1
|
Abdollahi E, Momtazi AA, Johnston TP and
Sahebkar A: Therapeutic effects of curcumin in inflammatory and
immune-mediated diseases: A nature-made jack-of-all-trades? J Cell
Physiol. 233:830–848. 2018. View Article : Google Scholar
|
2
|
Xie W, Gan J, Zhou X, Tian H, Pan X, Liu
W, Li X, Du J, Xu A, Zheng M, et al: Myocardial infarction
accelerates the progression of MASH by triggering
immunoinflammatory response and induction of periosti. Cell Metab.
36:1269–1286.e9. 2024. View Article : Google Scholar : PubMed/NCBI
|
3
|
Shen H, Yao Z, Zhao W, Zhang Y, Yao C and
Tong C: miR-21 enhances the protective effect of loperamide on rat
cardiomyocytes against hypoxia/reoxygenation, reactive oxygen
species production and apoptosis via regulating Akap8 and Bard1
expression. Exp Ther Med. 17:1312–1320. 2019.PubMed/NCBI
|
4
|
Wang Z, Yao M, Jiang L, Wang L, Yang Y,
Wang Q, Qian X, Zhao Y and Qian J: Dexmedetomidine attenuates
myocardial ischemia/reperfusion-induced ferroptosis via
AMPK/GSK-3β/Nrf2 axis. Biomed Pharmacother. 154:1135722022.
View Article : Google Scholar
|
5
|
Hausenloy DJ, Garcia-Dorado D, Bøtker HE,
Davidson SM, Downey J, Engel FB, Jennings R, Lecour S, Leor J,
Madonna R, et al: Novel targets and future strategies for acute
cardioprotection: Position paper of the european society of
cardiology working group on cellular biology of the heart.
Cardiovasc Res. 113:564–585. 2017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Davidson SM, Ferdinandy P, Andreadou I,
Bøtker HE, Heusch G, Ibáñez B, Ovize M, Schulz R, Yellon DM,
Hausenloy DJ, et al: Multitarget strategies to reduce myocardial
ischemia/reperfusion injury: JACC review topic of the week. J Am
Coll Cardiol. 73:89–99. 2019. View Article : Google Scholar : PubMed/NCBI
|
7
|
Zhao GL, Yu LM, Gao WL, Duan WX, Jiang B,
Liu XD, Zhang B, Liu ZH, Zhai ME, Jin ZX, et al: Berberine protects
rat heart from ischemia/reperfusion injury via activating
JAK2/STAT3 signaling and attenuating endoplasmic reticulum stress.
Acta Pharmacol Sin. 37:354–367. 2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Yao M, Wang Z, Jiang L, Wang L, Yang Y,
Wang Q, Qian X, Zeng W, Yang W, Liang R and Qian J: Oxytocin
ameliorates high glucose- and ischemia/reperfusion-induced
myocardial injury by suppressing pyroptosis via AMPK signaling
pathway. Biomed Pharmacother. 153:1134982022. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wen L, Cheng X, Fan Q, Chen Z, Luo Z, Xu
T, He M and He H: TanshinoneIIA inhibits excessive autophagy and
protects myocardium against ischemia/reperfusion injury via
14-3-3η/Akt/Beclin1 pathway. Eur J Pharmacol. 954:1758652023.
View Article : Google Scholar
|
10
|
Anand P, Thomas SG, Kunnumakkara AB,
Sundaram C, Harikumar KB, Sung B, Tharakan ST, Misra K,
Priyadarsini IK, Rajasekharan KN and Aggarwal BB: Biological
activities of curcumin and its analogues (Congeners) made by man
and mother nature. Biochem Pharmacol. 76:1590–1611. 2008.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Aggarwal BB, Sundaram C, Malani N and
Ichikawa H: Curcumin: The Indian solid gold. Adv Exp Med Biol.
595:1–75. 2007. View Article : Google Scholar : PubMed/NCBI
|
12
|
Kumar G, Mittal S, Sak K and Tuli HS:
Molecular mechanisms underlying chemopreventive potential of
curcumin: Current challenges and future perspectives. Life Sci.
148:313–328. 2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
He H, Luo Y, Qiao Y, Zhang Z, Yin D, Yao
J, You J and He M: Curcumin attenuates doxorubicin-induced
cardiotoxicity via suppressing oxidative stress and preventing
mitochondrial dysfunction mediated by 14-3-3γ. Food Funct.
9:4404–4418. 2018. View Article : Google Scholar : PubMed/NCBI
|
14
|
Jiang C, Shi Q, Yang J, Ren H, Zhang L,
Chen S, Si J, Liu Y, Sha D, Xu B and Ni J: Ceria nanozyme
coordination with curcumin for treatment of sepsis-induced cardiac
injury by inhibiting ferroptosis and inflammation. J Adv Res.
63:159–170. 2024. View Article : Google Scholar :
|
15
|
El-Far AH, Elewa YHA, Abdelfattah EZA,
Alsenosy AWA, Atta MS, Abou-Zeid KM, Al Jaouni SK, Mousa SA and
Noreldin AE: Thymoquinone and curcumin defeat aging-associated
oxidative alterations induced by D-galactose in rats' brain and
heart. Int J Mol Sci. 22:68392021. View Article : Google Scholar
|
16
|
Hong D, Zeng X, Xu W, Ma J, Tong Y and
Chen Y: Altered profiles of gene expression in curcumin-treated
rats with experimentally induced myocardial infarction. Pharmacol
Res. 61:142–148. 2010. View Article : Google Scholar
|
17
|
Duan W, Yang Y, Yan J, Yu S, Liu J, Zhou
J, Zhang J, Jin Z and Yi D: The effects of curcumin post-treatment
against myocardial ischemia and reperfusion by activation of the
JAK2/STAT3 signaling pathway. Basic Res Cardiol. 107:2632012.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Kang JY, Kim H, Mun D, Yun N and Joung B:
Co-delivery of curcumin and miRNA-144-3p using heart-targeted
extracellular vesicles enhances the therapeutic efficacy for
myocardial infarction. J Control Release. 331:62–73. 2021.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Jiang X, Stockwell BR and Conrad M:
Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol
Cell Biol. 22:266–282. 2021. View Article : Google Scholar : PubMed/NCBI
|
20
|
Yang B, Xu Y, Yu J, Wang Q, Fan Q, Zhao X,
Qiao Y, Zhang Z, Zhou Q, Yin D, et al: Salidroside pretreatment
alleviates ferroptosis induced by myocardial ischemia/reperfusion
through mitochondrial superoxide-dependent AMPKα2 activation.
Phytomedicine. 128:1553652024. View Article : Google Scholar
|
21
|
Fang X, Ardehali H, Min J and Wang F: The
molecular and metabolic landscape of iron and ferroptosis in
cardiovascular disease. Nat Rev Cardiol. 20:7–23. 2023. View Article : Google Scholar
|
22
|
Chen YR and Zweier JL: Cardiac
mitochondria and reactive oxygen species generation. Circ Res.
114:524–537. 2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Pasricha SR, Tye-Din J, Muckenthaler MU
and Swinkels DW: Iron deficiency. Lancet. 397:233–248. 2021.
View Article : Google Scholar
|
24
|
Fang X, Wang H, Han D, Xie E, Yang X, Wei
J, Gu S, Gao F, Zhu N, Yin X, et al: Ferroptosis as a target for
protection against cardiomyopathy. Proc Natl Acad Sci USA.
116:2672–2680. 2019. View Article : Google Scholar : PubMed/NCBI
|
25
|
Kremastinos DT and Farmakis D: Iron
overload cardiomyopathy in clinical practice. Circulation.
124:2253–2263. 2011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Kim CH and Leitch HA: Iron
overload-induced oxidative stress in myelodysplastic syndromes and
its cellular sequelae. Crit Rev Oncol Hematol. 163:1033672021.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Wang C, Xu W, Zhang Y, Zhang F and Huang
K: PARP1 promote autophagy in cardiomyocytes via modulating FoxO3a
transcription. Cell Death Dis. 9:10472018. View Article : Google Scholar : PubMed/NCBI
|
28
|
D'Onofrio N, Servillo L and Balestrieri
ML: SIRT1 and SIRT6 signaling pathways in cardiovascular disease
protection. Antioxid Redox Signal. 28:711–732. 2018. View Article : Google Scholar :
|
29
|
Karbasforooshan H and Karimi G: The role
of SIRT1 in diabetic cardiomyopathy. Biomed Pharmacother.
90:386–392. 2017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Verdin E: The many faces of sirtuins:
Coupling of NAD metabolism, sirtuins and lifespan. Nat Med.
20:25–27. 2014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Li W, Du D, Wang H, Liu Y, Lai X, Jiang F,
Chen D, Zhang Y, Zong J and Li Y: Silent information regulator 1
(SIRT1) promotes the migration and proliferation of endothelial
progenitor cells through the PI3K/Akt/eNOS signaling pathway. Int J
Clin Exp Pathol. 8:2274–2287. 2015.PubMed/NCBI
|
32
|
National Research Council Committee for
the Update of the Guide for the C and Use of Laboratory A: The
National Academies Collection: Reports funded by National
Institutes of Health. Guide for the Care and Use of Laboratory
Animals. National Academies Press; US: Copyright © 2011, National
Academy of Sciences, Washington (DC). 2011
|
33
|
Nolen RS: New AVMA guidelines aim to limit
animal suffering in emergencies. J Am Vet Med Assoc. 254:1242–1243.
2019.
|
34
|
He H, Wang L, Qiao Y, Yang B, Yin D and He
M: Epigallocatechin-3-gallate pretreatment alleviates
doxorubicin-induced ferroptosis and cardiotoxicity by upregulating
AMPKα2 and activating adaptive autophagy. Redox Biol.
48:1021852021. View Article : Google Scholar
|
35
|
Zhao ST, Qiu ZC, Zeng RY, Zou HX, Qiu RB,
Peng HZ, Zhou LF, Xu ZQ, Lai SQ and Wan L: Exploring the molecular
biology of ischemic cardiomyopathy based on ferroptosis-related
genes. Exp Ther Med. 27:2212024. View Article : Google Scholar
|
36
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
37
|
Teringova E and Tousek P: Apoptosis in
ischemic heart disease. J Transl Med. 15:872017. View Article : Google Scholar : PubMed/NCBI
|
38
|
Li Y, An M, Fu X, Meng X, Ma Y, Liu H, Li
Q, Xu H and Chen J: Bushen Wenyang Huayu Decoction inhibits
autophagy by regulating the SIRT1-FoXO-1 pathway in endometriosis
rats. J Ethnopharmacol. 308:1162772023. View Article : Google Scholar : PubMed/NCBI
|
39
|
Dong Y, Chen H, Gao J, Liu Y, Li J and
Wang J: Molecular machinery and interplay of apoptosis and
autophagy in coronary heart disease. J Mol Cell Cardiol. 136:27–41.
2019. View Article : Google Scholar : PubMed/NCBI
|
40
|
Chen L, Li S, Zhu J, You A, Huang X, Yi X
and Xue M: Mangiferin prevents myocardial infarction-induced
apoptosis and heart failure in mice by activating the Sirt1/FoxO3a
pathway. J Cell Mol Med. 25:2944–2955. 2021. View Article : Google Scholar : PubMed/NCBI
|
41
|
Yang X, Jiang T, Wang Y and Guo L: The
role and mechanism of SIRT1 in resveratrol-regulated osteoblast
autophagy in osteoporosis rats. Sci Rep. 9:184242019. View Article : Google Scholar : PubMed/NCBI
|
42
|
Tang L, Zeng Z, Zhou Y, Wang B, Zou P,
Wang Q, Ying J, Wang F, Li X, Xu S, et al: Bacillus
amyloliquefaciens SC06 Induced AKT-FOXO signaling pathway-mediated
autophagy to alleviate oxidative stress in IPEC-J2 cells.
Antioxidants (Basel). 10:15452021. View Article : Google Scholar : PubMed/NCBI
|
43
|
Sengupta A, Molkentin JD and Yutzey KE:
FoxO transcription factors promote autophagy in cardiomyocytes. J
Biol Chem. 284:28319–28331. 2009. View Article : Google Scholar : PubMed/NCBI
|
44
|
Tsao CW, Aday AW, Almarzooq ZI, Anderson
CAM, Arora P, Avery CL, Baker-Smith CM, Beaton AZ, Boehme AK,
Buxton AE, et al: Heart disease and stroke statistics-2023 update:
A report from the american heart association. Circulation.
147:e93–e621. 2023. View Article : Google Scholar : PubMed/NCBI
|
45
|
Li H, Sureda A, Devkota HP, Pittalà V,
Barreca D, Silva AS, Tewari D, Xu S and Nabavi SM: Curcumin, the
golden spice in treating cardiovascular diseases. Biotechnol Adv.
38:1073432020. View Article : Google Scholar
|
46
|
Mokhtari-Zaer A, Marefati N, Atkin SL,
Butler AE and Sahebkar A: The protective role of curcumin in
myocardial ischemia-reperfusion injury. J Cell Physiol.
234:214–222. 2018. View Article : Google Scholar : PubMed/NCBI
|
47
|
Jabczyk M, Nowak J, Hudzik B and
Zubelewicz-Szkodzińska B: Curcumin in metabolic health and disease.
Nutrients. 13:44402021. View Article : Google Scholar : PubMed/NCBI
|
48
|
Li M, Wu H, Yuan Y, Hu B and Gu N: Recent
fabrications and applications of cardiac patch in myocardial
infarction treatment. VIEW. 3:202001532022. View Article : Google Scholar
|
49
|
Lin L, Liu S, Chen Z, Xia Y, Xie J, Fu M,
Lu D, Wu Y, Shen H, Yang P and Qian J: Anatomically resolved
transcriptome and proteome landscapes reveal disease-relevant
molecular signatures and systematic changes in heart function of
end-stage dilated cardiomyopathy. VIEW. 4:202200402023. View Article : Google Scholar
|
50
|
Guo S, Meng XW, Yang XS, Liu XF, Ou-Yang
CH and Liu C: Curcumin administration suppresses collagen synthesis
in the hearts of rats with experimental diabetes. Acta Pharmacol
Sin. 39:195–204. 2018. View Article : Google Scholar :
|
51
|
Ramachandran C, Rodriguez S, Ramachandran
R, Raveendran Nair PK, Fonseca H, Khatib Z, Escalon E and Melnick
SJ: Expression profiles of apoptotic genes induced by curcumin in
human breast cancer and mammary epithelial cell lines. Anticancer
Res. 25:3293–3302. 2005.PubMed/NCBI
|
52
|
Kim YS, Kwon JS, Cho YK, Jeong MH, Cho JG,
Park JC, Kang JC and Ahn Y: Curcumin reduces the cardiac
ischemia-reperfusion injury: Involvement of the toll-like receptor
2 in cardiomyocytes. J Nutr Biochem. 23:1514–1523. 2012. View Article : Google Scholar : PubMed/NCBI
|
53
|
Hu F, Hu T, Qiao Y, Huang H, Zhang Z,
Huang W, Liu J and Lai S: Berberine inhibits excessive autophagy
and protects myocardium against ischemia/reperfusion injury via the
RhoE/AMPK pathway. Int J Mol Med. 53:492024. View Article : Google Scholar : PubMed/NCBI
|
54
|
Chen HY, Xiao ZZ, Ling X, Xu RN, Zhu P and
Zheng SY: ELAVL1 is transcriptionally activated by FOXC1 and
promotes ferroptosis in myocardial ischemia/reperfusion injury by
regulating autophagy. Mol Med. 27:142021. View Article : Google Scholar : PubMed/NCBI
|
55
|
Zhou B, Liu J, Kang R, Klionsky DJ,
Kroemer G and Tang D: Ferroptosis is a type of autophagy-dependent
cell death. Semin Cancer Biol. 66:89–100. 2020. View Article : Google Scholar
|
56
|
Wu D, Zhang K and Hu P: The role of
autophagy in acute myocardial infarction. Front Pharmacol.
10:5512019. View Article : Google Scholar : PubMed/NCBI
|
57
|
Cai W, Liu L, Shi X, Liu Y, Wang J, Fang
X, Chen Z, Ai D, Zhu Y and Zhang X: Alox15/15-HpETE aggravates
myocardial ischemia-reperfusion injury by promoting cardiomyocyte
ferroptosis. Circulation. 147:1444–1460. 2023. View Article : Google Scholar : PubMed/NCBI
|
58
|
Mancias JD, Wang X, Gygi SP, Harper JW and
Kimmelman AC: Quantitative proteomics identifies NCOA4 as the cargo
receptor mediating ferritinophagy. Nature. 509:105–109. 2014.
View Article : Google Scholar : PubMed/NCBI
|
59
|
Guo Z, Liao Z, Huang L, Liu D, Yin D and
He M: Kaempferol protects cardiomyocytes against
anoxia/reoxygenation injury via mitochondrial pathway mediated by
SIRT1. Eur J Pharmacol. 761:245–253. 2015. View Article : Google Scholar : PubMed/NCBI
|
60
|
Huang L, He H, Liu Z, Liu D, Yin D and He
M: Protective effects of isorhamnetin on cardiomyocytes against
anoxia/reoxygenation-induced injury is mediated by SIRT1. J
Cardiovasc Pharmacol. 67:526–537. 2016. View Article : Google Scholar : PubMed/NCBI
|
61
|
Kuno A, Hosoda R, Tsukamoto M, Sato T,
Sakuragi H, Ajima N, Saga Y, Tada K, Taniguchi Y, Iwahara N and
Horio Y: SIRT1 in the cardiomyocyte counteracts doxorubicin-induced
cardiotoxicity via regulating histone H2AX. Cardiovasc Res.
118:3360–3373. 2023. View Article : Google Scholar
|
62
|
Ding X, Zhu C, Wang W, Li M, Ma C and Gao
B: SIRT1 is a regulator of autophagy: Implications for the
progression and treatment of myocardial ischemia-reperfusion.
Pharmacol Res. 199:1069572024. View Article : Google Scholar
|
63
|
Wei YJ, Wang JF, Cheng F, Xu HJ, Chen JJ,
Xiong J and Wang J: miR-124-3p targeted SIRT1 to regulate cell
apoptosis, inflammatory response, and oxidative stress in acute
myocardial infarction in rats via modulation of the
FGF21/CREB/PGC1α pathway. J Physiol Biochem. 77:577–587. 2021.
View Article : Google Scholar : PubMed/NCBI
|
64
|
Yu S, Qian H, Tian D, Yang M, Li D, Xu H,
Chen J, Yang J, Hao X, Liu Z, et al: Linggui Zhugan Decoction
activates the SIRT1-AMPK-PGC1α signaling pathway to improve
mitochondrial and oxidative damage in rats with chronic heart
failure caused by myocardial infarction. Front Pharmacol.
14:10748372023. View Article : Google Scholar
|
65
|
Zhang W, Wang X, Tang Y and Huang C:
Melatonin alleviates doxorubicin-induced cardiotoxicity via
inhibiting oxidative stress pyroptosis and apoptosis by activating
Sirt1/Nrf2 pathway. Biomed Pharmacother. 162:1145912023. View Article : Google Scholar
|
66
|
Xie W, Zhu T, Zhang S and Sun X:
Protective effects of Gypenoside XVII against cerebral
ischemia/reperfusion injury via SIRT1-FOXO3A- and
Hif1a-BNIP3-mediated mitochondrial autophagy. J Transl Med.
20:6222022. View Article : Google Scholar : PubMed/NCBI
|