Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
March-2025 Volume 55 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2025 Volume 55 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Mitochondrial calcium uniporter complex: An emerging therapeutic target for cardiovascular diseases (Review)

  • Authors:
    • Yaling Li
    • Hongmin Hu
    • Chun Chu
    • Jun Yang
  • View Affiliations / Copyright

    Affiliations: Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421000, P.R. China, Department of Pharmacy, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421000, P.R. China
    Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 40
    |
    Published online on: December 31, 2024
       https://doi.org/10.3892/ijmm.2024.5481
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cardiovascular disease (CVD) is currently a major factor affecting human physical and mental health. In recent years, the relationship between intracellular Ca2+ and CVD has been extensively studied. Ca2+ movement across the mitochondrial inner membrane plays a vital role as an intracellular messenger, regulating energy metabolism and calcium homeostasis. It is also involved in pathological processes such as cardiomyocyte apoptosis, hypertrophy and fibrosis in CVD. The selective mitochondrial calcium uniporter complex (MCU complex) located in the inner membrane is essential for mitochondrial Ca2+ uptake. Therefore, the MCU complex is a potential therapeutic target for CVD. In this review, recent research progress on the pathophysiological mechanisms and therapeutic potential of the MCU complex in various CVDs was summarized, including myocardial ischemia‑reperfusion injury, pulmonary arterial hypertension, other peripheral vascular diseases, myocardial remodeling and arrhythmias. This review contributes to a deeper understanding of these mechanisms at the molecular level and highlights potential intervention targets for CVD treatment in clinical practice.
View Figures

Figure 1

Figure 2

View References

1 

Joseph P, Leong D, McKee M, Anand SS, Schwalm JD, Teo K, Mente A and Yusuf S: Reducing the global burden of cardiovascular disease, part 1: The epidemiology and risk factors. Circ Res. 121:677–694. 2017. View Article : Google Scholar : PubMed/NCBI

2 

Ras J, Smith DL, Kengne AP, Soteriades EE and Leach L: Cardiovascular disease risk factors, musculoskeletal health, physical fitness, and occupational performance in firefighters: A narrative review. J Environ Public Health. 2022:73464082022. View Article : Google Scholar : PubMed/NCBI

3 

Li Q, Zhang S, Yang G, Wang X, Liu F, Li Y, Chen Y, Zhou T, Xie D, Liu Y and Zhang L: Energy metabolism: A critical target of cardiovascular injury. Biomed Pharmacother. 165:1152712023. View Article : Google Scholar : PubMed/NCBI

4 

Liang S, Yegambaram M, Wang T, Wang J, Black SM and Tang H: Mitochondrial metabolism, redox, and calcium homeostasis in pulmonary arterial hypertension. Biomedicines. 10:3412022. View Article : Google Scholar : PubMed/NCBI

5 

Varghese E, Samuel SM, Sadiq Z, Kubatka P, Liskova A, Benacka J, Pazinka P, Kruzliak P and Büsselberg D: Anti-Cancer agents in proliferation and cell death: The calcium connection. Int J Mol Sci. 20:30172019. View Article : Google Scholar : PubMed/NCBI

6 

Sukumaran P, Nascimento Da Conceicao V, Sun Y, Ahamad N, Saraiva LR, Selvaraj S and Singh BB: Calcium Signaling Regulates Autophagy and Apoptosis. Cells. 10:21252021. View Article : Google Scholar : PubMed/NCBI

7 

Reyes Gaido OE, Nkashama LJ, Schole KL, Wang Q, Umapathi P, Mesubi OO, Konstantinidis K, Luczak ED and Anderson ME: CaMKII as a therapeutic target in cardiovascular disease. Annu Rev Pharmacol Toxicol. 63:249–272. 2023. View Article : Google Scholar

8 

Viola HM and Hool LC: Targeting calcium and the mitochondria in prevention of pathology in the heart. Curr Drug Targets. 12:748–760. 2011. View Article : Google Scholar : PubMed/NCBI

9 

Fearnley CJ, Roderick HL and Bootman MD: Calcium signaling in cardiac myocytes. Cold Spring Harb Perspect Biol. 3:a0042422011. View Article : Google Scholar : PubMed/NCBI

10 

Matchkov VV, Kudryavtseva O and Aalkjaer C: Intracellular Ca(2)(+) signalling and phenotype of vascular smooth muscle cells. Basic Clin Pharmacol Toxicol. 110:42–48. 2012. View Article : Google Scholar

11 

Beghi S, Furmanik M, Jaminon A, Veltrop R, Rapp N, Wichapong K, Bidar E, Buschini A and Schurgers LJ: Calcium signalling in heart and vessels: Role of calmodulin and downstream calmodulin-dependent protein kinases. Int J Mol Sci. 23:161392022. View Article : Google Scholar : PubMed/NCBI

12 

Kamer KJ and Mootha VK: The molecular era of the mitochondrial calcium uniporter. Nat Rev Mol Cell Biol. 16:545–553. 2015. View Article : Google Scholar : PubMed/NCBI

13 

D'Angelo D and Rizzuto R: The mitochondrial calcium uniporter (MCU): Molecular identity and role in human diseases. Biomolecules. 13:13042023. View Article : Google Scholar : PubMed/NCBI

14 

Lim D, Dematteis G, Tapella L, Genazzani AA, Calì T, Brini M and Verkhratsky A: Ca(2+) handling at the mitochondria-ER contact sites in neurodegeneration. Cell Calcium. 98:1024532021. View Article : Google Scholar : PubMed/NCBI

15 

De Stefani D, Patron M and Rizzuto R: Structure and function of the mitochondrial calcium uniporter complex. Biochim Biophys Acta. 1853:2006–2011. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Nemani N, Shanmughapriya S and Madesh M: Molecular regulation of MCU: Implications in physiology and disease. Cell Calcium. 74:86–93. 2018. View Article : Google Scholar : PubMed/NCBI

17 

Fieni F, Lee SB, Jan YN and Kirichok Y: Activity of the mitochondrial calcium uniporter varies greatly between tissues. Nat Commun. 3:13172012. View Article : Google Scholar : PubMed/NCBI

18 

Murphy E and Liu JC: Mitochondrial calcium and reactive oxygen species in cardiovascular disease. Cardiovasc Res. 119:1105–1116. 2023. View Article : Google Scholar :

19 

Meinild Lundby AK, Jacobs RA, Gehrig S, de Leur J, Hauser M, Bonne TC, Flück D, Dandanell S, Kirk N, Kaech A, et al: Exercise training increases skeletal muscle mitochondrial volume density by enlargement of existing mitochondria and not de novo biogenesis. Acta Physiol (Oxf). 222:2018. View Article : Google Scholar

20 

Kim HK, Kang YG, Jeong SH, Park N, Marquez J, Ko KS, Rhee BD, Shin JW and Han J: Cyclic stretch increases mitochondrial biogenesis in a cardiac cell line. Biochem Biophys Res Commun. 505:768–774. 2018. View Article : Google Scholar : PubMed/NCBI

21 

Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Timme CA, Sancak Y, Bao XR, Strittmatter L, Goldberger O, Bogorad RL, et al: Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature. 476:341–345. 2011. View Article : Google Scholar : PubMed/NCBI

22 

Baradaran R, Wang C, Siliciano AF and Long SB: Cryo-EM structures of fungal and metazoan mitochondrial calcium uniporters. Nature. 559:580–584. 2018. View Article : Google Scholar : PubMed/NCBI

23 

De Stefani D, Raffaello A, Teardo E, Szabo I and Rizzuto R: A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature. 476:336–340. 2011. View Article : Google Scholar : PubMed/NCBI

24 

Raffaello A, De Stefani D, Sabbadin D, Teardo E, Merli G, Picard A, Checchetto V, Moro S, Szabò I and Rizzuto R: The mitochondrial calcium uniporter is a multimer that can include a dominant-negative pore-forming subunit. EMBO J. 32:2362–2376. 2013. View Article : Google Scholar : PubMed/NCBI

25 

Yoo J, Wu M, Yin Y, Herzik MA Jr, Lander GC and Lee SY: Cryo-EM structure of a mitochondrial calcium uniporter. Science. 361:506–511. 2018. View Article : Google Scholar : PubMed/NCBI

26 

Lambert JP, Luongo TS, Tomar D, Jadiya P, Gao E, Zhang X, Lucchese AM, Kolmetzky DW, Shah NS and Elrod W: MCUB regulates the molecular composition of the mitochondrial calcium uniporter channel to limit mitochondrial calcium overload during stress. Circulation. 140:1720–1733. 2019. View Article : Google Scholar : PubMed/NCBI

27 

Mammucari C, Raffaello A, Vecellio Reane D, Gherardi G, De Mario A and Rizzuto R: Mitochondrial calcium uptake in organ physiology: From molecular mechanism to animal models. Pflugers Arch. 470:1165–1179. 2018. View Article : Google Scholar : PubMed/NCBI

28 

Sancak Y, Markhard AL, Kitami T, Kovács-Bogdán E, Kamer KJ, Udeshi ND, Carr SA, Chaudhuri D, Clapham DE, Li AA, et al: EMRE is an essential component of the mitochondrial calcium uniporter complex. Science. 342:1379–1382. 2013. View Article : Google Scholar : PubMed/NCBI

29 

Yamamoto T, Yamagoshi R, Harada K, Kawano M, Minami N, Ido Y, Kuwahara K, Fujita A, Ozono M, Watanabe A, et al: Analysis of the structure and function of EMRE in a yeast expression system. Biochim Biophys Acta. 1857:831–839. 2016. View Article : Google Scholar : PubMed/NCBI

30 

Delgado BD and Long SB: Mechanisms of ion selectivity and throughput in the mitochondrial calcium uniporter. Sci Adv. 8:eade15162022. View Article : Google Scholar : PubMed/NCBI

31 

Gottschalk B, Klec C, Leitinger G, Bernhart E, Rost R, Bischof H, Madreiter-Sokolowski CT, Radulović S, Eroglu E, Sattler W, et al: MICU1 controls cristae junction and spatially anchors mitochondrial Ca(2+) uniporter complex. Nat Commun. 10:37322019. View Article : Google Scholar : PubMed/NCBI

32 

Konig T, Tröder SE, Bakka K, Korwitz A, Richter-Dennerlein R, Lampe PA, Patron M, Mühlmeister M, Guerrero-Castillo S, Brandt U, et al: The m-AAA protease associated with neurodegeneration limits MCU activity in mitochondria. Mol Cell. 64:148–162. 2016. View Article : Google Scholar : PubMed/NCBI

33 

Hasan P, Berezhnaya E, Rodríguez-Prados M, Weaver D, Bekeova C, Cartes-Saavedra B, Birch E, Beyer AM, Santos JH, Seifert EL, et al: MICU1 and MICU2 control mitochondrial calcium signaling in the mammalian heart. Proc Natl Acad Sci USA. 121:e24024911212024. View Article : Google Scholar : PubMed/NCBI

34 

Plovanich M, Bogorad RL, Sancak Y, Kamer KJ, Strittmatter L, Li AA, Girgis HS, Kuchimanchi S, De Groot J, Speciner L, et al: MICU2, a paralog of MICU1, resides within the mitochondrial uniporter complex to regulate calcium handling. PLoS One. 8:e557852013. View Article : Google Scholar : PubMed/NCBI

35 

Kamer KJ, Grabarek Z and Mootha VK: High-affinity cooperative Ca(2+) binding by MICU1-MICU2 serves as an on-off switch for the uniporter. EMBO Rep. 18:1397–1411. 2017. View Article : Google Scholar : PubMed/NCBI

36 

Patron M, Checchetto V, Raffaello A, Teardo E, Vecellio Reane D, Mantoan M, Granatiero V, Szabò I, De Stefani D and Rizzuto R: MICU1 and MICU2 finely tune the mitochondrial Ca2+ uniporter by exerting opposite effects on MCU activity. Mol Cell. 53:726–737. 2014. View Article : Google Scholar : PubMed/NCBI

37 

Patron M, Granatiero V, Espino J, Rizzuto R and De Stefani D: MICU3 is a tissue-specific enhancer of mitochondrial calcium uptake. Cell Death Differ. 26:179–195. 2019. View Article : Google Scholar

38 

Tomar D, Dong Z, Shanmughapriya S, Koch DA, Thomas T, Hoffman NE, Timbalia SA, Goldman SJ, Breves SL, Corbally DP, et al: MCUR1 is a scaffold factor for the MCU complex function and promotes mitochondrial bioenergetics. Cell Rep. 15:1673–1685. 2016. View Article : Google Scholar : PubMed/NCBI

39 

Mallilankaraman K, Cárdenas C, Doonan PJ, Chandramoorthy HC, Irrinki KM, Golenár T, Csordás G, Madireddi P, Yang J, Müller M, et al: MCUR1 is an essential component of mitochondrial Ca2+ uptake that regulates cellular metabolism. Nat Cell Biol. 14:1336–1343. 2012. View Article : Google Scholar : PubMed/NCBI

40 

Zulkifli M, Neff JK, Timbalia SA, Garza NM, Chen Y, Watrous JD, Murgia M, Trivedi PP, Anderson SK, Tomar D, et al: Yeast homologs of human MCUR1 regulate mitochondrial proline metabolism. Nat Commun. 11:48662020. View Article : Google Scholar : PubMed/NCBI

41 

Paupe V, Prudent J, Dassa EP, Rendon OZ and Shoubridge EA: CCDC90A (MCUR1) is a cytochrome c oxidase assembly factor and not a regulator of the mitochondrial calcium uniporter. Cell Metab. 21:109–116. 2015. View Article : Google Scholar : PubMed/NCBI

42 

Bassi MT, Manzoni M, Bresciani R, Pizzo MT, Della Monica A, Barlati S, Monti E and Borsani G: Cellular expression and alternative splicing of SLC25A23, a member of the mitochondrial Ca2+-dependent solute carrier gene family. Gene. 345:173–182. 2005. View Article : Google Scholar : PubMed/NCBI

43 

Hoffman NE, Chandramoorthy HC, Shanmughapriya S, Zhang XQ, Vallem S, Doonan PJ, Malliankaraman K, Guo S, Rajan S, Elrod JW, et al: SLC25A23 augments mitochondrial Ca(2)(+) uptake, interacts with MCU, and induces oxidative stress-mediated cell death. Mol Biol Cell. 25:936–947. 2014. View Article : Google Scholar : PubMed/NCBI

44 

Rochette L, Meloux A, Zeller M, Malka G, Cottin Y and Vergely C: Mitochondrial SLC25 carriers: Novel Targets for Cancer Therapy. Molecules. 25:24172020. View Article : Google Scholar : PubMed/NCBI

45 

Jennings RB and Reimer KA: The cell biology of acute myocardial ischemia. Annu Rev Med. 42:225–246. 1991. View Article : Google Scholar : PubMed/NCBI

46 

Gottlieb RA, Burleson KO, Kloner RA, Babior BM and Engler RL: Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest. 94:1621–1628. 1994. View Article : Google Scholar : PubMed/NCBI

47 

Kajstura J, Cheng W, Reiss K, Clark WA, Sonnenblick EH, Krajewski S, Reed JC, Olivetti G and Anversa P: Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab Invest. 74:86–107. 1996.PubMed/NCBI

48 

Jennings RB, Sommers HM, Smyth GA, Flack HA and Linn H: Myocardial necrosis induced by temporary occlusion of a coronary artery in the dog. Arch Pathol. 70:68–78. 1960.PubMed/NCBI

49 

Bertero E, Popoiu TA and Maack C: Mitochondrial calcium in cardiac ischemia/reperfusion injury and cardioprotection. Basic Res Cardiol. 119:569–585. 2024. View Article : Google Scholar : PubMed/NCBI

50 

Yang R, Zhang X, Xing P, Zhang S, Zhang F, Wang J, Yu J, Zhu X and Chang P: Grpel2 alleviates myocardial ischemia/reperfusion injury by inhibiting MCU-mediated mitochondrial calcium overload. Biochem Biophys Res Commun. 609:169–175. 2022. View Article : Google Scholar : PubMed/NCBI

51 

Guo L, Liu C, Jiang C, Dong Y, Htet Htet Aung L, Ding H and Gao Y: miR-124 inhibits cardiomyocyte apoptosis in myocardial ischaemia-reperfusion injury by activating mitochondrial calcium uniporter regulator 1. Mol Med Rep. 28:1442023. View Article : Google Scholar

52 

Li S, Chen J, Liu M, Chen Y, Wu Y, Li Q, Ma T, Gao J, Xia Y, Fan M, et al: Protective effect of HINT2 on mitochondrial function via repressing MCU complex activation attenuates cardiac microvascular ischemia-reperfusion injury. Basic Res Cardiol. 116:652021. View Article : Google Scholar : PubMed/NCBI

53 

Li C, Ma Q, Toan S, Wang J, Zhou H and Liang J: SERCA overexpression reduces reperfusion-mediated cardiac microvascular damage through inhibition of the calcium/MCU/mPTP/necroptosis signaling pathways. Redox Biol. 36:1016592020. View Article : Google Scholar : PubMed/NCBI

54 

Antoniel M, Jones K, Antonucci S, Spolaore B, Fogolari F, Petronilli V, Giorgio V, Carraro M, Di Lisa F, Forte M, et al: The unique histidine in OSCP subunit of F-ATP synthase mediates inhibition of the permeability transition pore by acidic pH. EMBO Rep. 19:257–268. 2018. View Article : Google Scholar

55 

Marta K, Hasan P, Rodriguez-Prados M, Paillard M and Hajnoczky G: Pharmacological inhibition of the mitochondrial Ca(2+) uniporter: Relevance for pathophysiology and human therapy. J Mol Cell Cardiol. 151:135–144. 2021. View Article : Google Scholar

56 

Rasmussen TP, Wu Y, Joiner ML, Koval OM, Wilson NR, Luczak ED, Wang Q, Chen B, Gao Z, Zhu Z, et al: Inhibition of MCU forces extramitochondrial adaptations governing physiological and pathological stress responses in heart. Proc Natl Acad Sci USA. 112:9129–9134. 2015. View Article : Google Scholar : PubMed/NCBI

57 

Chapoy Villanueva H, Sung JH, Stevens JA, Zhang MJ, Nelson PM, Denduluri LS, Feng F, O'Connell TD, Townsend D and Liu JC: Distinct effects of cardiac mitochondrial calcium uniporter inactivation via EMRE deletion in the short and long term. J Mol Cell Cardiol. 181:33–45. 2023. View Article : Google Scholar : PubMed/NCBI

58 

Xue Q, Pei H, Liu Q, Zhao M, Sun J, Gao E, Ma X and Tao L: MICU1 protects against myocardial ischemia/reperfusion injury and its control by the importer receptor Tom70. Cell Death Dis. 8:e29232017. View Article : Google Scholar : PubMed/NCBI

59 

Simon F, Oberhuber A, Floros N, Busch A, Wagenhäuser MU, Schelzig H and Duran M: Acute Limb Ischemia-Much More Than Just a Lack of Oxygen. Int J Mol Sci. 19:3742018. View Article : Google Scholar : PubMed/NCBI

60 

Richards GHC, Hong KL, Henein MY, Hanratty C and Boles U: Coronary artery ectasia: Review of the non-atherosclerotic molecular and pathophysiologic concepts. Int J Mol Sci. 23:51952022. View Article : Google Scholar : PubMed/NCBI

61 

Hu Y, Chi L, Kuebler WM and Goldenberg NM: Perivascular Inflammation in Pulmonary Arterial Hypertension. Cells. 9:23382020. View Article : Google Scholar : PubMed/NCBI

62 

Cui H, Chen Y, Li K, Zhan R, Zhao M, Xu Y, Lin Z, Fu Y, He Q, Tang PC, et al: Untargeted metabolomics identifies succinate as a biomarker and therapeutic target in aortic aneurysm and dissection. Eur Heart J. 42:4373–4385. 2021. View Article : Google Scholar : PubMed/NCBI

63 

Aday AW and Matsushita K: Epidemiology of peripheral artery disease and polyvascular disease. Circ Res. 128:1818–1832. 2021. View Article : Google Scholar : PubMed/NCBI

64 

Chan NC, Xu K, de Vries TAC, Eikelboom JW and Hirsh J: Inflammation as a mechanism and therapeutic target in peripheral artery disease. Can J Cardiol. 38:588–600. 2022. View Article : Google Scholar : PubMed/NCBI

65 

Archer SL, Weir EK and Wilkins MR: Basic science of pulmonary arterial hypertension for clinicians: New concepts and experimental therapies. Circulation. 121:2045–2066. 2010. View Article : Google Scholar : PubMed/NCBI

66 

Dromparis P, Paulin R, Sutendra G, Qi AC, Bonnet S and Michelakis ED: Uncoupling protein 2 deficiency mimics the effects of hypoxia and endoplasmic reticulum stress on mitochondria and triggers pseudohypoxic pulmonary vascular remodeling and pulmonary hypertension. Circ Res. 113:126–136. 2013. View Article : Google Scholar : PubMed/NCBI

67 

Hong Z, Chen KH, DasGupta A, Potus F, Dunham-Snary K, Bonnet S, Tian L, Fu J, Breuils-Bonnet S, Provencher S, et al: MicroRNA-138 and MicroRNA-25 Down-regulate mitochondrial calcium uniporter, causing the pulmonary arterial hypertension cancer phenotype. Am J Respir Crit Care Med. 195:515–529. 2017. View Article : Google Scholar :

68 

Wu D, Dasgupta A, Read AD, Bentley RET, Motamed M, Chen KH, Al-Qazazi R, Mewburn JD, Dunham-Snary KJ, Alizadeh E, et al: Oxygen sensing, mitochondrial biology and experimental therapeutics for pulmonary hypertension and cancer. Free Radic Biol Med. 170:150–178. 2021. View Article : Google Scholar : PubMed/NCBI

69 

Guilluy C, Eddahibi S, Agard C, Guignabert C, Izikki M, Tu L, Savale L, Humbert M, Fadel E, Adnot S, et al: RhoA and Rho kinase activation in human pulmonary hypertension: Role of 5-HT signaling. Am J Respir Crit Care Med. 179:1151–1158. 2009. View Article : Google Scholar : PubMed/NCBI

70 

Guo X, Chen KH, Guo Y, Liao H, Tang J and Xiao RP: Mitofusin 2 triggers vascular smooth muscle cell apoptosis via mitochondrial death pathway. Circ Res. 101:1113–1122. 2007. View Article : Google Scholar : PubMed/NCBI

71 

Tomida S, Ishima T, Sawaki D, Imai Y, Nagai R and Aizawa K: Multi-Omics of familial thoracic aortic aneurysm and dissection: Calcium transport impairment predisposes aortas to dissection. Int J Mol Sci. 24:152132023. View Article : Google Scholar : PubMed/NCBI

72 

Yang H, An BS, Choi KC and Jeung EB: Change of genes in calcium transport channels caused by hypoxic stress in the placenta, duodenum, and kidney of pregnant rats. Biol Reprod. 88:302013. View Article : Google Scholar

73 

Garbincius JF and Elrod JW: Mitochondrial calcium exchange in physiology and disease. Physiol Rev. 102:893–992. 2022. View Article : Google Scholar :

74 

Wang P, Xu S, Xu J, Xin Y, Lu Y, Zhang H, Zhou B, Xu H, Sheu SS, Tian R and Wang W: Elevated MCU expression by CaMKIIdeltaB limits pathological cardiac remodeling. Circulation. 145:1067–1083. 2022. View Article : Google Scholar : PubMed/NCBI

75 

Zhang L, Lu X, Wang J, Li P, Li H, Wei S, Zhou X, Li K, Wang L, Wang R, et al: Zingiberis rhizoma mediated enhancement of the pharmacological effect of aconiti lateralis radix praeparata against acute heart failure and the underlying biological mechanisms. Biomed Pharmacother. 96:246–255. 2017. View Article : Google Scholar : PubMed/NCBI

76 

Liu T, Yang N, Sidor A and O'Rourke B: MCU Overexpression rescues inotropy and reverses heart failure by reducing SR Ca(2+) Leak. Circ Res. 128:1191–1204. 2021. View Article : Google Scholar : PubMed/NCBI

77 

Garbincius JF and Elrod JW: Is the failing heart starved of mitochondrial calcium? Circ Res. 128:1205–1207. 2021. View Article : Google Scholar : PubMed/NCBI

78 

Suarez J, Cividini F, Scott BT, Lehmann K, Diaz-Juarez J, Diemer T, Dai A, Suarez JA, Jain M and Dillmann WH: Restoring mitochondrial calcium uniporter expression in diabetic mouse heart improves mitochondrial calcium handling and cardiac function. J Biol Chem. 293:8182–8195. 2018. View Article : Google Scholar : PubMed/NCBI

79 

Tarazón E, Pérez-Carrillo L, García-Bolufer P, Triviño JC, Feijóo-Bandín S, Lago F, González-Juanatey JR, Martínez-Dolz L, Portolés M and Roselló-Lletí E: Circulating mitochondrial genes detect acute cardiac allograft rejection: Role of the mitochondrial calcium uniporter complex. Am J Transplant. 21:2056–2066. 2021. View Article : Google Scholar :

80 

Maack C, Cortassa S, Aon MA, Ganesan AN, Liu T and O'Rourke B: Elevated cytosolic Na+ decreases mitochondrial Ca2+ uptake during excitation-contraction coupling and impairs energetic adaptation in cardiac myocytes. Circ Res. 99:172–182. 2006. View Article : Google Scholar : PubMed/NCBI

81 

Liu T and O'Rourke B: Enhancing mitochondrial Ca2+ uptake in myocytes from failing hearts restores energy supply and demand matching. Circ Res. 103:279–288. 2008. View Article : Google Scholar : PubMed/NCBI

82 

Sommakia S, Houlihan PR, Deane SS, Simcox JA, Torres NS, Jeong MY, Winge DR, Villanueva CJ and Chaudhuri D: Mitochondrial cardiomyopathies feature increased uptake and diminished efflux of mitochondrial calcium. J Mol Cell Cardiol. 113:22–32. 2017. View Article : Google Scholar : PubMed/NCBI

83 

Fu DG: Cardiac arrhythmias: Diagnosis, symptoms, and treatments. Cell Biochem Biophys. 73:291–296. 2015. View Article : Google Scholar : PubMed/NCBI

84 

Hamilton S, Terentyeva R, Clements RT, Belevych AE and Terentyev D: Sarcoplasmic reticulum-mitochondria communication; implications for cardiac arrhythmia. J Mol Cell Cardiol. 156:105–113. 2021. View Article : Google Scholar : PubMed/NCBI

85 

Wang J, Jiang J, Hu H and Chen L: MCU complex: Exploring emerging targets and mechanisms of mitochondrial physiology and pathology. J Adv Res. Feb 27–2024.Epub ahead of print.

86 

Langenbacher AD, Shimizu H, Hsu W, Zhao Y, Borges A, Koehler C and Chen JN: Mitochondrial calcium uniporter deficiency in zebrafish causes cardiomyopathy with arrhythmia. Front Physiol. 11:6174922020. View Article : Google Scholar

87 

Wiersma M, van Marion DMS, Wüst RCI, Houtkooper RH, Zhang D, Groot NMS, Henning RH and Brundel BJJM: Mitochondrial dysfunction underlies cardiomyocyte remodeling in experimental and clinical atrial fibrillation. Cells. 8:12022019. View Article : Google Scholar : PubMed/NCBI

88 

Joseph LC, Reyes MV, Homan EA, Gowen B, Avula UMR, Goulbourne CN, Wan EY, Elrod JW and Morrow JP: The mitochondrial calcium uniporter promotes arrhythmias caused by high-fat diet. Sci Rep. 11:178082021. View Article : Google Scholar : PubMed/NCBI

89 

Sripetchwandee J, KenKnight SB, Sanit J, Chattipakorn S and Chattipakorn N: Blockade of mitochondrial calcium uniporter prevents cardiac mitochondrial dysfunction caused by iron overload. Acta Physiol (Oxf). 210:330–341. 2014. View Article : Google Scholar

90 

Sander P, Feng M, Schweitzer MK, Wilting F, Gutenthaler SM, Arduino DM, Fischbach S, Dreizehnter L, Moretti A, Gudermann T, et al: Approved drugs ezetimibe and disulfiram enhance mitochondrial Ca(2+) uptake and suppress cardiac arrhythmogenesis. Br J Pharmacol. 178:4518–4532. 2021. View Article : Google Scholar : PubMed/NCBI

91 

Hamilton S, Terentyeva R, Perger F, Hernández Orengo B, Martin B, Gorr MW, Belevych AE, Clements RT, Györke S and Terentyev D: MCU overexpression evokes disparate dose-dependent effects on mito-ROS and spontaneous Ca(2+) release in hypertrophic rat cardiomyocytes. Am J Physiol Heart Circ Physiol. 321:H615–H632. 2021. View Article : Google Scholar : PubMed/NCBI

92 

Hu X, Wang H, Lu W, Dong Y and Cheng P: The study on intramyocardial calcium overload and apoptosis induced by coxsackievirus B3. J Tongji Med Univ. 21:256–258. 2622001.

93 

Salgado DM, Eltit JM, Mansfield K, Panqueba C, Castro D, Vega MR, Xhaja K, Schmidt D, Martin KJ, Allen PD, et al: Heart and skeletal muscle are targets of dengue virus infection. Pediatr Infect Dis J. 29:238–242. 2010. View Article : Google Scholar :

94 

Huynh TV, Rethi L, Lee TW, Higa S, Kao YH and Chen YJ: Spike protein impairs mitochondrial function in human cardiomyocytes: Mechanisms underlying cardiac injury in COVID-19. Cells. 12:8772023. View Article : Google Scholar : PubMed/NCBI

95 

Maass DL, White J, Sanders B and Horton JW: Role of cytosolic vs. mitochondrial Ca2+ accumulation in burn injury-related myocardial inflammation and function. Am J Physiol Heart Circ Physiol. 288:H744–H751. 2005. View Article : Google Scholar

96 

Wan-Yi L, Hui, Zong-Cheng Y and Yue-Sheng H: Ruthenium red attenuated cardiomyocyte and mitochondrial damage during the early stage after severe burn. Burns. 28:35–38. 2002. View Article : Google Scholar : PubMed/NCBI

97 

White DJ, Maass DL, Sanders B and Horton JW: Cardiomyocyte intracellular calcium and cardiac dysfunction after burn trauma. Crit Care Med. 30:14–22. 2002. View Article : Google Scholar : PubMed/NCBI

98 

Lim CC, Zuppinger C, Guo X, Kuster GM, Helmes M, Eppenberger HM, Suter TM, Liao R and Sawyer DB: Anthracyclines induce calpain-dependent titin proteolysis and necrosis in cardiomyocytes. J Biol Chem. 279:8290–8299. 2004. View Article : Google Scholar

99 

Gunter TE and Pfeiffer DR: Mechanisms by which mitochondria transport calcium. Am J Physiol. 258:C755–C786. 1990. View Article : Google Scholar : PubMed/NCBI

100 

Gunter TE, Gunter KK, Sheu SS and Gavin CE: Mitochondrial calcium transport: Physiological and pathological relevance. Am J Physiol. 267:C313–C339. 1994. View Article : Google Scholar : PubMed/NCBI

101 

Garbincius JF, Luongo TS and Elrod JW: The debate continues - What is the role of MCU and mitochondrial calcium uptake in the heart? J Mol Cell Cardiol. 143:163–174. 2020. View Article : Google Scholar : PubMed/NCBI

102 

Ashok D, Papanicolaou K, Sidor A, Wang M, Solhjoo S, Liu T and O'Rourke B: Mitochondrial membrane potential instability on reperfusion after ischemia does not depend on mitochondrial Ca(2+) uptake. J Biol Chem. 299:1047082023. View Article : Google Scholar : PubMed/NCBI

103 

Wang C, Jacewicz A, Delgado BD, Baradaran R and Long SB: Structures reveal gatekeeping of the mitochondrial Ca(2+) uniporter by MICU1-MICU2. Elife. 9:e599912020. View Article : Google Scholar : PubMed/NCBI

104 

Xie A, Song Z, Liu H, Zhou A, Shi G, Wang Q, Gu L, Liu M, Xie LH, Qu Z and Dudley SC Jr: Mitochondrial Ca(2+) influx contributes to arrhythmic risk in nonischemic cardiomyopathy. J Am Heart Assoc. 7:e0078052018. View Article : Google Scholar : PubMed/NCBI

105 

Tomar D, Jaña F, Dong Z, Quinn WJ III, Jadiya P, Breves SL, Daw CC, Srikantan S, Shanmughapriya S, Nemani N, et al: Blockade of MCU-mediated Ca(2+) uptake perturbs lipid metabolism via PP4-dependent AMPK dephosphorylation. Cell Rep. 26:3709–3725 e7. 2019. View Article : Google Scholar : PubMed/NCBI

106 

Tian S, Lei P, Zhang J, Sun Y, Li B and Shan Y: Sulforaphane Balances Ca(2+) homeostasis injured by excessive fat via mitochondria-associated membrane (MAM). Mol Nutr Food Res. 65:e20010762021. View Article : Google Scholar : PubMed/NCBI

107 

Wright LE, Vecellio Reane D, Milan G, Terrin A, Di Bello G, Belligoli A, Sanna M, Foletto M, Favaretto F, Raffaello A, et al: Increased mitochondrial calcium uniporter in adipocytes underlies mitochondrial alterations associated with insulin resistance. Am J Physiol Endocrinol Metab. 313:E641–E650. 2017. View Article : Google Scholar : PubMed/NCBI

108 

Zhang Z, Luo Z, Yu L, Xiao Y, Liu S, Aluo Z, Ma Z, Huang L, Xiao L, Jia M, et al: Ruthenium 360 and mitoxantrone inhibit mitochondrial calcium uniporter channel to prevent liver steatosis induced by high-fat diet. Br J Pharmacol. 179:2678–2696. 2022. View Article : Google Scholar

109 

Jia M, Liu S, Xiao Y, Zhang Z, Li M, Qi X, Qi X, Yu L, Zhang C, Jiang T, et al: Deletion of the mitochondrial calcium uniporter in adipose tissue promotes energy expenditure and alleviates diet-induced obesity. Mol Metab. 80:1018732024. View Article : Google Scholar : PubMed/NCBI

110 

Arruda AP and Hotamisligil GS: Calcium Homeostasis and organelle function in the pathogenesis of obesity and diabetes. Cell Metab. 22:381–397. 2015. View Article : Google Scholar : PubMed/NCBI

111 

Kannel WB, Wolf PA, Benjamin EJ and Levy D: Prevalence, incidence, prognosis, and predisposing conditions for atrial fibrillation: population-based estimates. Am J Cardiol. 82:2N–9N. 1998. View Article : Google Scholar : PubMed/NCBI

112 

Grisanti LA: Diabetes and Arrhythmias: Pathophysiology, mechanisms and therapeutic outcomes. Front Physiol. 9:16692018. View Article : Google Scholar : PubMed/NCBI

113 

Cividini F, Scott BT, Suarez J, Casteel DE, Heinz S, Dai A, Diemer T, Suarez JA, Benner CW, Ghassemian M and Dillmann WH: Ncor2/PPARalpha-dependent upregulation of MCUb in the type 2 diabetic heart impacts cardiac metabolic flexibility and function. Diabetes. 70:665–679. 2021. View Article : Google Scholar

114 

Shi X, Liu C, Chen J, Zhou S, Li Y, Zhao X, Xing J, Xue J, Liu F and Li F: Endothelial MICU1 alleviates diabetic cardiomyopathy by attenuating nitrative stress-mediated cardiac microvascular injury. Cardiovasc Diabetol. 22:2162023. View Article : Google Scholar : PubMed/NCBI

115 

Ji L, Liu F, Jing Z, Huang Q, Zhao Y, Cao H, Li J, Yin C, Xing J and Li F: MICU1 alleviates diabetic cardiomyopathy through mitochondrial Ca(2+)-dependent antioxidant response. Diabetes. 66:1586–1600. 2017. View Article : Google Scholar : PubMed/NCBI

116 

De Stefani D, Rizzuto R and Pozzan T: Enjoy the trip: Calcium in mitochondria back and forth. Annu Rev Biochem. 85:161–192. 2016. View Article : Google Scholar : PubMed/NCBI

117 

Kon N, Murakoshi M, Isobe A, Kagechika K, Miyoshi N and Nagayama T: DS16570511 is a small-molecule inhibitor of the mitochondrial calcium uniporter. Cell Death Discov. 3:170452017. View Article : Google Scholar : PubMed/NCBI

118 

Arduino DM, Wettmarshausen J, Vais H, Navas-Navarro P, Cheng Y, Leimpek A, Ma Z, Delrio-Lorenzo A, Giordano A, Garcia-Perez C, et al: Systematic identification of MCU modulators by orthogonal interspecies chemical screening. Mol Cell. 67:711–723 e7. 2017. View Article : Google Scholar : PubMed/NCBI

119 

Paillard M, Csordás G, Huang KT, Várnai P, Joseph SK and Hajnóczky G: MICU1 interacts with the D-ring of the MCU pore to control its Ca(2+) flux and sensitivity to Ru360. Mol Cell. 72:778–785 e3. 2018. View Article : Google Scholar : PubMed/NCBI

120 

Xu X, Zhou B, Liu J, Ma Q, Zhang T and Wu X: Ru360 alleviates postoperative cognitive dysfunction in aged mice by inhibiting MCU-mediated mitochondrial dysfunction. Neuropsychiatr Dis Treat. 19:1531–1542. 2023. View Article : Google Scholar : PubMed/NCBI

121 

Bigham NP, Novorolsky RJ, Davis KR, Zou H, MacMillan SN, Stevenson MJ, Robertson GS and Wilson JJ: Supramolecular delivery of dinuclear ruthenium and osmium MCU inhibitors. Inorg Chem Front. 11:5064–5079. 2024. View Article : Google Scholar : PubMed/NCBI

122 

Thu VT, Kim HK, Long le T, Lee SR, Hanh TM, Ko TH, Heo HJ, Kim N, Kim SH, Ko KS, et al: NecroX-5 prevents hypoxia/reoxygenation injury by inhibiting the mitochondrial calcium uniporter. Cardiovasc Res. 94:342–350. 2012. View Article : Google Scholar : PubMed/NCBI

123 

Schwartz J, Holmuhamedov E, Zhang X, Lovelace GL, Smith CD and Lemasters JJ: Minocycline and doxycycline, but not other tetracycline-derived compounds, protect liver cells from chemical hypoxia and ischemia/reperfusion injury by inhibition of the mitochondrial calcium uniporter. Toxicol Appl Pharmacol. 273:172–179. 2013. View Article : Google Scholar : PubMed/NCBI

124 

Xiao Z, Guan L, Shi H, Yu Y, Yu Z, Qin S, Su Y, Chen R, Li M and Ge J: Trimetazidine affects mitochondrial calcium uniporter expression to restore ischemic heart function via reactive oxygen species/NFĸB pathway inhibition. J Cardiovasc Pharmacol. 82:104–116. 2023. View Article : Google Scholar : PubMed/NCBI

125 

Chaudhary P, Sharma YK, Sharma S, Singh SN and Suryakumar G: High altitude mediated skeletal muscle atrophy: Protective role of curcumin. Biochimie. 156:138–147. 2019. View Article : Google Scholar

126 

Kotha RR and Luthria DL: Curcumin: Biological, pharmaceutical, nutraceutical, and analytical aspects. Molecules. 24:29302019. View Article : Google Scholar : PubMed/NCBI

127 

Kushwaha AD, Kalra N, Varshney R and Saraswat D: Mitochondrial Ca(2+) overload due to altered proteostasis amplifies apoptosis in C2C12 myoblasts under hypoxia: Protective role of nanocurcumin formulation. IUBMB Life. 75:673–687. 2023. View Article : Google Scholar : PubMed/NCBI

128 

Dong Z, Zhang C, Chen Y, Chen Y, Yuan Z, Peng Y and Cao T: Astragaloside-IV protects against heat-induced apoptosis by inhibiting excessive activation of mitochondrial Ca2+ uniporter. Cell Physiol Biochem. 42:480–494. 2017. View Article : Google Scholar : PubMed/NCBI

129 

Jiang C, Shen J, Wang C, Huang Y, Wang L, Yang Y, Hu W, Li P and Wu H: Mechanism of aconitine mediated neuronal apoptosis induced by mitochondrial calcium overload caused by MCU. Toxicol Lett. 384:86–95. 2023. View Article : Google Scholar : PubMed/NCBI

130 

Gao Y, Hou R, Fei Q, Fang L, Han Y, Cai R, Peng C and Qi Y: The three-herb formula shuang-huang-lian stabilizes mast cells through activation of mitochondrial calcium uniporter. Sci Rep. 7:387362017. View Article : Google Scholar : PubMed/NCBI

131 

Ding J, Ji R, Wang Z, Jia Y, Meng T, Song X, Gao J and He Q: Cardiovascular protection of YiyiFuzi powder and the potential mechanisms through modulating mitochondria-endoplasmic reticulum interactions. Front Pharmacol. 15:14055452024. View Article : Google Scholar : PubMed/NCBI

132 

Cao J, Zheng CD, Zhang GH, Zhang YJ and Min S: Protective effect of Shenfu injection on myocardial mitochondria injured by ischemia-reperfusion in rabbits. Chin Med J (Engl). 118:505–507. 2005.PubMed/NCBI

133 

Wen J, Zhang L, Liu H, Wang J, Li J, Yang Y, Wang Y, Cai H, Li R and Zhao Y: Salsolinol attenuates doxorubicin-induced chronic heart failure in rats and improves mitochondrial function in H9c2 cardiomyocytes. Front Pharmacol. 10:11352019. View Article : Google Scholar : PubMed/NCBI

134 

Meng M, Jiang Y, Wang Y, Huo R, Ma N, Shen X and Chang G: β-carotene targets IP3R/GRP75/VDAC1-MCU axis to renovate LPS-induced mitochondrial oxidative damage by regulating STIM1. Free Radic Biol Med. 205:25–46. 2023. View Article : Google Scholar : PubMed/NCBI

135 

Luo D, Zhao Y, Fang Z, Zhao Y, Han Y, Piao J, Rong X and Guo J: Tianhuang formula regulates adipocyte mitochondrial function by AMPK/MICU1 pathway in HFD/STZ-induced T2DM mice. BMC Complement Med Ther. 23:2022023. View Article : Google Scholar : PubMed/NCBI

136 

Wang P, Zheng X, Du R, Xu J, Li J, Zhang H, Liang X and Liang H: Astaxanthin protects against alcoholic liver injury via regulating mitochondrial redox balance and calcium homeostasis. J Agric Food Chem. 71:19531–19550. 2023. View Article : Google Scholar : PubMed/NCBI

137 

Lei Y, Yang HY, Meng N, Qin YY, Xu MT, Xiang XL, Liu L and Tang GD: Mitochondrial calcium uniporter promotes mitophagy by regulating the PINK1/Parkin pathway in caerulein-treated pancreatic ductal epithelial cells in vitro. Exp Ther Med. 27:1472024. View Article : Google Scholar

138 

Hou Y, Fan F, Xie N, Zhang Y, Wang X and Meng X: Rhodiola crenulata alleviates hypobaric hypoxia-induced brain injury by maintaining BBB integrity and balancing energy metabolism dysfunction. Phytomedicine. 128:1555292024. View Article : Google Scholar : PubMed/NCBI

139 

Liu H, Li Q, Zhang X, Shi Y and Li J: Effect of ginkgolide K on calcium channel activity in Alzheimer's disease. Exp Ther Med. 23:4262022. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li Y, Hu H, Chu C and Yang J: Mitochondrial calcium uniporter complex: An emerging therapeutic target for cardiovascular diseases (Review). Int J Mol Med 55: 40, 2025.
APA
Li, Y., Hu, H., Chu, C., & Yang, J. (2025). Mitochondrial calcium uniporter complex: An emerging therapeutic target for cardiovascular diseases (Review). International Journal of Molecular Medicine, 55, 40. https://doi.org/10.3892/ijmm.2024.5481
MLA
Li, Y., Hu, H., Chu, C., Yang, J."Mitochondrial calcium uniporter complex: An emerging therapeutic target for cardiovascular diseases (Review)". International Journal of Molecular Medicine 55.3 (2025): 40.
Chicago
Li, Y., Hu, H., Chu, C., Yang, J."Mitochondrial calcium uniporter complex: An emerging therapeutic target for cardiovascular diseases (Review)". International Journal of Molecular Medicine 55, no. 3 (2025): 40. https://doi.org/10.3892/ijmm.2024.5481
Copy and paste a formatted citation
x
Spandidos Publications style
Li Y, Hu H, Chu C and Yang J: Mitochondrial calcium uniporter complex: An emerging therapeutic target for cardiovascular diseases (Review). Int J Mol Med 55: 40, 2025.
APA
Li, Y., Hu, H., Chu, C., & Yang, J. (2025). Mitochondrial calcium uniporter complex: An emerging therapeutic target for cardiovascular diseases (Review). International Journal of Molecular Medicine, 55, 40. https://doi.org/10.3892/ijmm.2024.5481
MLA
Li, Y., Hu, H., Chu, C., Yang, J."Mitochondrial calcium uniporter complex: An emerging therapeutic target for cardiovascular diseases (Review)". International Journal of Molecular Medicine 55.3 (2025): 40.
Chicago
Li, Y., Hu, H., Chu, C., Yang, J."Mitochondrial calcium uniporter complex: An emerging therapeutic target for cardiovascular diseases (Review)". International Journal of Molecular Medicine 55, no. 3 (2025): 40. https://doi.org/10.3892/ijmm.2024.5481
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team