|
1
|
Yao Q, Wu X, Tao C, Gong W, Chen M, Qu M,
Zhong Y, He T, Chen S and Xiao G: Osteoarthritis: Pathogenic
signaling pathways and therapeutic targets. Signal Transduct Target
Ther. 8:562023. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Barnett R: Osteoarthritis. Lancet.
391:19852018. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Englund M: Osteoarthritis, part of life or
a curable disease? A bird's-eye view. J Intern Med. 293:681–693.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Schlenk EA, Fitzgerald GK, Rogers JC, Kwoh
CK and Sereika SM: Promoting physical activity in older adults with
knee osteoarthritis and hypertension: A randomized controlled
trial. J Aging Phys Act. 29:207–218. 2021. View Article : Google Scholar :
|
|
5
|
Hawker GA and King LK: The burden of
osteoarthritis in older adults. Clin Geriatr Med. 38:181–192. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Jiang W, Chen H, Lin Y, Cheng K, Zhou D,
Chen R, Song C, Zeng L and Yu H: Mechanical stress abnormalities
promote chondrocyte senescence-the pathogenesis of knee
osteoarthritis. Biomed Pharmacother. 167:1155522023. View Article : Google Scholar
|
|
7
|
Sanchez-Lopez E, Coras R, Torres A, Lane
NE and Guma M: Synovial inflammation in osteoarthritis progression.
Nat Rev Rheumatol. 18:258–275. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Rim YA, Nam Y and Ju JH: The role of
chondrocyte hypertrophy and senescence in osteoarthritis initiation
and progression. Int J Mol Sci. 21:23582020. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Abramoff B and Caldera FE: Osteoarthritis:
Pathology, diagnosis, and treatment options. Med Clin North Am.
104:293–311. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Emami A, Namdari H, Parvizpour F and
Arabpour Z: Challenges in osteoarthritis treatment. Tissue Cell.
80:1019922023. View Article : Google Scholar
|
|
11
|
Danilushkina AA, Emene CC, Barlev NA and
Gomzikova MO: Strategies for engineering of extracellular vesicles.
Int J Mol Sci. 24:132472023. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Zhang Y, Dou Y, Liu Y, Di M, Bian H, Sun X
and Yang Q: Advances in therapeutic applications of extracellular
vesicles. Int J Nanomedicine. 18:3285–3307. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Gurunathan S, Kang MH, Song H, Kim NH and
Kim JH: The role of extracellular vesicles in animal reproduction
and diseases. J Anim Sci Biotechnol. 13:622022. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Ni Z, Zhou S, Li S, Kuang L, Chen H, Luo
X, Ouyang J, He M, Du X and Chen L: Exosomes: Roles and therapeutic
potential in osteoarthritis. Bone Res. 8:252020. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Fan Y, Li Z and He Y: Exosomes in the
pathogenesis, progression, and treatment of osteoarthritis.
Bioengineering (Basel). 9:992022. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Yan J, Shen M, Sui B, Lu W, Han X, Wan Q,
Liu Y, Kang J, Qin W, Zhang Z, et al: Autophagic LC3+
calcified extracellular vesicles initiate cartilage calcification
in osteoarthritis. Sci Adv. 8:eabn15562022. View Article : Google Scholar
|
|
17
|
Zhou H, Shen X, Yan C, Xiong W, Ma Z, Tan
Z, Wang J, Li Y, Liu J, Duan A and Liu F: Extracellular vesicles
derived from human umbilical cord mesenchymal stem cells alleviate
osteoarthritis of the knee in mice model by interacting with METTL3
to reduce m6A of NLRP3 in macrophage. Stem Cell Res Ther.
13:3222022. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Zou J, Yang W, Cui W, Li C, Ma C, Ji X,
Hong J, Qu Z, Chen J, Liu A and Wu H: Therapeutic potential and
mechanisms of mesenchymal stem cell-derived exosomes as bioactive
materials in tendon-bone healing. J Nanobiotechnology. 21:142023.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Krylova SV and Feng D: The machinery of
exosomes: Biogenesis, release, and uptake. Int J Mol Sci.
24:13372023. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Xie F, Liu YL, Chen XY, Li Q, Zhong J, Dai
BY, Shao XF and Wu GB: Role of MicroRNA, LncRNA, and exosomes in
the progression of osteoarthritis: A review of recent literature.
Orthop Surg. 12:708–716. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Miao C, Zhou W, Wang X and Fang J: The
research progress of exosomes in osteoarthritis, with particular
emphasis on the mediating roles of miRNAs and lncRNAs. Front
Pharmacol. 12:6856232021. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Asghar S, Litherland GJ, Lockhart JC,
Goodyear CS and Crilly A: Exosomes in intercellular communication
and implications for osteoarthritis. Rheumatology (Oxford).
59:57–68. 2020.
|
|
23
|
Sheta M, Taha EA, Lu Y and Eguchi T:
Extracellular vesicles: New classification and tumor
immunosuppression. Biology (Basel). 12:1102023.PubMed/NCBI
|
|
24
|
Zhou Q, Cai Y, Jiang Y and Lin X: Exosomes
in osteoarthritis and cartilage injury: Advanced development and
potential therapeutic strategies. Int J Biol Sci. 16:1811–1820.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Liu Q, Wang R, Hou S, He F, Ma Y, Ye T, Yu
S, Chen H, Wang H and Zhang M: Chondrocyte-derived exosomes promote
cartilage calcification in temporomandibular joint osteoarthritis.
Arthritis Res Ther. 24:442022. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Sang X, Zhao X, Yan L, Jin X, Wang X, Wang
J, Yin Z, Zhang Y and Meng Z: Thermosensitive hydrogel loaded with
primary chondrocyte-derived exosomes promotes cartilage repair by
regulating macrophage polarization in osteoarthritis. Tissue Eng
Regen Med. 19:629–642. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Wu X, Crawford R, Xiao Y, Mao X and
Prasadam I: Osteoarthritic subchondral bone release exosomes that
promote cartilage degeneration. Cells. 10:2512021. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Kim YG, Choi J and Kim K: Mesenchymal stem
cell-derived exosomes for effective cartilage tissue repair and
treatment of osteoarthritis. Biotechnol J. 15:e20000822020.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Skotland T, Sandvig K and Llorente A:
Lipids in exosomes: Current knowledge and the way forward. Prog
Lipid Res. 66:30–41. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Kalluri R and LeBleu VS: The biology,
function, and biomedical applications of exosomes. Science.
367:eaau69772020. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Mihanfar A, Shakouri SK, Khadem-Ansari MH,
Fattahi A, Latifi Z, Nejabati HR and Nouri M: Exosomal miRNAs in
osteoarthritis. Mol Biol Rep. 47:4737–4748. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Kong R, Ji L, Pang Y, Zhao D and Gao J:
Exosomes from osteoarthritic fibroblast-like synoviocytes promote
cartilage ferroptosis and damage via delivering microRNA-19b-3p to
target SLC7A11 in osteoarthritis. Front Immunol. 14:11811562023.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Mao G, Zhang Z, Hu S, Zhang Z, Chang Z,
Huang Z, Liao W and Kang Y: Exosomes derived from
miR-92a-3p-overexpressing human mesenchymal stem cells enhance
chondrogenesis and suppress cartilage degradation via targeting
WNT5A. Stem Cell Res Ther. 9:2472018. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Qiu M, Liu D and Fu Q: MiR-129-5p shuttled
by human synovial mesenchymal stem cell-derived exosomes relieves
IL-1β induced osteoarthritis via targeting HMGB1. Life Sci.
269:1189872021. View Article : Google Scholar
|
|
35
|
Xia Q, Wang Q, Lin F and Wang J:
miR-125a-5p-abundant exosomes derived from mesenchymal stem cells
suppress chondrocyte degeneration via targeting E2F2 in traumatic
osteoarthritis. Bioengineered. 12:11225–11238. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Tao Y, Zhou J, Wang Z, Tao H, Bai J, Ge G,
Li W, Zhang W, Hao Y, Yang X and Geng D: Human bone mesenchymal
stem cells-derived exosomal miRNA-361-5p alleviates osteoarthritis
by downregulating DDX20 and inactivating the NF-κB signaling
pathway. Bioorg Chem. 113:1049782021. View Article : Google Scholar
|
|
37
|
Li X, Wang Y, Cai Z, Zhou Q, Li L and Fu
P: Exosomes from human umbilical cord mesenchymal stem cells
inhibit ROS production and cell apoptosis in human articular
chondrocytes via the miR-100-5p/NOX4 axis. Cell Biol Int.
45:2096–2106. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Ye P, Mi Z, Wei D, Gao P, Ma M and Yang H:
miR-3960 from mesenchymal stem cell-derived extracellular vesicles
inactivates SDC1/Wnt/β-catenin axis to relieve chondrocyte injury
in osteoarthritis by targeting PHLDA2. Stem Cells Int.
2022:94551522022. View Article : Google Scholar
|
|
39
|
Foo JB, Looi QH, How CW, Lee SH, Al-Masawa
ME, Chong PP and Law JX: Mesenchymal stem cell-derived exosomes and
MicroRNAs in cartilage regeneration: Biogenesis, efficacy, miRNA
enrichment and delivery. Pharmaceuticals (Basel). 14:10932021.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Wang Z, Yan K, Ge G, Zhang D, Bai J, Guo
X, Zhou J, Xu T, Xu M, Long X, et al: Exosomes derived from
miR-155-5p-overexpressing synovial mesenchymal stem cells prevent
osteoarthritis via enhancing proliferation and migration,
attenuating apoptosis, and modulating extracellular matrix
secretion in chondrocytes. Cell Biol Toxicol. 37:85–96. 2021.
View Article : Google Scholar
|
|
41
|
Qian Y, Chu G, Zhang L, Wu Z, Wang Q, Guo
JJ and Zhou F: M2 macrophage-derived exosomal miR-26b-5p regulates
macrophage polarization and chondrocyte hypertrophy by targeting
TLR3 and COL10A1 to alleviate osteoarthritis. J Nanobiotechnology.
22:722024. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Yoo KH, Thapa N, Chwae YJ, Yoon SH, Kim
BJ, Lee JO, Jang YN and Kim J: Transforming growth factor-β family
and stem cell-derived exosome therapeutic treatment in
osteoarthritis (Review). Int J Mol Med. 49:622022. View Article : Google Scholar
|
|
43
|
Du X, Cai L, Xie J and Zhou X: The role of
TGF-beta3 in cartilage development and osteoarthritis. Bone Res.
11:22023. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Lambert C, Dubuc JE, Montell E, Vergés J,
Munaut C, Noël A and Henrotin Y: Gene expression pattern of cells
from inflamed and normal areas of osteoarthritis synovial membrane.
Arthritis Rheumatol. 66:960–968. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Tsai CH, Liu SC, Chung WH, Wang SW, Wu MH
and Tang CH: Visfatin increases VEGF-dependent angiogenesis of
endothelial progenitor cells during osteoarthritis progression.
Cells. 9:13152020. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Zou ZL, Sun MH, Yin WF, Yang L and Kong
LY: Avicularin suppresses cartilage extracellular matrix
degradation and inflammation via TRAF6/MAPK activation.
Phytomedicine. 91:1536572021. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Wang L and He C: Nrf2-mediated
anti-inflammatory polarization of macrophages as therapeutic
targets for osteoarthritis. Front Immunol. 13:9671932022.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Lin S, Li H, Wu B, Shang J, Jiang N, Peng
R, Xing B, Xu X and Lu H: TGF-β1 regulates chondrocyte
proliferation and extracellular matrix synthesis via
circPhf21a-Vegfa axis in osteoarthritis. Cell Commun Signal.
20:752022. View Article : Google Scholar
|
|
49
|
Ge Y, Xu W, Chen Z, Zhang H, Zhang W, Chen
J, Huang J, Du W, Tong P, Shan L and Zhou L: Nanofat lysate
ameliorates pain and cartilage degradation of osteoarthritis
through activation of TGF-β-Smad2/3 signaling of chondrocytes.
Front Pharmacol. 14:9002052023. View Article : Google Scholar
|
|
50
|
Zhong Y, Xu Y, Xue S, Zhu L, Lu H, Wang C,
Chen H, Sang W and Ma J: Nangibotide attenuates osteoarthritis by
inhibiting osteoblast apoptosis and TGF-β activity in subchondral
bone. Inflammopharmacology. 30:1107–1117. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Sun K, Luo J, Guo J, Yao X, Jing X and Guo
F: The PI3K/AKT/mTOR signaling pathway in osteoarthritis: A
narrative review. Osteoarthritis Cartilage. 28:400–409. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Wang L, Xu H, Li X, Chen H, Zhang H, Zhu
X, Lin Z, Guo S, Bao Z, Rui H, et al: Cucurbitacin E reduces
IL-1β-induced inflammation and cartilage degeneration by inhibiting
the PI3K/Akt pathway in osteoarthritic chondrocytes. J Transl Med.
21:8802023. View Article : Google Scholar
|
|
53
|
Zhang Y, Pizzute T and Pei M: A review of
crosstalk between MAPK and Wnt signals and its impact on cartilage
regeneration. Cell Tissue Res. 358:633–649. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Yan D, Chen D and Im HJ: Fibroblast growth
factor-2 promotes catabolism via FGFR1-Ras-Raf-MEK1/2-ERK1/2 axis
that coordinates with the PKCδ pathway in human articular
chondrocytes. J Cell Biochem. 113:2856–2865. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Ge Q, Wang H, Xu X, Xu L, Zhai L and Tao
R: PDK1 promotes apoptosis of chondrocytes via modulating MAPK
pathway in osteoarthritis. Tissue Cell. 49:719–725. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Saha S and Rebouh NY: Anti-osteoarthritis
mechanism of the Nrf2 signaling pathway. Biomedicines. 11:31762023.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Shang X, Fang Y, Xin W and You H: The
application of extracellular vesicles mediated miRNAs in
osteoarthritis: Current knowledge and perspective. J Inflamm Res.
15:2583–2599. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Duan L, Liang Y, Xu X, Xiao Y and Wang D:
Recent progress on the role of miR-140 in cartilage matrix
remodelling and its implications for osteoarthritis treatment.
Arthritis Res Ther. 22:1942020. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Mori T, Giovannelli L, Bilia AR and
Margheri F: Exosomes: Potential next-generation nanocarriers for
the therapy of inflammatory diseases. Pharmaceutics. 15:22762023.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
El Jamal A, Bougault C, Mebarek S, Magne
D, Cuvillier O and Brizuela L: The role of sphingosine 1-phosphate
metabolism in bone and joint pathologies and ectopic calcification.
Bone. 130:1150872020. View Article : Google Scholar
|
|
61
|
Skotland T, Hessvik NP, Sandvig K and
Llorente A: Exosomal lipid composition and the role of ether lipids
and phosphoinositides in exosome biology. J Lipid Res. 60:9–18.
2019. View Article : Google Scholar :
|
|
62
|
Wei G, Lu K, Umar M, Zhu Z, Lu WW,
Speakman JR, Chen Y, Tong L and Chen D: Risk of metabolic
abnormalities in osteoarthritis: A new perspective to understand
its pathological mechanisms. Bone Res. 11:632023. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Wang G and Bieberich E: Sphingolipids in
neurodegeneration (with focus on ceramide and S1P). Adv Biol Regul.
70:51–64. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Toh WS, Lai RC, Hui JHP and Lim SK: MSC
exosome as a cell-free MSC therapy for cartilage regeneration:
Implications for osteoarthritis treatment. Semin Cell Dev Biol.
67:56–64. 2017. View Article : Google Scholar
|
|
65
|
Cosenza S, Ruiz M, Maumus M, Jorgensen C
and Noël D: Pathogenic or therapeutic extracellular vesicles in
rheumatic diseases: Role of mesenchymal stem cell-derived vesicles.
Int J Mol Sci. 18:8892017. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Chen M, Wang Q, Wang Y, Fan Y and Zhang X:
Biomaterials-assisted exosomes therapy in osteoarthritis. Biomed
Mater. 17:0220012022. View Article : Google Scholar
|
|
67
|
Yang B, Li X, Fu C, Cai W, Meng B, Qu Y,
Kou X and Zhang Q: Extracellular vesicles in osteoarthritis of
peripheral joint and temporomandibular joint. Front Endocrinol
(Lausanne). 14:11587442023. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Liu Y, Lin L, Zou R, Wen C, Wang Z and Lin
F: MSC-derived exosomes promote proliferation and inhibit apoptosis
of chondrocytes via lncRNA-KLF3-AS1/miR-206/GIT1 axis in
osteoarthritis. Cell Cycle. 17:2411–2422. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Xie L, Chen Z, Liu M, Huang W, Zou F, Ma
X, Tao J, Guo J, Xia X, Lyu F, et al: MSC-derived exosomes protect
vertebral endplate chondrocytes against apoptosis and calcification
via the miR-31-5p/ATF6 axis. Mol Ther Nucleic Acids. 22:601–614.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Tang S, Tang T, Gao G, Wei Q, Sun K and
Huang W: Bone marrow mesenchymal stem cell-derived exosomes inhibit
chondrocyte apoptosis and the expression of MMPs by regulating
Drp1-mediated mitophagy. Acta Histochem. 123:1517962021. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Zheng L, Wang Y, Qiu P, Xia C, Fang Y, Mei
S, Fang C, Shi Y, Wu K, Chen Z, et al: Primary chondrocyte exosomes
mediate osteoarthritis progression by regulating mitochondrion and
immune reactivity. Nanomedicine (Lond). 14:3193–3212. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Withrow J, Murphy C, Liu Y, Hunter M,
Fulzele S and Hamrick MW: Extracellular vesicles in the
pathogenesis of rheumatoid arthritis and osteoarthritis. Arthritis
Res Ther. 18:2862016. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Yu H, Huang Y and Yang L: Research
progress in the use of mesenchymal stem cells and their derived
exosomes in the treatment of osteoarthritis. Ageing Res Rev.
80:1016842022. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Zhou Y, Ming J, Li Y, Li B, Deng M, Ma Y,
Chen Z, Zhang Y, Li J and Liu S: Exosomes derived from
miR-126-3p-overexpressing synovial fibroblasts suppress chondrocyte
inflammation and cartilage degradation in a rat model of
osteoarthritis. Cell Death Discov. 7:372021. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Szponder T, Latalski M, Danielewicz A,
Krać K, Kozera A, Drzewiecka B, Nguyen Ngoc D, Dobko D and
Wessely-Szponder J: Osteoarthritis: Pathogenesis, animal models,
and new regenerative therapies. J Clin Med. 12:52022. View Article : Google Scholar
|
|
76
|
Liu B, Xian Y, Chen X, Shi Y, Dong J, Yang
L, An X, Shen T, Wu W, Ma Y, et al: Inflammatory fibroblast-like
synoviocyte-derived exosomes aggravate osteoarthritis via enhancing
macrophage glycolysis. Adv Sci (Weinh). 11:e23073382024. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Wang J, Guo X, Kang Z, Qi L, Yang Y, Wang
J, Xu J and Gao S: Roles of exosomes from mesenchymal stem cells in
treating osteoarthritis. Cell Reprogram. 22:107–117. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Huang L, Dong G, Peng J, Li T, Zou M, Hu
K, Shu Y, Cheng T and Hao L: The role of exosomes and their
enhancement strategies in the treatment of osteoarthritis. Hum
Cell. 36:1887–1900. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Li F, Xu Z, Xie Z, Sun X, Li C, Chen Y, Xu
J and Pi G: Adipose mesenchymal stem cells-derived exosomes
alleviate osteoarthritis by transporting microRNA-376c-3p and
targeting the WNT-beta-catenin signaling axis. Apoptosis.
28:362–378. 2023. View Article : Google Scholar
|
|
80
|
Zhang Y, Jia J, Yang S, Liu X, Ye S and
Tian H: MicroRNA-21 controls the development of osteoarthritis by
targeting GDF-5 in chondrocytes. Exp Mol Med. 46:e792014.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Chen Y, Huang H, Zhong W, Li L, Lu Y and
Si HB: miR-140-5p protects cartilage progenitor/stem cells from
fate changes in knee osteoarthritis. Int Immunopharmacol.
114:1095762023. View Article : Google Scholar
|
|
82
|
Kim M, Shin DI, Choi BH and Min BH:
Exosomes from IL-1β-primed mesenchymal stem cells inhibited IL-1β-
and TNF-α-mediated inflammatory responses in osteoarthritic SW982
cells. Tissue Eng Regen Med. 18:525–536. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Wang H, Zhang Y, Zhang C, Zhao Y, Shu J
and Tang X: Exosomes derived from miR-146a-overexpressing
fibroblast-like synoviocytes in cartilage degradation and
macrophage M1 polarization: A novel protective agent for
osteoarthritis? Front Immunol. 15:13616062024. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Fan WJ, Liu D, Pan LY, Wang WY, Ding YL,
Zhang YY, Ye RX, Zhou Y, An SB and Xiao WF: Exosomes in
osteoarthritis: Updated insights on pathogenesis, diagnosis, and
treatment. Front Cell Dev Biol. 10:9496902022. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Selvadoss A, Baby HM, Zhang H and Bajpayee
AG: Harnessing exosomes for advanced osteoarthritis therapy.
Nanoscale. 16:19174–19191. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Liu Z, Zhuang Y, Fang L, Yuan C, Wang X
and Lin K: Breakthrough of extracellular vesicles in pathogenesis,
diagnosis and treatment of osteoarthritis. Bioact Mater.
22:423–452. 2022.PubMed/NCBI
|
|
87
|
Yin B, Ni J, Witherel CE, Yang M, Burdick
JA, Wen C and Wong SHD: Harnessing tissue-derived extracellular
vesicles for osteoarthritis theranostics. Theranostics. 12:207–231.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Nagelkerke A, Ojansivu M, van der Koog L,
Whittaker TE, Cunnane EM, Silva AM, Dekker N and Stevens MM:
Extracellular vesicles for tissue repair and regeneration:
Evidence, challenges and opportunities. Adv Drug Deliv Rev.
175:1137752021. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Wu C, He Y, Yao Y, Yang H and Lu F:
Exosomes treating osteoarthritis: Hope with challenge. Heliyon.
9:e131522023. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Wang Y, Yu D, Liu Z, Zhou F, Dai J, Wu B,
Zhou J, Heng BC, Zou XH, Ouyang H and Liu H: Exosomes from
embryonic mesenchymal stem cells alleviate osteoarthritis through
balancing synthesis and degradation of cartilage extracellular
matrix. Stem Cell Res Ther. 8:1892017. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Zhang S, Teo KYW, Chuah SJ, Lai RC, Lim SK
and Toh WS: MSC exosomes alleviate temporomandibular joint
osteoarthritis by attenuating inflammation and restoring matrix
homeostasis. Biomaterials. 200:35–47. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
He L, He T, Xing J, Zhou Q, Fan L, Liu C,
Chen Y, Wu D, Tian Z, Liu B and Rong L: Bone marrow mesenchymal
stem cell-derived exosomes protect cartilage damage and relieve
knee osteoarthritis pain in a rat model of osteoarthritis. Stem
Cell Res Ther. 11:2762020. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Xu H and Xu B: BMSC-derived exosomes
ameliorate osteoarthritis by inhibiting pyroptosis of cartilage via
delivering mir-326 targeting HDAC3 and STAT1//NF-κB p65 to
chondrocytes. Mediators Inflamm. 2021:99728052021. View Article : Google Scholar
|
|
94
|
Jin Y, Xu M, Zhu H, Dong C, Ji J, Liu Y,
Deng A and Gu Z: Therapeutic effects of bone marrow mesenchymal
stem cells-derived exosomes on osteoarthritis. J Cell Mol Med.
25:9281–9294. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Gupta A, Maffulli N, Rodriguez HC, Carson
EW, Bascharon RA, Delfino K, Levy HJ and El-Amin SF III: Safety and
efficacy of umbilical cord-derived Wharton's jelly compared to
hyaluronic acid and saline for knee osteoarthritis: Study protocol
for a randomized, controlled, single-blind, multi-center trial. J
Orthop Surg Res. 16:3522021. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Gupta A, Maffulli N, Rodriguez HC, Lee CE,
Levy HJ and El-Amin SF III: Umbilical cord-derived Wharton's jelly
for treatment of knee osteoarthritis: Study protocol for a
non-randomized, open-label, multi-center trial. J Orthop Surg Res.
16:1432021. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Jiang K, Jiang T, Chen Y and Mao X:
Mesenchymal stem cell-derived exosomes modulate chondrocyte
glutamine metabolism to alleviate osteoarthritis progression.
Mediators Inflamm. 2021:29791242021. View Article : Google Scholar
|
|
98
|
Storti G, Scioli MG, Kim BS, Orlandi A and
Cervelli V: Adipose-derived stem cells in bone tissue engineering:
Useful tools with new applications. Stem Cells Int.
2019:36738572019. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Liu M, Sun Y and Zhang Q: Emerging role of
extracellular vesicles in bone remodeling. J Dent Res. 97:859–868.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Yin Z, Qin C, Pan S, Shi C, Wu G, Feng Y,
Zhang J, Yu Z, Liang B and Gui J: Injectable hyperbranched PEG
crosslinked hyaluronan hydrogel microparticles containing
mir-99a-3p modified subcutaneous ADSCs-derived exosomes was
beneficial for long-term treatment of osteoarthritis. Mater Today
Bio. 23:1008132023. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Wang Y, Fan A, Lu L, Pan Z, Ma M, Luo S,
Liu Z, Yang L, Cai J and Yin F: Exosome modification to better
alleviates endoplasmic reticulum stress induced chondrocyte
apoptosis and osteoarthritis. Biochem Pharmacol. 206:1153432022.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Zhao J, Sun Y, Sheng X, Xu J, Dai G, He R,
Jin Y, Liu Z, Xie Y, Wu T, et al: Hypoxia-treated adipose
mesenchymal stem cell-derived exosomes attenuate lumbar facet joint
osteoarthritis. Mol Med. 29:1202023. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Fu Y, Cui S, Zhou Y and Qiu L: Dental pulp
stem cell-derived exosomes alleviate mice knee osteoarthritis by
inhibiting TRPV4-mediated osteoclast activation. Int J Mol Sci.
24:48262023.
|
|
104
|
Meng C, Na Y, Han C, Ren Y, Liu M, Ma P
and Bai R: Exosomal miR-429 derived from adipose-derived stem cells
ameliorated chondral injury in osteoarthritis via autophagy by
targeting FEZ2. Int Immunopharmacol. 120:1103152023. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Yang H, Zhou Y, Ying B, Dong X, Qian Q and
Gao S: Effects of human umbilical cord mesenchymal stem
cell-derived exosomes in the rat osteoarthritis models. Stem Cells
Transl Med. 13:803–811. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Huang C, Zhao Y, Lin S, Li L, Guo X,
Yumiseba S, Yang JD, Hariri R, Ye Q, He S and Kilcoyne A:
Characterization of human placenta-derived exosome (pExo) as a
potential osteoarthritis disease modifying therapeutic. Arthritis
Res Ther. 25:2292023. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Zhao S, Xiu G, Wang J, Wen Y, Lu J, Wu B,
Wang G, Yang D, Ling B, Du D and Xu J: Engineering exosomes derived
from subcutaneous fat MSCs specially promote cartilage repair as
miR-199a-3p delivery vehicles in osteoarthritis. J
Nanobiotechnology. 21:3412023. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Yang L, Li W, Zhao Y and Shang L: Magnetic
polysaccharide mesenchymal stem cells exosomes delivery
microcarriers for synergistic therapy of osteoarthritis. ACS Nano.
Jul 22–2024.Epub ahead of print.
|
|
109
|
Ma T, Xu G, Gao T, Zhao G, Huang G, Shi J,
Chen J, Song J, Xia J and Ma X: Engineered exosomes with
ATF5-modified mRNA loaded in injectable thermogels alleviate
osteoarthritis by targeting the mitochondrial unfolded protein
response. ACS Appl Mater Interfaces. 16:21383–21399. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Ju Y, Hu Y, Yang P, Xie X and Fang B:
Extracellular vesicle-loaded hydrogels for tissue repair and
regeneration. Mater Today Bio. 18:1005222022. View Article : Google Scholar
|
|
111
|
Chen M, Lu Y, Liu Y, Liu Q, Deng S, Liu Y,
Cui X, Liang J, Zhang X, Fan Y and Wang Q: Injectable microgels
with hybrid exosomes of chondrocyte-targeted FGF18 gene-editing and
self-renewable lubrication for osteoarthritis therapy. Adv Mater.
36:e23125592024. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Wen S, Huang X, Ma J, Zhao G, Ma T, Chen
K, Huang G, Chen J, Shi J and Wang S: Exosomes derived from MSC as
drug system in osteoarthritis therapy. Front Bioeng Biotechnol.
12:13312182024. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Lai JJ, Chau ZL, Chen SY, Hill JJ, Korpany
KV, Liang NW, Lin LH, Lin YH, Liu JK, Liu YC, et al: Exosome
processing and characterization approaches for research and
technology development. Adv Sci (Weinh). 9:e21032222022. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Kimiz-Gebologlu I and Oncel SS: Exosomes:
Large-scale production, isolation, drug loading efficiency, and
biodistribution and uptake. J Control Release. 347:533–543. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Yadav A, Xuan Y, Sen CK and Ghatak S:
Standardized reporting of research on exosomes to ensure rigor and
reproducibility. Adv Wound Care (New Rochelle). 13:584–599. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Kilgore RE, Moore BD, Sripada SA, Chu W,
Shastry S, Barbieri E, Hu S, Tian W, Petersen H, Mohammadifar M, et
al: Peptide ligands for the universal purification of exosomes by
affinity chromatography. Biotechnol Bioeng. 121:3484–3501. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Hassanpour Tamrin S, Sanati Nezhad A and
Sen A: Label-free isolation of exosomes using microfluidic
technologies. ACS Nano. 15:17047–17079. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Jiang Y, Lv H, Shen F, Fan L, Zhang H,
Huang Y, Liu J, Wang D, Pan H and Yang J: Strategies in product
engineering of mesenchymal stem cell-derived exosomes: Unveiling
the mechanisms underpinning the promotive effects of mesenchymal
stem cell-derived exosomes. Front Bioeng Biotechnol.
12:13637802024. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Shao J, Zaro J and Shen Y: Advances in
exosome-based drug delivery and tumor targeting: From tissue
distribution to intra-cellular fate. Int J Nanomedicine.
15:9355–9371. 2020. View Article : Google Scholar :
|
|
120
|
Fan X, Zhang Y, Liu W, Shao M, Gong Y,
Wang T, Xue S and Nian R: A comprehensive review of engineered
exosomes from the preparation strategy to therapeutic applications.
Biomater Sci. 12:3500–3521. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
He J, Ren W, Wang W, Han W, Jiang L, Zhang
D and Guo M: Exosomal targeting and its potential clinical
application. Drug Deliv Transl Res. 12:2385–2402. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Barzin M, Bagheri AM, Ohadi M, Abhaji AM,
Salarpour S and Dehghannoudeh G: Application of plant-derived
exosome-like nanoparticles in drug delivery. Pharm Dev Technol.
28:383–402. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Liang Y, Duan L, Lu J and Xia J:
Engineering exosomes for targeted drug delivery. Theranostics.
11:3183–3195. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Luo R, Liu M, Tan T, Yang Q, Wang Y, Men
L, Zhao L, Zhang H, Wang S, Xie T and Tian Q: Emerging significance
and therapeutic potential of extracellular vesicles. Int J Biol
Sci. 17:2476–2486. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Tiruvayipati S, Wolfgeher D, Yue M, Duan
F, Andrade J, Jiang H and Schuger L: Variability in protein cargo
detection in technical and biological replicates of
exosome-enriched extracellular vesicles. PLoS One. 15:e02288712020.
View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Ranjan P and Verma SK: Exosomes isolation,
purification, and characterization. Methods Mol Biol. 2835:173–180.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Gandham S, Su X, Wood J, Nocera AL, Alli
SC, Milane L, Zimmerman A, Amiji M and Ivanov AR: Technologies and
standardization in research on extracellular vesicles. Trends
Biotechnol. 38:1066–1098. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Singh S, Dansby C, Agarwal D, Bhat PD,
Dubey PK and Krishnamurthy P: Exosomes: Methods for isolation and
characterization in biological samples. Methods Mol Biol.
2835:181–213. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Ansari FJ, Tafti HA, Amanzadeh A, Rabbani
S, Shokrgozar MA, Heidari R, Behroozi J, Eyni H, Uversky VN and
Ghanbari H: Comparison of the efficiency of ultrafiltration,
precipitation, and ultracentrifugation methods for exosome
isolation. Biochem Biophys Rep. 38:1016682024.PubMed/NCBI
|
|
130
|
Claridge B, Lozano J, Poh QH and Greening
DW: Development of extracellular vesicle therapeutics: Challenges,
considerations, and opportunities. Front Cell Dev Biol.
9:7347202021. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Lin X and Zhu J, Shen J, Zhang Y and Zhu
J: Advances in exosome plasmonic sensing: Device integration
strategies and AI-aided diagnosis. Biosens Bioelectron.
266:1167182024. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Wang X, Xia J, Yang L, Dai J and He L:
Recent progress in exosome research: Isolation, characterization
and clinical applications. Cancer Gene Ther. 30:1051–1065. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Rezaie J, Ajezi S, Avci ÇB, Karimipour M,
Geranmayeh MH, Nourazarian A, Sokullu E, Rezabakhsh A and
Rahbarghazi R: Exosomes and their application in biomedical field:
Difficulties and advantages. Mol Neurobiol. 55:3372–3393. 2018.
View Article : Google Scholar
|
|
134
|
Saravanan PB, Kalivarathan J, Khan F, Shah
R, Levy MF and Kanak MA: Exosomes in transplantation: Role in
allograft rejection, diagnostic biomarker, and therapeutic
potential. Life Sci. 324:1217222023. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Awadasseid A, Wu Y and Zhang W:
Extracellular vesicles (exosomes) as immunosuppressive mediating
variables in tumor and chronic inflammatory microenvironments.
Cells. 10:25332021. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Codispoti B, Marrelli M, Paduano F and
Tatullo M: NANOmetric BIO-Banked MSC-derived exosome (NANOBIOME) as
a novel approach to regenerative medicine. J Clin Med. 7:3572018.
View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Krut Z, Pelled G, Gazit D and Gazit Z:
Stem cells and exosomes: New therapies for intervertebral disc
degeneration. Cells. 10:22412021. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Hartman N, Loyal J and Fabi S: Update on
exosomes in aesthetics. Dermatol Surg. 48:862–865. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Syed NH, Misbah I, Azlan M, Ahmad Mohd
Zain MR and Nurul AA: Exosomes in osteoarthritis: A review on their
isolation techniques and therapeutic potential. Indian J Orthop.
58:866–875. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Ma CY, Zhai Y, Li CT, Liu J, Xu X, Chen H,
Tse HF and Lian Q: Translating mesenchymal stem cell and their
exosome research into GMP compliant advanced therapy products:
Promises, problems and prospects. Med Res Rev. 44:919–938. 2024.
View Article : Google Scholar
|
|
141
|
Xia Y, Zhang J, Liu G and Wolfram J:
Immunogenicity of extracellular vesicles. Adv Mater.
36:e24031992024. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Huang J, Xiong J, Yang L, Zhang J, Sun S
and Liang Y: Cell-free exosome-laden scaffolds for tissue repair.
Nanoscale. 13:8740–8750. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Mi P, Liu JL, Qi BP, Wei BM, Xu CZ and Zhu
L: Stem cell-derived exosomes for chronic wound repair. Cell Tissue
Res. 391:419–423. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Yadav A, Nandy A, Sharma A and Ghatak S:
Exosome mediated cell-cell crosstalk in tissue injury and repair.
Results Probl Cell Differ. 73:249–297. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Tan F, Li X, Wang Z, Li J, Shahzad K and
Zheng J: Clinical applications of stem cell-derived exosomes.
Signal Transduct Target Ther. 9:172024. View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Tao SC, Yuan T, Zhang YL, Yin WJ, Guo SC
and Zhang CQ: Exosomes derived from miR-140-5p-overexpressing human
synovial mesenchymal stem cells enhance cartilage tissue
regeneration and prevent osteoarthritis of the knee in a rat model.
Theranostics. 7:180–195. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Sun H, Hu S and Zhang Z, Lun J, Liao W and
Zhang Z: Expression of exosomal microRNAs during chondrogenic
differentiation of human bone mesenchymal stem cells. J Cell
Biochem. 120:171–181. 2019. View Article : Google Scholar
|
|
148
|
Lu L, Wang J, Fan A, Wang P, Chen R, Lu L
and Yin F: Synovial mesenchymal stem cell-derived extracellular
vesicles containing microRN555A-26a-5p ameliorate cartilage damage
of osteoarthritis. J Gene Med. 23:e33792021. View Article : Google Scholar : PubMed/NCBI
|
|
149
|
Li Y, Tu Q, Xie D, Chen S, Gao K, Xu X,
Zhang Z and Mei X: Triamcinolone acetonide-loaded nanoparticles
encapsulated by CD90+ MCSs-derived microvesicles drive
anti-inflammatory properties and promote cartilage regeneration
after osteoarthritis. J Nanobiotechnology. 20:1502022. View Article : Google Scholar
|
|
150
|
Zhou X, Cao H, Guo J, Yuan Y and Ni G:
Effects of BMSC-derived EVs on bone metabolism. Pharmaceutics.
14:10122022. View Article : Google Scholar : PubMed/NCBI
|
|
151
|
Zhang Y, Qi G, Yan Y, Wang C, Wang Z,
Jiang C, Jiang Z, Ma T, Zhang C and Yan Z: Exosomes derived from
bone marrow mesenchymal stem cells pretreated with decellularized
extracellular matrix enhance the alleviation of osteoarthritis
through miR-3473b/phosphatase and tensin homolog axis. J Gene Med.
25:e35102023. View Article : Google Scholar : PubMed/NCBI
|
|
152
|
Lai C, Liao B, Peng S, Fang P, Bao N and
Zhang L: Synovial fibroblast-miR-214-3p-derived exosomes inhibit
inflammation and degeneration of cartilage tissues of
osteoarthritis rats. Mol Cell Biochem. 478:637–649. 2023.
View Article : Google Scholar :
|
|
153
|
Ji Y, Xiong L, Zhang G, Xu M, Qiu W, Xiu
C, Kuang G and Rui Y: Synovial fluid exosome-derived miR-182-5p
alleviates osteoarthritis by downregulating TNFAIP8 and promoting
autophagy through LC3 signaling. Int Immunopharmacol.
125:1111772023. View Article : Google Scholar : PubMed/NCBI
|
|
154
|
Wu S, Luo J, Zhang X, Wang L, Cai L and Xu
J: Synovia tissue-specific exosomes participate in the dual
variation of the osteoarthritis microenvironment via miR-182. Exp
Cell Res. 436:1139812024. View Article : Google Scholar : PubMed/NCBI
|
|
155
|
Qiu M, Xie Y, Tan G, Wang X, Huang P and
Hong L: Synovial mesenchymal stem cell-derived exosomal miR-485-3p
relieves cartilage damage in osteoarthritis by targeting the
NRP1-mediated PI3K/Akt pathway: Exosomal miR-485-3p relieves
cartilage damage. Heliyon. 10:e240422024. View Article : Google Scholar : PubMed/NCBI
|
|
156
|
Zhang Y, Wang X, Chen J, Qian D, Gao P,
Qin T, Jiang T, Yi J, Xu T, Huang Y, et al: Exosomes derived from
platelet-rich plasma administration in site mediate cartilage
protection in subtalar osteoarthritis. J Nanobiotechnology.
20:562022. View Article : Google Scholar : PubMed/NCBI
|
|
157
|
Lou C, Jiang H, Lin Z, Xia T, Wang W, Lin
C, Zhang Z, Fu H, Iqbal S, Liu H, et al: MiR-146b-5p enriched
bioinspired exosomes derived from fucoidan-directed induction
mesenchymal stem cells protect chondrocytes in osteoarthritis by
targeting TRAF6. J Nanobiotechnology. 21:4862023. View Article : Google Scholar : PubMed/NCBI
|
|
158
|
Meng S, Tang C, Deng M, Yuan J, Fan Y, Gao
S, Feng Y, Yang J and Chen C: Tropoelastin-pretreated exosomes from
adipose-derived stem cells improve the synthesis of cartilage
matrix and alleviate osteoarthritis. J Funct Biomater. 14:2032023.
View Article : Google Scholar : PubMed/NCBI
|
|
159
|
Wang S, Jiang W, Lv S, Sun Z, Si L, Hu J,
Yang Y, Qiu D, Liu X, Zhu S, et al: Human umbilical cord
mesenchymal stem cells-derived exosomes exert anti-inflammatory
effects on osteoarthritis chondrocytes. Aging (Albany NY).
15:9544–9560. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
160
|
Chen J, Ni X, Yang J, Yang H, Liu X, Chen
M, Sun C and Wang Y: Cartilage stem/progenitor cells-derived
exosomes facilitate knee cartilage repair in a subacute
osteoarthritis rat model. J Cell Mol Med. 28:e183272024. View Article : Google Scholar : PubMed/NCBI
|