y, Sato Y, Shimosato Y and Monden Y: Transferrin receptor expression in adenocarcinoma of the lung as a histopathologic indicator of prognosis. Chest. 97:1367–1371. 1990. View Article : Google Scholar : PubMed/NCBI

32 

Smith NW, Strutton GM, Walsh MD, Wright GR, Seymour GJ, Lavin MF and Gardiner RA: Transferrin receptor expression in primary superficial human bladder tumours identifies patients who develop recurrences. Br J Urol. 65:339–344. 1990. View Article : Google Scholar : PubMed/NCBI

33 

Jamnongkan W, Thanan R, Techasen A, Namwat N, Loilome W, Intarawichian P, Titapun A and Yongvanit P: Upregulation of transferrin receptor-1 induces cholangiocarcinoma progression via induction of labile iron pool. Tumour Biol. 39:10104283177176552017. View Article : Google Scholar : PubMed/NCBI

34 

Xu X, Liu T, Wu J, Wang Y, Hong Y and Zhou H: Transferrin receptor-involved HIF-1 signaling pathway in cervical cancer. Cancer Gene Ther. 26:356–365. 2019. View Article : Google Scholar : PubMed/NCBI

35 

Wu H, Zhang J, Dai R, Xu J and Feng H: Transferrin receptor-1 and VEGF are prognostic factors for osteosarcoma. J Orthop Surg Res. 14:2962019. View Article : Google Scholar : PubMed/NCBI

36 

Greene CJ, Attwood K, Sharma NJ, Gross KW, Smith GJ, Xu B and Kauffman EC: Transferrin receptor 1 upregulation in primary tumor and downregulation in benign kidney is associated with progression and mortality in renal cell carcinoma patients. Oncotarget. 8:107052–107075. 2017. View Article : Google Scholar :

37 

Adachi M, Kai K, Yamaji K, Ide T, Noshiro H, Kawaguchi A and Aishima S: Transferrin receptor 1 overexpression is associated with tumour de-differentiation and acts as a potential prognostic indicator of hepatocellular carcinoma. Histopathology. 75:63–73. 2019. View Article : Google Scholar : PubMed/NCBI

38 

Das Gupta A, Patil J and Shah VI: Transferrin receptor expression by blast cells in acute lymphoblastic leukemia correlates with white cell count & immunophenotype. Indian J Med Res. 104:226–233. 1996.PubMed/NCBI

39 

Hagag AA, Badraia IM, Abdelmageed MM, Hablas NM, Hazzaa SME and Nosair NA: Prognostic value of transferrin receptor-1 (CD71) expression in acute lymphoblastic leukemia. Endocr Metab Immune Disord Drug Targets. 18:610–617. 2018. View Article : Google Scholar : PubMed/NCBI

40 

Maguire A, Chen X, Wisner L, Ramsower C, Glinsmann-Gibson B and Rimsza LM: Over-expression of transferrin receptor (TFRC/CD71) and low expression of innate and adaptive immune cell subsets in HIV-associated, GCB-DLBCL by digital gene expression profiling. Blood. 134(Suppl 1): S27832019. View Article : Google Scholar

41 

Joachim JH and Mehta KJ: Hepcidin in hepatocellular carcinoma. Br J Cancer. 127:185–192. 2022. View Article : Google Scholar : PubMed/NCBI

42 

Li P, Wu X, Chen P and Gu Z: Prognostic significance of iron metabolism related genes in human lung adenocarcinoma. Cancer Manag Res. 15:203–216. 2023. View Article : Google Scholar : PubMed/NCBI

43 

Grunewald TGP, Bach H, Cossarizza A and Matsumoto I: The STEAP protein family: Versatile oxidoreductases and targets for cancer immunotherapy with overlapping and distinct cellular functions. Biol Cell. 104:641–657. 2012. View Article : Google Scholar : PubMed/NCBI

44 

Ohgami RS, Campagna DR, McDonald A and Fleming MD: The steap proteins are metalloreductases. Blood. 108:1388–1394. 2006. View Article : Google Scholar : PubMed/NCBI

45 

Ohgami RS, Campagna DR, Greer EL, Antiochos B, McDonald A, Chen J, Sharp JJ, Fujiwara Y, Barker JE and Fleming MD: Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells. Nat Genet. 37:1264–1269. 2005. View Article : Google Scholar : PubMed/NCBI

46 

Scarl RT, Lawrence CM, Gordon HM and Nunemaker CS: STEAP4: Its emerging role in metabolism and homeostasis of cellular iron and copper. J Endocrinol. 234:R123–R134. 2017. View Article : Google Scholar : PubMed/NCBI

47 

Muckenthaler MU, Galy B and Hentze MW: Systemic iron homeostasis and the iron-responsive element/iron-regulatory protein (IRE/IRP) regulatory network. Annu Rev Nutr. 28:197–213. 2008. View Article : Google Scholar : PubMed/NCBI

48 

Galy B, Conrad M and Muckenthaler M: Mechanisms controlling cellular and systemic iron homeostasis. Nat Rev Mol Cell Biol. 25:133–155. 2024. View Article : Google Scholar

49 

Ke Q and Costa M: Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol. 70:1469–1480. 2006. View Article : Google Scholar : PubMed/NCBI

50 

Rashid M, Zadeh LR, Baradaran B, Molavi O, Ghesmati Z, Sabzichi M and Ramezani F: Up-down regulation of HIF-1α in cancer progression. Gene. 798:1457962021. View Article : Google Scholar

51 

Yang L, Liu Q, Lu Q, Xiao JJ, Fu AY, Wang S, Ni L, Hu JW, Yu H, Wu X and Zhang BF: Scavenger receptor class B type I deficiency induces iron overload and ferroptosis in renal tubular epithelial cells via hypoxia-inducible factor-1α/transferrin receptor 1 signaling pathway. Antioxid Redox Signal. 41:56–73. 2024. View Article : Google Scholar

52 

Clérigues V, Murphy CL, Guillén MI and Alcaraz MJ: Haem oxygenase-1 induction reverses the actions of interleukin-1β on hypoxia-inducible transcription factors and human chondrocyte metabolism in hypoxia. Clin Sci (Lond). 125:99–108. 2013. View Article : Google Scholar

53 

Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI

54 

Nakamura T, Naguro I and Ichijo H: Iron homeostasis and iron-regulated ROS in cell death, senescence and human diseases. Biochim Biophys Acta Gen Subj. 1863:1398–1409. 2019. View Article : Google Scholar : PubMed/NCBI

55 

Rochette L, Dogon G, Rigal E, Zeller M, Cottin Y and Vergely C: Lipid peroxidation and iron metabolism: Two corner stones in the homeostasis control of ferroptosis. Int J Mol Sci. 24:4492022. View Article : Google Scholar

56 

Bhattacharyya A, Chattopadhyay R, Mitra S and Crowe SE: Oxidative stress: An essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev. 94:329–354. 2014. View Article : Google Scholar : PubMed/NCBI

57 

Kiran KR, Deepika VB, Swathy PS, Prasad K, Kabekkodu SP, Murali TS, Satyamoorthy K and Muthusamy A: ROS-dependent DNA damage and repair during germination of NaCl primed seeds. J Photochem Photobiol B. 213:1120502020. View Article : Google Scholar : PubMed/NCBI

58 

Ursini F and Maiorino M: Lipid peroxidation and ferroptosis: The role of GSH and GPx4. Free Radic Biol Med. 152:175–185. 2020. View Article : Google Scholar : PubMed/NCBI

59 

Xie Y, Kang R, Klionsky DJ and Tang D: GPX4 in cell death, autophagy, and disease. Autophagy. 19:2621–2638. 2023. View Article : Google Scholar : PubMed/NCBI

60 

Probst L, Dächert J, Schenk B and Fulda S: Lipoxygenase inhibitors protect acute lymphoblastic leukemia cells from ferroptotic cell death. Biochem Pharmacol. 140:41–52. 2017. View Article : Google Scholar : PubMed/NCBI

61 

Shintoku R, Takigawa Y, Yamada K, Kubota C, Yoshimoto Y, Takeuchi T, Koshiishi I and Torii S: Lipoxygenase-mediated generation of lipid peroxides enhances ferroptosis induced by erastin and RSL3. Cancer Sci. 108:2187–2194. 2017. View Article : Google Scholar : PubMed/NCBI

62 

Chen W, Yang A, Jia J, Popov YV, Schuppan D and You H: Lysyl oxidase (LOX) family members: rationale and their potential as therapeutic targets for liver fibrosis. Hepatology. 72:729–741. 2020. View Article : Google Scholar : PubMed/NCBI

63 

Shah R, Shchepinov MS and Pratt DA: Resolving the role of lipoxygenases in the initiation and execution of ferroptosis. ACS Cent Sci. 4:387–396. 2018. View Article : Google Scholar : PubMed/NCBI

64 

Yang Y, Karakhanova S, Hartwig W, D'Haese JG, Philippov PP, Werner J and Bazhin AV: Mitochondria and mitochondrial ROS in cancer: Novel targets for anticancer therapy. J Cell Physiol. 231:2570–2581. 2016. View Article : Google Scholar : PubMed/NCBI

65 

Chen L, Ma Y, Ma X, Liu L, Jv X, Li A, Shen Q, Jia W, Qu L, Shi L and Xie J: TFEB regulates cellular labile iron and prevents ferroptosis in a TfR1-dependent manner. Free Radic Biol Med. 208:445–457. 2023. View Article : Google Scholar : PubMed/NCBI

66 

Wang D, Liang W, Huo D, Wang H, Wang Y, Cong C, Zhang C, Yan S, Gao M, Su X, et al: SPY1 inhibits neuronal ferroptosis in amyotrophic lateral sclerosis by reducing lipid peroxidation through regulation of GCH1 and TFR1. Cell Death Differ. 30:369–382. 2023. View Article : Google Scholar :

67 

Koppula P, Lei G, Zhang Y, Yan Y, Mao C, Kondiparthi L, Shi J, Liu X, Horbath A, Das M, et al: A targetable CoQ-FSP1 axis drives ferroptosis- and radiation-resistance in KEAP1 inactive lung cancers. Nat Commun. 13:22062022. View Article : Google Scholar : PubMed/NCBI

68 

Liu J, Kuang F, Kroemer G, Klionsky DJ, Kang R and Tang D: Autophagy-dependent ferroptosis: Machinery and regulation. Cell Chem Biol. 27:420–435. 2020. View Article : Google Scholar : PubMed/NCBI

69 

Yang Y, Luo M, Zhang K, Zhang J, Gao T, Connell DO, Yao F, Mu C, Cai B, Shang Y and Chen W: Nedd4 ubiquitylates VDAC2/3 to suppress erastin-induced ferroptosis in melanoma. Nat Commun. 11:4332020. View Article : Google Scholar : PubMed/NCBI

70 

Li Y, Cao Y, Xiao J, Shang J, Tan Q, Ping F, Huang W, Wu F, Zhang H and Zhang X: Inhibitor of apoptosis-stimulating protein of p53 inhibits ferroptosis and alleviates intestinal ischemia/reperfusion-induced acute lung injury. Cell Death Differ. 27:2635–2650. 2020. View Article : Google Scholar : PubMed/NCBI

71 

Kang R, Kroemer G and Tang D: The tumor suppressor protein p53 and the ferroptosis network. Free Radic Biol Med. 133:162–168. 2019. View Article : Google Scholar

72 

Bellezza I, Giambanco I, Minelli A and Donato R: Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim Biophys Acta Mol Cell Res. 1865:721–733. 2018. View Article : Google Scholar : PubMed/NCBI

73 

Dodson M, Castro-Portuguez R and Zhang DD: NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol. 23:1011072019. View Article : Google Scholar : PubMed/NCBI

74 

Han P, Wang X, Zhou T, Cheng J, Wang C, Sun F and Zhao X: Inhibition of ferroptosis attenuates oligospermia in male Nrf2 knockout mice. Free Radic Biol Med. 193:421–429. 2022. View Article : Google Scholar : PubMed/NCBI

75 

Yamaguchi Y, Kamai T, Higashi S, Murakami S, Arai K, Shirataki H and Yoshida KI: Nrf2 gene mutation and single nucleotide polymorphism rs6721961 of the Nrf2 promoter region in renal cell cancer. BMC Cancer. 19:11372019. View Article : Google Scholar : PubMed/NCBI

76 

Rojo de la Vega M, Chapman E and Zhang DD: Nrf2 and the hallmarks of cancer. Cancer Cell. 34:21–43. 2018. View Article : Google Scholar : PubMed/NCBI

77 

Tang YC, Hsiao JR, Jiang SS, Chang JY, Chu PY, Liu KJ, Fang HL, Lin LM, Chen HH, Huang YW, et al: c-MYC-directed NRF2 drives malignant progression of head and neck cancer via glucose-6-phosphate dehydrogenase and transketolase activation. Theranostics. 11:5232–5247. 2021. View Article : Google Scholar : PubMed/NCBI

78 

Menegon S, Columbano A and Giordano S: The dual roles of NRF2 in cancer. Trends Mol Med. 22:578–593. 2016. View Article : Google Scholar : PubMed/NCBI

79 

Zhou Y, Jia Z, Wang J, Huang S, Yang S, Xiao S, Xia D and Zhou Y: Curcumin reverses erastin-induced chondrocyte ferroptosis by upregulating Nrf2. Heliyon. 9:e201632023. View Article : Google Scholar : PubMed/NCBI

80 

Zhang T, Sun L, Hao Y, Suo C, Shen S, Wei H, Ma W, Zhang P, Wang T, Gu X, et al: ENO1 suppresses cancer cell ferroptosis by degrading the mRNA of iron regulatory protein 1. Nat Cancer. 3:75–89. 2022. View Article : Google Scholar : PubMed/NCBI

81 

Arabpour J, Rezaei K, Khojini JY, Razi S, Hayati MJ and Gheibihayat SM: The potential role and mechanism of circRNAs in Ferroptosis: A comprehensive review. Pathol Res Pract. 255:1552032024. View Article : Google Scholar : PubMed/NCBI

82 

Zhao Y, Li M, Yao X, Fei Y, Lin Z, Li Z, Cai K, Zhao Y and Luo Z: HCAR1/MCT1 regulates tumor ferroptosis through the lactate-mediated AMPK-SCD1 activity and its therapeutic implications. Cell Rep. 33:1084872020. View Article : Google Scholar : PubMed/NCBI

83 

Ganz T: Macrophages and iron metabolism. Microbiol Spectr. 4:2016. View Article : Google Scholar : PubMed/NCBI

84 

Zhu L, Zhao Q, Yang T, Ding W and Zhao Y: Cellular metabolism and macrophage functional polarization. Int Rev Immunol. 34:82–100. 2015. View Article : Google Scholar

85 

Cronin SJF, Woolf CJ, Weiss G and Penninger JM: The role of iron regulation in immunometabolism and immune-related disease. Front Mol Biosci. 6:1162019. View Article : Google Scholar : PubMed/NCBI

86 

Arnhold J, Furtmüller PG and Obinger C: Redox properties of myeloperoxidase. Redox Rep. 8:179–186. 2003. View Article : Google Scholar : PubMed/NCBI

87 

Malerba M, Louis S, Cuvellier S, Shambat SM, Hua C, Gomart C, Fouet A, Ortonne N, Decousser JW, Zinkernagel AS, et al: Epidermal hepcidin is required for neutrophil response to bacterial infection. J Clin Invest. 130:329–334. 2020. View Article : Google Scholar :

88 

Puri S, Kumar R, Rojas IG, Salvatori O and Edgerton M: Iron chelator deferasirox reduces candida albicans invasion of oral epithelial cells and infection levels in murine oropharyngeal candidiasis. Antimicrob Agents Chemother. 63:e02152–18. 2019. View Article : Google Scholar : PubMed/NCBI

89 

Littwitz-Salomon E, Moreira D, Frost JN, Choi C, Liou KT, Ahern DK, O'Shaughnessy S, Wagner B, Biron CA, Drakesmith H, et al: Metabolic requirements of NK cells during the acute response against retroviral infection. Nat Commun. 12:53762021. View Article : Google Scholar : PubMed/NCBI

90 

Yao L, Hou J, Wu X, Lu Y, Jin Z, Yu Z, Yu B, Li J, Yang Z, Li C, et al: Cancer-associated fibroblasts impair the cytotoxic function of NK cells in gastric cancer by inducing ferroptosis via iron regulation. Redox Biol. 67:1029232023. View Article : Google Scholar : PubMed/NCBI

91 

Li L, Xia Y, Yuan S, Li F, Xie X, Luo Y, Yang XP and He R: Iron deprivation restrains the differentiation and pathogenicity of T helper 17 cell. J Leukoc Biol. 110:1057–1067. 2021. View Article : Google Scholar : PubMed/NCBI

92 

Kagan VE, Mao G, Qu F, Angeli JP, Doll S, Croix CS, Dar HH, Liu B, Tyurin VA, Ritov VB, et al: Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol. 13:81–90. 2017. View Article : Google Scholar

93 

Veglia F, Tyurin VA, Blasi M, De Leo A, Kossenkov AV, Donthireddy L, To TKJ, Schug Z, Basu S, Wang F, et al: Fatty acid transport protein 2 reprograms neutrophils in cancer. Nature. 569:73–78. 2019. View Article : Google Scholar : PubMed/NCBI

94 

Srivastava MK, Sinha P, Clements VK, Rodriguez P and Ostrand-Rosenberg S: Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res. 70:68–77. 2010. View Article : Google Scholar

95 

Ostrand-Rosenberg S: Myeloid-derived suppressor cells: More mechanisms for inhibiting antitumor immunity. Cancer Immunol Immunother. 59:1593–1600. 2010. View Article : Google Scholar : PubMed/NCBI

96 

Wang W, Green M, Choi JE, Gijón M, Kennedy PD, Johnson JK, Liao P, Lang X, Kryczek I, Sell A, et al: CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature. 569:270–274. 2019. View Article : Google Scholar : PubMed/NCBI

97 

Kong R, Wang N, Han W, Bao W and Lu J: IFNγ-mediated repression of system xc− drives vulnerability to induced ferroptosis in hepatocellular carcinoma cells. J Leukoc Biol. 110:301–314. 2021. View Article : Google Scholar : PubMed/NCBI

98 

Zhao L, Zhou X, Xie F and Zhang L, Yan H, Huang J, Zhang C, Zhou F, Chen J and Zhang L: Ferroptosis in cancer and cancer immunotherapy. Cancer Commun (Lond). 42:88–116. 2022. View Article : Google Scholar : PubMed/NCBI

99 

Lei G, Zhang Y, Koppula P, Liu X, Zhang J, Lin SH, Ajani JA, Xiao Q, Liao Z, Wang H and Gan B: The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell Res. 30:146–162. 2020. View Article : Google Scholar : PubMed/NCBI

100 

Zhai X, Lin Y, Zhu L, Wang Y, Zhang J, Liu J, Li L and Lu X: Ferroptosis in cancer immunity and immunotherapy: Multifaceted interplay and clinical implications. Cytokine Growth Factor Rev. 75:101–109. 2024. View Article : Google Scholar

101 

Stockwell BR: Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell. 185:2401–2421. 2022. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Bu X and Wang L: Iron metabolism and the tumor microenvironment: A new perspective on cancer intervention and therapy (Review). Int J Mol Med 55: 39, 2025.
APA
Bu, X., & Wang, L. (2025). Iron metabolism and the tumor microenvironment: A new perspective on cancer intervention and therapy (Review). International Journal of Molecular Medicine, 55, 39. https://doi.org/10.3892/ijmm.2024.5480
MLA
Bu, X., Wang, L."Iron metabolism and the tumor microenvironment: A new perspective on cancer intervention and therapy (Review)". International Journal of Molecular Medicine 55.3 (2025): 39.
Chicago
Bu, X., Wang, L."Iron metabolism and the tumor microenvironment: A new perspective on cancer intervention and therapy (Review)". International Journal of Molecular Medicine 55, no. 3 (2025): 39. https://doi.org/10.3892/ijmm.2024.5480
Copy and paste a formatted citation
x
Spandidos Publications style
Bu X and Wang L: Iron metabolism and the tumor microenvironment: A new perspective on cancer intervention and therapy (Review). Int J Mol Med 55: 39, 2025.
APA
Bu, X., & Wang, L. (2025). Iron metabolism and the tumor microenvironment: A new perspective on cancer intervention and therapy (Review). International Journal of Molecular Medicine, 55, 39. https://doi.org/10.3892/ijmm.2024.5480
MLA
Bu, X., Wang, L."Iron metabolism and the tumor microenvironment: A new perspective on cancer intervention and therapy (Review)". International Journal of Molecular Medicine 55.3 (2025): 39.
Chicago
Bu, X., Wang, L."Iron metabolism and the tumor microenvironment: A new perspective on cancer intervention and therapy (Review)". International Journal of Molecular Medicine 55, no. 3 (2025): 39. https://doi.org/10.3892/ijmm.2024.5480
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team