Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
March-2025 Volume 55 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2025 Volume 55 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data1.pdf
    • Supplementary_Data2.pdf
Article Open Access

Klotho attenuates epithelial‑mesenchymal transition of retinal pigment epithelial cells in subretinal fibrosis by suppressing the ERK1/2 and Wnt/β‑catenin signaling pathways

  • Authors:
    • Yingle Jiang
    • Xuewei Wen
    • Xiaoyu Jian
    • Qianbo Chen
    • Yan Li
  • View Affiliations / Copyright

    Affiliations: Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
    Copyright: © Jiang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 45
    |
    Published online on: January 10, 2025
       https://doi.org/10.3892/ijmm.2025.5486
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Retinal pigment epithelial (RPE) cells undergoing epithelial‑mesenchymal transition (EMT) are a key factor in promoting the progression of subretinal fibrosis. The klotho protein and gene exert anti‑fibrotic effects in multiple fibrotic diseases. However, the mechanisms involved in the role of klotho are unclear in subretinal fibrosis. The aim of the present study was to explore the effects of klotho on subretinal fibrosis induced by laser photocoagulation in mice and EMT induced by TGF‑β1 in RPE cells and the underlying molecular mechanisms. In vitro, klotho overexpression or knockdown was performed in ARPE‑19 cells (adult retinal Pigment Epithelial‑19), then TGF‑β1 treatment was applied. Using western blotting, expression of epithelial markers (zonula occludens‑1), mesenchymal signs (α‑smooth muscle actin, α‑SMA, N‑cadherin, N‑cad and collagen I), and the ERK1/2 and Wnt/β‑catenin signaling pathways were assessed. The proliferative ability of ARPE‑19 cells was examined by CCK‑8 and EdU test, and the migratory ability was examined by wound healing and Transwell assays. Furthermore, to explore the underlying molecular pathway of klotho overexpression, RNA‑sequencing (seq) was performed. In vivo, photocoagulation was used to induce subretinal fibrosis in mice, which occurs as a result of choroidal neovascularization (CNV), then recombinant mouse klotho protein was administered intravitreally. Upregulation of epithelial and downregulation of mesenchymal markers demonstrated that klotho overexpression prevented TGF‑β1‑induced EMT; klotho knockdown resulted in the opposite effects. Additionally, klotho overexpression suppressed cell proliferation and migration and attenuated ERK1/2 and Wnt/β‑catenin signaling activated by TGF‑β1. RNA‑seq results demonstrated that several signaling pathways, including cellular senescence and the TNF signaling pathway, were associated with anti‑fibrotic effects of klotho overexpression. In vivo, subretinal fibrotic areas were attenuated following klotho treatment in laser‑induced CNV lesions, as illustrated by immunofluorescence and Masson staining of the mouse eyes. Western blotting results that the protein levels of mesenchymal markers were significantly downregulated and those of epithelial markers were upregulated. In summary, the present study suggested that klotho may have therapeutic value in management of fibrotic vitreoretinal disorders such as subretinal fibrosis.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

View References

1 

Wong WL, Su X, Li X, Cheung CM, Klein R, Cheng CY and Wong TY: Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: A systematic review and meta-analysis. Lancet Glob Health. 2:e106–e116. 2014. View Article : Google Scholar : PubMed/NCBI

2 

Ferris FL III, Fine SL and Hyman L: Age-related macular degeneration and blindness due to neovascular maculopathy. Arch Ophthalmol. 102:1640–1642. 1984. View Article : Google Scholar : PubMed/NCBI

3 

Luttrull JK, Gray G and Bhavan SV: Vision protection therapy for prevention of neovascular age-related macular degeneration. Sci Rep. 13:167102023. View Article : Google Scholar : PubMed/NCBI

4 

Noël A, Jost M, Lambert V, Lecomte J and Rakic JM: Anti-angiogenic therapy of exudative age-related macular degeneration: Current progress and emerging concepts. Trends Mol Med. 13:345–352. 2007. View Article : Google Scholar : PubMed/NCBI

5 

Liu D, Zhang C and Zhang J, Xu GT and Zhang J: Molecular pathogenesis of subretinal fibrosis in neovascular AMD focusing on epithelial-mesenchymal transformation of retinal pigment epithelium. Neurobiol Dis. 185:1062502023. View Article : Google Scholar : PubMed/NCBI

6 

Daniel E, Pan W, Ying GS, Kim BJ, Grunwald JE, Ferris FL III, Jaffe GJ, Toth CA, Martin DF, Fine SL, et al: Development and course of scars in the comparison of age-related macular degeneration treatments trials. Ophthalmology. 125:1037–1046. 2018. View Article : Google Scholar : PubMed/NCBI

7 

Ishikawa K, Kannan R and Hinton DR: Molecular mechanisms of subretinal fibrosis in age-related macular degeneration. Exp Eye Res. 142:19–25. 2016. View Article : Google Scholar

8 

Little K, Llorian-Salvador M, Tang M, Du X, Marry S, Chen M and Xu H: Macrophage to myofibroblast transition contributes to subretinal fibrosis secondary to neovascular age-related macular degeneration. J Neuroinflammation. 17:3552020. View Article : Google Scholar : PubMed/NCBI

9 

Llorián-Salvador M, Byrne EM, Szczepan M, Little K, Chen M and Xu H: Complement activation contributes to subretinal fibrosis through the induction of epithelial-to-mesenchymal transition (EMT) in retinal pigment epithelial cells. J Neuroinflammation. 19:1822022. View Article : Google Scholar : PubMed/NCBI

10 

Palko SI, Saba NJ, Bargagna-Mohan P and Mohan R: Peptidyl arginine deiminase 4 deficiency protects against subretinal fibrosis by inhibiting Müller glial hypercitrullination. J Neurosci Res. 101:464–479. 2023. View Article : Google Scholar

11 

Shu DY and Lovicu FJ: Myofibroblast transdifferentiation: The dark force in ocular wound healing and fibrosis. Prog Retin Eye Res. 60:44–65. 2017. View Article : Google Scholar : PubMed/NCBI

12 

Parikh BH, Liu Z, Blakeley P, Lin Q, Singh M, Ong JY, Ho KH, Lai JW, Bogireddi H, Tran KC, et al: A bio-functional polymer that prevents retinal scarring through modulation of NRF2 signalling pathway. Nat Commun. 13:27962022. View Article : Google Scholar : PubMed/NCBI

13 

Wu X, Qin B, Cheng R, Zhou R, Wang X, Zhang Z, Mao X, Xie Z, Chen M, Jiang L, et al: Angiogenic and fibrogenic dual-effect of gremlin1 on proliferative diabetic retinopathy. Int J Biol Sci. 20:897–915. 2024. View Article : Google Scholar : PubMed/NCBI

14 

Corano Scheri K, Hsieh YW, Jeong E and Fawzi AA: Limited Hyperoxia-induced proliferative retinopathy (LHIPR) as a model of retinal fibrosis, angiogenesis, and inflammation. Cells. 12:24682023. View Article : Google Scholar : PubMed/NCBI

15 

Ma X, Han S, Liu Y, Chen Y, Li P, Liu X, Chang L, Chen YA, Chen F, Hou Q and Hou L: DAPL1 prevents epithelial-mesenchymal transition in the retinal pigment epithelium and experimental proliferative vitreoretinopathy. Cell Death Dis. 14:1582023. View Article : Google Scholar : PubMed/NCBI

16 

Abu El-Asrar AM, De Hertogh G, Allegaert E, Nawaz MI, Abouelasrar Salama S, Gikandi PW, Opdenakker G and Struyf S: Macrophage-myofibroblast transition contributes to myofibroblast formation in proliferative vitreoretinal disorders. Int J Mol Sci. 24:135102023. View Article : Google Scholar : PubMed/NCBI

17 

Xin Z, Ma Z, Hu W, Jiang S, Yang Z, Li T, Chen F, Jia G and Yang Y: FOXO1/3: Potential suppressors of fibrosis. Ageing Res Rev. 41:42–52. 2018. View Article : Google Scholar

18 

Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kume E, et al: Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 390:45–51. 1997. View Article : Google Scholar : PubMed/NCBI

19 

Kim JH, Hwang KH, Park KS, Kong ID and Cha SK: Biological role of anti-aging protein klotho. J Lifestyle Med. 5:1–6. 2015. View Article : Google Scholar : PubMed/NCBI

20 

Hung Y, Chung CC, Chen YC, Kao YH, Lin WS, Chen SA and Chen YJ: Klotho modulates pro-fibrotic activities in human atrial fibroblasts through inhibition of phospholipase C signaling and suppression of store-operated calcium entry. Biomedicines. 10:15742022. View Article : Google Scholar : PubMed/NCBI

21 

Liu Q, Zhu LJ, Waaga-Gasser AM, Ding Y, Cao M, Jadhav SJ, Kirollos S, Shekar PS, Padera RF, Chang YC, et al: The axis of local cardiac endogenous klotho-TGF-β1-Wnt signaling mediates cardiac fibrosis in human. J Mol Cell Cardiol. 136:113–124. 2019. View Article : Google Scholar : PubMed/NCBI

22 

Yang YL, Xue M, Jia YJ, Hu F, Zheng ZJ, Wang L, Si ZK and Xue YM: Long noncoding RNA NEAT1 is involved in the protective effect of klotho on renal tubular epithelial cells in diabetic kidney disease through the ERK1/2 signaling pathway. Exp Mol Med. 52:266–280. 2020. View Article : Google Scholar : PubMed/NCBI

23 

Kadoya H, Satoh M, Nishi Y, Kondo M, Wada Y, Sogawa Y, Kidokoro K, Nagasu H, Sasaki T and Kashihara N: Klotho is a novel therapeutic target in peritoneal fibrosis via Wnt signaling inhibition. Nephrol Dial Transplant. 35:773–781. 2020. View Article : Google Scholar : PubMed/NCBI

24 

Barnes JW, Duncan D, Helton S, Hutcheson S, Kurundkar D, Logsdon NJ, Locy M, Garth J, Denson R, Farver C, et al: Role of fibroblast growth factor 23 and klotho cross talk in idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 317:L141–L154. 2019. View Article : Google Scholar : PubMed/NCBI

25 

Reish NJ, Maltare A, McKeown AS, Laszczyk AM, Kraft TW, Gross AK and King GD: The age-regulating protein klotho is vital to sustain retinal function. Invest Ophthalmol Vis Sci. 54:6675–6685. 2013. View Article : Google Scholar : PubMed/NCBI

26 

Kokkinaki M, Abu-Asab M, Gunawardena N, Ahern G, Javidnia M, Young J and Golestaneh N: Klotho regulates retinal pigment epithelial functions and protects against oxidative stress. J Neurosci. 33:16346–16359. 2013. View Article : Google Scholar : PubMed/NCBI

27 

Wen X, Li S, Zhang Y, Zhu L, Xi X, Zhang S and Li Y: Recombinant human klotho protects against hydrogen peroxide-mediated injury in human retinal pigment epithelial cells via the PI3K/Akt-Nrf2/HO-1 signaling pathway. Bioengineered. 13:11767–11781. 2022. View Article : Google Scholar : PubMed/NCBI

28 

Jang HY, Kim SJ, Park KS and Kim JH: Klotho prevents transforming growth factor-β2-induced senescent-like morphological changes in the retinal pigment epithelium. Cell Death Dis. 14:3342023. View Article : Google Scholar

29 

Xie L, Wang Y, Li Q, Ji X, Tu Y, Du S, Lou H, Zeng X, Zhu L, Zhang J and Zhu M: The HIF-1α/p53/miRNA-34a/klotho axis in retinal pigment epithelial cells promotes subretinal fibrosis and exacerbates choroidal neovascularization. J Cell Mol Med. 25:1700–1711. 2021. View Article : Google Scholar : PubMed/NCBI

30 

Xu L, Li S, Shabala S, Jian T and Zhang W: Plants grown in parafilm-wrapped petri dishes are stressed and possess altered gene expression profile. Front Plant Sci. 10:6372019. View Article : Google Scholar : PubMed/NCBI

31 

Bakhtiarizadeh MR, Salehi A, Alamouti AA, Abdollahi-Arpanahi R and Salami SA: Deep transcriptome analysis using RNA-Seq suggests novel insights into molecular aspects of fat-tail metabolism in sheep. Sci Rep. 9:92032019. View Article : Google Scholar : PubMed/NCBI

32 

Yu G, Wang LG, Han Y and He QY: clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS. 16:284–287. 2012. View Article : Google Scholar : PubMed/NCBI

33 

Kanehisa M and Goto S: KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28:27–30. 2000. View Article : Google Scholar

34 

Kinoshita S, Noda K, Tagawa Y, Inafuku S, Dong Y, Fukuhara J, Dong Z, Ando R, Kanda A and Ishida S: Genistein attenuates choroidal neovascularization. J Nutr Biochem. 25:1177–1182. 2014. View Article : Google Scholar : PubMed/NCBI

35 

Ma X, Takahashi Y, Wu W, Chen J, Dehdarani M, Liang W, Shin YH, Benyajati S and Ma JX: Soluble very low-density lipoprotein receptor (sVLDLR) inhibits fibrosis in neovascular age-related macular degeneration. FASEB J. 35:e220582021. View Article : Google Scholar : PubMed/NCBI

36 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar

37 

Ren LL, Miao H, Wang YN, Liu F, Li P and Zhao YY: TGF-β as A master regulator of aging-associated tissue fibrosis. Aging Dis. 14:1633–1650. 2023. View Article : Google Scholar : PubMed/NCBI

38 

Liu D, Du J, Xie H, Tian H, Lu L, Zhang C, Xu GT and Zhang J: Wnt5a/β-catenin-mediated epithelial-mesenchymal transition: A key driver of subretinal fibrosis in neovascular age-related macular degeneration. J Neuroinflammation. 21:752024. View Article : Google Scholar

39 

Ilg MM, Bustin SA, Ralph DJ and Cellek S: TGF-β1 induces formation of TSG-6-enriched extracellular vesicles in fibroblasts which can prevent myofibroblast transformation by modulating Erk1/2 phosphorylation. Sci Rep. 14:123892024. View Article : Google Scholar

40 

Chang B, Kim J, Jeong D, Jeong Y, Jeon S, Jung SI, Yang Y, Kim KI, Lim JS, Kim C and Lee MS: Klotho inhibits the capacity of cell migration and invasion in cervical cancer. Oncol Rep. 28:1022–1028. 2012. View Article : Google Scholar : PubMed/NCBI

41 

Barikian A, Mahfoud Z, Abdulaal M, Safar A and Bashshur ZF: Induction with intravitreal bevacizumab every two weeks in the management of neovascular age-related macular degeneration. Am J Ophthalmol. 159:131–137. 2015. View Article : Google Scholar

42 

Wolff B, Macioce V, Vasseur V, Castelnovo L, Michel G, Nguyen V, Daien V, Mauget-Faÿsse M and Gillies M: Ten-year outcomes of anti-vascular endothelial growth factor treatment for neovascular age-related macular disease: A single-centre French study. Clin Exp Ophthalmol. 48:636–643. 2020. View Article : Google Scholar : PubMed/NCBI

43 

Daley R, Maddipatla V, Ghosh S, Chowdhury O, Hose S, Zigler JS Jr, Sinha D and Liu H: Aberrant Akt2 signaling in the RPE may contribute to retinal fibrosis process in diabetic retinopathy. Cell Death Discov. 9:2432023. View Article : Google Scholar : PubMed/NCBI

44 

Zhang C, Zhang Y, Hu X, Zhao Z, Chen Z, Wang X, Zhang Z, Jin H and Zhang J: Luteolin inhibits subretinal fibrosis and epithelial-mesenchymal transition in laser-induced mouse model via suppression of Smad2/3 and YAP signaling. Phytomedicine. 116:1548652023. View Article : Google Scholar : PubMed/NCBI

45 

Lee H, Han JH, Kang YJ, Hwangbo H, Yoon A, Kim HS, Lee D, Lee SY, Choi BH, Kim JJ, et al: CD82 attenuates TGF-β1-mediated epithelial-mesenchymal transition by blocking smad-dependent signaling in ARPE-19 cells. Front Pharmacol. 13:9910562022. View Article : Google Scholar

46 

Fuchs HR, Meister R, Lotke R and Framme C: The microRNAs miR-302d and miR-93 inhibit TGFB-mediated EMT and VEGFA secretion from ARPE-19 cells. Exp Eye Res. 201:1082582020. View Article : Google Scholar : PubMed/NCBI

47 

Wang X, Ma W, Han S, Meng Z, Zhao L, Yin Y, Wang Y and Li J: TGF-β participates choroid neovascularization through Smad2/3-VEGF/TNF-α signaling in mice with laser-induced wet age-related macular degeneration. Sci Rep. 7:96722017. View Article : Google Scholar

48 

Tosi GM, Caldi E, Neri G, Nuti E, Marigliani D, Baiocchi S, Traversi C, Cevenini G, Tarantello A, Fusco F, et al: HTRA1 and TGF-β1 concentrations in the aqueous humor of patients with neovascular age-related macular degeneration. Invest Ophthalmol Vis Sci. 58:162–167. 2017. View Article : Google Scholar : PubMed/NCBI

49 

Amin R, Puklin JE and Frank RN: Growth factor localization in choroidal neovascular membranes of age-related macular degeneration. Invest Ophthalmol Vis Sci. 35:3178–3188. 1994.PubMed/NCBI

50 

Bracken CP and Goodall GJ: The many regulators of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 23:89–90. 2022. View Article : Google Scholar

51 

Fan Y, Cui C, Rosen CJ, Sato T, Xu R, Li P, Wei X, Bi R, Yuan Q and Zhou C: Klotho in Osx+-mesenchymal progenitors exerts pro-osteogenic and anti-inflammatory effects during mandibular alveolar bone formation and repair. Signal Transduct Target Ther. 7:1552022. View Article : Google Scholar

52 

Abraham CR and Li A: Aging-suppressor klotho: Prospects in diagnostics and therapeutics. Ageing Res Rev. 82:1017662022. View Article : Google Scholar : PubMed/NCBI

53 

Valiño-Rivas L, Cuarental L, Ceballos MI, Pintor-Chocano A, Perez-Gomez MV, Sanz AB, Ortiz A and Sanchez-Niño MD: Growth differentiation factor-15 preserves klotho expression in acute kidney injury and kidney fibrosis. Kidney Int. 101:1200–1215. 2022. View Article : Google Scholar : PubMed/NCBI

54 

Xu Y and Sun Z: Molecular basis of klotho: From gene to function in aging. Endocr Rev. 36:174–193. 2015. View Article : Google Scholar : PubMed/NCBI

55 

Xue M, Yang F, Le Y, Yang Y, Wang B, Jia Y, Zheng Z and Xue Y: Klotho protects against diabetic kidney disease via AMPK- and ERK-mediated autophagy. Acta Diabetol. 58:1413–1423. 2021. View Article : Google Scholar : PubMed/NCBI

56 

Shi M, Flores B, Gillings N, Bian A, Cho HJ, Yan S, Liu Y, Levine B, Moe OW and Hu MC: αKlotho mitigates progression of AKI to CKD through activation of autophagy. J Am Soc Nephrol. 27:2331–2345. 2016. View Article : Google Scholar

57 

Liu Y, Bi X, Xiong J, Han W, Xiao T, Xu X, Yang K, Liu C, Jiang W, He T, et al: MicroRNA-34a promotes renal fibrosis by downregulation of klotho in tubular epithelial cells. Mol Ther. 27:1051–1065. 2019. View Article : Google Scholar : PubMed/NCBI

58 

Liu QF, Ye JM, Yu LX, Dong XH, Feng JH, Xiong Y, Gu XX and Li SS: Klotho mitigates cyclosporine A (CsA)-induced epithelial-mesenchymal transition (EMT) and renal fibrosis in rats. Int Urol Nephrol. 49:345–352. 2017. View Article : Google Scholar

59 

Ma Z, Liu J, Li J, Jiang H and Kong J: Klotho levels are decreased and associated with enhanced oxidative stress and inflammation in the aqueous humor in patients with exudative age-related macular degeneration. Ocul Immunol Inflamm. 30:630–637. 2022. View Article : Google Scholar

60 

Zhou S, Hum J, Taskintuna K, Olaya S, Steinman J, Ma J and Golestaneh N: The anti-aging hormone klotho promotes retinal pigment epithelium cell viability and metabolism by activating the AMPK/PGC-1α pathway. Antioxidants (Basel). 12:3852023. View Article : Google Scholar

61 

Wu D, Kanda A, Liu Y, Kase S, Noda K and Ishida S: Galectin-1 promotes choroidal neovascularization and subretinal fibrosis mediated via epithelial-mesenchymal transition. FASEB J. 33:2498–2513. 2019. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Jiang Y, Wen X, Jian X, Chen Q and Li Y: Klotho attenuates epithelial‑mesenchymal transition of retinal pigment epithelial cells in subretinal fibrosis by suppressing the ERK1/2 and Wnt/β‑catenin signaling pathways. Int J Mol Med 55: 45, 2025.
APA
Jiang, Y., Wen, X., Jian, X., Chen, Q., & Li, Y. (2025). Klotho attenuates epithelial‑mesenchymal transition of retinal pigment epithelial cells in subretinal fibrosis by suppressing the ERK1/2 and Wnt/β‑catenin signaling pathways. International Journal of Molecular Medicine, 55, 45. https://doi.org/10.3892/ijmm.2025.5486
MLA
Jiang, Y., Wen, X., Jian, X., Chen, Q., Li, Y."Klotho attenuates epithelial‑mesenchymal transition of retinal pigment epithelial cells in subretinal fibrosis by suppressing the ERK1/2 and Wnt/β‑catenin signaling pathways". International Journal of Molecular Medicine 55.3 (2025): 45.
Chicago
Jiang, Y., Wen, X., Jian, X., Chen, Q., Li, Y."Klotho attenuates epithelial‑mesenchymal transition of retinal pigment epithelial cells in subretinal fibrosis by suppressing the ERK1/2 and Wnt/β‑catenin signaling pathways". International Journal of Molecular Medicine 55, no. 3 (2025): 45. https://doi.org/10.3892/ijmm.2025.5486
Copy and paste a formatted citation
x
Spandidos Publications style
Jiang Y, Wen X, Jian X, Chen Q and Li Y: Klotho attenuates epithelial‑mesenchymal transition of retinal pigment epithelial cells in subretinal fibrosis by suppressing the ERK1/2 and Wnt/β‑catenin signaling pathways. Int J Mol Med 55: 45, 2025.
APA
Jiang, Y., Wen, X., Jian, X., Chen, Q., & Li, Y. (2025). Klotho attenuates epithelial‑mesenchymal transition of retinal pigment epithelial cells in subretinal fibrosis by suppressing the ERK1/2 and Wnt/β‑catenin signaling pathways. International Journal of Molecular Medicine, 55, 45. https://doi.org/10.3892/ijmm.2025.5486
MLA
Jiang, Y., Wen, X., Jian, X., Chen, Q., Li, Y."Klotho attenuates epithelial‑mesenchymal transition of retinal pigment epithelial cells in subretinal fibrosis by suppressing the ERK1/2 and Wnt/β‑catenin signaling pathways". International Journal of Molecular Medicine 55.3 (2025): 45.
Chicago
Jiang, Y., Wen, X., Jian, X., Chen, Q., Li, Y."Klotho attenuates epithelial‑mesenchymal transition of retinal pigment epithelial cells in subretinal fibrosis by suppressing the ERK1/2 and Wnt/β‑catenin signaling pathways". International Journal of Molecular Medicine 55, no. 3 (2025): 45. https://doi.org/10.3892/ijmm.2025.5486
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team