|
1
|
Joseph P, Leong D, McKee M, Anand SS,
Schwalm JD, Teo K, Mente A and Yusuf S: Reducing the global burden
of cardiovascular disease, part 1: The epidemiology and risk
factors. Circ Res. 121:677–694. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Ras J, Smith DL, Kengne AP, Soteriades EE
and Leach L: Cardiovascular disease risk factors, musculoskeletal
health, physical fitness, and occupational performance in
firefighters: A narrative review. J Environ Public Health.
2022:73464082022. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Li Q, Zhang S, Yang G, Wang X, Liu F, Li
Y, Chen Y, Zhou T, Xie D, Liu Y and Zhang L: Energy metabolism: A
critical target of cardiovascular injury. Biomed Pharmacother.
165:1152712023. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Liang S, Yegambaram M, Wang T, Wang J,
Black SM and Tang H: Mitochondrial metabolism, redox, and calcium
homeostasis in pulmonary arterial hypertension. Biomedicines.
10:3412022. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Varghese E, Samuel SM, Sadiq Z, Kubatka P,
Liskova A, Benacka J, Pazinka P, Kruzliak P and Büsselberg D:
Anti-Cancer agents in proliferation and cell death: The calcium
connection. Int J Mol Sci. 20:30172019. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Sukumaran P, Nascimento Da Conceicao V,
Sun Y, Ahamad N, Saraiva LR, Selvaraj S and Singh BB: Calcium
Signaling Regulates Autophagy and Apoptosis. Cells. 10:21252021.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Reyes Gaido OE, Nkashama LJ, Schole KL,
Wang Q, Umapathi P, Mesubi OO, Konstantinidis K, Luczak ED and
Anderson ME: CaMKII as a therapeutic target in cardiovascular
disease. Annu Rev Pharmacol Toxicol. 63:249–272. 2023. View Article : Google Scholar
|
|
8
|
Viola HM and Hool LC: Targeting calcium
and the mitochondria in prevention of pathology in the heart. Curr
Drug Targets. 12:748–760. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Fearnley CJ, Roderick HL and Bootman MD:
Calcium signaling in cardiac myocytes. Cold Spring Harb Perspect
Biol. 3:a0042422011. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Matchkov VV, Kudryavtseva O and Aalkjaer
C: Intracellular Ca(2)(+) signalling and phenotype of vascular
smooth muscle cells. Basic Clin Pharmacol Toxicol. 110:42–48. 2012.
View Article : Google Scholar
|
|
11
|
Beghi S, Furmanik M, Jaminon A, Veltrop R,
Rapp N, Wichapong K, Bidar E, Buschini A and Schurgers LJ: Calcium
signalling in heart and vessels: Role of calmodulin and downstream
calmodulin-dependent protein kinases. Int J Mol Sci. 23:161392022.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Kamer KJ and Mootha VK: The molecular era
of the mitochondrial calcium uniporter. Nat Rev Mol Cell Biol.
16:545–553. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
D'Angelo D and Rizzuto R: The
mitochondrial calcium uniporter (MCU): Molecular identity and role
in human diseases. Biomolecules. 13:13042023. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Lim D, Dematteis G, Tapella L, Genazzani
AA, Calì T, Brini M and Verkhratsky A: Ca(2+) handling at the
mitochondria-ER contact sites in neurodegeneration. Cell Calcium.
98:1024532021. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
De Stefani D, Patron M and Rizzuto R:
Structure and function of the mitochondrial calcium uniporter
complex. Biochim Biophys Acta. 1853:2006–2011. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Nemani N, Shanmughapriya S and Madesh M:
Molecular regulation of MCU: Implications in physiology and
disease. Cell Calcium. 74:86–93. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Fieni F, Lee SB, Jan YN and Kirichok Y:
Activity of the mitochondrial calcium uniporter varies greatly
between tissues. Nat Commun. 3:13172012. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Murphy E and Liu JC: Mitochondrial calcium
and reactive oxygen species in cardiovascular disease. Cardiovasc
Res. 119:1105–1116. 2023. View Article : Google Scholar :
|
|
19
|
Meinild Lundby AK, Jacobs RA, Gehrig S, de
Leur J, Hauser M, Bonne TC, Flück D, Dandanell S, Kirk N, Kaech A,
et al: Exercise training increases skeletal muscle mitochondrial
volume density by enlargement of existing mitochondria and not de
novo biogenesis. Acta Physiol (Oxf). 222:2018. View Article : Google Scholar
|
|
20
|
Kim HK, Kang YG, Jeong SH, Park N, Marquez
J, Ko KS, Rhee BD, Shin JW and Han J: Cyclic stretch increases
mitochondrial biogenesis in a cardiac cell line. Biochem Biophys
Res Commun. 505:768–774. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Baughman JM, Perocchi F, Girgis HS,
Plovanich M, Belcher-Timme CA, Sancak Y, Bao XR, Strittmatter L,
Goldberger O, Bogorad RL, et al: Integrative genomics identifies
MCU as an essential component of the mitochondrial calcium
uniporter. Nature. 476:341–345. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Baradaran R, Wang C, Siliciano AF and Long
SB: Cryo-EM structures of fungal and metazoan mitochondrial calcium
uniporters. Nature. 559:580–584. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
De Stefani D, Raffaello A, Teardo E, Szabo
I and Rizzuto R: A forty-kilodalton protein of the inner membrane
is the mitochondrial calcium uniporter. Nature. 476:336–340. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Raffaello A, De Stefani D, Sabbadin D,
Teardo E, Merli G, Picard A, Checchetto V, Moro S, Szabò I and
Rizzuto R: The mitochondrial calcium uniporter is a multimer that
can include a dominant-negative pore-forming subunit. EMBO J.
32:2362–2376. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Yoo J, Wu M, Yin Y, Herzik MA Jr, Lander
GC and Lee SY: Cryo-EM structure of a mitochondrial calcium
uniporter. Science. 361:506–511. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Lambert JP, Luongo TS, Tomar D, Jadiya P,
Gao E, Zhang X, Lucchese AM, Kolmetzky DW, Shah NS and Elrod W:
MCUB regulates the molecular composition of the mitochondrial
calcium uniporter channel to limit mitochondrial calcium overload
during stress. Circulation. 140:1720–1733. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Mammucari C, Raffaello A, Vecellio Reane
D, Gherardi G, De Mario A and Rizzuto R: Mitochondrial calcium
uptake in organ physiology: From molecular mechanism to animal
models. Pflugers Arch. 470:1165–1179. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Sancak Y, Markhard AL, Kitami T,
Kovács-Bogdán E, Kamer KJ, Udeshi ND, Carr SA, Chaudhuri D, Clapham
DE, Li AA, et al: EMRE is an essential component of the
mitochondrial calcium uniporter complex. Science. 342:1379–1382.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Yamamoto T, Yamagoshi R, Harada K, Kawano
M, Minami N, Ido Y, Kuwahara K, Fujita A, Ozono M, Watanabe A, et
al: Analysis of the structure and function of EMRE in a yeast
expression system. Biochim Biophys Acta. 1857:831–839. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Delgado BD and Long SB: Mechanisms of ion
selectivity and throughput in the mitochondrial calcium uniporter.
Sci Adv. 8:eade15162022. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Gottschalk B, Klec C, Leitinger G,
Bernhart E, Rost R, Bischof H, Madreiter-Sokolowski CT, Radulović
S, Eroglu E, Sattler W, et al: MICU1 controls cristae junction and
spatially anchors mitochondrial Ca(2+) uniporter complex. Nat
Commun. 10:37322019. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Konig T, Tröder SE, Bakka K, Korwitz A,
Richter-Dennerlein R, Lampe PA, Patron M, Mühlmeister M,
Guerrero-Castillo S, Brandt U, et al: The m-AAA protease associated
with neurodegeneration limits MCU activity in mitochondria. Mol
Cell. 64:148–162. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Hasan P, Berezhnaya E, Rodríguez-Prados M,
Weaver D, Bekeova C, Cartes-Saavedra B, Birch E, Beyer AM, Santos
JH, Seifert EL, et al: MICU1 and MICU2 control mitochondrial
calcium signaling in the mammalian heart. Proc Natl Acad Sci USA.
121:e24024911212024. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Plovanich M, Bogorad RL, Sancak Y, Kamer
KJ, Strittmatter L, Li AA, Girgis HS, Kuchimanchi S, De Groot J,
Speciner L, et al: MICU2, a paralog of MICU1, resides within the
mitochondrial uniporter complex to regulate calcium handling. PLoS
One. 8:e557852013. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Kamer KJ, Grabarek Z and Mootha VK:
High-affinity cooperative Ca(2+) binding by MICU1-MICU2 serves as
an on-off switch for the uniporter. EMBO Rep. 18:1397–1411. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Patron M, Checchetto V, Raffaello A,
Teardo E, Vecellio Reane D, Mantoan M, Granatiero V, Szabò I, De
Stefani D and Rizzuto R: MICU1 and MICU2 finely tune the
mitochondrial Ca2+ uniporter by exerting opposite effects on MCU
activity. Mol Cell. 53:726–737. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Patron M, Granatiero V, Espino J, Rizzuto
R and De Stefani D: MICU3 is a tissue-specific enhancer of
mitochondrial calcium uptake. Cell Death Differ. 26:179–195. 2019.
View Article : Google Scholar
|
|
38
|
Tomar D, Dong Z, Shanmughapriya S, Koch
DA, Thomas T, Hoffman NE, Timbalia SA, Goldman SJ, Breves SL,
Corbally DP, et al: MCUR1 is a scaffold factor for the MCU complex
function and promotes mitochondrial bioenergetics. Cell Rep.
15:1673–1685. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Mallilankaraman K, Cárdenas C, Doonan PJ,
Chandramoorthy HC, Irrinki KM, Golenár T, Csordás G, Madireddi P,
Yang J, Müller M, et al: MCUR1 is an essential component of
mitochondrial Ca2+ uptake that regulates cellular metabolism. Nat
Cell Biol. 14:1336–1343. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Zulkifli M, Neff JK, Timbalia SA, Garza
NM, Chen Y, Watrous JD, Murgia M, Trivedi PP, Anderson SK, Tomar D,
et al: Yeast homologs of human MCUR1 regulate mitochondrial proline
metabolism. Nat Commun. 11:48662020. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Paupe V, Prudent J, Dassa EP, Rendon OZ
and Shoubridge EA: CCDC90A (MCUR1) is a cytochrome c oxidase
assembly factor and not a regulator of the mitochondrial calcium
uniporter. Cell Metab. 21:109–116. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Bassi MT, Manzoni M, Bresciani R, Pizzo
MT, Della Monica A, Barlati S, Monti E and Borsani G: Cellular
expression and alternative splicing of SLC25A23, a member of the
mitochondrial Ca2+-dependent solute carrier gene family. Gene.
345:173–182. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Hoffman NE, Chandramoorthy HC,
Shanmughapriya S, Zhang XQ, Vallem S, Doonan PJ, Malliankaraman K,
Guo S, Rajan S, Elrod JW, et al: SLC25A23 augments mitochondrial
Ca(2)(+) uptake, interacts with MCU, and induces oxidative
stress-mediated cell death. Mol Biol Cell. 25:936–947. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Rochette L, Meloux A, Zeller M, Malka G,
Cottin Y and Vergely C: Mitochondrial SLC25 carriers: Novel Targets
for Cancer Therapy. Molecules. 25:24172020. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Jennings RB and Reimer KA: The cell
biology of acute myocardial ischemia. Annu Rev Med. 42:225–246.
1991. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Gottlieb RA, Burleson KO, Kloner RA,
Babior BM and Engler RL: Reperfusion injury induces apoptosis in
rabbit cardiomyocytes. J Clin Invest. 94:1621–1628. 1994.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Kajstura J, Cheng W, Reiss K, Clark WA,
Sonnenblick EH, Krajewski S, Reed JC, Olivetti G and Anversa P:
Apoptotic and necrotic myocyte cell deaths are independent
contributing variables of infarct size in rats. Lab Invest.
74:86–107. 1996.PubMed/NCBI
|
|
48
|
Jennings RB, Sommers HM, Smyth GA, Flack
HA and Linn H: Myocardial necrosis induced by temporary occlusion
of a coronary artery in the dog. Arch Pathol. 70:68–78.
1960.PubMed/NCBI
|
|
49
|
Bertero E, Popoiu TA and Maack C:
Mitochondrial calcium in cardiac ischemia/reperfusion injury and
cardioprotection. Basic Res Cardiol. 119:569–585. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Yang R, Zhang X, Xing P, Zhang S, Zhang F,
Wang J, Yu J, Zhu X and Chang P: Grpel2 alleviates myocardial
ischemia/reperfusion injury by inhibiting MCU-mediated
mitochondrial calcium overload. Biochem Biophys Res Commun.
609:169–175. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Guo L, Liu C, Jiang C, Dong Y, Htet Htet
Aung L, Ding H and Gao Y: miR-124 inhibits cardiomyocyte apoptosis
in myocardial ischaemia-reperfusion injury by activating
mitochondrial calcium uniporter regulator 1. Mol Med Rep.
28:1442023. View Article : Google Scholar
|
|
52
|
Li S, Chen J, Liu M, Chen Y, Wu Y, Li Q,
Ma T, Gao J, Xia Y, Fan M, et al: Protective effect of HINT2 on
mitochondrial function via repressing MCU complex activation
attenuates cardiac microvascular ischemia-reperfusion injury. Basic
Res Cardiol. 116:652021. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Li C, Ma Q, Toan S, Wang J, Zhou H and
Liang J: SERCA overexpression reduces reperfusion-mediated cardiac
microvascular damage through inhibition of the
calcium/MCU/mPTP/necroptosis signaling pathways. Redox Biol.
36:1016592020. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Antoniel M, Jones K, Antonucci S, Spolaore
B, Fogolari F, Petronilli V, Giorgio V, Carraro M, Di Lisa F, Forte
M, et al: The unique histidine in OSCP subunit of F-ATP synthase
mediates inhibition of the permeability transition pore by acidic
pH. EMBO Rep. 19:257–268. 2018. View Article : Google Scholar
|
|
55
|
Marta K, Hasan P, Rodriguez-Prados M,
Paillard M and Hajnoczky G: Pharmacological inhibition of the
mitochondrial Ca(2+) uniporter: Relevance for pathophysiology and
human therapy. J Mol Cell Cardiol. 151:135–144. 2021. View Article : Google Scholar
|
|
56
|
Rasmussen TP, Wu Y, Joiner ML, Koval OM,
Wilson NR, Luczak ED, Wang Q, Chen B, Gao Z, Zhu Z, et al:
Inhibition of MCU forces extramitochondrial adaptations governing
physiological and pathological stress responses in heart. Proc Natl
Acad Sci USA. 112:9129–9134. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Chapoy Villanueva H, Sung JH, Stevens JA,
Zhang MJ, Nelson PM, Denduluri LS, Feng F, O'Connell TD, Townsend D
and Liu JC: Distinct effects of cardiac mitochondrial calcium
uniporter inactivation via EMRE deletion in the short and long
term. J Mol Cell Cardiol. 181:33–45. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Xue Q, Pei H, Liu Q, Zhao M, Sun J, Gao E,
Ma X and Tao L: MICU1 protects against myocardial
ischemia/reperfusion injury and its control by the importer
receptor Tom70. Cell Death Dis. 8:e29232017. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Simon F, Oberhuber A, Floros N, Busch A,
Wagenhäuser MU, Schelzig H and Duran M: Acute Limb Ischemia-Much
More Than Just a Lack of Oxygen. Int J Mol Sci. 19:3742018.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Richards GHC, Hong KL, Henein MY, Hanratty
C and Boles U: Coronary artery ectasia: Review of the
non-atherosclerotic molecular and pathophysiologic concepts. Int J
Mol Sci. 23:51952022. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Hu Y, Chi L, Kuebler WM and Goldenberg NM:
Perivascular Inflammation in Pulmonary Arterial Hypertension.
Cells. 9:23382020. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Cui H, Chen Y, Li K, Zhan R, Zhao M, Xu Y,
Lin Z, Fu Y, He Q, Tang PC, et al: Untargeted metabolomics
identifies succinate as a biomarker and therapeutic target in
aortic aneurysm and dissection. Eur Heart J. 42:4373–4385. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Aday AW and Matsushita K: Epidemiology of
peripheral artery disease and polyvascular disease. Circ Res.
128:1818–1832. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Chan NC, Xu K, de Vries TAC, Eikelboom JW
and Hirsh J: Inflammation as a mechanism and therapeutic target in
peripheral artery disease. Can J Cardiol. 38:588–600. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Archer SL, Weir EK and Wilkins MR: Basic
science of pulmonary arterial hypertension for clinicians: New
concepts and experimental therapies. Circulation. 121:2045–2066.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Dromparis P, Paulin R, Sutendra G, Qi AC,
Bonnet S and Michelakis ED: Uncoupling protein 2 deficiency mimics
the effects of hypoxia and endoplasmic reticulum stress on
mitochondria and triggers pseudohypoxic pulmonary vascular
remodeling and pulmonary hypertension. Circ Res. 113:126–136. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Hong Z, Chen KH, DasGupta A, Potus F,
Dunham-Snary K, Bonnet S, Tian L, Fu J, Breuils-Bonnet S,
Provencher S, et al: MicroRNA-138 and MicroRNA-25 Down-regulate
mitochondrial calcium uniporter, causing the pulmonary arterial
hypertension cancer phenotype. Am J Respir Crit Care Med.
195:515–529. 2017. View Article : Google Scholar :
|
|
68
|
Wu D, Dasgupta A, Read AD, Bentley RET,
Motamed M, Chen KH, Al-Qazazi R, Mewburn JD, Dunham-Snary KJ,
Alizadeh E, et al: Oxygen sensing, mitochondrial biology and
experimental therapeutics for pulmonary hypertension and cancer.
Free Radic Biol Med. 170:150–178. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Guilluy C, Eddahibi S, Agard C, Guignabert
C, Izikki M, Tu L, Savale L, Humbert M, Fadel E, Adnot S, et al:
RhoA and Rho kinase activation in human pulmonary hypertension:
Role of 5-HT signaling. Am J Respir Crit Care Med. 179:1151–1158.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Guo X, Chen KH, Guo Y, Liao H, Tang J and
Xiao RP: Mitofusin 2 triggers vascular smooth muscle cell apoptosis
via mitochondrial death pathway. Circ Res. 101:1113–1122. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Tomida S, Ishima T, Sawaki D, Imai Y,
Nagai R and Aizawa K: Multi-Omics of familial thoracic aortic
aneurysm and dissection: Calcium transport impairment predisposes
aortas to dissection. Int J Mol Sci. 24:152132023. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Yang H, An BS, Choi KC and Jeung EB:
Change of genes in calcium transport channels caused by hypoxic
stress in the placenta, duodenum, and kidney of pregnant rats. Biol
Reprod. 88:302013. View Article : Google Scholar
|
|
73
|
Garbincius JF and Elrod JW: Mitochondrial
calcium exchange in physiology and disease. Physiol Rev.
102:893–992. 2022. View Article : Google Scholar :
|
|
74
|
Wang P, Xu S, Xu J, Xin Y, Lu Y, Zhang H,
Zhou B, Xu H, Sheu SS, Tian R and Wang W: Elevated MCU expression
by CaMKIIdeltaB limits pathological cardiac remodeling.
Circulation. 145:1067–1083. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Zhang L, Lu X, Wang J, Li P, Li H, Wei S,
Zhou X, Li K, Wang L, Wang R, et al: Zingiberis rhizoma mediated
enhancement of the pharmacological effect of aconiti lateralis
radix praeparata against acute heart failure and the underlying
biological mechanisms. Biomed Pharmacother. 96:246–255. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Liu T, Yang N, Sidor A and O'Rourke B: MCU
Overexpression rescues inotropy and reverses heart failure by
reducing SR Ca(2+) Leak. Circ Res. 128:1191–1204. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Garbincius JF and Elrod JW: Is the failing
heart starved of mitochondrial calcium? Circ Res. 128:1205–1207.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Suarez J, Cividini F, Scott BT, Lehmann K,
Diaz-Juarez J, Diemer T, Dai A, Suarez JA, Jain M and Dillmann WH:
Restoring mitochondrial calcium uniporter expression in diabetic
mouse heart improves mitochondrial calcium handling and cardiac
function. J Biol Chem. 293:8182–8195. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Tarazón E, Pérez-Carrillo L,
García-Bolufer P, Triviño JC, Feijóo-Bandín S, Lago F,
González-Juanatey JR, Martínez-Dolz L, Portolés M and Roselló-Lletí
E: Circulating mitochondrial genes detect acute cardiac allograft
rejection: Role of the mitochondrial calcium uniporter complex. Am
J Transplant. 21:2056–2066. 2021. View Article : Google Scholar :
|
|
80
|
Maack C, Cortassa S, Aon MA, Ganesan AN,
Liu T and O'Rourke B: Elevated cytosolic Na+ decreases
mitochondrial Ca2+ uptake during excitation-contraction coupling
and impairs energetic adaptation in cardiac myocytes. Circ Res.
99:172–182. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Liu T and O'Rourke B: Enhancing
mitochondrial Ca2+ uptake in myocytes from failing hearts restores
energy supply and demand matching. Circ Res. 103:279–288. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Sommakia S, Houlihan PR, Deane SS, Simcox
JA, Torres NS, Jeong MY, Winge DR, Villanueva CJ and Chaudhuri D:
Mitochondrial cardiomyopathies feature increased uptake and
diminished efflux of mitochondrial calcium. J Mol Cell Cardiol.
113:22–32. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Fu DG: Cardiac arrhythmias: Diagnosis,
symptoms, and treatments. Cell Biochem Biophys. 73:291–296. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Hamilton S, Terentyeva R, Clements RT,
Belevych AE and Terentyev D: Sarcoplasmic reticulum-mitochondria
communication; implications for cardiac arrhythmia. J Mol Cell
Cardiol. 156:105–113. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Wang J, Jiang J, Hu H and Chen L: MCU
complex: Exploring emerging targets and mechanisms of mitochondrial
physiology and pathology. J Adv Res. Feb 27–2024.Epub ahead of
print.
|
|
86
|
Langenbacher AD, Shimizu H, Hsu W, Zhao Y,
Borges A, Koehler C and Chen JN: Mitochondrial calcium uniporter
deficiency in zebrafish causes cardiomyopathy with arrhythmia.
Front Physiol. 11:6174922020. View Article : Google Scholar
|
|
87
|
Wiersma M, van Marion DMS, Wüst RCI,
Houtkooper RH, Zhang D, Groot NMS, Henning RH and Brundel BJJM:
Mitochondrial dysfunction underlies cardiomyocyte remodeling in
experimental and clinical atrial fibrillation. Cells. 8:12022019.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Joseph LC, Reyes MV, Homan EA, Gowen B,
Avula UMR, Goulbourne CN, Wan EY, Elrod JW and Morrow JP: The
mitochondrial calcium uniporter promotes arrhythmias caused by
high-fat diet. Sci Rep. 11:178082021. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Sripetchwandee J, KenKnight SB, Sanit J,
Chattipakorn S and Chattipakorn N: Blockade of mitochondrial
calcium uniporter prevents cardiac mitochondrial dysfunction caused
by iron overload. Acta Physiol (Oxf). 210:330–341. 2014. View Article : Google Scholar
|
|
90
|
Sander P, Feng M, Schweitzer MK, Wilting
F, Gutenthaler SM, Arduino DM, Fischbach S, Dreizehnter L, Moretti
A, Gudermann T, et al: Approved drugs ezetimibe and disulfiram
enhance mitochondrial Ca(2+) uptake and suppress cardiac
arrhythmogenesis. Br J Pharmacol. 178:4518–4532. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Hamilton S, Terentyeva R, Perger F,
Hernández Orengo B, Martin B, Gorr MW, Belevych AE, Clements RT,
Györke S and Terentyev D: MCU overexpression evokes disparate
dose-dependent effects on mito-ROS and spontaneous Ca(2+) release
in hypertrophic rat cardiomyocytes. Am J Physiol Heart Circ
Physiol. 321:H615–H632. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Hu X, Wang H, Lu W, Dong Y and Cheng P:
The study on intramyocardial calcium overload and apoptosis induced
by coxsackievirus B3. J Tongji Med Univ. 21:256–258. 2622001.
|
|
93
|
Salgado DM, Eltit JM, Mansfield K,
Panqueba C, Castro D, Vega MR, Xhaja K, Schmidt D, Martin KJ, Allen
PD, et al: Heart and skeletal muscle are targets of dengue virus
infection. Pediatr Infect Dis J. 29:238–242. 2010. View Article : Google Scholar :
|
|
94
|
Huynh TV, Rethi L, Lee TW, Higa S, Kao YH
and Chen YJ: Spike protein impairs mitochondrial function in human
cardiomyocytes: Mechanisms underlying cardiac injury in COVID-19.
Cells. 12:8772023. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Maass DL, White J, Sanders B and Horton
JW: Role of cytosolic vs. mitochondrial Ca2+ accumulation in burn
injury-related myocardial inflammation and function. Am J Physiol
Heart Circ Physiol. 288:H744–H751. 2005. View Article : Google Scholar
|
|
96
|
Wan-Yi L, Hui, Zong-Cheng Y and Yue-Sheng
H: Ruthenium red attenuated cardiomyocyte and mitochondrial damage
during the early stage after severe burn. Burns. 28:35–38. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
White DJ, Maass DL, Sanders B and Horton
JW: Cardiomyocyte intracellular calcium and cardiac dysfunction
after burn trauma. Crit Care Med. 30:14–22. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Lim CC, Zuppinger C, Guo X, Kuster GM,
Helmes M, Eppenberger HM, Suter TM, Liao R and Sawyer DB:
Anthracyclines induce calpain-dependent titin proteolysis and
necrosis in cardiomyocytes. J Biol Chem. 279:8290–8299. 2004.
View Article : Google Scholar
|
|
99
|
Gunter TE and Pfeiffer DR: Mechanisms by
which mitochondria transport calcium. Am J Physiol. 258:C755–C786.
1990. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Gunter TE, Gunter KK, Sheu SS and Gavin
CE: Mitochondrial calcium transport: Physiological and pathological
relevance. Am J Physiol. 267:C313–C339. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Garbincius JF, Luongo TS and Elrod JW: The
debate continues - What is the role of MCU and mitochondrial
calcium uptake in the heart? J Mol Cell Cardiol. 143:163–174. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Ashok D, Papanicolaou K, Sidor A, Wang M,
Solhjoo S, Liu T and O'Rourke B: Mitochondrial membrane potential
instability on reperfusion after ischemia does not depend on
mitochondrial Ca(2+) uptake. J Biol Chem. 299:1047082023.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Wang C, Jacewicz A, Delgado BD, Baradaran
R and Long SB: Structures reveal gatekeeping of the mitochondrial
Ca(2+) uniporter by MICU1-MICU2. Elife. 9:e599912020. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Xie A, Song Z, Liu H, Zhou A, Shi G, Wang
Q, Gu L, Liu M, Xie LH, Qu Z and Dudley SC Jr: Mitochondrial Ca(2+)
influx contributes to arrhythmic risk in nonischemic
cardiomyopathy. J Am Heart Assoc. 7:e0078052018. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Tomar D, Jaña F, Dong Z, Quinn WJ III,
Jadiya P, Breves SL, Daw CC, Srikantan S, Shanmughapriya S, Nemani
N, et al: Blockade of MCU-mediated Ca(2+) uptake perturbs lipid
metabolism via PP4-dependent AMPK dephosphorylation. Cell Rep.
26:3709–3725 e7. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Tian S, Lei P, Zhang J, Sun Y, Li B and
Shan Y: Sulforaphane Balances Ca(2+) homeostasis injured by
excessive fat via mitochondria-associated membrane (MAM). Mol Nutr
Food Res. 65:e20010762021. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Wright LE, Vecellio Reane D, Milan G,
Terrin A, Di Bello G, Belligoli A, Sanna M, Foletto M, Favaretto F,
Raffaello A, et al: Increased mitochondrial calcium uniporter in
adipocytes underlies mitochondrial alterations associated with
insulin resistance. Am J Physiol Endocrinol Metab. 313:E641–E650.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Zhang Z, Luo Z, Yu L, Xiao Y, Liu S, Aluo
Z, Ma Z, Huang L, Xiao L, Jia M, et al: Ruthenium 360 and
mitoxantrone inhibit mitochondrial calcium uniporter channel to
prevent liver steatosis induced by high-fat diet. Br J Pharmacol.
179:2678–2696. 2022. View Article : Google Scholar
|
|
109
|
Jia M, Liu S, Xiao Y, Zhang Z, Li M, Qi X,
Qi X, Yu L, Zhang C, Jiang T, et al: Deletion of the mitochondrial
calcium uniporter in adipose tissue promotes energy expenditure and
alleviates diet-induced obesity. Mol Metab. 80:1018732024.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Arruda AP and Hotamisligil GS: Calcium
Homeostasis and organelle function in the pathogenesis of obesity
and diabetes. Cell Metab. 22:381–397. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Kannel WB, Wolf PA, Benjamin EJ and Levy
D: Prevalence, incidence, prognosis, and predisposing conditions
for atrial fibrillation: population-based estimates. Am J Cardiol.
82:2N–9N. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Grisanti LA: Diabetes and Arrhythmias:
Pathophysiology, mechanisms and therapeutic outcomes. Front
Physiol. 9:16692018. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Cividini F, Scott BT, Suarez J, Casteel
DE, Heinz S, Dai A, Diemer T, Suarez JA, Benner CW, Ghassemian M
and Dillmann WH: Ncor2/PPARalpha-dependent upregulation of MCUb in
the type 2 diabetic heart impacts cardiac metabolic flexibility and
function. Diabetes. 70:665–679. 2021. View Article : Google Scholar
|
|
114
|
Shi X, Liu C, Chen J, Zhou S, Li Y, Zhao
X, Xing J, Xue J, Liu F and Li F: Endothelial MICU1 alleviates
diabetic cardiomyopathy by attenuating nitrative stress-mediated
cardiac microvascular injury. Cardiovasc Diabetol. 22:2162023.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Ji L, Liu F, Jing Z, Huang Q, Zhao Y, Cao
H, Li J, Yin C, Xing J and Li F: MICU1 alleviates diabetic
cardiomyopathy through mitochondrial Ca(2+)-dependent antioxidant
response. Diabetes. 66:1586–1600. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
De Stefani D, Rizzuto R and Pozzan T:
Enjoy the trip: Calcium in mitochondria back and forth. Annu Rev
Biochem. 85:161–192. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Kon N, Murakoshi M, Isobe A, Kagechika K,
Miyoshi N and Nagayama T: DS16570511 is a small-molecule inhibitor
of the mitochondrial calcium uniporter. Cell Death Discov.
3:170452017. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Arduino DM, Wettmarshausen J, Vais H,
Navas-Navarro P, Cheng Y, Leimpek A, Ma Z, Delrio-Lorenzo A,
Giordano A, Garcia-Perez C, et al: Systematic identification of MCU
modulators by orthogonal interspecies chemical screening. Mol Cell.
67:711–723 e7. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Paillard M, Csordás G, Huang KT, Várnai P,
Joseph SK and Hajnóczky G: MICU1 interacts with the D-ring of the
MCU pore to control its Ca(2+) flux and sensitivity to Ru360. Mol
Cell. 72:778–785 e3. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Xu X, Zhou B, Liu J, Ma Q, Zhang T and Wu
X: Ru360 alleviates postoperative cognitive dysfunction in aged
mice by inhibiting MCU-mediated mitochondrial dysfunction.
Neuropsychiatr Dis Treat. 19:1531–1542. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Bigham NP, Novorolsky RJ, Davis KR, Zou H,
MacMillan SN, Stevenson MJ, Robertson GS and Wilson JJ:
Supramolecular delivery of dinuclear ruthenium and osmium MCU
inhibitors. Inorg Chem Front. 11:5064–5079. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Thu VT, Kim HK, Long le T, Lee SR, Hanh
TM, Ko TH, Heo HJ, Kim N, Kim SH, Ko KS, et al: NecroX-5 prevents
hypoxia/reoxygenation injury by inhibiting the mitochondrial
calcium uniporter. Cardiovasc Res. 94:342–350. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Schwartz J, Holmuhamedov E, Zhang X,
Lovelace GL, Smith CD and Lemasters JJ: Minocycline and
doxycycline, but not other tetracycline-derived compounds, protect
liver cells from chemical hypoxia and ischemia/reperfusion injury
by inhibition of the mitochondrial calcium uniporter. Toxicol Appl
Pharmacol. 273:172–179. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Xiao Z, Guan L, Shi H, Yu Y, Yu Z, Qin S,
Su Y, Chen R, Li M and Ge J: Trimetazidine affects mitochondrial
calcium uniporter expression to restore ischemic heart function via
reactive oxygen species/NFĸB pathway inhibition. J Cardiovasc
Pharmacol. 82:104–116. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Chaudhary P, Sharma YK, Sharma S, Singh SN
and Suryakumar G: High altitude mediated skeletal muscle atrophy:
Protective role of curcumin. Biochimie. 156:138–147. 2019.
View Article : Google Scholar
|
|
126
|
Kotha RR and Luthria DL: Curcumin:
Biological, pharmaceutical, nutraceutical, and analytical aspects.
Molecules. 24:29302019. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Kushwaha AD, Kalra N, Varshney R and
Saraswat D: Mitochondrial Ca(2+) overload due to altered
proteostasis amplifies apoptosis in C2C12 myoblasts under hypoxia:
Protective role of nanocurcumin formulation. IUBMB Life.
75:673–687. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Dong Z, Zhang C, Chen Y, Chen Y, Yuan Z,
Peng Y and Cao T: Astragaloside-IV protects against heat-induced
apoptosis by inhibiting excessive activation of mitochondrial Ca2+
uniporter. Cell Physiol Biochem. 42:480–494. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Jiang C, Shen J, Wang C, Huang Y, Wang L,
Yang Y, Hu W, Li P and Wu H: Mechanism of aconitine mediated
neuronal apoptosis induced by mitochondrial calcium overload caused
by MCU. Toxicol Lett. 384:86–95. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Gao Y, Hou R, Fei Q, Fang L, Han Y, Cai R,
Peng C and Qi Y: The three-herb formula shuang-huang-lian
stabilizes mast cells through activation of mitochondrial calcium
uniporter. Sci Rep. 7:387362017. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Ding J, Ji R, Wang Z, Jia Y, Meng T, Song
X, Gao J and He Q: Cardiovascular protection of YiyiFuzi powder and
the potential mechanisms through modulating
mitochondria-endoplasmic reticulum interactions. Front Pharmacol.
15:14055452024. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Cao J, Zheng CD, Zhang GH, Zhang YJ and
Min S: Protective effect of Shenfu injection on myocardial
mitochondria injured by ischemia-reperfusion in rabbits. Chin Med J
(Engl). 118:505–507. 2005.PubMed/NCBI
|
|
133
|
Wen J, Zhang L, Liu H, Wang J, Li J, Yang
Y, Wang Y, Cai H, Li R and Zhao Y: Salsolinol attenuates
doxorubicin-induced chronic heart failure in rats and improves
mitochondrial function in H9c2 cardiomyocytes. Front Pharmacol.
10:11352019. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Meng M, Jiang Y, Wang Y, Huo R, Ma N, Shen
X and Chang G: β-carotene targets IP3R/GRP75/VDAC1-MCU axis to
renovate LPS-induced mitochondrial oxidative damage by regulating
STIM1. Free Radic Biol Med. 205:25–46. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Luo D, Zhao Y, Fang Z, Zhao Y, Han Y, Piao
J, Rong X and Guo J: Tianhuang formula regulates adipocyte
mitochondrial function by AMPK/MICU1 pathway in HFD/STZ-induced
T2DM mice. BMC Complement Med Ther. 23:2022023. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Wang P, Zheng X, Du R, Xu J, Li J, Zhang
H, Liang X and Liang H: Astaxanthin protects against alcoholic
liver injury via regulating mitochondrial redox balance and calcium
homeostasis. J Agric Food Chem. 71:19531–19550. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Lei Y, Yang HY, Meng N, Qin YY, Xu MT,
Xiang XL, Liu L and Tang GD: Mitochondrial calcium uniporter
promotes mitophagy by regulating the PINK1/Parkin pathway in
caerulein-treated pancreatic ductal epithelial cells in vitro. Exp
Ther Med. 27:1472024. View Article : Google Scholar
|
|
138
|
Hou Y, Fan F, Xie N, Zhang Y, Wang X and
Meng X: Rhodiola crenulata alleviates hypobaric hypoxia-induced
brain injury by maintaining BBB integrity and balancing energy
metabolism dysfunction. Phytomedicine. 128:1555292024. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Liu H, Li Q, Zhang X, Shi Y and Li J:
Effect of ginkgolide K on calcium channel activity in Alzheimer's
disease. Exp Ther Med. 23:4262022. View Article : Google Scholar : PubMed/NCBI
|