
Potential and challenges of utilizing exosomes in osteoarthritis therapy (Review)
- Authors:
- Xuesong Chen
- Bin Tian
- Yiqun Wang
- Jiang Zheng
- Xin Kang
-
Affiliations: Department of Joint Surgery, Sports Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710054, P.R. China - Published online on: January 8, 2025 https://doi.org/10.3892/ijmm.2025.5484
- Article Number: 43
-
Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
Yao Q, Wu X, Tao C, Gong W, Chen M, Qu M, Zhong Y, He T, Chen S and Xiao G: Osteoarthritis: Pathogenic signaling pathways and therapeutic targets. Signal Transduct Target Ther. 8:562023. View Article : Google Scholar : PubMed/NCBI | |
Barnett R: Osteoarthritis. Lancet. 391:19852018. View Article : Google Scholar : PubMed/NCBI | |
Englund M: Osteoarthritis, part of life or a curable disease? A bird's-eye view. J Intern Med. 293:681–693. 2023. View Article : Google Scholar : PubMed/NCBI | |
Schlenk EA, Fitzgerald GK, Rogers JC, Kwoh CK and Sereika SM: Promoting physical activity in older adults with knee osteoarthritis and hypertension: A randomized controlled trial. J Aging Phys Act. 29:207–218. 2021. View Article : Google Scholar : | |
Hawker GA and King LK: The burden of osteoarthritis in older adults. Clin Geriatr Med. 38:181–192. 2022. View Article : Google Scholar : PubMed/NCBI | |
Jiang W, Chen H, Lin Y, Cheng K, Zhou D, Chen R, Song C, Zeng L and Yu H: Mechanical stress abnormalities promote chondrocyte senescence-the pathogenesis of knee osteoarthritis. Biomed Pharmacother. 167:1155522023. View Article : Google Scholar | |
Sanchez-Lopez E, Coras R, Torres A, Lane NE and Guma M: Synovial inflammation in osteoarthritis progression. Nat Rev Rheumatol. 18:258–275. 2022. View Article : Google Scholar : PubMed/NCBI | |
Rim YA, Nam Y and Ju JH: The role of chondrocyte hypertrophy and senescence in osteoarthritis initiation and progression. Int J Mol Sci. 21:23582020. View Article : Google Scholar : PubMed/NCBI | |
Abramoff B and Caldera FE: Osteoarthritis: Pathology, diagnosis, and treatment options. Med Clin North Am. 104:293–311. 2020. View Article : Google Scholar : PubMed/NCBI | |
Emami A, Namdari H, Parvizpour F and Arabpour Z: Challenges in osteoarthritis treatment. Tissue Cell. 80:1019922023. View Article : Google Scholar | |
Danilushkina AA, Emene CC, Barlev NA and Gomzikova MO: Strategies for engineering of extracellular vesicles. Int J Mol Sci. 24:132472023. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Dou Y, Liu Y, Di M, Bian H, Sun X and Yang Q: Advances in therapeutic applications of extracellular vesicles. Int J Nanomedicine. 18:3285–3307. 2023. View Article : Google Scholar : PubMed/NCBI | |
Gurunathan S, Kang MH, Song H, Kim NH and Kim JH: The role of extracellular vesicles in animal reproduction and diseases. J Anim Sci Biotechnol. 13:622022. View Article : Google Scholar : PubMed/NCBI | |
Ni Z, Zhou S, Li S, Kuang L, Chen H, Luo X, Ouyang J, He M, Du X and Chen L: Exosomes: Roles and therapeutic potential in osteoarthritis. Bone Res. 8:252020. View Article : Google Scholar : PubMed/NCBI | |
Fan Y, Li Z and He Y: Exosomes in the pathogenesis, progression, and treatment of osteoarthritis. Bioengineering (Basel). 9:992022. View Article : Google Scholar : PubMed/NCBI | |
Yan J, Shen M, Sui B, Lu W, Han X, Wan Q, Liu Y, Kang J, Qin W, Zhang Z, et al: Autophagic LC3+ calcified extracellular vesicles initiate cartilage calcification in osteoarthritis. Sci Adv. 8:eabn15562022. View Article : Google Scholar | |
Zhou H, Shen X, Yan C, Xiong W, Ma Z, Tan Z, Wang J, Li Y, Liu J, Duan A and Liu F: Extracellular vesicles derived from human umbilical cord mesenchymal stem cells alleviate osteoarthritis of the knee in mice model by interacting with METTL3 to reduce m6A of NLRP3 in macrophage. Stem Cell Res Ther. 13:3222022. View Article : Google Scholar : PubMed/NCBI | |
Zou J, Yang W, Cui W, Li C, Ma C, Ji X, Hong J, Qu Z, Chen J, Liu A and Wu H: Therapeutic potential and mechanisms of mesenchymal stem cell-derived exosomes as bioactive materials in tendon-bone healing. J Nanobiotechnology. 21:142023. View Article : Google Scholar : PubMed/NCBI | |
Krylova SV and Feng D: The machinery of exosomes: Biogenesis, release, and uptake. Int J Mol Sci. 24:13372023. View Article : Google Scholar : PubMed/NCBI | |
Xie F, Liu YL, Chen XY, Li Q, Zhong J, Dai BY, Shao XF and Wu GB: Role of MicroRNA, LncRNA, and exosomes in the progression of osteoarthritis: A review of recent literature. Orthop Surg. 12:708–716. 2020. View Article : Google Scholar : PubMed/NCBI | |
Miao C, Zhou W, Wang X and Fang J: The research progress of exosomes in osteoarthritis, with particular emphasis on the mediating roles of miRNAs and lncRNAs. Front Pharmacol. 12:6856232021. View Article : Google Scholar : PubMed/NCBI | |
Asghar S, Litherland GJ, Lockhart JC, Goodyear CS and Crilly A: Exosomes in intercellular communication and implications for osteoarthritis. Rheumatology (Oxford). 59:57–68. 2020. | |
Sheta M, Taha EA, Lu Y and Eguchi T: Extracellular vesicles: New classification and tumor immunosuppression. Biology (Basel). 12:1102023.PubMed/NCBI | |
Zhou Q, Cai Y, Jiang Y and Lin X: Exosomes in osteoarthritis and cartilage injury: Advanced development and potential therapeutic strategies. Int J Biol Sci. 16:1811–1820. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu Q, Wang R, Hou S, He F, Ma Y, Ye T, Yu S, Chen H, Wang H and Zhang M: Chondrocyte-derived exosomes promote cartilage calcification in temporomandibular joint osteoarthritis. Arthritis Res Ther. 24:442022. View Article : Google Scholar : PubMed/NCBI | |
Sang X, Zhao X, Yan L, Jin X, Wang X, Wang J, Yin Z, Zhang Y and Meng Z: Thermosensitive hydrogel loaded with primary chondrocyte-derived exosomes promotes cartilage repair by regulating macrophage polarization in osteoarthritis. Tissue Eng Regen Med. 19:629–642. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Crawford R, Xiao Y, Mao X and Prasadam I: Osteoarthritic subchondral bone release exosomes that promote cartilage degeneration. Cells. 10:2512021. View Article : Google Scholar : PubMed/NCBI | |
Kim YG, Choi J and Kim K: Mesenchymal stem cell-derived exosomes for effective cartilage tissue repair and treatment of osteoarthritis. Biotechnol J. 15:e20000822020. View Article : Google Scholar : PubMed/NCBI | |
Skotland T, Sandvig K and Llorente A: Lipids in exosomes: Current knowledge and the way forward. Prog Lipid Res. 66:30–41. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kalluri R and LeBleu VS: The biology, function, and biomedical applications of exosomes. Science. 367:eaau69772020. View Article : Google Scholar : PubMed/NCBI | |
Mihanfar A, Shakouri SK, Khadem-Ansari MH, Fattahi A, Latifi Z, Nejabati HR and Nouri M: Exosomal miRNAs in osteoarthritis. Mol Biol Rep. 47:4737–4748. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kong R, Ji L, Pang Y, Zhao D and Gao J: Exosomes from osteoarthritic fibroblast-like synoviocytes promote cartilage ferroptosis and damage via delivering microRNA-19b-3p to target SLC7A11 in osteoarthritis. Front Immunol. 14:11811562023. View Article : Google Scholar : PubMed/NCBI | |
Mao G, Zhang Z, Hu S, Zhang Z, Chang Z, Huang Z, Liao W and Kang Y: Exosomes derived from miR-92a-3p-overexpressing human mesenchymal stem cells enhance chondrogenesis and suppress cartilage degradation via targeting WNT5A. Stem Cell Res Ther. 9:2472018. View Article : Google Scholar : PubMed/NCBI | |
Qiu M, Liu D and Fu Q: MiR-129-5p shuttled by human synovial mesenchymal stem cell-derived exosomes relieves IL-1β induced osteoarthritis via targeting HMGB1. Life Sci. 269:1189872021. View Article : Google Scholar | |
Xia Q, Wang Q, Lin F and Wang J: miR-125a-5p-abundant exosomes derived from mesenchymal stem cells suppress chondrocyte degeneration via targeting E2F2 in traumatic osteoarthritis. Bioengineered. 12:11225–11238. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tao Y, Zhou J, Wang Z, Tao H, Bai J, Ge G, Li W, Zhang W, Hao Y, Yang X and Geng D: Human bone mesenchymal stem cells-derived exosomal miRNA-361-5p alleviates osteoarthritis by downregulating DDX20 and inactivating the NF-κB signaling pathway. Bioorg Chem. 113:1049782021. View Article : Google Scholar | |
Li X, Wang Y, Cai Z, Zhou Q, Li L and Fu P: Exosomes from human umbilical cord mesenchymal stem cells inhibit ROS production and cell apoptosis in human articular chondrocytes via the miR-100-5p/NOX4 axis. Cell Biol Int. 45:2096–2106. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ye P, Mi Z, Wei D, Gao P, Ma M and Yang H: miR-3960 from mesenchymal stem cell-derived extracellular vesicles inactivates SDC1/Wnt/β-catenin axis to relieve chondrocyte injury in osteoarthritis by targeting PHLDA2. Stem Cells Int. 2022:94551522022. View Article : Google Scholar | |
Foo JB, Looi QH, How CW, Lee SH, Al-Masawa ME, Chong PP and Law JX: Mesenchymal stem cell-derived exosomes and MicroRNAs in cartilage regeneration: Biogenesis, efficacy, miRNA enrichment and delivery. Pharmaceuticals (Basel). 14:10932021. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Yan K, Ge G, Zhang D, Bai J, Guo X, Zhou J, Xu T, Xu M, Long X, et al: Exosomes derived from miR-155-5p-overexpressing synovial mesenchymal stem cells prevent osteoarthritis via enhancing proliferation and migration, attenuating apoptosis, and modulating extracellular matrix secretion in chondrocytes. Cell Biol Toxicol. 37:85–96. 2021. View Article : Google Scholar | |
Qian Y, Chu G, Zhang L, Wu Z, Wang Q, Guo JJ and Zhou F: M2 macrophage-derived exosomal miR-26b-5p regulates macrophage polarization and chondrocyte hypertrophy by targeting TLR3 and COL10A1 to alleviate osteoarthritis. J Nanobiotechnology. 22:722024. View Article : Google Scholar : PubMed/NCBI | |
Yoo KH, Thapa N, Chwae YJ, Yoon SH, Kim BJ, Lee JO, Jang YN and Kim J: Transforming growth factor-β family and stem cell-derived exosome therapeutic treatment in osteoarthritis (Review). Int J Mol Med. 49:622022. View Article : Google Scholar | |
Du X, Cai L, Xie J and Zhou X: The role of TGF-beta3 in cartilage development and osteoarthritis. Bone Res. 11:22023. View Article : Google Scholar : PubMed/NCBI | |
Lambert C, Dubuc JE, Montell E, Vergés J, Munaut C, Noël A and Henrotin Y: Gene expression pattern of cells from inflamed and normal areas of osteoarthritis synovial membrane. Arthritis Rheumatol. 66:960–968. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tsai CH, Liu SC, Chung WH, Wang SW, Wu MH and Tang CH: Visfatin increases VEGF-dependent angiogenesis of endothelial progenitor cells during osteoarthritis progression. Cells. 9:13152020. View Article : Google Scholar : PubMed/NCBI | |
Zou ZL, Sun MH, Yin WF, Yang L and Kong LY: Avicularin suppresses cartilage extracellular matrix degradation and inflammation via TRAF6/MAPK activation. Phytomedicine. 91:1536572021. View Article : Google Scholar : PubMed/NCBI | |
Wang L and He C: Nrf2-mediated anti-inflammatory polarization of macrophages as therapeutic targets for osteoarthritis. Front Immunol. 13:9671932022. View Article : Google Scholar : PubMed/NCBI | |
Lin S, Li H, Wu B, Shang J, Jiang N, Peng R, Xing B, Xu X and Lu H: TGF-β1 regulates chondrocyte proliferation and extracellular matrix synthesis via circPhf21a-Vegfa axis in osteoarthritis. Cell Commun Signal. 20:752022. View Article : Google Scholar | |
Ge Y, Xu W, Chen Z, Zhang H, Zhang W, Chen J, Huang J, Du W, Tong P, Shan L and Zhou L: Nanofat lysate ameliorates pain and cartilage degradation of osteoarthritis through activation of TGF-β-Smad2/3 signaling of chondrocytes. Front Pharmacol. 14:9002052023. View Article : Google Scholar | |
Zhong Y, Xu Y, Xue S, Zhu L, Lu H, Wang C, Chen H, Sang W and Ma J: Nangibotide attenuates osteoarthritis by inhibiting osteoblast apoptosis and TGF-β activity in subchondral bone. Inflammopharmacology. 30:1107–1117. 2022. View Article : Google Scholar : PubMed/NCBI | |
Sun K, Luo J, Guo J, Yao X, Jing X and Guo F: The PI3K/AKT/mTOR signaling pathway in osteoarthritis: A narrative review. Osteoarthritis Cartilage. 28:400–409. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Xu H, Li X, Chen H, Zhang H, Zhu X, Lin Z, Guo S, Bao Z, Rui H, et al: Cucurbitacin E reduces IL-1β-induced inflammation and cartilage degeneration by inhibiting the PI3K/Akt pathway in osteoarthritic chondrocytes. J Transl Med. 21:8802023. View Article : Google Scholar | |
Zhang Y, Pizzute T and Pei M: A review of crosstalk between MAPK and Wnt signals and its impact on cartilage regeneration. Cell Tissue Res. 358:633–649. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yan D, Chen D and Im HJ: Fibroblast growth factor-2 promotes catabolism via FGFR1-Ras-Raf-MEK1/2-ERK1/2 axis that coordinates with the PKCδ pathway in human articular chondrocytes. J Cell Biochem. 113:2856–2865. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ge Q, Wang H, Xu X, Xu L, Zhai L and Tao R: PDK1 promotes apoptosis of chondrocytes via modulating MAPK pathway in osteoarthritis. Tissue Cell. 49:719–725. 2017. View Article : Google Scholar : PubMed/NCBI | |
Saha S and Rebouh NY: Anti-osteoarthritis mechanism of the Nrf2 signaling pathway. Biomedicines. 11:31762023. View Article : Google Scholar : PubMed/NCBI | |
Shang X, Fang Y, Xin W and You H: The application of extracellular vesicles mediated miRNAs in osteoarthritis: Current knowledge and perspective. J Inflamm Res. 15:2583–2599. 2022. View Article : Google Scholar : PubMed/NCBI | |
Duan L, Liang Y, Xu X, Xiao Y and Wang D: Recent progress on the role of miR-140 in cartilage matrix remodelling and its implications for osteoarthritis treatment. Arthritis Res Ther. 22:1942020. View Article : Google Scholar : PubMed/NCBI | |
Mori T, Giovannelli L, Bilia AR and Margheri F: Exosomes: Potential next-generation nanocarriers for the therapy of inflammatory diseases. Pharmaceutics. 15:22762023. View Article : Google Scholar : PubMed/NCBI | |
El Jamal A, Bougault C, Mebarek S, Magne D, Cuvillier O and Brizuela L: The role of sphingosine 1-phosphate metabolism in bone and joint pathologies and ectopic calcification. Bone. 130:1150872020. View Article : Google Scholar | |
Skotland T, Hessvik NP, Sandvig K and Llorente A: Exosomal lipid composition and the role of ether lipids and phosphoinositides in exosome biology. J Lipid Res. 60:9–18. 2019. View Article : Google Scholar : | |
Wei G, Lu K, Umar M, Zhu Z, Lu WW, Speakman JR, Chen Y, Tong L and Chen D: Risk of metabolic abnormalities in osteoarthritis: A new perspective to understand its pathological mechanisms. Bone Res. 11:632023. View Article : Google Scholar : PubMed/NCBI | |
Wang G and Bieberich E: Sphingolipids in neurodegeneration (with focus on ceramide and S1P). Adv Biol Regul. 70:51–64. 2018. View Article : Google Scholar : PubMed/NCBI | |
Toh WS, Lai RC, Hui JHP and Lim SK: MSC exosome as a cell-free MSC therapy for cartilage regeneration: Implications for osteoarthritis treatment. Semin Cell Dev Biol. 67:56–64. 2017. View Article : Google Scholar | |
Cosenza S, Ruiz M, Maumus M, Jorgensen C and Noël D: Pathogenic or therapeutic extracellular vesicles in rheumatic diseases: Role of mesenchymal stem cell-derived vesicles. Int J Mol Sci. 18:8892017. View Article : Google Scholar : PubMed/NCBI | |
Chen M, Wang Q, Wang Y, Fan Y and Zhang X: Biomaterials-assisted exosomes therapy in osteoarthritis. Biomed Mater. 17:0220012022. View Article : Google Scholar | |
Yang B, Li X, Fu C, Cai W, Meng B, Qu Y, Kou X and Zhang Q: Extracellular vesicles in osteoarthritis of peripheral joint and temporomandibular joint. Front Endocrinol (Lausanne). 14:11587442023. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Lin L, Zou R, Wen C, Wang Z and Lin F: MSC-derived exosomes promote proliferation and inhibit apoptosis of chondrocytes via lncRNA-KLF3-AS1/miR-206/GIT1 axis in osteoarthritis. Cell Cycle. 17:2411–2422. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xie L, Chen Z, Liu M, Huang W, Zou F, Ma X, Tao J, Guo J, Xia X, Lyu F, et al: MSC-derived exosomes protect vertebral endplate chondrocytes against apoptosis and calcification via the miR-31-5p/ATF6 axis. Mol Ther Nucleic Acids. 22:601–614. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tang S, Tang T, Gao G, Wei Q, Sun K and Huang W: Bone marrow mesenchymal stem cell-derived exosomes inhibit chondrocyte apoptosis and the expression of MMPs by regulating Drp1-mediated mitophagy. Acta Histochem. 123:1517962021. View Article : Google Scholar : PubMed/NCBI | |
Zheng L, Wang Y, Qiu P, Xia C, Fang Y, Mei S, Fang C, Shi Y, Wu K, Chen Z, et al: Primary chondrocyte exosomes mediate osteoarthritis progression by regulating mitochondrion and immune reactivity. Nanomedicine (Lond). 14:3193–3212. 2019. View Article : Google Scholar : PubMed/NCBI | |
Withrow J, Murphy C, Liu Y, Hunter M, Fulzele S and Hamrick MW: Extracellular vesicles in the pathogenesis of rheumatoid arthritis and osteoarthritis. Arthritis Res Ther. 18:2862016. View Article : Google Scholar : PubMed/NCBI | |
Yu H, Huang Y and Yang L: Research progress in the use of mesenchymal stem cells and their derived exosomes in the treatment of osteoarthritis. Ageing Res Rev. 80:1016842022. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Ming J, Li Y, Li B, Deng M, Ma Y, Chen Z, Zhang Y, Li J and Liu S: Exosomes derived from miR-126-3p-overexpressing synovial fibroblasts suppress chondrocyte inflammation and cartilage degradation in a rat model of osteoarthritis. Cell Death Discov. 7:372021. View Article : Google Scholar : PubMed/NCBI | |
Szponder T, Latalski M, Danielewicz A, Krać K, Kozera A, Drzewiecka B, Nguyen Ngoc D, Dobko D and Wessely-Szponder J: Osteoarthritis: Pathogenesis, animal models, and new regenerative therapies. J Clin Med. 12:52022. View Article : Google Scholar | |
Liu B, Xian Y, Chen X, Shi Y, Dong J, Yang L, An X, Shen T, Wu W, Ma Y, et al: Inflammatory fibroblast-like synoviocyte-derived exosomes aggravate osteoarthritis via enhancing macrophage glycolysis. Adv Sci (Weinh). 11:e23073382024. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Guo X, Kang Z, Qi L, Yang Y, Wang J, Xu J and Gao S: Roles of exosomes from mesenchymal stem cells in treating osteoarthritis. Cell Reprogram. 22:107–117. 2020. View Article : Google Scholar : PubMed/NCBI | |
Huang L, Dong G, Peng J, Li T, Zou M, Hu K, Shu Y, Cheng T and Hao L: The role of exosomes and their enhancement strategies in the treatment of osteoarthritis. Hum Cell. 36:1887–1900. 2023. View Article : Google Scholar : PubMed/NCBI | |
Li F, Xu Z, Xie Z, Sun X, Li C, Chen Y, Xu J and Pi G: Adipose mesenchymal stem cells-derived exosomes alleviate osteoarthritis by transporting microRNA-376c-3p and targeting the WNT-beta-catenin signaling axis. Apoptosis. 28:362–378. 2023. View Article : Google Scholar | |
Zhang Y, Jia J, Yang S, Liu X, Ye S and Tian H: MicroRNA-21 controls the development of osteoarthritis by targeting GDF-5 in chondrocytes. Exp Mol Med. 46:e792014. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Huang H, Zhong W, Li L, Lu Y and Si HB: miR-140-5p protects cartilage progenitor/stem cells from fate changes in knee osteoarthritis. Int Immunopharmacol. 114:1095762023. View Article : Google Scholar | |
Kim M, Shin DI, Choi BH and Min BH: Exosomes from IL-1β-primed mesenchymal stem cells inhibited IL-1β- and TNF-α-mediated inflammatory responses in osteoarthritic SW982 cells. Tissue Eng Regen Med. 18:525–536. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Zhang Y, Zhang C, Zhao Y, Shu J and Tang X: Exosomes derived from miR-146a-overexpressing fibroblast-like synoviocytes in cartilage degradation and macrophage M1 polarization: A novel protective agent for osteoarthritis? Front Immunol. 15:13616062024. View Article : Google Scholar : PubMed/NCBI | |
Fan WJ, Liu D, Pan LY, Wang WY, Ding YL, Zhang YY, Ye RX, Zhou Y, An SB and Xiao WF: Exosomes in osteoarthritis: Updated insights on pathogenesis, diagnosis, and treatment. Front Cell Dev Biol. 10:9496902022. View Article : Google Scholar : PubMed/NCBI | |
Selvadoss A, Baby HM, Zhang H and Bajpayee AG: Harnessing exosomes for advanced osteoarthritis therapy. Nanoscale. 16:19174–19191. 2024. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Zhuang Y, Fang L, Yuan C, Wang X and Lin K: Breakthrough of extracellular vesicles in pathogenesis, diagnosis and treatment of osteoarthritis. Bioact Mater. 22:423–452. 2022.PubMed/NCBI | |
Yin B, Ni J, Witherel CE, Yang M, Burdick JA, Wen C and Wong SHD: Harnessing tissue-derived extracellular vesicles for osteoarthritis theranostics. Theranostics. 12:207–231. 2022. View Article : Google Scholar : PubMed/NCBI | |
Nagelkerke A, Ojansivu M, van der Koog L, Whittaker TE, Cunnane EM, Silva AM, Dekker N and Stevens MM: Extracellular vesicles for tissue repair and regeneration: Evidence, challenges and opportunities. Adv Drug Deliv Rev. 175:1137752021. View Article : Google Scholar : PubMed/NCBI | |
Wu C, He Y, Yao Y, Yang H and Lu F: Exosomes treating osteoarthritis: Hope with challenge. Heliyon. 9:e131522023. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Yu D, Liu Z, Zhou F, Dai J, Wu B, Zhou J, Heng BC, Zou XH, Ouyang H and Liu H: Exosomes from embryonic mesenchymal stem cells alleviate osteoarthritis through balancing synthesis and degradation of cartilage extracellular matrix. Stem Cell Res Ther. 8:1892017. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Teo KYW, Chuah SJ, Lai RC, Lim SK and Toh WS: MSC exosomes alleviate temporomandibular joint osteoarthritis by attenuating inflammation and restoring matrix homeostasis. Biomaterials. 200:35–47. 2019. View Article : Google Scholar : PubMed/NCBI | |
He L, He T, Xing J, Zhou Q, Fan L, Liu C, Chen Y, Wu D, Tian Z, Liu B and Rong L: Bone marrow mesenchymal stem cell-derived exosomes protect cartilage damage and relieve knee osteoarthritis pain in a rat model of osteoarthritis. Stem Cell Res Ther. 11:2762020. View Article : Google Scholar : PubMed/NCBI | |
Xu H and Xu B: BMSC-derived exosomes ameliorate osteoarthritis by inhibiting pyroptosis of cartilage via delivering mir-326 targeting HDAC3 and STAT1//NF-κB p65 to chondrocytes. Mediators Inflamm. 2021:99728052021. View Article : Google Scholar | |
Jin Y, Xu M, Zhu H, Dong C, Ji J, Liu Y, Deng A and Gu Z: Therapeutic effects of bone marrow mesenchymal stem cells-derived exosomes on osteoarthritis. J Cell Mol Med. 25:9281–9294. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gupta A, Maffulli N, Rodriguez HC, Carson EW, Bascharon RA, Delfino K, Levy HJ and El-Amin SF III: Safety and efficacy of umbilical cord-derived Wharton's jelly compared to hyaluronic acid and saline for knee osteoarthritis: Study protocol for a randomized, controlled, single-blind, multi-center trial. J Orthop Surg Res. 16:3522021. View Article : Google Scholar : PubMed/NCBI | |
Gupta A, Maffulli N, Rodriguez HC, Lee CE, Levy HJ and El-Amin SF III: Umbilical cord-derived Wharton's jelly for treatment of knee osteoarthritis: Study protocol for a non-randomized, open-label, multi-center trial. J Orthop Surg Res. 16:1432021. View Article : Google Scholar : PubMed/NCBI | |
Jiang K, Jiang T, Chen Y and Mao X: Mesenchymal stem cell-derived exosomes modulate chondrocyte glutamine metabolism to alleviate osteoarthritis progression. Mediators Inflamm. 2021:29791242021. View Article : Google Scholar | |
Storti G, Scioli MG, Kim BS, Orlandi A and Cervelli V: Adipose-derived stem cells in bone tissue engineering: Useful tools with new applications. Stem Cells Int. 2019:36738572019. View Article : Google Scholar : PubMed/NCBI | |
Liu M, Sun Y and Zhang Q: Emerging role of extracellular vesicles in bone remodeling. J Dent Res. 97:859–868. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yin Z, Qin C, Pan S, Shi C, Wu G, Feng Y, Zhang J, Yu Z, Liang B and Gui J: Injectable hyperbranched PEG crosslinked hyaluronan hydrogel microparticles containing mir-99a-3p modified subcutaneous ADSCs-derived exosomes was beneficial for long-term treatment of osteoarthritis. Mater Today Bio. 23:1008132023. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Fan A, Lu L, Pan Z, Ma M, Luo S, Liu Z, Yang L, Cai J and Yin F: Exosome modification to better alleviates endoplasmic reticulum stress induced chondrocyte apoptosis and osteoarthritis. Biochem Pharmacol. 206:1153432022. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Sun Y, Sheng X, Xu J, Dai G, He R, Jin Y, Liu Z, Xie Y, Wu T, et al: Hypoxia-treated adipose mesenchymal stem cell-derived exosomes attenuate lumbar facet joint osteoarthritis. Mol Med. 29:1202023. View Article : Google Scholar : PubMed/NCBI | |
Fu Y, Cui S, Zhou Y and Qiu L: Dental pulp stem cell-derived exosomes alleviate mice knee osteoarthritis by inhibiting TRPV4-mediated osteoclast activation. Int J Mol Sci. 24:48262023. | |
Meng C, Na Y, Han C, Ren Y, Liu M, Ma P and Bai R: Exosomal miR-429 derived from adipose-derived stem cells ameliorated chondral injury in osteoarthritis via autophagy by targeting FEZ2. Int Immunopharmacol. 120:1103152023. View Article : Google Scholar : PubMed/NCBI | |
Yang H, Zhou Y, Ying B, Dong X, Qian Q and Gao S: Effects of human umbilical cord mesenchymal stem cell-derived exosomes in the rat osteoarthritis models. Stem Cells Transl Med. 13:803–811. 2024. View Article : Google Scholar : PubMed/NCBI | |
Huang C, Zhao Y, Lin S, Li L, Guo X, Yumiseba S, Yang JD, Hariri R, Ye Q, He S and Kilcoyne A: Characterization of human placenta-derived exosome (pExo) as a potential osteoarthritis disease modifying therapeutic. Arthritis Res Ther. 25:2292023. View Article : Google Scholar : PubMed/NCBI | |
Zhao S, Xiu G, Wang J, Wen Y, Lu J, Wu B, Wang G, Yang D, Ling B, Du D and Xu J: Engineering exosomes derived from subcutaneous fat MSCs specially promote cartilage repair as miR-199a-3p delivery vehicles in osteoarthritis. J Nanobiotechnology. 21:3412023. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Li W, Zhao Y and Shang L: Magnetic polysaccharide mesenchymal stem cells exosomes delivery microcarriers for synergistic therapy of osteoarthritis. ACS Nano. Jul 22–2024.Epub ahead of print. | |
Ma T, Xu G, Gao T, Zhao G, Huang G, Shi J, Chen J, Song J, Xia J and Ma X: Engineered exosomes with ATF5-modified mRNA loaded in injectable thermogels alleviate osteoarthritis by targeting the mitochondrial unfolded protein response. ACS Appl Mater Interfaces. 16:21383–21399. 2024. View Article : Google Scholar : PubMed/NCBI | |
Ju Y, Hu Y, Yang P, Xie X and Fang B: Extracellular vesicle-loaded hydrogels for tissue repair and regeneration. Mater Today Bio. 18:1005222022. View Article : Google Scholar | |
Chen M, Lu Y, Liu Y, Liu Q, Deng S, Liu Y, Cui X, Liang J, Zhang X, Fan Y and Wang Q: Injectable microgels with hybrid exosomes of chondrocyte-targeted FGF18 gene-editing and self-renewable lubrication for osteoarthritis therapy. Adv Mater. 36:e23125592024. View Article : Google Scholar : PubMed/NCBI | |
Wen S, Huang X, Ma J, Zhao G, Ma T, Chen K, Huang G, Chen J, Shi J and Wang S: Exosomes derived from MSC as drug system in osteoarthritis therapy. Front Bioeng Biotechnol. 12:13312182024. View Article : Google Scholar : PubMed/NCBI | |
Lai JJ, Chau ZL, Chen SY, Hill JJ, Korpany KV, Liang NW, Lin LH, Lin YH, Liu JK, Liu YC, et al: Exosome processing and characterization approaches for research and technology development. Adv Sci (Weinh). 9:e21032222022. View Article : Google Scholar : PubMed/NCBI | |
Kimiz-Gebologlu I and Oncel SS: Exosomes: Large-scale production, isolation, drug loading efficiency, and biodistribution and uptake. J Control Release. 347:533–543. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yadav A, Xuan Y, Sen CK and Ghatak S: Standardized reporting of research on exosomes to ensure rigor and reproducibility. Adv Wound Care (New Rochelle). 13:584–599. 2024. View Article : Google Scholar : PubMed/NCBI | |
Kilgore RE, Moore BD, Sripada SA, Chu W, Shastry S, Barbieri E, Hu S, Tian W, Petersen H, Mohammadifar M, et al: Peptide ligands for the universal purification of exosomes by affinity chromatography. Biotechnol Bioeng. 121:3484–3501. 2024. View Article : Google Scholar : PubMed/NCBI | |
Hassanpour Tamrin S, Sanati Nezhad A and Sen A: Label-free isolation of exosomes using microfluidic technologies. ACS Nano. 15:17047–17079. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Lv H, Shen F, Fan L, Zhang H, Huang Y, Liu J, Wang D, Pan H and Yang J: Strategies in product engineering of mesenchymal stem cell-derived exosomes: Unveiling the mechanisms underpinning the promotive effects of mesenchymal stem cell-derived exosomes. Front Bioeng Biotechnol. 12:13637802024. View Article : Google Scholar : PubMed/NCBI | |
Shao J, Zaro J and Shen Y: Advances in exosome-based drug delivery and tumor targeting: From tissue distribution to intra-cellular fate. Int J Nanomedicine. 15:9355–9371. 2020. View Article : Google Scholar : | |
Fan X, Zhang Y, Liu W, Shao M, Gong Y, Wang T, Xue S and Nian R: A comprehensive review of engineered exosomes from the preparation strategy to therapeutic applications. Biomater Sci. 12:3500–3521. 2024. View Article : Google Scholar : PubMed/NCBI | |
He J, Ren W, Wang W, Han W, Jiang L, Zhang D and Guo M: Exosomal targeting and its potential clinical application. Drug Deliv Transl Res. 12:2385–2402. 2022. View Article : Google Scholar : PubMed/NCBI | |
Barzin M, Bagheri AM, Ohadi M, Abhaji AM, Salarpour S and Dehghannoudeh G: Application of plant-derived exosome-like nanoparticles in drug delivery. Pharm Dev Technol. 28:383–402. 2023. View Article : Google Scholar : PubMed/NCBI | |
Liang Y, Duan L, Lu J and Xia J: Engineering exosomes for targeted drug delivery. Theranostics. 11:3183–3195. 2021. View Article : Google Scholar : PubMed/NCBI | |
Luo R, Liu M, Tan T, Yang Q, Wang Y, Men L, Zhao L, Zhang H, Wang S, Xie T and Tian Q: Emerging significance and therapeutic potential of extracellular vesicles. Int J Biol Sci. 17:2476–2486. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tiruvayipati S, Wolfgeher D, Yue M, Duan F, Andrade J, Jiang H and Schuger L: Variability in protein cargo detection in technical and biological replicates of exosome-enriched extracellular vesicles. PLoS One. 15:e02288712020. View Article : Google Scholar : PubMed/NCBI | |
Ranjan P and Verma SK: Exosomes isolation, purification, and characterization. Methods Mol Biol. 2835:173–180. 2024. View Article : Google Scholar : PubMed/NCBI | |
Gandham S, Su X, Wood J, Nocera AL, Alli SC, Milane L, Zimmerman A, Amiji M and Ivanov AR: Technologies and standardization in research on extracellular vesicles. Trends Biotechnol. 38:1066–1098. 2020. View Article : Google Scholar : PubMed/NCBI | |
Singh S, Dansby C, Agarwal D, Bhat PD, Dubey PK and Krishnamurthy P: Exosomes: Methods for isolation and characterization in biological samples. Methods Mol Biol. 2835:181–213. 2024. View Article : Google Scholar : PubMed/NCBI | |
Ansari FJ, Tafti HA, Amanzadeh A, Rabbani S, Shokrgozar MA, Heidari R, Behroozi J, Eyni H, Uversky VN and Ghanbari H: Comparison of the efficiency of ultrafiltration, precipitation, and ultracentrifugation methods for exosome isolation. Biochem Biophys Rep. 38:1016682024.PubMed/NCBI | |
Claridge B, Lozano J, Poh QH and Greening DW: Development of extracellular vesicle therapeutics: Challenges, considerations, and opportunities. Front Cell Dev Biol. 9:7347202021. View Article : Google Scholar : PubMed/NCBI | |
Lin X and Zhu J, Shen J, Zhang Y and Zhu J: Advances in exosome plasmonic sensing: Device integration strategies and AI-aided diagnosis. Biosens Bioelectron. 266:1167182024. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Xia J, Yang L, Dai J and He L: Recent progress in exosome research: Isolation, characterization and clinical applications. Cancer Gene Ther. 30:1051–1065. 2023. View Article : Google Scholar : PubMed/NCBI | |
Rezaie J, Ajezi S, Avci ÇB, Karimipour M, Geranmayeh MH, Nourazarian A, Sokullu E, Rezabakhsh A and Rahbarghazi R: Exosomes and their application in biomedical field: Difficulties and advantages. Mol Neurobiol. 55:3372–3393. 2018. View Article : Google Scholar | |
Saravanan PB, Kalivarathan J, Khan F, Shah R, Levy MF and Kanak MA: Exosomes in transplantation: Role in allograft rejection, diagnostic biomarker, and therapeutic potential. Life Sci. 324:1217222023. View Article : Google Scholar : PubMed/NCBI | |
Awadasseid A, Wu Y and Zhang W: Extracellular vesicles (exosomes) as immunosuppressive mediating variables in tumor and chronic inflammatory microenvironments. Cells. 10:25332021. View Article : Google Scholar : PubMed/NCBI | |
Codispoti B, Marrelli M, Paduano F and Tatullo M: NANOmetric BIO-Banked MSC-derived exosome (NANOBIOME) as a novel approach to regenerative medicine. J Clin Med. 7:3572018. View Article : Google Scholar : PubMed/NCBI | |
Krut Z, Pelled G, Gazit D and Gazit Z: Stem cells and exosomes: New therapies for intervertebral disc degeneration. Cells. 10:22412021. View Article : Google Scholar : PubMed/NCBI | |
Hartman N, Loyal J and Fabi S: Update on exosomes in aesthetics. Dermatol Surg. 48:862–865. 2022. View Article : Google Scholar : PubMed/NCBI | |
Syed NH, Misbah I, Azlan M, Ahmad Mohd Zain MR and Nurul AA: Exosomes in osteoarthritis: A review on their isolation techniques and therapeutic potential. Indian J Orthop. 58:866–875. 2024. View Article : Google Scholar : PubMed/NCBI | |
Ma CY, Zhai Y, Li CT, Liu J, Xu X, Chen H, Tse HF and Lian Q: Translating mesenchymal stem cell and their exosome research into GMP compliant advanced therapy products: Promises, problems and prospects. Med Res Rev. 44:919–938. 2024. View Article : Google Scholar | |
Xia Y, Zhang J, Liu G and Wolfram J: Immunogenicity of extracellular vesicles. Adv Mater. 36:e24031992024. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Xiong J, Yang L, Zhang J, Sun S and Liang Y: Cell-free exosome-laden scaffolds for tissue repair. Nanoscale. 13:8740–8750. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mi P, Liu JL, Qi BP, Wei BM, Xu CZ and Zhu L: Stem cell-derived exosomes for chronic wound repair. Cell Tissue Res. 391:419–423. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yadav A, Nandy A, Sharma A and Ghatak S: Exosome mediated cell-cell crosstalk in tissue injury and repair. Results Probl Cell Differ. 73:249–297. 2024. View Article : Google Scholar : PubMed/NCBI | |
Tan F, Li X, Wang Z, Li J, Shahzad K and Zheng J: Clinical applications of stem cell-derived exosomes. Signal Transduct Target Ther. 9:172024. View Article : Google Scholar : PubMed/NCBI | |
Tao SC, Yuan T, Zhang YL, Yin WJ, Guo SC and Zhang CQ: Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model. Theranostics. 7:180–195. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sun H, Hu S and Zhang Z, Lun J, Liao W and Zhang Z: Expression of exosomal microRNAs during chondrogenic differentiation of human bone mesenchymal stem cells. J Cell Biochem. 120:171–181. 2019. View Article : Google Scholar | |
Lu L, Wang J, Fan A, Wang P, Chen R, Lu L and Yin F: Synovial mesenchymal stem cell-derived extracellular vesicles containing microRN555A-26a-5p ameliorate cartilage damage of osteoarthritis. J Gene Med. 23:e33792021. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Tu Q, Xie D, Chen S, Gao K, Xu X, Zhang Z and Mei X: Triamcinolone acetonide-loaded nanoparticles encapsulated by CD90+ MCSs-derived microvesicles drive anti-inflammatory properties and promote cartilage regeneration after osteoarthritis. J Nanobiotechnology. 20:1502022. View Article : Google Scholar | |
Zhou X, Cao H, Guo J, Yuan Y and Ni G: Effects of BMSC-derived EVs on bone metabolism. Pharmaceutics. 14:10122022. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Qi G, Yan Y, Wang C, Wang Z, Jiang C, Jiang Z, Ma T, Zhang C and Yan Z: Exosomes derived from bone marrow mesenchymal stem cells pretreated with decellularized extracellular matrix enhance the alleviation of osteoarthritis through miR-3473b/phosphatase and tensin homolog axis. J Gene Med. 25:e35102023. View Article : Google Scholar : PubMed/NCBI | |
Lai C, Liao B, Peng S, Fang P, Bao N and Zhang L: Synovial fibroblast-miR-214-3p-derived exosomes inhibit inflammation and degeneration of cartilage tissues of osteoarthritis rats. Mol Cell Biochem. 478:637–649. 2023. View Article : Google Scholar : | |
Ji Y, Xiong L, Zhang G, Xu M, Qiu W, Xiu C, Kuang G and Rui Y: Synovial fluid exosome-derived miR-182-5p alleviates osteoarthritis by downregulating TNFAIP8 and promoting autophagy through LC3 signaling. Int Immunopharmacol. 125:1111772023. View Article : Google Scholar : PubMed/NCBI | |
Wu S, Luo J, Zhang X, Wang L, Cai L and Xu J: Synovia tissue-specific exosomes participate in the dual variation of the osteoarthritis microenvironment via miR-182. Exp Cell Res. 436:1139812024. View Article : Google Scholar : PubMed/NCBI | |
Qiu M, Xie Y, Tan G, Wang X, Huang P and Hong L: Synovial mesenchymal stem cell-derived exosomal miR-485-3p relieves cartilage damage in osteoarthritis by targeting the NRP1-mediated PI3K/Akt pathway: Exosomal miR-485-3p relieves cartilage damage. Heliyon. 10:e240422024. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Wang X, Chen J, Qian D, Gao P, Qin T, Jiang T, Yi J, Xu T, Huang Y, et al: Exosomes derived from platelet-rich plasma administration in site mediate cartilage protection in subtalar osteoarthritis. J Nanobiotechnology. 20:562022. View Article : Google Scholar : PubMed/NCBI | |
Lou C, Jiang H, Lin Z, Xia T, Wang W, Lin C, Zhang Z, Fu H, Iqbal S, Liu H, et al: MiR-146b-5p enriched bioinspired exosomes derived from fucoidan-directed induction mesenchymal stem cells protect chondrocytes in osteoarthritis by targeting TRAF6. J Nanobiotechnology. 21:4862023. View Article : Google Scholar : PubMed/NCBI | |
Meng S, Tang C, Deng M, Yuan J, Fan Y, Gao S, Feng Y, Yang J and Chen C: Tropoelastin-pretreated exosomes from adipose-derived stem cells improve the synthesis of cartilage matrix and alleviate osteoarthritis. J Funct Biomater. 14:2032023. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Jiang W, Lv S, Sun Z, Si L, Hu J, Yang Y, Qiu D, Liu X, Zhu S, et al: Human umbilical cord mesenchymal stem cells-derived exosomes exert anti-inflammatory effects on osteoarthritis chondrocytes. Aging (Albany NY). 15:9544–9560. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Ni X, Yang J, Yang H, Liu X, Chen M, Sun C and Wang Y: Cartilage stem/progenitor cells-derived exosomes facilitate knee cartilage repair in a subacute osteoarthritis rat model. J Cell Mol Med. 28:e183272024. View Article : Google Scholar : PubMed/NCBI |