1
|
Roth GA, Mensah GA, Johnson CO, Addolorato
G, Ammirati E, Baddour LM, Barengo NC, Beaton AZ, Benjamin EJ,
Benziger CP, et al: Global burden of cardiovascular diseases and
risk factors, 1990-2019: Update from the GBD 2019 study. J Am Coll
Cardiol. 76:2982–3021. 2020. View Article : Google Scholar : PubMed/NCBI
|
2
|
Wang J, Liu Y, Liu Y, Huang H, Roy S, Song
Z and Guo B: Recent advances in nanomedicines for imaging and
therapy of myocardial ischemia-reperfusion injury. J Control
Release. 353:563–590. 2023. View Article : Google Scholar
|
3
|
Galeone A, Grano M and Brunetti G: Tumor
necrosis factor family members and myocardial ischemia-reperfusion
injury: State of the art and therapeutic implications. Int J Mol
Sci. 24:46062023. View Article : Google Scholar : PubMed/NCBI
|
4
|
Chen QM and Maltagliati AJ: Nrf2 at the
heart of oxidative stress and cardiac protection. Physiol Genomics.
50:77–97. 2018. View Article : Google Scholar :
|
5
|
Bangalore S, Pursnani S, Kumar S and Bagos
PG: Percutaneous coronary intervention versus optimal medical
therapy for prevention of spontaneous myocardial infarction in
subjects with stable ischemic heart disease. Circulation.
127:769–781. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Xiang M, Lu Y, Xin L, Gao J, Shang C,
Jiang Z, Lin H, Fang X, Qu Y, Wang Y, et al: Role of oxidative
stress in reperfusion following myocardial ischemia and its
treatments. Oxid Med Cell Longev. 2021:66140092021. View Article : Google Scholar : PubMed/NCBI
|
7
|
Algoet M, Janssens S, Himmelreich U, Gsell
W, Pusovnik M, Van den Eynde J and Oosterlinck W: Myocardial
ischemia-reperfusion injury and the influence of inflammation.
Trends Cardiovasc Med. 33:357–366. 2023. View Article : Google Scholar
|
8
|
Deng F, Zhang LQ, Wu H, Chen Y, Yu WQ, Han
RH, Han Y, Zhang XQ, Sun QS, Lin ZB, et al: Propionate alleviates
myocardial ischemia-reperfusion injury aggravated by Angiotensin II
dependent on caveolin-1/ACE2 axis through GPR41. Int J Biol Sci.
18:858–872. 2022. View Article : Google Scholar : PubMed/NCBI
|
9
|
Chen M, Zhong G, Liu M, He H, Zhou J, Chen
J, Zhang M, Liu Q, Tong G, Luan J and Zhou H: Integrating network
analysis and experimental validation to reveal the
mitophagy-associated mechanism of Yiqi Huoxue (YQHX) prescription
in the treatment of myocardial ischemia/reperfusion injury.
Pharmacol Res. 189:1066822023. View Article : Google Scholar : PubMed/NCBI
|
10
|
Peoples JN, Saraf A, Ghazal N, Pham TT and
Kwong JQ: Mitochondrial dysfunction and oxidative stress in heart
disease. Exp Mol Med. 51:1–13. 2019. View Article : Google Scholar : PubMed/NCBI
|
11
|
Bleier L and Dröse S: Superoxide
generation by complex III: From mechanistic rationales to
functional consequences. Biochim Biophys Acta. 1827:1320–1331.
2013. View Article : Google Scholar
|
12
|
Burgoyne JR, Mongue-Din H, Eaton P and
Shah AM: Redox signaling in cardiac physiology and pathology. Circ
Res. 111:1091–1106. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Wang B, Wang Y, Zhang J, Hu C, Jiang J, Li
Y and Peng Z: ROS-induced lipid peroxidation modulates cell death
outcome: Mechanisms behind apoptosis, autophagy, and ferroptosis.
Arch Toxicol. 97:1439–1451. 2023. View Article : Google Scholar : PubMed/NCBI
|
14
|
Dodson M, Castro-Portuguez R and Zhang DD:
NRF2 plays a critical role in mitigating lipid peroxidation and
ferroptosis. Redox Biol. 23:1011072019. View Article : Google Scholar : PubMed/NCBI
|
15
|
Shen Y, Liu X, Shi J and Wu X: Involvement
of Nrf2 in myocardial ischemia and reperfusion injury. Int J Biol
Macromol. 125:496–502. 2019. View Article : Google Scholar
|
16
|
Hybertson BM, Gao B, Bose SK and McCord
JM: Oxidative stress in health and disease: The therapeutic
potential of Nrf2 activation. Mol Aspects Med. 32:234–246. 2011.
View Article : Google Scholar : PubMed/NCBI
|
17
|
McNeill SM and Zhao P: The roles of RGS
proteins in cardiometabolic disease. Br J Pharmacol. 181:2319–2337.
2024. View Article : Google Scholar
|
18
|
Owen VJ, Burton PB, Mullen AJ, Birks EJ,
Barton P and Yacoub MH: Expression of RGS3, RGS4 and Gi alpha 2 in
acutely failing donor hearts and end-stage heart failure. Eur Heart
J. 22:1015–1020. 2001. View Article : Google Scholar : PubMed/NCBI
|
19
|
Takimoto E, Koitabashi N, Hsu S, Ketner
EA, Zhang M, Nagayama T, Bedja D, Gabrielson KL, Blanton R,
Siderovski DP, et al: Regulator of G protein signaling 2 mediates
cardiac compensation to pressure overload and antihypertrophic
effects of PDE5 inhibition in mice. J Clin Invest. 119:408–420.
2009.PubMed/NCBI
|
20
|
Rorabaugh BR, Chakravarti B, Mabe NW,
Seeley SL, Bui AD, Yang J, Watts SW, Neubig RR and Fisher RA:
Regulator of G protein signaling 6 protects the heart from ischemic
injury. J Pharmacol Exp Ther. 360:409–416. 2017. View Article : Google Scholar :
|
21
|
Siderovski DP, Diversé-Pierluissi M and De
Vries L: The GoLoco motif: A Galphai/o binding motif and potential
guanine-nucleotide exchange factor. Trends Biochem Sci. 24:340–341.
1999. View Article : Google Scholar : PubMed/NCBI
|
22
|
Huang J, Chen L, Yao Y, Tang C, Ding J, Fu
C, Li H and Ma G: Pivotal role of regulator of G-protein signaling
12 in pathological cardiac hypertrophy. Hypertension. 67:1228–1236.
2016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Lan T, Li Y, Fan C, Wang L, Wang W, Chen S
and Yu SY: MicroRNA-204-5p reduction in rat hippocampus contributes
to stress-induced pathology via targeting RGS12 signaling pathway.
J Neuroinflammation. 18:2432021. View Article : Google Scholar : PubMed/NCBI
|
24
|
Ng AYH, Li Z, Jones MM and Yang S, Li C,
Fu C, Tu C, Oursler MJ, Qu J and Yang S: Regulator of G protein
signaling 12 enhances osteoclastogenesis by suppressing
Nrf2-dependent antioxidant proteins to promote the generation of
reactive oxygen species. Elife. 8:e429512019. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wang YA, Zhou WX, Li JX, Liu YQ, Yue YJ,
Zheng JQ, Liu KL and Ruan JX: Anticonvulsant effects of
phencynonate hydrochloride and other anticholinergic drugs in soman
poisoning: Neurochemical mechanisms. Life Sci. 78:210–223. 2005.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Wang YP, Li G, Ma LL, Zheng Y, Zhang SD,
Zhang HX, Qiu M and Ma X: Penehyclidine hydrochloride ameliorates
renal ischemia-reperfusion injury in rats. J Surg Res. 186:390–397.
2014. View Article : Google Scholar
|
27
|
Yu C and Wang J: Neuroprotective effect of
penehyclidine hydrochloride on focal cerebral ischemia-reperfusion
injury. Neural Regen Res. 8:622–632. 2013.PubMed/NCBI
|
28
|
Yang Y, Zhao L and Ma J: Penehyclidine
hydrochloride preconditioning provides cardiac protection in a rat
model of myocardial ischemia/reperfusion injury via the mechanism
of mitochondrial dynamics mechanism. Eur J Pharmacol. 813:130–139.
2017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Jin JK, Blackwood EA, Azizi K, Thuerauf
DJ, Fahem AG, Hofmann C, Kaufman RJ, Doroudgar S and Glembotski CC:
ATF6 decreases myocardial ischemia/reperfusion damage and links ER
stress and oxidative stress signaling pathways in the heart. Circ
Res. 120:862–875. 2017. View Article : Google Scholar :
|
30
|
Wei Z, Fei Y, Wang Q, Hou J, Cai X, Yang
Y, Chen T, Xu Q, Wang Y and Li YG: Loss of Camk2n1 aggravates
cardiac remodeling and malignant ventricular arrhythmia after
myocardial infarction in mice via NLRP3 inflammasome activation.
Free Radic Biol Med. 167:243–257. 2021. View Article : Google Scholar : PubMed/NCBI
|
31
|
Guidelines for Endpoints in Animal Study
Proposals. Animal Research Advisory Committee NIH:
|
32
|
Chen L, Luo G, Liu Y, Lin H, Zheng C, Xie
D, Zhu Y, Chen L, Huang X, Hu D, et al: Growth differentiation
factor 11 attenuates cardiac ischemia reperfusion injury via
enhancing mitochondrial biogenesis and telomerase activity. Cell
Death Dis. 12:6652021. View Article : Google Scholar : PubMed/NCBI
|
33
|
Yang Q, Li L, Liu Z, Li C, Yu L and Chang
Y: Penehyclidine hydrochloride ameliorates renal ischemia
reperfusion-stimulated lung injury in mice by activating Nrf2
signaling. Bioimpacts. 12:211–218. 2022.PubMed/NCBI
|
34
|
Liu Z, Li Y, Yu L, Chang Y and Yu J:
Penehyclidine hydrochloride inhibits renal
ischemia/reperfusion-induced acute lung injury by activating the
Nrf2 pathway. Aging (Albany NY). 12:13400–13421. 2020. View Article : Google Scholar : PubMed/NCBI
|
35
|
Tang LJ, Zhou YJ, Xiong XM, Li NS, Zhang
JJ, Luo XJ and Peng J: Ubiquitin-specific protease 7 promotes
ferroptosis via activation of the p53/TfR1 pathway in the rat
hearts after ischemia/reperfusion. Free Radic Biol Med.
162:339–352. 2021. View Article : Google Scholar
|
36
|
Liu Y, Wang T, Zhang M, Chen P and Yu Y:
Down-regulation of myocardial infarction associated transcript 1
improves myocardial ischemia-reperfusion injury in aged diabetic
rats by inhibition of activation of NF-κB signaling pathway. Chem
Biol Interact. 300:111–122. 2019. View Article : Google Scholar : PubMed/NCBI
|
37
|
Chen GH, Song CC, Pantopoulos K, Wei XL,
Zheng H and Luo Z: Mitochondrial oxidative stress mediated
Fe-induced ferroptosis via the NRF2-ARE pathway. Free Radic Biol
Med. 180:95–107. 2022. View Article : Google Scholar : PubMed/NCBI
|
38
|
Gumpper-Fedus K, Park KH, Ma H, Zhou X,
Bian Z, Krishnamurthy K, Sermersheim M, Zhou J, Tan T, Li L, et al:
MG53 preserves mitochondrial integrity of cardiomyocytes during
ischemia reperfusion-induced oxidative stress. Redox Biol.
54:1023572022. View Article : Google Scholar : PubMed/NCBI
|
39
|
Dong J, Liu M, Bian Y, Zhang W, Yuan C,
Wang D, Zhou Z, Li Y and Shi Y: MicroRNA-204-5p ameliorates renal
injury via regulating Keap1/Nrf2 pathway in diabetic kidney
disease. Diabetes Metab Syndr Obes. 17:75–92. 2024. View Article : Google Scholar : PubMed/NCBI
|
40
|
Yuan G and Yang S, Ng A, Fu C, Oursler MJ,
Xing L and Yang S: RGS12 Is a novel critical NF-κB activator in
inflammatory arthritis. iScience. 23:1011722020. View Article : Google Scholar
|
41
|
McGarry T, Biniecka M, Veale DJ and Fearon
U: Hypoxia, oxidative stress and inflammation. Free Radic Biol Med.
125:15–24. 2018. View Article : Google Scholar : PubMed/NCBI
|
42
|
Li D, Pi W, Sun Z, Liu X and Jiang J:
Ferroptosis and its role in cardiomyopathy. Biomed Pharmacother.
153:1132792022. View Article : Google Scholar : PubMed/NCBI
|
43
|
Yan J, Li Z, Liang Y, Yang C, Ou W, Mo H,
Tang M, Chen D, Zhong C, Que D, et al: Fucoxanthin alleviated
myocardial ischemia and reperfusion injury through inhibition of
ferroptosis via the NRF2 signaling pathway. Food Funct.
14:10052–10068. 2023. View Article : Google Scholar : PubMed/NCBI
|
44
|
Chen W, Zhang Y, Wang Z, Tan M, Lin J,
Qian X, Li H and Jiang T: Dapagliflozin alleviates myocardial
ischemia/reperfusion injury by reducing ferroptosis via MAPK
signaling inhibition. Front Pharmacol. 14:10782052023. View Article : Google Scholar : PubMed/NCBI
|
45
|
Yang T, Liu H, Yang C, Mo H, Wang X, Song
X, Jiang L, Deng P, Chen R, Wu P, et al: Galangin attenuates
myocardial ischemic reperfusion-induced ferroptosis by targeting
Nrf2/Gpx4 signaling pathway. Drug Des Devel Ther. 17:2495–2511.
2023. View Article : Google Scholar : PubMed/NCBI
|
46
|
Chen Y, Fang ZM, Yi X, Wei X and Jiang DS:
The interaction between ferroptosis and inflammatory signaling
pathways. Cell Death Dis. 14:2052023. View Article : Google Scholar : PubMed/NCBI
|
47
|
Zhao C, Sun G, Li Y, Kong K, Li X, Kan T,
Yang F, Wang L and Wang X: Forkhead box O3 attenuates
osteoarthritis by suppressing ferroptosis through inactivation of
NF-κB/MAPK signaling. J Orthop Translat. 39:147–162. 2023.
View Article : Google Scholar : PubMed/NCBI
|
48
|
van den Berg R, Haenen GR, van den Berg H
and Bast A: Transcription factor NF-kappaB as a potential biomarker
for oxidative stress. Br J Nutr. 86(Suppl 1): S121–S127. 2001.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Son Y, Cheong YK, Kim NH, Chung HT, Kang
DG and Pae HO: Mitogen-activated protein kinases and reactive
oxygen species: How can ROS activate MAPK pathways? J Signal
Transduct. 2011:7926392011. View Article : Google Scholar : PubMed/NCBI
|
50
|
Dang X, He B, Ning Q, Liu Y, Guo J, Niu G
and Chen M: Alantolactone suppresses inflammation, apoptosis and
oxidative stress in cigarette smoke-induced human bronchial
epithelial cells through activation of Nrf2/HO-1 and inhibition of
the NF-κB pathways. Respir Res. 21:952020. View Article : Google Scholar
|
51
|
Tang Y, Gu W and Cheng L: Evodiamine
attenuates oxidative stress and ferroptosis by inhibiting the MAPK
signaling to improve bortezomib-induced peripheral neurotoxicity.
Environ Toxicol. 39:1556–1566. 2024. View Article : Google Scholar
|
52
|
Litviňuková M, Talavera-López C, Maatz H,
Reichart D, Worth CL, Lindberg EL, Kanda M, Polanski K, Heinig M,
Lee M, et al: Cells of the adult human heart. Nature. 588:466–472.
2020. View Article : Google Scholar
|
53
|
Zhang CX, Cheng Y, Liu DZ, Liu M, Cui H,
Zhang BL, Mei QB and Zhou SY: Mitochondria-targeted cyclosporin A
delivery system to treat myocardial ischemia reperfusion injury of
rats. J Nanobiotechnology. 17:182019. View Article : Google Scholar : PubMed/NCBI
|
54
|
Zhang S, Yan F, Luan F, Chai Y, Li N, Wang
YW, Chen ZL, Xu DQ and Tang YP: The pathological mechanisms and
potential therapeutic drugs for myocardial ischemia reperfusion
injury. Phytomedicine. 129:1556492024. View Article : Google Scholar : PubMed/NCBI
|
55
|
Zhuang Q, Li M, Hu D and Li J: Recent
advances in potential targets for myocardial ischemia reperfusion
injury: Role of macrophages. Mol Immunol. 169:1–9. 2024. View Article : Google Scholar : PubMed/NCBI
|
56
|
Yuan G, Huang Y, Yang ST, Ng A and Yang S:
RGS12 inhibits the progression and metastasis of multiple myeloma
by driving M1 macrophage polarization and activation in the bone
marrow microenvironment. Cancer Commun (Lond). 42:60–64. 2022.
View Article : Google Scholar
|
57
|
Yang Y, Wang Y, Guo L, Gao W, Tang TL and
Yan M: Interaction between macrophages and ferroptosis. Cell Death
Dis. 13:3552022. View Article : Google Scholar : PubMed/NCBI
|
58
|
Yuan G and Yang S and Yang S: RGS12
represses oral squamous cell carcinoma by driving M1 polarization
of tumor-associated macrophages via controlling ciliary
MYCBP2/KIF2A signaling. Int J Oral Sci. 15:112023. View Article : Google Scholar : PubMed/NCBI
|
59
|
Yuan G and Yang S and Yang S: Macrophage
RGS12 contributes to osteoarthritis pathogenesis through enhancing
the ubiquitination. Genes Dis. 9:1357–1367. 2022. View Article : Google Scholar : PubMed/NCBI
|
60
|
Lin D, Ma J, Xue Y and Wang Z:
Penehyclidine hydrochloride preconditioning provides
cardioprotection in a rat model of myocardial ischemia/reperfusion
injury. PLoS One. 10:e01380512015. View Article : Google Scholar : PubMed/NCBI
|