|
1
|
Nicholson LB: The immune system. Essays
Biochem. 60:275–301. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Gack MU and Diamond MS: Innate immune
escape by Dengue and West Nile viruses. Curr Opin Virol.
20:119–128. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Su C, Zhan G and Zheng C: Evasion of host
antiviral innate immunity by HSV-1, an update. Virol J. 13:382016.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Arce-Sillas A, Álvarez-Luquín DD,
Tamaya-Domínguez B, Gomez-Fuentes S, Trejo-García A, Melo-Salas M,
Cárdenas G, Rodríguez-Ramírez J and Adalid-Peralta L: Regulatory T
cells: Molecular actions on effector cells in immune regulation. J
Immunol Res. 2016:17208272016. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Denson LA: The role of the innate and
adaptive immune system in pediatric inflammatory bowel disease.
Inflamm Bowel Dis. 19:2011–2020. 2013.PubMed/NCBI
|
|
6
|
Broz P and Dixit VM: Inflammasomes:
Mechanism of assembly, regulation and signalling. Nat Rev Immunol.
16:407–420. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Gebert LFR and MacRae IJ: Regulation of
microRNA function in animals. Nat Rev Mol Cell Biol. 20:21–37.
2018. View Article : Google Scholar
|
|
8
|
Raisch J, Darfeuille-Michaud A and Nguyen
HT: Role of microRNAs in the immune system, inflammation and
cancer. World J Gastroenterol. 19:2985–2996. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Krol J, Loedige I and Filipowicz W: The
widespread regulation of microRNA biogenesis, function and decay.
Nat Rev Genet. 11:597–610. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Ha M and Kim VN: Regulation of microRNA
biogenesis. Nat Rev Mol Cell Biol. 15:509–524. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Wang X: Composition of seed sequence is a
major determinant of microRNA targeting patterns. Bioinformatics.
30:1377–1383. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Lee RC and Feinbaum RLand Ambros V: The C.
elegans heterochronic gene lin-4 encodes small RNAs with antisense
complementarity to lin-14. Cell. 75:843–854. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Wightman B, Ha I and Ruvkun G:
Posttranscriptional regulation of the heterochronic gene lin-14 by
lin-4 mediates temporal pattern formation in C. elegans. Cell.
75:855–862. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Kaur BP and Secord E: Innate immunity.
Immunol Allergy Clin North Am. 41:535–541. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Roberto VP, Tiago DM, Silva IA and Cancela
ML: MiR-29a is an enhancer of mineral deposition in bone-derived
systems. Arch Biochem Biophys. 564:173–183. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Yan B, Guo Q, Fu FJ, Wang Z, Yin Z, Wei YB
and Yang JR: The role of miR-29b in cancer: Regulation, function,
and signaling. Onco Targets Ther. 8:539–548. 2015.PubMed/NCBI
|
|
17
|
Liao JY, Ma LM, Guo YH, Zhang YC, Zhou H,
Shao P, Chen YQ and Qu LH: Deep sequencing of human nuclear and
cytoplasmic small RNAs reveals an unexpectedly complex subcellular
distribution of miRNAs and tRNA 3′ trailers. PLoS One.
5:e105632010. View Article : Google Scholar
|
|
18
|
Hwang HW, Wentzel EA and Mendell JT: A
hexanucleotide element directs microRNA nuclear import. Science.
315:97–100. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Lian WS, Ko JY, Chen YS, Ke HJ, Hsieh CK,
Kuo CW, Wang SY, Huang BW, Tseng JG and Wang FS: MicroRNA-29a
represses osteoclast formation and protects against osteoporosis by
regulating PCAF-mediated RANKL and CXCL12. Cell Death Dis.
10:7052019. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Wang B, Wang J, He W, Zhao Y, Zhang A, Liu
Y, Hassounah F, Ma F, Klein JD, Wang XH and Wang H: Exogenous
miR-29a attenuates muscle atrophy and kidney fibrosis in unilateral
ureteral obstruction mice. Hum Gene Ther. 31:367–375. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Wang H, Wang B, Zhang A, Hassounah F, Seow
Y, Wood M, Ma F, Klein JD, Price SR and Wang XH: Exosome-mediated
miR-29 transfer reduces muscle atrophy and kidney fibrosis in mice.
Mol Ther. 27:571–583. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Fang P, Li X, Dai J, Cole L, Camacho JA,
Zhang Y, Ji Y, Wang J, Yang XF and Wang H: Immune cell subset
differentiation and tissue inflammation. J Hematol Oncol.
11:972018. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Grabstein KH, Namen AE, Shanebeck K, Voice
RF, Reed SG and Widmer MB: Regulation of T cell proliferation by
IL-7. J Immunol. 144:3015–3020. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Bod L, Douguet L, Auffray C, Lengagne R,
Bekkat F, Rondeau E, Molinier-Frenkel V, Castellano F, Richard Y
and Prévost-Blondel A: IL-4-induced gene 1: A negative immune
checkpoint controlling b cell differentiation and activation. J
Immunol. 200:1027–1038. 2018. View Article : Google Scholar
|
|
25
|
Hosoya T, Maillard I and Engel JD: From
the cradle to the grave: Activities of GATA-3 throughout T-cell
development and differentiation. Immunol Rev. 238:110–125. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Kueh HY, Champhekar A, Nutt SL, Elowitz MB
and Rothenberg EV: Positive feedback between PU.1 and the cell
cycle controls myeloid differentiation. Science. 341:670–673. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
den Haan JMM, Arens R and van Zelm MC: The
activation of the adaptive immune system: Cross-talk between
antigen-presenting cells, T cells and B cells. Immunol Lett.
162:103–112. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Colonna M, Trinchieri G and Liu YJ:
Plasmacytoid dendritic cells in immunity. Nat Immunol. 5:1219–1226.
2004. View
Article : Google Scholar : PubMed/NCBI
|
|
29
|
McNab F, Mayer-Barber K, Sher A, Wack A
and O'Garra A: Type I interferons in infectious disease. Nat Rev
Immunol. 15:87–103. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Fu YF, Shi SW, Wu JJ, Yuan ZD, Wang LS,
Nie H, Zhang ZY, Wu X, Chen YC, Ti HB, et al: Osteoclast secretes
stage-specific key molecules for modulating osteoclast-osteoblast
communication. J Cell Physiol. Nov 28–2024.Epub ahead of print.
PubMed/NCBI
|
|
31
|
Tokić S, Štefanić M, Glavaš-Obrovac L,
Kishore A, Navratilova Z and Petrek M: miR-29a-3p/T-bet regulatory
circuit is altered in T cells of patients with hashimoto's
thyroiditis. Front Endocrinol (Lausanne). 9:2642018. View Article : Google Scholar
|
|
32
|
Ma F, Xu S, Liu X, Zhang Q, Xu X, Liu M,
Hua M, Li N, Yao H and Cao X: The microRNA miR-29 controls innate
and adaptive immune responses to intracellular bacterial infection
by targeting interferon-γ. Nat Immunol. 12:861–869. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Cobb BS, Nesterova TB, Thompson E,
Hertweck A, O'Connor E, Godwin J, Wilson CB, Brockdorff N, Fisher
AG, Smale ST and Merkenschlager M: T cell lineage choice and
differentiation in the absence of the RNase III enzyme Dicer. J Exp
Med. 201:1367–1373. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Muljo SA, Ansel KM, Kanellopoulou C,
Livingston DM, Rao A and Rajewsky K: Aberrant T cell
differentiation in the absence of Dicer. J Exp Med. 202:261–269.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Papadopoulou AS, Dooley J, Linterman MA,
Pierson W, Ucar O, Kyewski B, Zuklys S, Hollander GA, Matthys P,
Gray DH, et al: The thymic epithelial microRNA network elevates the
threshold for infection-associated thymic involution via miR-29a
mediated suppression of the IFN-α receptor. Nat Immunol.
13:181–187. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Steiner DF, Thomas MF, Hu JK, Yang Z,
Babiarz JE, Allen CD, Matloubian M, Blelloch R and Ansel KM:
MicroRNA-29 regulates T-box transcription factors and interferon-γ
production in helper T cells. Immunity. 35:169–181. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Smith KM, Guerau-de-Arellano M, Costinean
S, Williams JL, Bottoni A, Mavrikis Cox G, Satoskar AR, Croce CM,
Racke MK, Lovett-Racke AE and Whitacre CC: miR-29ab1 deficiency
identifies a negative feedback loop controlling Th1 bias that is
dysregulated in multiple sclerosis. J Immunol. 189:1567–1576. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Czopik AK, McNamee EN, Vaughn V, Huang X,
Bang IH, Clark T, Wang Y, Ruan W, Nguyen T, Masterson JC, et al:
HIF-2α-dependent induction of miR-29a restrains TH1
activity during T cell dependent colitis. Nat Commun. 15:80422024.
View Article : Google Scholar
|
|
39
|
Yee Mon KJ, Zhu H, Daly CWP, Vu LT, Smith
NL, Patel R, Topham DJ, Scheible K, Jambo K, Le MTN, et al:
MicroRNA-29 specifies age-related differences in the CD8+ T cell
immune response. Cell Rep. 37:1099692021. View Article : Google Scholar
|
|
40
|
Kwong YL, Chan AC, Liang R, Chiang AK,
Chim CS, Chan TK, Todd D and Ho FC: CD56+ NK lymphomas:
Clinicopathological features and prognosis. Br J Haematol.
97:821–829. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Sanchez-Correa B, Gayoso I, Bergua JM,
Casado JG, Morgado S, Solana R and Tarazona R: Decreased expression
of DNAM-1 on NK cells from acute myeloid leukemia patients. Immunol
Cell Biol. 90:109–115. 2012. View Article : Google Scholar
|
|
42
|
Aggarwal N, Swerdlow SH, TenEyck SP,
Boyiadzis M and Felgar RE: Natural killer cell (NK) subsets and
NK-like T-cell populations in acute myeloid leukemias and
myelodysplastic syndromes. Cytometry B Clin Cytom. 90:349–357.
2016. View Article : Google Scholar
|
|
43
|
Mundy-Bosse BL, Scoville SD, Chen L,
McConnell K, Mao HC, Ahmed EH, Zorko N, Harvey S, Cole J, Zhang X,
et al: MicroRNA-29b mediates altered innate immune development in
acute leukemia. J Clin Invest. 126:4404–4416. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Fehniger TA, Wylie T, Germino E, Leong JW,
Magrini VJ, Koul S, Keppel CR, Schneider SE, Koboldt DC, Sullivan
RP, et al: Next-generation sequencing identifies the natural killer
cell microRNA transcriptome. Genome Res. 20:1590–1604. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Nanbakhsh A and Malarkannan S: The role of
microRNAs in NK cell development and function. Cells. 10:20202021.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Scoville SD, Nalin AP, Chen L, Chen L,
Zhang MH, McConnell K, Beceiro Casas S, Ernst G, Traboulsi AA,
Hashi N, et al: Human AML activates the aryl hydrocarbon receptor
pathway to impair NK cell development and function. Blood.
132:1792–1804. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Fang Z, Mao J, Huang J, Sun H, Lu X, Lei
H, Dong J, Chen S and Wang X: Increased levels of villus-derived
exosomal miR-29a-3p in normal pregnancy than uRPL patients
suppresses decidual NK cell production of interferon-γ and exerts a
therapeutic effect in abortion-prone mice. Cell Commun Signal.
22:2302024. View Article : Google Scholar
|
|
48
|
Zhao JJ, Lin J, Lwin T, Yang H, Guo J,
Kong W, Dessureault S, Moscinski LC, Rezania D, Dalton WS, et al:
microRNA expression profile and identification of miR-29 as a
prognostic marker and pathogenetic factor by targeting CDK6 in
mantle cell lymphoma. Blood. 115:2630–2639. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Santanam U, Zanesi N, Efanov A, Costinean
S, Palamarchuk A, Hagan JP, Volinia S, Alder H, Rassenti L, Kipps
T, et al: Chronic lymphocytic leukemia modeled in mouse by targeted
miR-29 expression. Proc Natl Acad Sci USA. 107:12210–12215. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
van Nieuwenhuijze A, Dooley J,
Humblet-Baron S, Sreenivasan J, Koenders M, Schlenner SM, Linterman
M and Liston A: Defective germinal center B-cell response and
reduced arthritic pathology in microRNA-29a-deficient mice. Cell
Mol Life Sci. 74:2095–2106. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Hines MJ, Coffre M, Mudianto T, Panduro M,
Wigton EJ, Tegla C, Osorio-Vasquez V, Kageyama R, Benhamou D, Perez
O, et al: miR-29 sustains B cell survival and controls terminal
differentiation via regulation of PI3K signaling. Cell Rep.
33:1084362020. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Calderón L, Schindler K, Malin SG,
Schebesta A, Sun Q, Schwickert T, Alberti C, Fischer M, Jaritz M,
Tagoh H, et al: Pax5 regulates B cell immunity by promoting PI3K
signaling via PTEN down-regulation. Sci Immunol. 6:eabg50032021.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Recaldin T, Hobson PS, Mann EH, Ramadani
F, Cousins DJ, Lavender P and Fear DJ: miR-29b directly targets
activation-induced cytidine deaminase in human B cells and can
limit its inappropriate expression in naïve B cells. Mol Immunol.
101:419–428. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Borbet TC, Hines MJ and Koralov SB:
MicroRNA regulation of B cell receptor signaling. Immunol Rev.
304:111–125. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Kumari R, Roy U, Desai S, Nilavar NM, Van
Nieuwenhuijze A, Paranjape A, Radha G, Bawa P, Srivastava M,
Nambiar M, et al: MicroRNA miR-29c regulates RAG1 expression and
modulates V(D)J recombination during B cell development. Cell Rep.
36:1093902021. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Roy U, Desai SS, Kumari S, Bushra T,
Choudhary B and Raghavan SC: Understanding the role of miR-29a in
the regulation of RAG1, a gene associated with the development of
the immune system. J Immunol. 213:1125–1138. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Franceschetti T, Kessler CB, Lee SK and
Delany AM: miR-29 promotes murine osteoclastogenesis by regulating
osteoclast commitment and migration. J Biol Chem. 288:33347–33360.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Shao W, Wang S, Wang X, Yao L, Yuan X,
Huang D, Lv B, Ye Y and Xue H: miRNA-29a inhibits atherosclerotic
plaque formation by mediating macrophage autophagy via
PI3K/AKT/mTOR pathway. Aging (Albany NY). 14:24182022. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Janku F, Tsimberidou AM, Garrido-Laguna I,
Wang X, Luthra R, Hong DS, Naing A, Falchook GS, Moroney JW,
Piha-Paul SA, et al: PIK3CA mutations in patients with advanced
cancers treated with PI3K/AKT/mTOR axis inhibitors. Mol Cancer
Ther. 10:558–565. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Cai J, Qiao B, Gao N, Lin N and He W: Oral
squamous cell carcinoma-derived exosomes promote M2 subtype
macrophage polarization mediated by exosome-enclosed miR-29a-3p. Am
J Physiol Cell Physiol. 316:C731–C740. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Yang Y, Chen XQ, Jia YX, Ma J, Xu D and
Xiang ZL: Circ-0044539 promotes lymph node metastasis of
hepatocellular carcinoma through exosomal-miR-29a-3p. Cell Death
Dis. 15:6302024. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Thounaojam MC, Kaushik DK, Kundu K and
Basu A: MicroRNA-29b modulates Japanese encephalitis virus-induced
microglia activation by targeting tumor necrosis factor
alpha-induced protein 3. J Neurochem. 129:143–154. 2014. View Article : Google Scholar
|
|
63
|
Kang DY, Sp N, Jo ES, Rugamba A, Kim HD,
Kim IH, Park JC, Bae SW, Jang KJ and Yang YM: Non-toxic sulfur
inhibits LPS-induced inflammation by regulating TLR-4 and
JAK2/STAT3 through IL-6 signaling. Mol Med Rep. 24:4852021.
View Article : Google Scholar :
|
|
64
|
Ha YE, Ju So Y, Im J, Yun CH, Park JC and
Hyun Han S: TLR3 recognition of viral double-stranded RNA in human
dental pulp cells is important for the innate immunity. Int
Immunopharmacol. 119:1101612023. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Saikh KU: MyD88 and beyond: A perspective
on MyD88-targeted therapeutic approach for modulation of host
immunity. Immunol Res. 69:117–128. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Schroeder P, Rivalan M, Zaqout S, Krüger
C, Schüler J, Long M, Meisel A, Winter Y, Kaindl AM and Lehnardt S:
Abnormal brain structure and behavior in MyD88-deficient mice.
Brain Behav Immun. 91:181–193. 2021. View Article : Google Scholar
|
|
67
|
Ranganathan P, Ngankeu A, Zitzer NC,
Leoncini P, Yu X, Casadei L, Challagundla K, Reichenbach DK, Garman
S, Ruppert AS, et al: Serum miR-29a is upregulated in acute
graft-versus-host disease and activates dendritic cells through TLR
binding. J Immunol. 198:2500–2512. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Hong Y, Wu J, Zhao J, Wang H, Liu Y, Chen
T, Kan X, Tao Q, Shen X, Yan K and Zhai Z: miR-29b and miR-29c are
involved in Toll-like receptor control of glucocorticoid-induced
apoptosis in human plasmacytoid dendritic cells. PLoS One.
8:e699262013. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Fang J, Hao Q, Liu L, Li Y, Wu J, Huo X
and Zhu Y: Epigenetic changes mediated by microRNA miR29 activate
cyclooxygenase 2 and lambda-1 interferon production during viral
infection. J Virol. 86:1010–1020. 2012. View Article : Google Scholar :
|
|
70
|
Cao Y, Zhang R, Zhang W, Zhu C, Yu Y, Song
Y, Wang Q, Bai L, Liu Y, Wu K and Wu J: IL-27, a cytokine, and
IFN-λ1, a type III IFN, are coordinated to regulate virus
replication through type I IFN. J Immunol. 192:691–703. 2014.
View Article : Google Scholar
|
|
71
|
Sharma S, Pavlasova GM, Seda V, Cerna KA,
Vojackova E, Filip D, Ondrisova L, Sandova V, Kostalova L, Zeni PF,
et al: miR-29 modulates CD40 signaling in chronic lymphocytic
leukemia by targeting TRAF4: An axis affected by BCR inhibitors.
Blood. 137:2481–2494. 2021. View Article : Google Scholar :
|
|
72
|
Tang B, Li X, Ren Y, Wang J, Xu D, Hang Y,
Zhou T, Li F and Wang L: MicroRNA-29a regulates lipopolysaccharide
(LPS)-induced inflammatory responses in murine macrophages through
the Akt1/NF-κB pathway. Exp Cell Res. 360:74–80. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Torrealba N, Vera R, Fraile B,
Martínez-Onsurbe P, Paniagua R and Royuela M:
TGF-β/PI3K/AKT/mTOR/NF-kB pathway. Clinicopathological features in
prostate cancer. Aging Male. 23:801–811. 2020. View Article : Google Scholar
|
|
74
|
Zha L, Chen J, Sun S, Mao L, Chu X, Deng
H, Cai J, Li X, Liu Z and Cao W: Soyasaponins can blunt
inflammation by inhibiting the reactive oxygen species-mediated
activation of PI3K/Akt/NF-kB pathway. PLoS One. 9:e1076552014.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Tian R, Zheng Z, Huang R, Jiao Y and Du X:
miR-29a participated in nacre formation and immune response by
targeting Y2R in Pinctada martensii. Int J Mol Sci. 16:29436–29445.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Li X, Zhang M, Yang M, Tian R, Deng Y and
Jiao Y: Pm-miR-29b is involved in nacre formation by regulating
tyrosinase-like protein in Pinctada martensii. Aquac Res.
53:6264–6271. 2022. View Article : Google Scholar
|
|
77
|
Xu H, Cheung IY, Guo HF and Cheung NK:
MicroRNA miR-29 modulates expression of immunoinhibitory molecule
B7-H3: potential implications for immune based therapy of human
solid tumors. Cancer Res. 69:6275–6281. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Pathania AS, Chava H, Chaturvedi NK, Chava
S, Byrareddy SN, Coulter DW and Challagundla KB: The miR-29 family
facilitates the activation of NK-cell immune responses by targeting
the B7-H3 immune checkpoint in neuroblastoma. Cell Death Dis.
15:4282024. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Nygren MK, Tekle C, Ingebrigtsen VA,
Mäkelä R, Krohn M, Aure MR, Nunes-Xavier CE, Perälä M, Tramm T,
Alsner J, et al: Identifying microRNAs regulating B7-H3 in breast
cancer: The clinical impact of microRNA-29c. Br J Cancer.
110:2072–2080. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Brain O, Owens BM, Pichulik T, Allan P,
Khatamzas E, Leslie A, Steevels T, Sharma S, Mayer A, Catuneanu AM,
et al: The intracellular sensor NOD2 induces microRNA-29 expression
in human dendritic cells to limit IL-23 release. Immunity.
39:521–536. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Li S, Xie Y, Yu C, Zheng C and Xu Z: The
battle between host antiviral innate immunity and immune evasion by
cytomegalovirus. Cell Mol Life Sci. 81:3412024. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Rojas JM, Alejo A, Martín V and Sevilla N:
Viral pathogen-induced mechanisms to antagonize mammalian
interferon (IFN) signaling pathway. Cell Mol Life Sci.
78:1423–1444. 2021. View Article : Google Scholar
|
|
83
|
Platanias LC: Mechanisms of type-I- and
type-II-interferon-mediated signalling. Nat Rev Immunol. 5:375–386.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Sarasin-Filipowicz M, Wang X, Yan M, Duong
FH, Poli V, Hilton DJ, Zhang DE and Heim MH: Alpha interferon
induces long-lasting refractoriness of JAK-STAT signaling in the
mouse liver through induction of USP18/UBP43. Mol Cell Biol.
29:4841–4851. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Chandiran K, Lawlor R, Pannuti A, Perez
GG, Srinivasan J, Golde TE, Miele L, Osborne BA and Minter LM:
Notch1 primes CD4 T cells for T helper type I differentiation
through its early effects on miR-29. Mol Immunol. 99:191–198. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Zhang Y, Yang L, Wang H, Zhang G and Sun
X: Respiratory syncytial virus non-structural protein 1 facilitates
virus replication through miR-29a-mediated inhibition of
interferon-α receptor. Biochem Biophys Res Commun. 478:1436–1441.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Wang Y and Li Y: MiR-29c inhibits HCV
replication via activation of type I IFN response by targeting
STAT3 in JFH-1-infected Huh7 cells. RSC Adv. 8:8164–8172. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Schmitt MJ, Philippidou D, Reinsbach SE,
Margue C, Wienecke-Baldacchino A, Nashan D, Behrmann I and Kreis S:
Interferon-γ-induced activation of Signal Transducer and Activator
of Transcription 1 (STAT1) up-regulates the tumor suppressing
microRNA-29 family in melanoma cells. Cell Commun Signal.
10:412012. View Article : Google Scholar
|
|
89
|
Bernstein E, Kim SY, Carmell MA, Murchison
EP, Alcorn H, Li MZ, Mills AA, Elledge SJ, Anderson KV and Hannon
GJ: Dicer is essential for mouse development. Nat Genet.
35:215–217. 2003. View
Article : Google Scholar : PubMed/NCBI
|
|
90
|
Gantier MP, Stunden HJ, McCoy CE, Behlke
MA, Wang D, Kaparakis-Liaskos M, Sarvestani ST, Yang YH, Xu D, Corr
SC, et al: A miR-19 regulon that controls NF-κB signaling. Nucleic
Acids Res. 40:8048–8058. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Chong MMW, Rasmussen JP, Rudensky AY and
Littman DR: The RNAseIII enzyme Drosha is critical in T cells for
preventing lethal inflammatory disease. J Exp Med. 205:2005–2017.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Wu HJ, Zhuo Y, Zhou YC, Wang XW, Wang YP,
Si CY and Wang XH: miR-29a promotes hepatitis B virus replication
and expression by targeting SMARCE1 in hepatoma carcinoma. World J
Gastroenterol. 23:4569–4578. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Sun G, Li H, Wu X, Covarrubias M, Scherer
L, Meinking K, Luk B, Chomchan P, Alluin J, Gombart AF and Rossi
JJ: Interplay between HIV-1 infection and host microRNAs. Nucleic
Acids Res. 40:2181–2196. 2012. View Article : Google Scholar :
|
|
94
|
Bandyopadhyay S, Friedman RC, Marquez RT,
Keck K, Kong B, Icardi MS, Brown KE, Burge CB, Schmidt WN, Wang Y
and McCaffrey AP: Hepatitis C virus infection and hepatic stellate
cell activation downregulate miR-29: miR-29 overexpression reduces
hepatitis C viral abundance in culture. J Infect Dis.
203:1753–1762. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Plummer M, de Martel C, Vignat J, Ferlay
J, Bray F and Franceschi S: Global burden of cancers attributable
to infections in 2012: A synthetic analysis. Lancet Glob Health.
4:e609–e616. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Singal AG, Lampertico P and Nahon P:
Epidemiology and surveillance for hepatocellular carcinoma: New
trends. J Hepatol. 72:250–261. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Wang CM, Wang Y, Fan CG, Xu FF, Sun WS,
Liu YG and Jia JH: miR-29c targets TNFAIP3, inhibits cell
proliferation and induces apoptosis in hepatitis B virus-related
hepatocellular carcinoma. Biochem Biophys Res Commun. 411:586–592.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Huang C, Zheng JM, Cheng Q, Yu KK, Ling
QX, Chen MQ and Li N: Serum microRNA-29 levels correlate with
disease progression in patients with chronic hepatitis B virus
infection. J Dig Dis. 15:614–621. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Huang JH, Han TT, Li LX, Qu T, Zhang XY,
Liao X and Zhong Y: Host microRNAs regulate expression of hepatitis
B virus genes during transmission from patients' sperm to embryo.
Reprod Toxicol. 100:1–6. 2021. View Article : Google Scholar
|
|
100
|
Fruhwirth GO, Loidl A and Hermetter A:
Oxidized phospholipids: From molecular properties to disease.
Biochim Biophys Acta. 1772:718–736. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Zhu HT, Dong QZ, Sheng YY, Wei JW, Wang G,
Zhou HJ, Ren N, Jia HL, Ye QH and Qin LX: MicroRNA-29a-5p is a
novel predictor for early recurrence of hepatitis B virus-related
hepatocellular carcinoma after surgical resection. PLoS One.
7:e523932012. View Article : Google Scholar
|
|
102
|
Adoro S, Cubillos-Ruiz JR, Chen X, Deruaz
M, Vrbanac VD, Song M, Park S, Murooka TT, Dudek TE, Luster AD, et
al: IL-21 induces antiviral microRNA-29 in CD4 T cells to limit
HIV-1 infection. Nat Commun. 6:75622015. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Ahluwalia JK, Khan SZ, Soni K, Rawat P,
Gupta A, Hariharan M, Scaria V, Lalwani M, Pillai B, Mitra D and
Brahmachari SK: Human cellular microRNA hsa-miR-29a interferes with
viral nef protein expression and HIV-1 replication. Retrovirology.
5:1172008. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Nathans R, Chu CY, Serquina AK, Lu CC, Cao
H and Rana TM: Cellular microRNA and P bodies modulate host-HIV-1
interactions. Mol Cell. 34:696–709. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Patel P, Ansari MY, Bapat S, Thakar M,
Gangakhedkar R and Jameel S: The microRNA miR-29a is associated
with human immunodeficiency virus latency. Retrovirology.
11:1082014. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Ortega PAS, Saulle I, Mercurio V, Ibba SV,
Lori EM, Fenizia C, Masetti M, Trabattoni D, Caputo SL, Vichi F, et
al: Interleukin 21 (IL-21)/microRNA-29 (miR-29) axis is associated
with natural resistance to HIV-1 infection. AIDS. 32:2453–2461.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Whisnant AW, Bogerd HP, Flores O, Ho P,
Powers JG, Sharova N, Stevenson M, Chen CH and Cullen BR: In-depth
analysis of the interaction of HIV-1 with cellular microRNA
biogenesis and effector mechanisms. mBio. 4:e0001932013. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Mahdy MM, El-Ekiaby NM, Hashish RM, Salah
RA, Hanafi RS, Azzazy HM and Abdelaziz AI: miR-29a promotes lipid
droplet and triglyceride formation in HCV infection by inducing
expression of SREBP-1c and CAV1. J Clin Transl Hepatol. 4:293–299.
2016.
|
|
109
|
Guan Z, Shi N, Song Y, Zhang X, Zhang M
and Duan M: Induction of the cellular microRNA-29c by influenza
virus contributes to virus-mediated apoptosis through repression of
antiapoptotic factors BCL2L2. Biochem Biophys Res Commun.
425:662–667. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Lin J, Xia J, Chen YT, Zhang KY, Zeng Y
and Yang Q: H9N2 avian influenza virus enhances the immune
responses of BMDCs by down-regulating miR29c. Vaccine. 35:729–737.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Yang X, Liang Y, Bamunuarachchi G, Xu Y,
Vaddadi K, Pushparaj S, Xu D, Zhu Z, Blaha R, Huang C and Liu L:
miR-29a is a negative regulator of influenza virus infection
through targeting of the frizzled 5 receptor. Arch Virol.
166:363–373. 2021. View Article : Google Scholar
|
|
112
|
Zhang X, Dong C, Sun X, Li Z, Zhang M,
Guan Z and Duan M: Induction of the cellular miR-29c by influenza
virus inhibits the innate immune response through protection of A20
mRNA. Biochem Biophys Res Commun. 450:755–761. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Donyavi T, Bokharaei-Salim F, Baghi HB,
Khanaliha K, Alaei Janat-Makan M, Karimi B, Sadri Nahand J, Mirzaei
H, Khatami A, Garshasbi S, et al: Acute and post-acute phase of
COVID-19: Analyzing expression patterns of miRNA-29a-3p, 146a-3p,
155-5p, and let-7b-3p in PBMC. Int Immunopharmacol. 97:1076412021.
View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Keikha R, Hashemi-Shahri SM and Jebali A:
The relative expression of miR-31, miR-29, miR-126, and miR-17 and
their mRNA targets in the serum of COVID-19 patients with different
grades during hospitalization. Eur J Med Res. 26:752021. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Baluni M, Ghildiyal S, Singh D, Himanshu
Reddy D, Kumar R and Dhole TN: Increased serum microRNA-29b
expression and bad recovery in Japanese encephalitis virus infected
patients; A new component to improve the disease recovery. J
Neuroimmunol. 323:56–61. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Fayyad-Kazan M, ElDirani R, Hamade E, El
Majzoub R, Akl H, Bitar N, Fayyad-Kazan H and Badran B: Circulating
miR-29c, miR-30c, miR-193a-5p and miR-885-5p: Novel potential
biomarkers for HTLV-1 infection diagnosis. Infect Genet Evol.
74:1039382019. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Anastasiadou E, Boccellato F, Vincenti S,
Rosato P, Bozzoni I, Frati L, Faggioni A, Presutti C and Trivedi P:
Epstein-Barr virus encoded LMP1 downregulates TCL1 oncogene through
miR-29b. Oncogene. 29:1316–1328. 2010. View Article : Google Scholar
|
|
118
|
Surachetpong W, Nantakhruea S and
Lekcharoensuk P: Molecular characterization and expression analysis
of miR-29a in porcine cells and porcine reproductive and
respiratory syndrome virus infected peripheral blood mononuclear
cells. Thai J Vet Med. 44:125–132. 2014. View Article : Google Scholar
|
|
119
|
Zhou M, Li C, Lu C, Zhang X, Pan Y, Liu X,
Liu G, Zhao Z and Sun B: miRNA29 promotes viral replication during
early stage of PRRSV infection in vitro. DNA Cell Biol. 35:636–642.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Fu Q, Shi H, Shi M, Meng L, Zhang H, Ren
Y, Guo F, Jia B, Wang P, Ni W and Chen C: bta-miR-29b attenuates
apoptosis by directly targeting caspase-7 and NAIF1 and suppresses
bovine viral diarrhea virus replication in MDBK cells. Can J
Microbiol. 60:455–460. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Fu Q, Shi H, Ni W, Shi M, Meng L, Zhang H,
Ren Y, Guo F, Wang P, Qiao J, et al: Lentivirus-mediated Bos taurus
bta-miR-29b overexpression interferes with bovine viral diarrhoea
virus replication and viral infection-related autophagy by directly
targeting ATG14 and ATG9A in Madin-Darby bovine kidney cells. J Gen
Virol. 96:85–94. 2015. View Article : Google Scholar
|
|
122
|
Fu Q, Shi H and Chen C: Roles of
bta-miR-29b promoter regions DNA methylation in regulating miR-29b
expression and bovine viral diarrhea virus NADL replication in MDBK
cells. Arch Virol. 162:401–408. 2017. View Article : Google Scholar
|
|
123
|
Le LTT, Swingler TE, Crowe N, Vincent TL,
Barter MJ, Donell ST, Delany AM, Dalmay T, Young DA and Clark IM:
The microRNA-29 family in cartilage homeostasis and osteoarthritis.
J Mol Med (Berl). 94:583–596. 2016. View Article : Google Scholar
|
|
124
|
Zhou Q, Zheng X, Chen L, Xu B, Yang X,
Jiang J and Wu C: Smad2/3/4 pathway contributes to TGF-β-induced
MiRNA-181b expression to promote gastric cancer metastasis by
targeting Timp3. Cell Physiol Biochem. 39:453–466. 2016. View Article : Google Scholar
|
|
125
|
Tan J, Tong BD, Wu YJ and Xiong W:
MicroRNA-29 mediates TGFβ1-induced extracellular matrix synthesis
by targeting wnt/β-catenin pathway in human orbital fibroblasts.
Int J Clin Exp Pathol. 7:7571–7577. 2014.
|
|
126
|
Mayer U, Benditz A and Grässel S: miR-29b
regulates expression of collagens I and III in chondrogenically
differentiating BMSC in an osteoarthritic environment. Sci Rep.
7:132972017. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Wang C, Wang Y, Fu Z, Huang W, Yu Z, Wang
J, Zheng K, Zhang S, Li S and Chen J: MiR-29b-3p inhibits migration
and invasion of papillary thyroid carcinoma by downregulating
COL1A1 and COL5A1. Front Oncol. 12:8375812022. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Jeon EJ, Lee KY, Choi NS, Lee MH, Kim HN,
Jin YH, Ryoo HM, Choi JY, Yoshida M, Nishino N, et al: Bone
morphogenetic protein-2 stimulates Runx2 acetylation. J Biol Chem.
281:16502–16511. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Maeda S, Hayashi M, Komiya S, Imamura T
and Miyazono K: Endogenous TGF-beta signaling suppresses maturation
of osteoblastic mesenchymal cells. EMBO J. 23:552–563. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Chen ZH, Wu JJ, Guo DY, Li YY, Chen MN,
Zhang ZY, Yuan ZD, Zhang KW, Chen WW, Tian F, et al: Physiological
functions of podosomes: From structure and function to therapy
implications in osteoclast biology of bone resorption. Ageing Res
Rev. 85:1018422023. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Horita M, Farquharson C and Stephen LA:
The role of miR-29 family in disease. J Cell Biochem. 122:696–715.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Ślusarz A and Pulakat L: The two faces of
miR-29. J Cardiovasc Med (Hagerstown). 16:480–490. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Huang L, Zhang Y, Yang J, Li J, Wu J, Wang
F, Lan Y and Zhang Q: Anti-fibrotic effects and the mechanism of
action of miR-29c in silicosis. Mol Med Rep. 23:2922021. View Article : Google Scholar
|
|
134
|
Smyth A, Callaghan B, Willoughby CE and
O'Brien C: The role of miR-29 family in TGF-β driven fibrosis in
glaucomatous optic neuropathy. Int J Mol Sci. 23:102162022.
View Article : Google Scholar
|
|
135
|
Garzon R, Liu S, Fabbri M, Liu Z, Heaphy
CE, Callegari E, Schwind S, Pang J, Yu J, Muthusamy N, et al:
MicroRNA-29b induces global DNA hypomethylation and tumor
suppressor gene reexpression in acute myeloid leukemia by targeting
directly DNMT3A and 3B and indirectly DNMT1. Blood. 113:6411–6418.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Rothschild SI, Tschan MP, Federzoni EA,
Jaggi R, Fey MF, Gugger M and Gautschi O: MicroRNA-29b is involved
in the Src-ID1 signaling pathway and is dysregulated in human lung
adenocarcinoma. Oncogene. 31:4221–4232. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Zhang Y, Liu H, Zhang Q and Zhang Z: Long
Noncoding RNA LINC01006 facilitates cell proliferation, migration,
and epithelial-mesenchymal transition in lung adenocarcinoma via
targeting the MicroRNA 129-2-3p/CTNNB1 axis and activating
Wnt/β-catenin signaling pathway. Mol Cell Biol. 41:e00380202021.
View Article : Google Scholar
|
|
138
|
Cittelly DM, Finlay-Schultz J, Howe EN,
Spoelstra NS, Axlund SD, Hendricks P, Jacobsen BM, Sartorius CA and
Richer JK: Progestin suppression of miR-29 potentiates
dedifferentiation of breast cancer cells via KLF4. Oncogene.
32:2555–2564. 2013. View Article : Google Scholar
|
|
139
|
Moghoofei M, Najafipour S, Mostafaei S,
Tavakoli A, Bokharaei-Salim F, Ghorbani S, Javanmard D, Ghaffari H
and Monavari SH: MicroRNAs profiling in HIV, HCV, and HIV/HCV
co-infected patients. Curr HIV Res. 19:27–34. 2021. View Article : Google Scholar
|
|
140
|
Eiring AM, Harb JG, Neviani P, Garton C,
Oaks JJ, Spizzo R, Liu S, Schwind S, Santhanam R, Hickey CJ, et al:
miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation
of mRNA translation in leukemic blasts. Cell. 140:652–665. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Tang R, Li L, Zhu D, Hou D, Cao T, Gu H,
Zhang J, Chen J, Zhang CY and Zen K: Mouse miRNA-709 directly
regulates miRNA-15a/16-1 biogenesis at the posttranscriptional
level in the nucleus: Evidence for a microRNA hierarchy system.
Cell Res. 22:504–515. 2012. View Article : Google Scholar :
|
|
142
|
Lu L, Ling W and Ruan Z: TAM-derived
extracellular vesicles containing microRNA-29a-3p explain the
deterioration of ovarian cancer. Mol Ther Nucleic Acids.
25:468–482. 2021. View Article : Google Scholar : PubMed/NCBI
|