
Linking microRNA to metabolic reprogramming and gut microbiota in the pathogenesis of colorectal cancer (Review)
- Authors:
- Wan Muhammad Farhan Syafiq Bin Wan Mohd Nor
- Soke Chee Kwong
- Afiqah Alyaa Md Fuzi
- Nur Akmarina Binti Mohd Said
- Amira Hajirah Abd Jamil
- Yeong Yeh Lee
- Soo Ching Lee
- Yvonne Ai-Lian Lim
- Ivy Chung
-
Affiliations: Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia, Centre for Population Health (CePH), Department of Social and Preventive Medicine, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia, Office of Deputy Vice Chancellor (Research and Innovation), Universiti Malaya, 50603 Kuala Lumpur, Malaysia, Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Malaysia, Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia - Published online on: January 14, 2025 https://doi.org/10.3892/ijmm.2025.5487
- Article Number: 46
-
Copyright: © Bin Wan Mohd Nor et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 4.0].
This article is mentioned in:
Abstract
![]() |
Morgan E, Arnold M, Gini A, Lorenzoni V, Cabasag CJ, Laversanne M, Vignat J, Ferlay J, Murphy N and Bray F: Global burden of colorectal cancer in 2020 and 2040: Incidence and mortality estimates from GLOBOCAN. Gut. 72:338–344. 2023. View Article : Google Scholar : PubMed/NCBI | |
Siegel RL, Giaquinto AN and Jemal A: Cancer statistics, 2024. CA Cancer J Clin. 74:12–49. 2024. View Article : Google Scholar : PubMed/NCBI | |
Xi Y and Xu P: Global colorectal cancer burden in 2020 and projections to 2040. Transl Oncol. 14:1011742021. View Article : Google Scholar : PubMed/NCBI | |
Wong MC, Ding H, Wang J, Chan PS and Huang J: Prevalence and risk factors of colorectal cancer in Asia. Intest Res. 17:317–329. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fearnhead NS, Wilding JL and Bodmer WF: Genetics of colorectal cancer: Hereditary aspects and overview of colorectal tumorigenesis. Br Med Bull. 64:27–43. 2002. View Article : Google Scholar : PubMed/NCBI | |
Stigliano V, Sanchez-Mete L, Martayan A and Anti M: Early-onset colorectal cancer: A sporadic or inherited disease? World J Gastroenterol. 20:124202014. View Article : Google Scholar : PubMed/NCBI | |
Kumar V, Abbas AK and Aster JC (eds): Neoplasia. Robbins Basic Pathology. Elsevier; Philadelphia: pp. 185–240. 2023 | |
Al-Sohaily S, Biankin A, Leong R, Kohonen-Corish M and Warusavitarne J: Molecular pathways in colorectal cancer. J Gastroenterol Hepatol. 27:1423–1431. 2012. View Article : Google Scholar : PubMed/NCBI | |
Medina Pabón MA and Babiker HM: A review of hereditary colorectal cancers. StatPearls Publishing; Treasure Island, FL: 2022 | |
Saus E, Iraola-Guzmán S, Willis JR, Brunet-Vega A and Gabaldón T: Microbiome and colorectal cancer: Roles in carcinogenesis and clinical potential. Mol Aspects Med. 69:93–106. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wong SH and Yu J: Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nat Rev Gastroenterol Hepatol. 16:690–704. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ocvirk S and O'Keefe SJD: Dietary fat, bile acid metabolism and colorectal cancer. Semin Cancer Biol. 73:347–355. 2021. View Article : Google Scholar | |
Bernstein H and Bernstein C: Bile acids as carcinogens in the colon and at other sites in the gastrointestinal system. Exp Biol Med (Maywood). 248:79–89. 2023. View Article : Google Scholar | |
Rogers AC, Handelman GS, Solon JG, McNamara DA, Deasy J and Burke JP: Meta-analysis of the clinicopathological characteristics and peri-operative outcomes of colorectal cancer in obese patients. Cancer Epidemiol. 51:23–29. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu PH, Wu K, Ng K, Zauber AG, Nguyen LH, Song M, He X, Fuchs CS, Ogino S, Willett WC, et al: Association of obesity with risk of early-onset colorectal cancer among women. JAMA Oncol. 5:37–44. 2019. View Article : Google Scholar : | |
Li H, Boakye D, Chen X, Hoffmeister M and Brenner H: Association of body mass index with risk of early-onset colorectal cancer: Systematic review and meta-analysis. Am J Gastroenterol. 116:2173–2183. 2021. View Article : Google Scholar : PubMed/NCBI | |
Suzuki S, Goto A, Nakatochi M, Narita A, Yamaji T, Sawada N, Katagiri R, Iwagami M, Hanyuda A, Hachiya T, et al: Body mass index and colorectal cancer risk: A Mendelian randomization study. Cancer Sci. 112:1579–1588. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cespedes Feliciano EM, Kroenke CH, Meyerhardt JA, Prado CM, Bradshaw PT, Dannenberg AJ, Kwan ML, Xiao J, Quesenberry C, Weltzien EK, et al: Metabolic dysfunction, obesity, and survival among patients with early-stage colorectal cancer. J Clin Oncol. 34:3664–3671. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tilg H, Adolph TE, Gerner RR and Moschen AR: The intestinal microbiota in colorectal cancer. Cancer Cell. 33:954–964. 2018. View Article : Google Scholar : PubMed/NCBI | |
Rezasoltani S, Asadzadeh Aghdaei H, Dabiri H, Akhavan Sepahi A, Modarressi MH and Nazemalhosseini Mojarad E: The association between fecal microbiota and different types of colorectal polyp as precursors of colorectal cancer. Microb Pathog. 124:244–249. 2018. View Article : Google Scholar : PubMed/NCBI | |
Roje B, Zhang B, Mastrorilli E, Kovačić A, Sušak L, Ljubenkov I, Ćosić E, Vilović K, Meštrović A, Vukovac EL, et al: Gut microbiota carcinogen metabolism causes distal tissue tumours. Nature. 632:1137–1144. 2024. View Article : Google Scholar : PubMed/NCBI | |
Lozenov S, Krastev B, Nikolaev G, Peshevska-Sekulovska M, Peruhova M and Velikova T: Gut microbiome composition and its metabolites are a key regulating factor for malignant transformation, metastasis and antitumor immunity. Int J Mol Sci. 24:59782023. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, An Y, Qin X, Wu X, Wang X, Hou H, Song X, Liu T, Wang B, Huang X and Cao H: Gut microbiota-derived metabolites in colorectal cancer: The bad and the challenges. Front Oncol. 11:7396482021. View Article : Google Scholar : PubMed/NCBI | |
Pavlova NN, Zhu J and Thompson CB: The hallmarks of cancer metabolism: Still emerging. Cell Metab. 34:355–377. 2022. View Article : Google Scholar : PubMed/NCBI | |
Agathocleous M and Harris WA: Metabolism in physiological cell proliferation and differentiation. Trends Cell Biol. 23:484–492. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pavlova NN and Thompson CB: The emerging hallmarks of cancer metabolism. Cell Metab. 23:27–47. 2016. View Article : Google Scholar : PubMed/NCBI | |
Schiliro C and Firestein BL: Mechanisms of metabolic reprogramming in cancer cells supporting enhanced growth and proliferation. Cells. 10:10562021. View Article : Google Scholar : PubMed/NCBI | |
Brown RE, Short SP and Williams CS: Colorectal cancer and metabolism. Curr Colorectal Cancer Rep. 14:226–241. 2018. View Article : Google Scholar | |
Suriya Muthukumaran N, Velusamy P, Akino Mercy CS, Langford D, Natarajaseenivasan K and Shanmughapriya S: MicroRNAs as regulators of cancer cell energy metabolism. J Pers Med. 12:13292022. View Article : Google Scholar : PubMed/NCBI | |
Subramaniam S, Jeet V, Clements JA, Gunter JH and Batra J: Emergence of MicroRNAs as key players in cancer cell metabolism. Clin Chem. 65:1090–1101. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hatziapostolou M, Polytarchou C and Iliopoulos D: miRNAs link metabolic reprogramming to oncogenesis. Trends Endocrinol Metab. 24:361–373. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yuan C, Steer CJ and Subramanian S: Host-MicroRNA-microbiota interactions in colorectal cancer. Genes (Basel). 10:2702019. View Article : Google Scholar | |
Singh N, Shirdel EA, Waldron L, Zhang RH, Jurisica I and Comelli EM: The murine caecal microRNA signature depends on the presence of the endogenous microbiota. Int J Biol Sci. 8:171–186. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhong X, He X, Wang Y, Hu Z, Huang H, Zhao S, Wei P and Li D: Warburg effect in colorectal cancer: the emerging roles in tumor microenvironment and therapeutic implications. J Hematol Oncol. 15:1602022. View Article : Google Scholar : PubMed/NCBI | |
Liberti MV and Locasale JW: The Warburg effect: How does it benefit cancer cells? Trends Biochem Sci. 41:211–218. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Wen J, Tian T, Lu Z, Wang Y, Wang Z, Wang X and Yang Y: GLUT-1 overexpression as an unfavorable prognostic biomarker in patients with colorectal cancer. Oncotarget. 8:11788–11796. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shen YM, Arbman G, Olsson B and Sun XF: Overexpression of GLUT1 in colorectal cancer is independently associated with poor prognosis. Int J Biol Markers. 26:166–172. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chung FY, Huang MY, Yeh CS, Chang HJ, Cheng TL, Yen LC, Wang JY and Lin SR: GLUT1 gene is a potential hypoxic marker in colorectal cancer patients. BMC Cancer. 9:2412009. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Ye C, Chen C, Xiong H, Xie B, Zhou J, Chen Y, Zheng S and Wang L: Glucose transporter GLUT1 expression and clinical outcome in solid tumors: A systematic review and meta-analysis. Oncotarget. 8:16875–16886. 2017. View Article : Google Scholar : PubMed/NCBI | |
Feng W, Cui G, Tang CW, Zhang XL, Dai C, Xu YQ, Gong H, Xue T, Guo HH and Bao Y: Role of glucose metabolism related gene GLUT1 in the occurrence and prognosis of colorectal cancer. Oncotarget. 8:56850–56857. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ibrahiem AT, Refat S, Elnaghi K, Emarah Z and Nagib RM: GLUT1 and ASCT2 expression and their prognostic value in colorectal carcinoma. Indian J Pathol Microbiol. 67:518–524. 2024. View Article : Google Scholar : PubMed/NCBI | |
Ho N and Coomber BL: Hexokinase II expression is correlated with colorectal cancer prognosis. Cancer Treat Commun. 6:11–16. 2016. View Article : Google Scholar | |
He X, Lin X, Cai M, Zheng X, Lian L, Fan D, Wu X, Lan P and Wang J: Overexpression of Hexokinase 1 as a poor prognosticator in human colorectal cancer. Tumor Biol. 37:3887–3895. 2016. View Article : Google Scholar | |
Uppara M, Adaba F, Askari A, Clark S, Hanna G, Athanasiou T and Faiz O: A systematic review and meta-analysis of the diagnostic accuracy of pyruvate kinase M2 isoenzymatic assay in diagnosing colorectal cancer. World J Surg. 13:482015. View Article : Google Scholar | |
Wang J, Wang H, Liu A, Fang C, Hao J and Wang Z: Lactate dehydrogenase A negatively regulated by miRNAs promotes aerobic glycolysis and is increased in colorectal cancer. Oncotarget. 6:19456–19468. 2015. View Article : Google Scholar : PubMed/NCBI | |
Koukourakis MI, Giatromanolaki A, Simopoulos C, Polychronidis A and Sivridis E: Lactate dehydrogenase 5 (LDH5) relates to up-regulated hypoxia inducible factor pathway and metastasis in colorectal cancer. Clin Exp Metastasis. 22:25–30. 2005. View Article : Google Scholar : PubMed/NCBI | |
Nakayama Y, Torigoe T, Inoue Y, Minagawa N, Izumi H, Kohno K and Yamaguchi K: Prognostic significance of monocarboxylate transporter 4 expression in patients with colorectal cancer. Exp Ther Med. 3:25–30. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pinheiro C, Longatto-Filho A, Scapulatempo C, Ferreira L, Martins S, Pellerin L, Rodrigues M, Alves VA, Schmitt F and Baltazar F: Increased expression of monocarboxylate transporters 1, 2, and 4 in colorectal carcinomas. Virchows Archiv. 452:139–146. 2008. View Article : Google Scholar : PubMed/NCBI | |
Fang S and Fang X: Advances in glucose metabolism research in colorectal cancer. Biomed Rep. 5:289–295. 2016. View Article : Google Scholar : PubMed/NCBI | |
Graziano F, Ruzzo A, Giacomini E, Ricciardi T, Aprile G, Loupakis F, Lorenzini P, Ongaro E, Zoratto F, Catalano V, et al: Glycolysis gene expression analysis and selective metabolic advantage in the clinical progression of colorectal cancer. Pharmacogenomics J. 17:258–264. 2017. View Article : Google Scholar | |
Wicks EE and Semenza GL: Hypoxia-inducible factors: Cancer progression and clinical translation. J Clin Invest. 132:e1598392022. View Article : Google Scholar : PubMed/NCBI | |
Denko NC: Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer. 8:705–713. 2008. View Article : Google Scholar | |
Cao D, Hou M, Guan YS, Jiang M, Yang Y and Gou HF: Expression of HIF-1alpha and VEGF in colorectal cancer: Association with clinical outcomes and prognostic implications. BMC Cancer. 9:4322009. View Article : Google Scholar : PubMed/NCBI | |
Baba Y, Nosho K, Shima K, Irahara N, Chan AT, Meyerhardt JA, Chung DC, Giovannucci EL, Fuchs CS and Ogino S: HIF1A overexpression is associated with poor prognosis in a cohort of 731 colorectal cancers. Am J Pathol. 176:2292–2301. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tang YA, Chen YF, Bao Y, Mahara S, Yatim SMJM, Oguz G, Lee PL, Feng M, Cai Y, Tan EY, et al: Hypoxic tumor microenvironment activates GLI2 via HIF-1α and TGF-β2 to promote chemoresistance in colorectal cancer. Proc Natl Acad Sci USA. 115:E5990–E5999. 2018. View Article : Google Scholar | |
Leclerc D, Deng L, Trasler J and Rozen R: ApcMin/+ mouse model of colon cancer: gene expression profiling in tumors. J Cell Biochem. 93:1242–1254. 2004. View Article : Google Scholar : PubMed/NCBI | |
Cha PH, Hwang JH, Kwak DK, Koh E, Kim KS and Choi KY: APC loss induces Warburg effect via increased PKM2 transcription in colorectal cancer. Br J Cancer. 124:634–644. 2021. View Article : Google Scholar : | |
Zhang L and Shay JW: Multiple roles of APC and its therapeutic implications in colorectal cancer. J Natl Cancer Inst. 109:djw3322017. View Article : Google Scholar : PubMed/NCBI | |
Wang LB, Shen JG, Zhang SZ, Ding KF and Zheng S: Amino acid uptake in arterio-venous serum of normal and cancerous colon tissues. World J Gastroenterol. 10:12972004. View Article : Google Scholar : PubMed/NCBI | |
Ling HH, Pan YP, Fan CW, Tseng WK, Huang JS, Wu TH, Chou WC, Wang CH, Yeh KY and Chang PH: Clinical significance of serum glutamine level in patients with colorectal cancer. Nutrients. 11:8982019. View Article : Google Scholar : PubMed/NCBI | |
Sun H, Zhang C, Zheng Y, Liu C, Wang X and Cong X: Glutamine deficiency promotes recurrence and metastasis in colorectal cancer through enhancing epithelial-mesenchymal transition. J Transl Med. 20:3302022. View Article : Google Scholar : PubMed/NCBI | |
Song Z, Wei B, Lu C, Li P and Chen L: Glutaminase sustains cell survival via the regulation of glycolysis and glutaminolysis in colorectal cancer. Oncol Lett. 14:3117–3123. 2017. View Article : Google Scholar : PubMed/NCBI | |
Spada M, Piras C, Diana G, Leoni VP, Frau DV, Serreli G, Simbula G, Loi R, Noto A, Murgia F, et al: Glutamine starvation affects cell cycle, oxidative homeostasis and metabolism in colorectal cancer cells. Antioxidants (Basel). 12:6832023. View Article : Google Scholar : PubMed/NCBI | |
Liu HY, Zhang HS, Liu MY, Li HM, Wang XY and Wang M: GLS1 depletion inhibited colorectal cancer proliferation and migration via redox/Nrf2/autophagy-dependent pathway. Arch Biochem Biophys. 708:1089642021. View Article : Google Scholar : PubMed/NCBI | |
Miyo M, Konno M, Nishida N, Sueda T, Noguchi K, Matsui H, Colvin H, Kawamoto K, Koseki J, Haraguchi N, et al: Metabolic adaptation to nutritional stress in human colorectal cancer. Sci Rep. 6:384152016. View Article : Google Scholar : PubMed/NCBI | |
Hoy AJ, Nagarajan SR and Butler LM: Tumour fatty acid metabolism in the context of therapy resistance and obesity. Nat Rev Cancer. 21:753–766. 2021. View Article : Google Scholar : PubMed/NCBI | |
Opie LH: Heart Physiology: From Cell to Circulation. Lippincott Williams & Wilkins; pp. p6482004 | |
Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS and Stanley WC: Myocardial fatty acid metabolism in health and disease. Physiol Rev. 90:207–258. 2010. View Article : Google Scholar : PubMed/NCBI | |
Baenke F, Peck B, Miess H and Schulze A: Hooked on fat: The role of lipid synthesis in cancer metabolism and tumour development. Dis Model Mech. 6:1353–1363. 2013. View Article : Google Scholar : PubMed/NCBI | |
Beloribi-Djefaflia S, Vasseur S and Guillaumond F: Lipid metabolic reprogramming in cancer cells. Oncogenesis. 5:e1892016. View Article : Google Scholar : PubMed/NCBI | |
Cohen S: Lipid droplets as organelles. Int Rev Cell Mol Biol. 337:83–110. 2018. View Article : Google Scholar : PubMed/NCBI | |
Notarnicola M, Tutino V, Calvani M, Lorusso D, Guerra V and Caruso MG: Serum levels of fatty acid synthase in colorectal cancer patients are associated with tumor stage. J Gastrointest Cancer. 43:508–511. 2012. View Article : Google Scholar | |
Zaytseva YY, Harris JW, Mitov MI, Kim JT, Butterfield DA, Lee EY, Weiss HL, Gao T and Evers BM: Increased expression of fatty acid synthase provides a survival advantage to colorectal cancer cells via upregulation of cellular respiration. Oncotarget. 6:18891–18904. 2015. View Article : Google Scholar : PubMed/NCBI | |
Drury J, Young LEA, Scott TL, Kelson CO, He D, Liu J, Wu Y, Wang C, Weiss HL, Fan T, et al: Tissue-Specific downregulation of fatty acid synthase suppresses intestinal adenoma formation via coordinated reprograming of transcriptome and metabolism in the mouse model of apc-driven colorectal cancer. Int J Mol Sci. 23:65102022. View Article : Google Scholar : PubMed/NCBI | |
Mika A, Kobiela J, Czumaj A, Chmielewski M, Stepnowski P and Sledzinski T: Hyper-elongation in colorectal cancer tissue-cerotic acid is a potential novel serum metabolic marker of colorectal malignancies. Cell Physiol Biochem. 41:722–730. 2017. View Article : Google Scholar | |
Rysman E, Brusselmans K, Scheys K, Timmermans L, Derua R, Munck S, Van Veldhoven PP, Waltregny D, Daniëls VW, Machiels J, et al: De novo lipogenesis protects cancer cells from free radicals and chemotherapeutics by promoting membrane lipid saturation. Cancer Res. 70:8117–8126. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wen YA, Xiong X, Zaytseva YY, Napier DL, Vallee E, Li AT, Wang C, Weiss HL, Evers BM and Gao T: Downregulation of SREBP inhibits tumor growth and initiation by altering cellular metabolism in colon cancer. Cell Death Dis. 9:2652018. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Xi Q and Wu G: Fatty acid synthase regulates invasion and metastasis of colorectal cancer via Wnt signaling pathway. Cancer Med. 5:1599–1606. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zaytseva YY, Rychahou PG, Gulhati P, Elliott VA, Mustain WC, O'Connor K, Morris AJ, Sunkara M, Weiss HL, Lee EY and Evers BM: Inhibition of fatty acid synthase attenuates CD44-associated signaling and reduces metastasis in colorectal cancer. Cancer Res. 72:1504–1517. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sánchez-Martínez R, Cruz-Gil S, Gómez de Cedrón M, Álvarez-Fernández M, Vargas T, Molina S, García B, Herranz J, Moreno-Rubio J, Reglero G, et al: A link between lipid metabolism and epithelial-mesenchymal transition provides a target for colon cancer therapy. Oncotarget. 6:38719–38736. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cruz-Gil S, Sanchez-Martinez R, Gomez de Cedron M, Martin-Hernandez R, Vargas T, Molina S, Herranz J, Davalos A, Reglero G and Ramirez de Molina A: Targeting the lipid metabolic axis ACSL/SCD in colorectal cancer progression by therapeutic miRNAs: miR-19b-1 role. J Lipid Res. 59:14–24. 2018. View Article : Google Scholar : | |
Accioly MT, Pacheco P, Maya-Monteiro CM, Carrossini N, Robbs BK, Oliveira SS, Kaufmann C, Morgado-Diaz JA, Bozza PT and Viola JP: Lipid bodies are reservoirs of cyclooxygenase-2 and sites of prostaglandin-E2 synthesis in colon cancer cells. Cancer Res. 68:1732–1740. 2008. View Article : Google Scholar : PubMed/NCBI | |
Finetti F, Travelli C, Ercoli J, Colombo G, Buoso E and Trabalzini L: Prostaglandin E2 and cancer: Insight into tumor progression and immunity. Biology (Basel). 9:4342020.PubMed/NCBI | |
Cotte AK, Aires V, Fredon M, Limagne E, Derangère V, Thibaudin M, Humblin E, Scagliarini A, de Barros JP, Hillon P, et al: Lysophosphatidylcholine acyltransferase 2-mediated lipid droplet production supports colorectal cancer chemoresistance. Nat Commun. 9:3222018. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Chen Y, Guan L, Zhang H, Huang Y, Johnson CH, Wu Z, Gonzalez FJ, Yu A, Huang P, et al: Carnitine palmitoyltransferase 1C regulates cancer cell senescence through mitochondria-associated metabolic reprograming. Cell Death Differ. 25:735–748. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li J, Zheng W, Wu J, Zhang J, Lv B, Li W, Liu J, Zhang X, Huang T and Luo Z: CPT1C-mediated fatty acid oxidation facilitates colorectal cancer cell proliferation and metastasis. Acta Biochim Biophys Sin (Shanghai). 55:1301–1309. 2023.PubMed/NCBI | |
Fernández LP, Ramos-Ruiz R, Herranz J, Martín-Hernández R, Vargas T, Mendiola M, Guerra L, Reglero G, Feliu J and Ramírez de Molina A: The transcriptional and mutational landscapes of lipid metabolism-related genes in colon cancer. Oncotarget. 9:5919–5930. 2017. View Article : Google Scholar | |
Vannini I, Fanini F and Fabbri M: Emerging roles of microRNAs in cancer. Curr Opin Genet Dev. 48:128–133. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ali Syeda Z, Langden SSS, Munkhzul C, Lee M and Song SJ: Regulatory mechanism of MicroRNA expression in cancer. Int J Mol Sci. 21:17232020. View Article : Google Scholar : PubMed/NCBI | |
Lin S and Gregory RI: MicroRNA biogenesis pathways in cancer. Nat Rev Cancer. 15:321–333. 2015. View Article : Google Scholar : PubMed/NCBI | |
Quirico L, Orso F, Cucinelli S, Paradzik M, Natalini D, Centonze G, Dalmasso A, La Vecchia S, Coco M, Audrito V, et al: miRNA-guided reprogramming of glucose and glutamine metabolism and its impact on cell adhesion/migration during solid tumor progression. Cell Mol Life Sci. 79:2162022. View Article : Google Scholar : PubMed/NCBI | |
Li W, Lu Y, Ye C and Ouyang M: The regulatory network of MicroRNA in the metabolism of colorectal cancer. J Cancer. 12:7454–7464. 2021. View Article : Google Scholar | |
Jin Y, Wang M, Hu H, Huang Q, Chen Y and Wang G: Overcoming stemness and chemoresistance in colorectal cancer through miR-195-5p-modulated inhibition of notch signaling. Int J Biol Macromol. 117:445–453. 2018. View Article : Google Scholar : PubMed/NCBI | |
Fei X, Qi M, Wu B, Song Y, Wang Y and Li T: MicroRNA-195-5p suppresses glucose uptake and proliferation of human bladder cancer T24 cells by regulating GLUT3 expression. FEBS Lett. 586:392–397. 2012. View Article : Google Scholar : PubMed/NCBI | |
Dai W, Xu Y, Mo S, Li Q, Yu J, Wang R, Ma Y, Ni Y, Xiang W, Han L, et al: GLUT3 induced by AMPK/CREB1 axis is key for withstanding energy stress and augments the efficacy of current colorectal cancer therapies. Signal Transduct Target Ther. 5:1772020. View Article : Google Scholar : PubMed/NCBI | |
Santasusagna S, Moreno I, Navarro A, Muñoz C, Martinez F, Hernández R, Castellano JJ and Monzo M: miR-328 mediates a metabolic shift in colon cancer cells by targeting SLC2A1/GLUT1. Clin Transl Oncol. 20:1161–1167. 2018. View Article : Google Scholar : PubMed/NCBI | |
Schwartz L, T Supuran C and Alfarouk KO: The Warburg effect and the hallmarks of cancer. Anticancer Agents Med Chem. 17:164–170. 2017. View Article : Google Scholar | |
Gregersen LH, Jacobsen A, Frankel LB, Wen J, Krogh A and Lund AH: MicroRNA-143 down-regulates Hexokinase 2 in colon cancer cells. BMC Cancer. 12:2322012. View Article : Google Scholar : PubMed/NCBI | |
Michael MZ, O'Connor SM, van Holst Pellekaan NG, Young GP and James RJ: Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res. 1:882–891. 2003.PubMed/NCBI | |
Chen X, Guo X, Zhang H, Xiang Y, Chen J, Yin Y, Cai X, Wang K, Wang G, Ba Y, et al: Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene. 28:1385–1392. 2009. View Article : Google Scholar : PubMed/NCBI | |
Slabý O, Svoboda M, Fabian P, Svoboda M, Garajova I, Šachlova M, Šmerdova T, Knoflickova D and Vyzula R: Association of miR-21, miR-31, miR-143, miR-145 and let-7a-1 levels with histopathologic features of colorectal cancer. Eur J Cancer. 5:78–79. 2007. View Article : Google Scholar | |
Sun Y, Zhao X, Zhou Y and Hu Y: miR-124, miR-137 and miR-340 regulate colorectal cancer growth via inhibition of the Warburg effect. Oncol Rep. 28:1346–1352. 2012. View Article : Google Scholar : PubMed/NCBI | |
Puckett DL, Alquraishi M, Chowanadisai W and Bettaieb A: The role of PKM2 in metabolic reprogramming: Insights into the regulatory roles of non-coding RNAs. Int J Mol Sci. 22:11712021. View Article : Google Scholar : PubMed/NCBI | |
Petrelli F, Cabiddu M, Coinu A, Borgonovo K, Ghilardi M, Lonati V and Barni S: Prognostic role of lactate dehydrogenase in solid tumors: A systematic review and meta-analysis of 76 studies. Acta Oncol. 54:961–970. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, Feldmann G, Yamakuchi M, Ferlito M, Lowenstein CJ, et al: Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell. 26:745–752. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kim NH, Kim HS, Li XY, Lee I, Choi HS, Kang SE, Cha SY, Ryu JK, Yoon D, Fearon ER, et al: A p53/miRNA-34 axis regulates Snail1-dependent cancer cell epithelial-mesenchymal transition. J Cell Biol. 195:417–433. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kim NH, Kim HS, Kim NG, Lee I, Choi HS, Li XY, Kang SE, Cha SY, Ryu JK, Na JM, et al: p53 and microRNA-34 are suppressors of canonical Wnt signaling. Sci Signal. 4:ra712011. View Article : Google Scholar : PubMed/NCBI | |
Chen B, Liu Y, Jin X, Lu W, Liu J, Xia Z, Yuan Q, Zhao X, Xu N and Liang S: MicroRNA-26a regulates glucose metabolism by direct targeting PDHX in colorectal cancer cells. BMC Cancer. 14:4432014. View Article : Google Scholar : PubMed/NCBI | |
Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, et al: A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA. 103:2257–2261. 2006. View Article : Google Scholar : PubMed/NCBI | |
Huse JT, Brennan C, Hambardzumyan D, et al: The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. Genes Dev. 23:1327–1337. 2009. View Article : Google Scholar : PubMed/NCBI | |
Dong J, Xiao D, Zhao Z, Ren P, Li C, Hu Y, Shi J, Su H, Wang L, Liu H, et al: Epigenetic silencing of microRNA-137 enhances ASCT2 expression and tumor glutamine metabolism. Oncogenesis. 6:e3562017. View Article : Google Scholar : PubMed/NCBI | |
Balaguer F, Link A, Lozano JJ, Cuatrecasas M, Nagasaka T, Boland CR and Goel A: Epigenetic silencing of miR-137 is an early event in colorectal carcinogenesis. Cancer Res. 70:6609–6618. 2010. View Article : Google Scholar : PubMed/NCBI | |
Venkateswaran N, Lafita-Navarro MC, Hao YH, Kilgore JA, Perez-Castro L, Braverman J, Borenstein-Auerbach N, Kim M, Lesner NP, Mishra P, et al: MYC promotes tryptophan uptake and metabolism by the kynurenine pathway in colon cancer. Genes Dev. 33:1236–1251. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, Zeller KI, De Marzo AM, Van Eyk JE, Mendell JT and Dang CV: c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 458:762–765. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Wei W and Sarkar FH: miR-23a, a critical regulator of 'migR' ation and metastasis in colorectal cancer. Cancer Discov. 2:489–491. 2012. View Article : Google Scholar : PubMed/NCBI | |
Deng YH, Deng ZH, Hao H, Wu XL, Gao H, Tang SH and Tang H: MicroRNA-23a promotes colorectal cancer cell survival by targeting PDK4. Exp Cell Res. 373:171–179. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sengupta D, Cassel T, Teng KY, Aljuhani M, Chowdhary VK, Hu P, Zhang X, Fan TW and Ghoshal K: Regulation of hepatic glutamine metabolism by miR-122. Mol Metab. 34:174–186. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wong CC, Qian Y, Li X, Xu J, Kang W, Tong JH, To KF, Jin Y, Li W, Chen H, et al: SLC25A22 promotes proliferation and survival of colorectal cancer cells with KRAS mutations and xenograft tumor progression in mice via intracellular synthesis of aspartate. Gastroenterology. 151:945–960.e6. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dinu D, Dobre M, Panaitescu E, Bîrlă R, Iosif C, Hoara P, Caragui A, Boeriu M, Constantinoiu S and Ardeleanu C: Prognostic significance of KRAS gene mutations in colorectal cancer-preliminary study. J Med Life. 7:581–587. 2014. | |
Hatley ME, Patrick DM, Garcia MR, Richardson JA, Bassel-Duby R, van Rooij E and Olson EN: Modulation of K-Ras-dependent lung tumorigenesis by MicroRNA-21. Cancer Cell. 18:282–293. 2010. View Article : Google Scholar : PubMed/NCBI | |
You C, Jin L, Xu Q, Shen B, Jiao X and Huang X: Expression of miR-21 and miR-138 in colon cancer and its effect on cell proliferation and prognosis. Oncol Lett. 17:2271–2277. 2019.PubMed/NCBI | |
Carvalho TI, Novais PC, Lizarte FS, Neto, Sicchieri RD, Rosa MS, Carvalho CA, Tirapelli DP, Peria FM, Rocha JJ and Féres O: Analysis of gene expression EGFR and KRAS, microRNA-21 and microRNA-203 in patients with colon and rectal cancer and correlation with clinical outcome and prognostic factors1. Acta Cir Bras. 32:243–250. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hao Y, Samuels Y, Li Q, Krokowski D, Guan BJ, Wang C, Jin Z, Dong B, Cao B, Feng X, et al: Oncogenic PIK3CA mutations reprogram glutamine metabolism in colorectal cancer. Nat Commun. 7:119712016. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Zhao X, Chen V, Feng Y, Wang L, Croniger C, Conlon RA, Markowitz S, Fearon E, Puchowicz M, et al: Colorectal cancers utilize glutamine as an anaplerotic substrate of the TCA cycle in vivo. Sci Rep. 9:191802019. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Tang Q, Li M, Jiang S and Wang X: MicroRNA-375 inhibits colorectal cancer growth by targeting PIK3CA. Biochem Biophys Res Commun. 444:199–204. 2014. View Article : Google Scholar : PubMed/NCBI | |
Iino I, Kikuchi H, Miyazaki S, Hiramatsu Y, Ohta M, Kamiya K, Kusama Y, Baba S, Setou M and Konno H: Effect of mi R-122 and its target gene cationic amino acid transporter 1 on colorectal liver metastasis. Cancer Sci. 104:624–630. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sun L, Liu X, Pan B, Hu X, Zhu Y, Su Y, Guo Z, Zhang G, Xu M, Xu X, et al: Serum exosomal miR-122 as a potential diagnostic and prognostic biomarker of colorectal cancer with liver metastasis. J Cancer. 11:630–637. 2020. View Article : Google Scholar : PubMed/NCBI | |
Maierthaler M, Benner A, Hoffmeister M, Surowy H, Jansen L, Knebel P, Chang-Claude J, Brenner H and Burwinkel B: Plasma miR-122 and miR-200 family are prognostic markers in colorectal cancer. Int J Cancer. 140:176–187. 2017. View Article : Google Scholar | |
Sendi H, Yazdimamaghani M, Hu M, Sultanpuram N, Wang J, Moody AS, McCabe E, Zhang J, Graboski A, Li L, et al: Nanoparticle delivery of miR-122 inhibits colorectal cancer liver metastasis. Cancer Res. 82:105–113. 2022. View Article : Google Scholar : | |
Coulouarn C, Factor VM, Andersen JB, Durkin ME and Thorgeirsson SS: Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene. 28:3526–3536. 2009. View Article : Google Scholar : PubMed/NCBI | |
Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M and Stoffel M: Silencing of microRNAs in vivo with 'antagomirs'. Nature. 438:685–689. 2005. View Article : Google Scholar : PubMed/NCBI | |
Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, Watts L, Booten SL, Graham M, McKay R, et al: miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 3:87–98. 2006. View Article : Google Scholar : PubMed/NCBI | |
Gharib E, Nasri Nasrabadi P and Reza Zali M: miR-497-5p mediates starvation-induced death in colon cancer cells by targeting acyl-CoA synthetase-5 and modulation of lipid metabolism. J Cell Physiol. 235:5570–5589. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hou K, Wu ZX, Chen XY, Wang JQ, Zhang D, Xiao C, Zhu D, Koya JB, Wei L, Li J and Chen ZS: Microbiota in health and diseases. Signal Transduct Target Ther. 7:1352022. View Article : Google Scholar : PubMed/NCBI | |
El Kaoutari A, Armougom F, Gordon JI, Raoult D and Henrissat B: The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat Rev Microbiol. 11:497–504. 2013. View Article : Google Scholar : PubMed/NCBI | |
Porter HA, Perry A, Kingsley C, Tran NL and Keegan AD: IRS1 is highly expressed in localized breast tumors and regulates the sensitivity of breast cancer cells to chemotherapy, while IRS2 is highly expressed in invasive breast tumors. Cancer Lett. 338:239–248. 2013. View Article : Google Scholar : PubMed/NCBI | |
Litvak Y, Byndloss MX and Bäumler AJ: Colonocyte metabolism shapes the gut microbiota. Science. 362:eaat90762018. View Article : Google Scholar : PubMed/NCBI | |
Yuan C, Burns MB, Subramanian S and Blekhman R: Interaction between host MicroRNAs and the gut microbiota in colorectal cancer. MSystems. 3:00205–17. 2018. View Article : Google Scholar | |
Abed J, Emgård JE, Zamir G, Faroja M, Almogy G, Grenov A, Sol A, Naor R, Pikarsky E, Atlan KA, et al: Fap2 mediates Fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed Gal-GalNAc. Cell Host Microbe. 20:215–225. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tailford LE, Crost EH, Kavanaugh D and Juge N: Mucin glycan foraging in the human gut microbiome. Front Genet. 6:812015. View Article : Google Scholar : PubMed/NCBI | |
Feng YY, Zeng DZ, Tong YN, Lu XX, Dun GD, Tang B, Zhang ZJ, Ye XL, Li Q, Xie JP and Mao XH: Alteration of microRNA-4474/4717 expression and CREB-binding protein in human colorectal cancer tissues infected with Fusobacterium nucleatum. PLoS One. 14:e02150882019. View Article : Google Scholar : PubMed/NCBI | |
Fauquier L, Azzag K, Parra MAM, Quillien A, Boulet M, Diouf S, Carnac G, Waltzer L, Gronemeyer H and Vandel L: CBP and P300 regulate distinct gene networks required for human primary myoblast differentiation and muscle integrity. Sci Rep. 8:126292018. View Article : Google Scholar : PubMed/NCBI | |
Martins VF, LaBarge SA, Stanley A, Svensson K, Hung CW, Keinan O, Ciaraldi TP, Banoian D, Park JE, Ha C, et al: p300 or CBP is required for insulin-stimulated glucose uptake in skeletal muscle and adipocytes. JCI insight. 7:e1413442022. View Article : Google Scholar : | |
De Reuse H and Skouloubris S: Nitrogen metabolism. Helicobacter pylori: Physiology and Genetics. Mobley HLT, Mendz GL and Hazell SL: ASM Press; Washington, DC: pp. 125–133. 2001 | |
Ternes D, Tsenkova M, Pozdeev VI, Meyers M, Koncina E, Atatri S, Schmitz M, Karta J, Schmoetten M, Heinken A, et al: The gut microbial metabolite formate exacerbates colorectal cancer progression. Nat Metab. 4:458–475. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chaushu S, Wilensky A, Gur C, Shapira L, Elboim M, Halftek G, Polak D, Achdout H, Bachrach G and Mandelboim O: Direct recognition of Fusobacterium nucleatum by the NK cell natural cytotoxicity receptor NKp46 aggravates periodontal disease. PLoS Pathog. 8:e10026012012. View Article : Google Scholar : PubMed/NCBI | |
Chang X, Zhu W, Zhang H and Lian S: Sensitization of melanoma cells to temozolomide by overexpression of microRNA 203 through direct targeting of glutaminase-mediated glutamine metabolism. Clin Exp Dermatol. 42:614–621. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xing J, Liao Y, Zhang H, Zhang W, Zhang Z, Zhang J, Wang D and Tang D: Impacts of MicroRNAs induced by the gut microbiome on regulating the development of colorectal cancer. Front Cell Infect Microbiol. 12:8046892022. View Article : Google Scholar : PubMed/NCBI | |
Heydari Z, Rahaie M, Alizadeh AM, Agah S, Khalighfard S and Bahmani S: Effects of Lactobacillus acidophilus and Bifidobacterium bifidum probiotics on the expression of microRNAs 135b, 26b, 18a and 155, and their involving genes in mice colon cancer. Probiotics Antimicrob Proteins. 11:1155–1162. 2019. View Article : Google Scholar | |
Anderton B, Camarda R, Balakrishnan S, Balakrishnan A, Kohnz RA, Lim L, Evason KJ, Momcilovic O, Kruttwig K, Huang Q, et al: MYC-driven inhibition of the glutamate-cysteine ligase promotes glutathione depletion in liver cancer. EMBO Rep. 18:569–585. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wu M, Xiao H, Liu G, Chen S, Tan B, Ren W, Bazer FW, Wu G and Yin Y: Glutamine promotes intestinal SIgA secretion through intestinal microbiota and IL-13. Mol Nutr Food Res. 60:1637–1648. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu G, Ren W, Fang J, Hu CA, Guan G, Al-Dhabi NA, Yin J, Duraipandiyan V, Chen S, Peng Y and Yin Y: L-Glutamine and L-arginine protect against enterotoxigenic Escherichia coli infection via intestinal innate immunity in mice. Amino Acids. 49:1945–1954. 2017. View Article : Google Scholar : PubMed/NCBI | |
Palomo-Buitrago ME, Sabater-Masdeu M, Moreno-Navarrete JM, Caballano-Infantes E, Arnoriaga-Rodríguez M, Coll C, Ramió L, Palomino-Schätzlein M, Gutiérrez-Carcedo P, Pérez-Brocal V, et al: Glutamate interactions with obesity, insulin resistance, cognition and gut microbiota composition. Acta Diabetol. 56:569–579. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fang CY, Chen JS, Hsu BM, Hussain B, Rathod J and Lee KH: Colorectal cancer stage-specific fecal bacterial community fingerprinting of the Taiwanese population and underpinning of potential taxonomic biomarkers. Microorganisms. 9:15482021. View Article : Google Scholar : PubMed/NCBI | |
Zhou Q, Souba WW, Croce CM and Verne GN: MicroRNA-29a regulates intestinal membrane permeability in patients with irritable bowel syndrome. Gut. 59:775–784. 2010. View Article : Google Scholar | |
Yang YL, Huang YH, Wang FS, Tsai MC, Chen CH and Lian WS: MicroRNA-29a compromises hepatic adiposis and gut dysbiosis in high fat diet-fed mice via downregulating inflammation. Mol Nutr Food Res. 67:22003482023. View Article : Google Scholar | |
Virtue AT, McCright SJ, Wright JM, Jimenez MT, Mowel WK, Kotzin JJ, Joannas L, Basavappa MG, Spencer SP, Clark ML, et al: The gut microbiota regulates white adipose tissue inflammation and obesity via a family of microRNAs. Sci Transl Med. 11:eaav18922019. View Article : Google Scholar : PubMed/NCBI | |
Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC and Siuzdak G: Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci USA. 106:3698–3703. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fan P, Li L, Rezaei A, Eslamfam S, Che D and Ma X: Metabolites of dietary protein and peptides by intestinal microbes and their impacts on gut. Curr Protein Pept Sci. 16:646–654. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ma N, Tian Y, Wu Y and Ma X: Contributions of the interaction between dietary protein and gut microbiota to intestinal health. Curr Protein Pept Sci. 18:795–808. 2017. View Article : Google Scholar : PubMed/NCBI | |
den Besten G, Lange K, Havinga R, van Dijk TH, Gerding A, van Eunen K, Müller M, Groen AK, Hooiveld GJ, Bakker BM and Reijngoud DJ: Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids. Am J Physiol Gastrointest Liver Physiol. 305:G900–G910. 2013. View Article : Google Scholar : PubMed/NCBI | |
Brahe LK, Astrup A and Larsen LH: Is butyrate the link between diet, intestinal microbiota and obesity-related metabolic diseases? Obes Rev. 14:950–959. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cummings JH, Pomare EW, Branch WJ, Naylor CP and MacFarlane GT: Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut. 28:1221–1227. 1987. View Article : Google Scholar : PubMed/NCBI | |
Haenen D, Zhang J, Souza da Silva C, Bosch G, van der Meer IM, van Arkel J, van den Borne JJ, Pérez Gutiérrez O, Smidt H, Kemp B, et al: A diet high in resistant starch modulates microbiota composition, SCFA concentrations, and gene expression in pig intestine. J Nutr. 143:274–283. 2013. View Article : Google Scholar : PubMed/NCBI | |
Birt DF, Boylston T, Hendrich S, Jane JL, Hollis J, Li L, McClelland J, Moore S, Phillips GJ, Rowling M, et al: Resistant starch: promise for improving human health. Adv Nutr. 4:587–601. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Wang J, He T, Becker S, Zhang G, Li D and Ma X: Butyrate: A double-edged sword for health? Adv Nutr. 9:21–29. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhu W, Peng K, Zhao Y, Xu C, Tao X, Liu Y, Huang Y and Yang X: Sodium butyrate attenuated diet-induced obesity, insulin resistance and inflammation partly by promoting fat thermogenesis via intro-adipose sympathetic innervation. Front Pharmacol. 13:9387602022. View Article : Google Scholar : PubMed/NCBI | |
McNabney SM and Henagan TM: Short chain fatty acids in the colon and peripheral tissues: A focus on butyrate, colon cancer, obesity and insulin resistance. Nutrients. 9:13482017. View Article : Google Scholar : PubMed/NCBI | |
Den Besten G, Bleeker A, Gerding A, van Eunen K, Havinga R, van Dijk TH, Oosterveer MH, Jonker JW, Groen AK, Reijngoud DJ and Bakker BM: Short-chain fatty acids protect against high-fat diet–induced obesity via a PPARγ-dependent switch from lipogenesis to fat oxidation. Diabetes. 64:2398–2408. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gao Z, Yin J, Zhang J, Ward RE, Martin RJ, Lefevre M, Cefalu WT and Ye J: Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes. 58:1509–1517. 2009. View Article : Google Scholar : PubMed/NCBI | |
Donohoe CL, Doyle SL and Reynolds JV: Visceral adiposity, insulin resistance and cancer risk. Diabetol Metab Syndr. 3:122011. View Article : Google Scholar : PubMed/NCBI | |
Hanus M, Parada-Venegas D, Landskron G, Wielandt AM, Hurtado C, Alvarez K, Hermoso MA, López-Köstner F and De la Fuente M: Immune system, microbiota, and microbial metabolites: The unresolved triad in colorectal cancer microenvironment. Front Immunol. 12:6128262021. View Article : Google Scholar : PubMed/NCBI | |
Mirzaei R, Afaghi A, Babakhani S, Sohrabi MR, Hosseini-Fard SR, Babolhavaeji K, Khani Ali Akbari S, Yousefimashouf R and Karampoor S: Role of microbiota-derived short-chain fatty acids in cancer development and prevention. Biomed Pharmacother. 139:1116192021. View Article : Google Scholar : PubMed/NCBI | |
Okumura S, Konishi Y, Narukawa M, Sugiura Y, Yoshimoto S, Arai Y, Sato S, Yoshida Y, Tsuji S, Uemura K, et al: Gut bacteria identified in colorectal cancer patients promote tumourigenesis via butyrate secretion. Nat Commun. 12:56742021. View Article : Google Scholar : PubMed/NCBI | |
Bultman SJ: Molecular pathways: Gene-environment interactions regulating dietary fiber induction of proliferation and apoptosis via butyrate for cancer prevention. Clin Cancer Res. 20:799–803. 2014. View Article : Google Scholar : | |
Louis P, Hold GL and Flint HJ: The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol. 12:661–672. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hu S, Dong TS, Dalal SR, Wu F, Bissonnette M, Kwon JH and Chang EB: The microbe-derived short chain fatty acid butyrate targets miRNA-dependent p21 gene expression in human colon cancer. PLoS One. 6:e162212011. View Article : Google Scholar : PubMed/NCBI | |
Hu S, Liu L, Chang EB, Wang JY and Raufman JP: Butyrate inhibits pro-proliferative miR-92a by diminishing c-Myc-induced miR-17-92a cluster transcription in human colon cancer cells. Mol Cancer. 14:1802015. View Article : Google Scholar : PubMed/NCBI | |
Balacescu O, Sur D, Cainap C, Visan S, Cruceriu D, Manzat-Saplacan R, Muresan MS, Balacescu L, Lisencu C and Irimie A: The impact of miRNA in colorectal cancer progression and its liver metastases. Int J Mol Sci. 19:37112018. View Article : Google Scholar : PubMed/NCBI | |
Asadi M, Talesh ST, Gjerstorff MF, Shanehbandi D, Baradaran B, Hashemzadeh S and Zafari V: Identification of miRNAs correlating with stage and progression of colorectal cancer. Colorectal Cancer. 8:CRC062019. View Article : Google Scholar | |
Strubberg AM and Madison BB: MicroRNAs in the etiology of colorectal cancer: Pathways and clinical implications. Dis Model Mech. 10:197–214. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bahnassy AA, El-Sayed M, Ali NM, Khorshid O, Hussein MM, Yousef HF, Mohanad MA, Zekri ARN and Salem SE: Aberrant expression of miRNAs predicts recurrence and survival in stage-II colorectal cancer patients from Egypt. Appl Cancer Res. 37:392017. View Article : Google Scholar | |
Qian J, Zeng L, Jiang X, Zhang Z and Luo X: Novel multiple miRNA-based signatures for predicting overall survival and recurrence-free survival of colorectal cancer patients. Med Sci Monit. 25:7258–7271. 2019. View Article : Google Scholar : PubMed/NCBI | |
Koga Y, Yasunaga M, Takahashi A, Kuroda J, Moriya Y, Akasu T, Fujita S, Yamamoto S, Baba H and Matsumura Y: MicroRNA expression profiling of exfoliated colonocytes isolated from feces for colorectal cancer screening. Cancer Prev Res (Phila). 3:1435–1442. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yau TO, Wu CW, Dong Y, Tang CM, Ng SS, Chan FK, Sung JJ and Yu J: microRNA-221 and microRNA-18a identification in stool as potential biomarkers for the non-invasive diagnosis of colorectal carcinoma. Br J Cancer. 111:1765–1771. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wu CW, Ng SC, Dong Y, Tian L, Ng SS, Leung WW, Law WT, Yau TO, Chan FK, Sung JJ and Yu J: Identification of microRNA-135b in stool as a potential noninvasive biomarker for colorectal cancer and adenoma. Clin Cancer Res. 20:2994–3002. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li L, Wang A, Cai M, Tong M, Chen F and Huang L: Identification of stool miR-135b-5p as a non-invasive diaognostic biomarker in later tumor stage of colorectal cancer. Life Sci. 260:1184172020. View Article : Google Scholar : PubMed/NCBI | |
Yau TO, Wu CW, Tang CM, Chen Y, Fang J, Dong Y, Liang Q, Ng SS, Chan FK, Sung JJ and Yu J: MicroRNA-20a in human faeces as a non-invasive biomarker for colorectal cancer. Oncotarget. 7:1559–1568. 2016. View Article : Google Scholar : | |
Choi HH, Cho YS, Choi JH, Kim HK, Kim SS and Chae HS: Stool-Based miR-92a and miR-144* as noninvasive biomarkers for colorectal cancer screening. Oncology. 97:173–179. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wu CW, Ng SS, Dong YJ, Ng SC, Leung WW, Lee CW, Wong YN, Chan FK, Yu J and Sung JJ: Detection of miR-92a and miR-21 in stool samples as potential screening biomarkers for colorectal cancer and polyps. Gut. 61:739–745. 2012. View Article : Google Scholar | |
Chang PY, Chen CC, Chang YS, Tsai WS, You JF, Lin GP, Chen TW, Chen JS and Chan EC: MicroRNA-223 and microRNA-92a in stool and plasma samples act as complementary biomarkers to increase colorectal cancer detection. Oncotarget. 7:10663–10675. 2016. View Article : Google Scholar : PubMed/NCBI | |
Koga Y, Yamazaki N, Yamamoto Y, Yamamoto S, Saito N, Kakugawa Y, Otake Y, Matsumoto M and Matsumura Y: Fecal miR-106a is a useful marker for colorectal cancer patients with false-negative results in immunochemical fecal occult blood test. Cancer Epidemiol Biomarkers Prev. 22:1844–1852. 2013. View Article : Google Scholar : PubMed/NCBI | |
Duran-Sanchon S, Moreno L, Augé JM, Serra-Burriel M, Cuatrecasas M, Moreira L, Martín A, Serradesanferm A, Pozo À, Costa R, et al: Identification and validation of microRNA profiles in fecal samples for detection of colorectal cancer. Gastroenterology. 158:947–957.e4. 2020. View Article : Google Scholar | |
Tarallo S, Ferrero G, Gallo G, Francavilla A, Clerico G, Realis Luc A, Manghi P, Thomas AM, Vineis P, Segata N, et al: Altered fecal small RNA profiles in colorectal cancer reflect gut microbiome composition in stool samples. mSystems. 4:e00289–19. 2019. View Article : Google Scholar : PubMed/NCBI | |
Link A, Balaguer F, Shen Y, Nagasaka T, Lozano JJ, Boland CR and Goel A: Fecal MicroRNAs as novel biomarkers for colon cancer screening. Cancer Epidemiol Biomarkers Prev. 19:1766–1774. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bastaminejad S, Taherikalani M, Ghanbari R, Akbari A, Shabab N and Saidijam M: Investigation of MicroRNA-21 expression levels in serum and stool as a potential non-invasive biomarker for diagnosis of colorectal cancer. Iran Biomed J. 21:106–113. 2017. View Article : Google Scholar : | |
Liu X, Xu X, Pan B, He B, Chen X, Zeng K, Xu M, Pan Y, Sun H, Xu T, et al: Circulating miR-1290 and miR-320d as novel diagnostic biomarkers of human colorectal cancer. J Cancer. 10:43–50. 2019. View Article : Google Scholar : PubMed/NCBI | |
Eslamizadeh S, Heidari M, Agah S, Faghihloo E, Ghazi H, Mirzaei A and Akbari A: The role of microRNA signature as diagnostic biomarkers in different clinical stages of colorectal cancer. Cell J. 20:220–230. 2018.PubMed/NCBI | |
Ng L, Wan TM, Man JH, Chow AK, Iyer D, Chen G, Yau TC, Lo OS, Foo DC, Poon JT, et al: Identification of serum miR-139-3p as a non-invasive biomarker for colorectal cancer. Oncotarget. 8:27393–27400. 2017. View Article : Google Scholar : PubMed/NCBI | |
Turchinovich A, Weiz L, Langheinz A and Burwinkel B: Characterization of extracellular circulating microRNA. Nucleic Acids Res. 39:7223–7233. 2011. View Article : Google Scholar : PubMed/NCBI | |
Köberle V, Pleli T, Schmithals C, Augusto Alonso E, Haupenthal J, Bönig H, Peveling-Oberhag J, Biondi RM, Zeuzem S, Kronenberger B, et al: Differential stability of cell-free circulating microRNAs: Implications for their utilization as biomarkers. PLoS One. 8:e751842013. View Article : Google Scholar : PubMed/NCBI | |
Glinge C, Clauss S, Boddum K, Jabbari R, Jabbari J, Risgaard B, Tomsits P, Hildebrand B, Kääb S, Wakili R, et al: Stability of circulating blood-based microRNAs-pre-analytic methodological considerations. PLoS One. 12:e01679692017. View Article : Google Scholar | |
Carter JV, Galbraith NJ, Yang D, Burton JF, Walker SP and Galandiuk S: Blood-based microRNAs as biomarkers for the diagnosis of colorectal cancer: A systematic review and meta-analysis. Br J Cancer. 116:762–774. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tan Y, Lin JJ, Yang X, Gou DM, Fu L, Li FR and Yu XF: A panel of three plasma microRNAs for colorectal cancer diagnosis. Cancer Epidemiol. 60:67–76. 2019. View Article : Google Scholar : PubMed/NCBI | |
Guo S, Zhang J, Wang B, Zhang B, Wang X, Huang L, Liu H and Jia B: A 5-serum miRNA panel for the early detection of colorectal cancer. Onco Targets Ther. 11:2603–2614. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sohel MH: Extracellular/Circulating MicroRNAs: Release Mechanisms, Functions and Challenges. Achievem. Life Sci. 10:175–186. 2016. View Article : Google Scholar | |
Coleman D and Kuwada S: miRNA as a biomarker for the early detection of colorectal cancer. Genes (Basel). 15:3382024. View Article : Google Scholar : PubMed/NCBI | |
Wang ZY, Sun MH, Zhang Q, Li PF, Wang K and Li XM: Advances in Point-of-Care Testing of microRNAs based on portable instruments and visual detection. Biosensors (Basel). 13:7472023. View Article : Google Scholar : PubMed/NCBI | |
Dave VP, Ngo TA, Pernestig AK, Tilevik D, Kant K, Nguyen T, Wolff A and Bang DD: MicroRNA amplification and detection technologies: Opportunities and challenges for point of care diagnostics. Lab Invest. 99:452–469. 2019. View Article : Google Scholar | |
Casado-Bedmar M and Viennois E: MicroRNA and gut microbiota: Tiny but Mighty-novel insights into their cross-talk in inflammatory bowel disease pathogenesis and therapeutics. J Crohns Colitis. 16:992–1005. 2022. View Article : Google Scholar | |
Pourteymourfard Tabrizi Z and Jami MS: Selection of suitable bioinformatic tools in micro-RNA research. Gene Rep. 21:1008932020. View Article : Google Scholar | |
Minutentag IW, Seneda AL, Barros-Filhos MC, de Carvalho M, Souza VGP, Hasimoto CN, Moraes MPT, Marchi FA, Lam WL, Reis PP and Drigo SA: Discovery of novel miRNAs in Colorectal Cancer: Potential biological roles and clinical utility. Noncoding RNA. 9:652023.PubMed/NCBI | |
Pawelka D, Laczmanska I, Karpinski P, Supplitt S, Witkiewicz W, Knychalski B, Pelak J, Zebrowska P and Laczmanski L: Machine-learning-based analysis identifies miRNA expression profile for diagnosis and prediction of colorectal cancer: A preliminary study. Cancer Genomics Proteomics. 19:503–511. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kutluk H, Bruch R, Urban GA and Dincer C: Impact of assay format on miRNA sensing: Electrochemical microfluidic biosensor for miRNA-197 detection. Biosens Bioelectron. 148:1118242020. View Article : Google Scholar |