Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
March-2025 Volume 55 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2025 Volume 55 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Recent insights and perspectives into the role of the miRNA‑29 family in innate immunity (Review)

  • Authors:
    • Xing-Chen Yao
    • Jun-Jie Wu
    • Sheng-Tao Yuan
    • Feng-Lai Yuan
  • View Affiliations / Copyright

    Affiliations: State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China, Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041, P.R. China
    Copyright: © Yao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 53
    |
    Published online on: January 27, 2025
       https://doi.org/10.3892/ijmm.2025.5494
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Innate immunity is the first line of defence against pathogenic microorganisms and is nearly universal among eukaryotes. The innate immune system is composed of various organs, cells and immune molecules. MicroRNAs (miRs) are a class of small non‑coding RNAs (~22 nucleotides) that are widely involved in post‑transcriptional regulation of proteins within the innate immune system through the recognition of seed sequences. The present review summarizes the role of the miR‑29 family in innate immunity, with a focus on its specific functions in the differentiation of T cells, B cells, natural killer cells and macrophages, as well as the mechanisms by which the miR‑29 family participates in innate immune signalling. Additionally, this review discusses how the miR‑29 family helps the host combat infections by hepatitis B and C viruses, human immunodeficiency virus and influenza A virus through the regulation of specific signalling molecules. This comprehensive analysis of existing studies emphasizes the importance of the miR‑29 family in maintaining immune balance and defence against pathogens.
View Figures

Figure 1

Figure 2

View References

1 

Nicholson LB: The immune system. Essays Biochem. 60:275–301. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Gack MU and Diamond MS: Innate immune escape by Dengue and West Nile viruses. Curr Opin Virol. 20:119–128. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Su C, Zhan G and Zheng C: Evasion of host antiviral innate immunity by HSV-1, an update. Virol J. 13:382016. View Article : Google Scholar : PubMed/NCBI

4 

Arce-Sillas A, Álvarez-Luquín DD, Tamaya-Domínguez B, Gomez-Fuentes S, Trejo-García A, Melo-Salas M, Cárdenas G, Rodríguez-Ramírez J and Adalid-Peralta L: Regulatory T cells: Molecular actions on effector cells in immune regulation. J Immunol Res. 2016:17208272016. View Article : Google Scholar : PubMed/NCBI

5 

Denson LA: The role of the innate and adaptive immune system in pediatric inflammatory bowel disease. Inflamm Bowel Dis. 19:2011–2020. 2013.PubMed/NCBI

6 

Broz P and Dixit VM: Inflammasomes: Mechanism of assembly, regulation and signalling. Nat Rev Immunol. 16:407–420. 2016. View Article : Google Scholar : PubMed/NCBI

7 

Gebert LFR and MacRae IJ: Regulation of microRNA function in animals. Nat Rev Mol Cell Biol. 20:21–37. 2018. View Article : Google Scholar

8 

Raisch J, Darfeuille-Michaud A and Nguyen HT: Role of microRNAs in the immune system, inflammation and cancer. World J Gastroenterol. 19:2985–2996. 2013. View Article : Google Scholar : PubMed/NCBI

9 

Krol J, Loedige I and Filipowicz W: The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 11:597–610. 2010. View Article : Google Scholar : PubMed/NCBI

10 

Ha M and Kim VN: Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 15:509–524. 2014. View Article : Google Scholar : PubMed/NCBI

11 

Wang X: Composition of seed sequence is a major determinant of microRNA targeting patterns. Bioinformatics. 30:1377–1383. 2014. View Article : Google Scholar : PubMed/NCBI

12 

Lee RC and Feinbaum RLand Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 75:843–854. 1993. View Article : Google Scholar : PubMed/NCBI

13 

Wightman B, Ha I and Ruvkun G: Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 75:855–862. 1993. View Article : Google Scholar : PubMed/NCBI

14 

Kaur BP and Secord E: Innate immunity. Immunol Allergy Clin North Am. 41:535–541. 2021. View Article : Google Scholar : PubMed/NCBI

15 

Roberto VP, Tiago DM, Silva IA and Cancela ML: MiR-29a is an enhancer of mineral deposition in bone-derived systems. Arch Biochem Biophys. 564:173–183. 2014. View Article : Google Scholar : PubMed/NCBI

16 

Yan B, Guo Q, Fu FJ, Wang Z, Yin Z, Wei YB and Yang JR: The role of miR-29b in cancer: Regulation, function, and signaling. Onco Targets Ther. 8:539–548. 2015.PubMed/NCBI

17 

Liao JY, Ma LM, Guo YH, Zhang YC, Zhou H, Shao P, Chen YQ and Qu LH: Deep sequencing of human nuclear and cytoplasmic small RNAs reveals an unexpectedly complex subcellular distribution of miRNAs and tRNA 3′ trailers. PLoS One. 5:e105632010. View Article : Google Scholar

18 

Hwang HW, Wentzel EA and Mendell JT: A hexanucleotide element directs microRNA nuclear import. Science. 315:97–100. 2007. View Article : Google Scholar : PubMed/NCBI

19 

Lian WS, Ko JY, Chen YS, Ke HJ, Hsieh CK, Kuo CW, Wang SY, Huang BW, Tseng JG and Wang FS: MicroRNA-29a represses osteoclast formation and protects against osteoporosis by regulating PCAF-mediated RANKL and CXCL12. Cell Death Dis. 10:7052019. View Article : Google Scholar : PubMed/NCBI

20 

Wang B, Wang J, He W, Zhao Y, Zhang A, Liu Y, Hassounah F, Ma F, Klein JD, Wang XH and Wang H: Exogenous miR-29a attenuates muscle atrophy and kidney fibrosis in unilateral ureteral obstruction mice. Hum Gene Ther. 31:367–375. 2020. View Article : Google Scholar : PubMed/NCBI

21 

Wang H, Wang B, Zhang A, Hassounah F, Seow Y, Wood M, Ma F, Klein JD, Price SR and Wang XH: Exosome-mediated miR-29 transfer reduces muscle atrophy and kidney fibrosis in mice. Mol Ther. 27:571–583. 2019. View Article : Google Scholar : PubMed/NCBI

22 

Fang P, Li X, Dai J, Cole L, Camacho JA, Zhang Y, Ji Y, Wang J, Yang XF and Wang H: Immune cell subset differentiation and tissue inflammation. J Hematol Oncol. 11:972018. View Article : Google Scholar : PubMed/NCBI

23 

Grabstein KH, Namen AE, Shanebeck K, Voice RF, Reed SG and Widmer MB: Regulation of T cell proliferation by IL-7. J Immunol. 144:3015–3020. 1990. View Article : Google Scholar : PubMed/NCBI

24 

Bod L, Douguet L, Auffray C, Lengagne R, Bekkat F, Rondeau E, Molinier-Frenkel V, Castellano F, Richard Y and Prévost-Blondel A: IL-4-induced gene 1: A negative immune checkpoint controlling b cell differentiation and activation. J Immunol. 200:1027–1038. 2018. View Article : Google Scholar

25 

Hosoya T, Maillard I and Engel JD: From the cradle to the grave: Activities of GATA-3 throughout T-cell development and differentiation. Immunol Rev. 238:110–125. 2010. View Article : Google Scholar : PubMed/NCBI

26 

Kueh HY, Champhekar A, Nutt SL, Elowitz MB and Rothenberg EV: Positive feedback between PU.1 and the cell cycle controls myeloid differentiation. Science. 341:670–673. 2013. View Article : Google Scholar : PubMed/NCBI

27 

den Haan JMM, Arens R and van Zelm MC: The activation of the adaptive immune system: Cross-talk between antigen-presenting cells, T cells and B cells. Immunol Lett. 162:103–112. 2014. View Article : Google Scholar : PubMed/NCBI

28 

Colonna M, Trinchieri G and Liu YJ: Plasmacytoid dendritic cells in immunity. Nat Immunol. 5:1219–1226. 2004. View Article : Google Scholar : PubMed/NCBI

29 

McNab F, Mayer-Barber K, Sher A, Wack A and O'Garra A: Type I interferons in infectious disease. Nat Rev Immunol. 15:87–103. 2015. View Article : Google Scholar : PubMed/NCBI

30 

Fu YF, Shi SW, Wu JJ, Yuan ZD, Wang LS, Nie H, Zhang ZY, Wu X, Chen YC, Ti HB, et al: Osteoclast secretes stage-specific key molecules for modulating osteoclast-osteoblast communication. J Cell Physiol. Nov 28–2024.Epub ahead of print. PubMed/NCBI

31 

Tokić S, Štefanić M, Glavaš-Obrovac L, Kishore A, Navratilova Z and Petrek M: miR-29a-3p/T-bet regulatory circuit is altered in T cells of patients with hashimoto's thyroiditis. Front Endocrinol (Lausanne). 9:2642018. View Article : Google Scholar

32 

Ma F, Xu S, Liu X, Zhang Q, Xu X, Liu M, Hua M, Li N, Yao H and Cao X: The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-γ. Nat Immunol. 12:861–869. 2011. View Article : Google Scholar : PubMed/NCBI

33 

Cobb BS, Nesterova TB, Thompson E, Hertweck A, O'Connor E, Godwin J, Wilson CB, Brockdorff N, Fisher AG, Smale ST and Merkenschlager M: T cell lineage choice and differentiation in the absence of the RNase III enzyme Dicer. J Exp Med. 201:1367–1373. 2005. View Article : Google Scholar : PubMed/NCBI

34 

Muljo SA, Ansel KM, Kanellopoulou C, Livingston DM, Rao A and Rajewsky K: Aberrant T cell differentiation in the absence of Dicer. J Exp Med. 202:261–269. 2005. View Article : Google Scholar : PubMed/NCBI

35 

Papadopoulou AS, Dooley J, Linterman MA, Pierson W, Ucar O, Kyewski B, Zuklys S, Hollander GA, Matthys P, Gray DH, et al: The thymic epithelial microRNA network elevates the threshold for infection-associated thymic involution via miR-29a mediated suppression of the IFN-α receptor. Nat Immunol. 13:181–187. 2011. View Article : Google Scholar : PubMed/NCBI

36 

Steiner DF, Thomas MF, Hu JK, Yang Z, Babiarz JE, Allen CD, Matloubian M, Blelloch R and Ansel KM: MicroRNA-29 regulates T-box transcription factors and interferon-γ production in helper T cells. Immunity. 35:169–181. 2011. View Article : Google Scholar : PubMed/NCBI

37 

Smith KM, Guerau-de-Arellano M, Costinean S, Williams JL, Bottoni A, Mavrikis Cox G, Satoskar AR, Croce CM, Racke MK, Lovett-Racke AE and Whitacre CC: miR-29ab1 deficiency identifies a negative feedback loop controlling Th1 bias that is dysregulated in multiple sclerosis. J Immunol. 189:1567–1576. 2012. View Article : Google Scholar : PubMed/NCBI

38 

Czopik AK, McNamee EN, Vaughn V, Huang X, Bang IH, Clark T, Wang Y, Ruan W, Nguyen T, Masterson JC, et al: HIF-2α-dependent induction of miR-29a restrains TH1 activity during T cell dependent colitis. Nat Commun. 15:80422024. View Article : Google Scholar

39 

Yee Mon KJ, Zhu H, Daly CWP, Vu LT, Smith NL, Patel R, Topham DJ, Scheible K, Jambo K, Le MTN, et al: MicroRNA-29 specifies age-related differences in the CD8+ T cell immune response. Cell Rep. 37:1099692021. View Article : Google Scholar

40 

Kwong YL, Chan AC, Liang R, Chiang AK, Chim CS, Chan TK, Todd D and Ho FC: CD56+ NK lymphomas: Clinicopathological features and prognosis. Br J Haematol. 97:821–829. 1997. View Article : Google Scholar : PubMed/NCBI

41 

Sanchez-Correa B, Gayoso I, Bergua JM, Casado JG, Morgado S, Solana R and Tarazona R: Decreased expression of DNAM-1 on NK cells from acute myeloid leukemia patients. Immunol Cell Biol. 90:109–115. 2012. View Article : Google Scholar

42 

Aggarwal N, Swerdlow SH, TenEyck SP, Boyiadzis M and Felgar RE: Natural killer cell (NK) subsets and NK-like T-cell populations in acute myeloid leukemias and myelodysplastic syndromes. Cytometry B Clin Cytom. 90:349–357. 2016. View Article : Google Scholar

43 

Mundy-Bosse BL, Scoville SD, Chen L, McConnell K, Mao HC, Ahmed EH, Zorko N, Harvey S, Cole J, Zhang X, et al: MicroRNA-29b mediates altered innate immune development in acute leukemia. J Clin Invest. 126:4404–4416. 2016. View Article : Google Scholar : PubMed/NCBI

44 

Fehniger TA, Wylie T, Germino E, Leong JW, Magrini VJ, Koul S, Keppel CR, Schneider SE, Koboldt DC, Sullivan RP, et al: Next-generation sequencing identifies the natural killer cell microRNA transcriptome. Genome Res. 20:1590–1604. 2010. View Article : Google Scholar : PubMed/NCBI

45 

Nanbakhsh A and Malarkannan S: The role of microRNAs in NK cell development and function. Cells. 10:20202021. View Article : Google Scholar : PubMed/NCBI

46 

Scoville SD, Nalin AP, Chen L, Chen L, Zhang MH, McConnell K, Beceiro Casas S, Ernst G, Traboulsi AA, Hashi N, et al: Human AML activates the aryl hydrocarbon receptor pathway to impair NK cell development and function. Blood. 132:1792–1804. 2018. View Article : Google Scholar : PubMed/NCBI

47 

Fang Z, Mao J, Huang J, Sun H, Lu X, Lei H, Dong J, Chen S and Wang X: Increased levels of villus-derived exosomal miR-29a-3p in normal pregnancy than uRPL patients suppresses decidual NK cell production of interferon-γ and exerts a therapeutic effect in abortion-prone mice. Cell Commun Signal. 22:2302024. View Article : Google Scholar

48 

Zhao JJ, Lin J, Lwin T, Yang H, Guo J, Kong W, Dessureault S, Moscinski LC, Rezania D, Dalton WS, et al: microRNA expression profile and identification of miR-29 as a prognostic marker and pathogenetic factor by targeting CDK6 in mantle cell lymphoma. Blood. 115:2630–2639. 2010. View Article : Google Scholar : PubMed/NCBI

49 

Santanam U, Zanesi N, Efanov A, Costinean S, Palamarchuk A, Hagan JP, Volinia S, Alder H, Rassenti L, Kipps T, et al: Chronic lymphocytic leukemia modeled in mouse by targeted miR-29 expression. Proc Natl Acad Sci USA. 107:12210–12215. 2010. View Article : Google Scholar : PubMed/NCBI

50 

van Nieuwenhuijze A, Dooley J, Humblet-Baron S, Sreenivasan J, Koenders M, Schlenner SM, Linterman M and Liston A: Defective germinal center B-cell response and reduced arthritic pathology in microRNA-29a-deficient mice. Cell Mol Life Sci. 74:2095–2106. 2017. View Article : Google Scholar : PubMed/NCBI

51 

Hines MJ, Coffre M, Mudianto T, Panduro M, Wigton EJ, Tegla C, Osorio-Vasquez V, Kageyama R, Benhamou D, Perez O, et al: miR-29 sustains B cell survival and controls terminal differentiation via regulation of PI3K signaling. Cell Rep. 33:1084362020. View Article : Google Scholar : PubMed/NCBI

52 

Calderón L, Schindler K, Malin SG, Schebesta A, Sun Q, Schwickert T, Alberti C, Fischer M, Jaritz M, Tagoh H, et al: Pax5 regulates B cell immunity by promoting PI3K signaling via PTEN down-regulation. Sci Immunol. 6:eabg50032021. View Article : Google Scholar : PubMed/NCBI

53 

Recaldin T, Hobson PS, Mann EH, Ramadani F, Cousins DJ, Lavender P and Fear DJ: miR-29b directly targets activation-induced cytidine deaminase in human B cells and can limit its inappropriate expression in naïve B cells. Mol Immunol. 101:419–428. 2018. View Article : Google Scholar : PubMed/NCBI

54 

Borbet TC, Hines MJ and Koralov SB: MicroRNA regulation of B cell receptor signaling. Immunol Rev. 304:111–125. 2021. View Article : Google Scholar : PubMed/NCBI

55 

Kumari R, Roy U, Desai S, Nilavar NM, Van Nieuwenhuijze A, Paranjape A, Radha G, Bawa P, Srivastava M, Nambiar M, et al: MicroRNA miR-29c regulates RAG1 expression and modulates V(D)J recombination during B cell development. Cell Rep. 36:1093902021. View Article : Google Scholar : PubMed/NCBI

56 

Roy U, Desai SS, Kumari S, Bushra T, Choudhary B and Raghavan SC: Understanding the role of miR-29a in the regulation of RAG1, a gene associated with the development of the immune system. J Immunol. 213:1125–1138. 2024. View Article : Google Scholar : PubMed/NCBI

57 

Franceschetti T, Kessler CB, Lee SK and Delany AM: miR-29 promotes murine osteoclastogenesis by regulating osteoclast commitment and migration. J Biol Chem. 288:33347–33360. 2013. View Article : Google Scholar : PubMed/NCBI

58 

Shao W, Wang S, Wang X, Yao L, Yuan X, Huang D, Lv B, Ye Y and Xue H: miRNA-29a inhibits atherosclerotic plaque formation by mediating macrophage autophagy via PI3K/AKT/mTOR pathway. Aging (Albany NY). 14:24182022. View Article : Google Scholar : PubMed/NCBI

59 

Janku F, Tsimberidou AM, Garrido-Laguna I, Wang X, Luthra R, Hong DS, Naing A, Falchook GS, Moroney JW, Piha-Paul SA, et al: PIK3CA mutations in patients with advanced cancers treated with PI3K/AKT/mTOR axis inhibitors. Mol Cancer Ther. 10:558–565. 2011. View Article : Google Scholar : PubMed/NCBI

60 

Cai J, Qiao B, Gao N, Lin N and He W: Oral squamous cell carcinoma-derived exosomes promote M2 subtype macrophage polarization mediated by exosome-enclosed miR-29a-3p. Am J Physiol Cell Physiol. 316:C731–C740. 2019. View Article : Google Scholar : PubMed/NCBI

61 

Yang Y, Chen XQ, Jia YX, Ma J, Xu D and Xiang ZL: Circ-0044539 promotes lymph node metastasis of hepatocellular carcinoma through exosomal-miR-29a-3p. Cell Death Dis. 15:6302024. View Article : Google Scholar : PubMed/NCBI

62 

Thounaojam MC, Kaushik DK, Kundu K and Basu A: MicroRNA-29b modulates Japanese encephalitis virus-induced microglia activation by targeting tumor necrosis factor alpha-induced protein 3. J Neurochem. 129:143–154. 2014. View Article : Google Scholar

63 

Kang DY, Sp N, Jo ES, Rugamba A, Kim HD, Kim IH, Park JC, Bae SW, Jang KJ and Yang YM: Non-toxic sulfur inhibits LPS-induced inflammation by regulating TLR-4 and JAK2/STAT3 through IL-6 signaling. Mol Med Rep. 24:4852021. View Article : Google Scholar :

64 

Ha YE, Ju So Y, Im J, Yun CH, Park JC and Hyun Han S: TLR3 recognition of viral double-stranded RNA in human dental pulp cells is important for the innate immunity. Int Immunopharmacol. 119:1101612023. View Article : Google Scholar : PubMed/NCBI

65 

Saikh KU: MyD88 and beyond: A perspective on MyD88-targeted therapeutic approach for modulation of host immunity. Immunol Res. 69:117–128. 2021. View Article : Google Scholar : PubMed/NCBI

66 

Schroeder P, Rivalan M, Zaqout S, Krüger C, Schüler J, Long M, Meisel A, Winter Y, Kaindl AM and Lehnardt S: Abnormal brain structure and behavior in MyD88-deficient mice. Brain Behav Immun. 91:181–193. 2021. View Article : Google Scholar

67 

Ranganathan P, Ngankeu A, Zitzer NC, Leoncini P, Yu X, Casadei L, Challagundla K, Reichenbach DK, Garman S, Ruppert AS, et al: Serum miR-29a is upregulated in acute graft-versus-host disease and activates dendritic cells through TLR binding. J Immunol. 198:2500–2512. 2017. View Article : Google Scholar : PubMed/NCBI

68 

Hong Y, Wu J, Zhao J, Wang H, Liu Y, Chen T, Kan X, Tao Q, Shen X, Yan K and Zhai Z: miR-29b and miR-29c are involved in Toll-like receptor control of glucocorticoid-induced apoptosis in human plasmacytoid dendritic cells. PLoS One. 8:e699262013. View Article : Google Scholar : PubMed/NCBI

69 

Fang J, Hao Q, Liu L, Li Y, Wu J, Huo X and Zhu Y: Epigenetic changes mediated by microRNA miR29 activate cyclooxygenase 2 and lambda-1 interferon production during viral infection. J Virol. 86:1010–1020. 2012. View Article : Google Scholar :

70 

Cao Y, Zhang R, Zhang W, Zhu C, Yu Y, Song Y, Wang Q, Bai L, Liu Y, Wu K and Wu J: IL-27, a cytokine, and IFN-λ1, a type III IFN, are coordinated to regulate virus replication through type I IFN. J Immunol. 192:691–703. 2014. View Article : Google Scholar

71 

Sharma S, Pavlasova GM, Seda V, Cerna KA, Vojackova E, Filip D, Ondrisova L, Sandova V, Kostalova L, Zeni PF, et al: miR-29 modulates CD40 signaling in chronic lymphocytic leukemia by targeting TRAF4: An axis affected by BCR inhibitors. Blood. 137:2481–2494. 2021. View Article : Google Scholar :

72 

Tang B, Li X, Ren Y, Wang J, Xu D, Hang Y, Zhou T, Li F and Wang L: MicroRNA-29a regulates lipopolysaccharide (LPS)-induced inflammatory responses in murine macrophages through the Akt1/NF-κB pathway. Exp Cell Res. 360:74–80. 2017. View Article : Google Scholar : PubMed/NCBI

73 

Torrealba N, Vera R, Fraile B, Martínez-Onsurbe P, Paniagua R and Royuela M: TGF-β/PI3K/AKT/mTOR/NF-kB pathway. Clinicopathological features in prostate cancer. Aging Male. 23:801–811. 2020. View Article : Google Scholar

74 

Zha L, Chen J, Sun S, Mao L, Chu X, Deng H, Cai J, Li X, Liu Z and Cao W: Soyasaponins can blunt inflammation by inhibiting the reactive oxygen species-mediated activation of PI3K/Akt/NF-kB pathway. PLoS One. 9:e1076552014. View Article : Google Scholar : PubMed/NCBI

75 

Tian R, Zheng Z, Huang R, Jiao Y and Du X: miR-29a participated in nacre formation and immune response by targeting Y2R in Pinctada martensii. Int J Mol Sci. 16:29436–29445. 2015. View Article : Google Scholar : PubMed/NCBI

76 

Li X, Zhang M, Yang M, Tian R, Deng Y and Jiao Y: Pm-miR-29b is involved in nacre formation by regulating tyrosinase-like protein in Pinctada martensii. Aquac Res. 53:6264–6271. 2022. View Article : Google Scholar

77 

Xu H, Cheung IY, Guo HF and Cheung NK: MicroRNA miR-29 modulates expression of immunoinhibitory molecule B7-H3: potential implications for immune based therapy of human solid tumors. Cancer Res. 69:6275–6281. 2009. View Article : Google Scholar : PubMed/NCBI

78 

Pathania AS, Chava H, Chaturvedi NK, Chava S, Byrareddy SN, Coulter DW and Challagundla KB: The miR-29 family facilitates the activation of NK-cell immune responses by targeting the B7-H3 immune checkpoint in neuroblastoma. Cell Death Dis. 15:4282024. View Article : Google Scholar : PubMed/NCBI

79 

Nygren MK, Tekle C, Ingebrigtsen VA, Mäkelä R, Krohn M, Aure MR, Nunes-Xavier CE, Perälä M, Tramm T, Alsner J, et al: Identifying microRNAs regulating B7-H3 in breast cancer: The clinical impact of microRNA-29c. Br J Cancer. 110:2072–2080. 2014. View Article : Google Scholar : PubMed/NCBI

80 

Brain O, Owens BM, Pichulik T, Allan P, Khatamzas E, Leslie A, Steevels T, Sharma S, Mayer A, Catuneanu AM, et al: The intracellular sensor NOD2 induces microRNA-29 expression in human dendritic cells to limit IL-23 release. Immunity. 39:521–536. 2013. View Article : Google Scholar : PubMed/NCBI

81 

Li S, Xie Y, Yu C, Zheng C and Xu Z: The battle between host antiviral innate immunity and immune evasion by cytomegalovirus. Cell Mol Life Sci. 81:3412024. View Article : Google Scholar : PubMed/NCBI

82 

Rojas JM, Alejo A, Martín V and Sevilla N: Viral pathogen-induced mechanisms to antagonize mammalian interferon (IFN) signaling pathway. Cell Mol Life Sci. 78:1423–1444. 2021. View Article : Google Scholar

83 

Platanias LC: Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol. 5:375–386. 2005. View Article : Google Scholar : PubMed/NCBI

84 

Sarasin-Filipowicz M, Wang X, Yan M, Duong FH, Poli V, Hilton DJ, Zhang DE and Heim MH: Alpha interferon induces long-lasting refractoriness of JAK-STAT signaling in the mouse liver through induction of USP18/UBP43. Mol Cell Biol. 29:4841–4851. 2009. View Article : Google Scholar : PubMed/NCBI

85 

Chandiran K, Lawlor R, Pannuti A, Perez GG, Srinivasan J, Golde TE, Miele L, Osborne BA and Minter LM: Notch1 primes CD4 T cells for T helper type I differentiation through its early effects on miR-29. Mol Immunol. 99:191–198. 2018. View Article : Google Scholar : PubMed/NCBI

86 

Zhang Y, Yang L, Wang H, Zhang G and Sun X: Respiratory syncytial virus non-structural protein 1 facilitates virus replication through miR-29a-mediated inhibition of interferon-α receptor. Biochem Biophys Res Commun. 478:1436–1441. 2016. View Article : Google Scholar : PubMed/NCBI

87 

Wang Y and Li Y: MiR-29c inhibits HCV replication via activation of type I IFN response by targeting STAT3 in JFH-1-infected Huh7 cells. RSC Adv. 8:8164–8172. 2018. View Article : Google Scholar : PubMed/NCBI

88 

Schmitt MJ, Philippidou D, Reinsbach SE, Margue C, Wienecke-Baldacchino A, Nashan D, Behrmann I and Kreis S: Interferon-γ-induced activation of Signal Transducer and Activator of Transcription 1 (STAT1) up-regulates the tumor suppressing microRNA-29 family in melanoma cells. Cell Commun Signal. 10:412012. View Article : Google Scholar

89 

Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, Mills AA, Elledge SJ, Anderson KV and Hannon GJ: Dicer is essential for mouse development. Nat Genet. 35:215–217. 2003. View Article : Google Scholar : PubMed/NCBI

90 

Gantier MP, Stunden HJ, McCoy CE, Behlke MA, Wang D, Kaparakis-Liaskos M, Sarvestani ST, Yang YH, Xu D, Corr SC, et al: A miR-19 regulon that controls NF-κB signaling. Nucleic Acids Res. 40:8048–8058. 2012. View Article : Google Scholar : PubMed/NCBI

91 

Chong MMW, Rasmussen JP, Rudensky AY and Littman DR: The RNAseIII enzyme Drosha is critical in T cells for preventing lethal inflammatory disease. J Exp Med. 205:2005–2017. 2008. View Article : Google Scholar : PubMed/NCBI

92 

Wu HJ, Zhuo Y, Zhou YC, Wang XW, Wang YP, Si CY and Wang XH: miR-29a promotes hepatitis B virus replication and expression by targeting SMARCE1 in hepatoma carcinoma. World J Gastroenterol. 23:4569–4578. 2017. View Article : Google Scholar : PubMed/NCBI

93 

Sun G, Li H, Wu X, Covarrubias M, Scherer L, Meinking K, Luk B, Chomchan P, Alluin J, Gombart AF and Rossi JJ: Interplay between HIV-1 infection and host microRNAs. Nucleic Acids Res. 40:2181–2196. 2012. View Article : Google Scholar :

94 

Bandyopadhyay S, Friedman RC, Marquez RT, Keck K, Kong B, Icardi MS, Brown KE, Burge CB, Schmidt WN, Wang Y and McCaffrey AP: Hepatitis C virus infection and hepatic stellate cell activation downregulate miR-29: miR-29 overexpression reduces hepatitis C viral abundance in culture. J Infect Dis. 203:1753–1762. 2011. View Article : Google Scholar : PubMed/NCBI

95 

Plummer M, de Martel C, Vignat J, Ferlay J, Bray F and Franceschi S: Global burden of cancers attributable to infections in 2012: A synthetic analysis. Lancet Glob Health. 4:e609–e616. 2016. View Article : Google Scholar : PubMed/NCBI

96 

Singal AG, Lampertico P and Nahon P: Epidemiology and surveillance for hepatocellular carcinoma: New trends. J Hepatol. 72:250–261. 2020. View Article : Google Scholar : PubMed/NCBI

97 

Wang CM, Wang Y, Fan CG, Xu FF, Sun WS, Liu YG and Jia JH: miR-29c targets TNFAIP3, inhibits cell proliferation and induces apoptosis in hepatitis B virus-related hepatocellular carcinoma. Biochem Biophys Res Commun. 411:586–592. 2011. View Article : Google Scholar : PubMed/NCBI

98 

Huang C, Zheng JM, Cheng Q, Yu KK, Ling QX, Chen MQ and Li N: Serum microRNA-29 levels correlate with disease progression in patients with chronic hepatitis B virus infection. J Dig Dis. 15:614–621. 2014. View Article : Google Scholar : PubMed/NCBI

99 

Huang JH, Han TT, Li LX, Qu T, Zhang XY, Liao X and Zhong Y: Host microRNAs regulate expression of hepatitis B virus genes during transmission from patients' sperm to embryo. Reprod Toxicol. 100:1–6. 2021. View Article : Google Scholar

100 

Fruhwirth GO, Loidl A and Hermetter A: Oxidized phospholipids: From molecular properties to disease. Biochim Biophys Acta. 1772:718–736. 2007. View Article : Google Scholar : PubMed/NCBI

101 

Zhu HT, Dong QZ, Sheng YY, Wei JW, Wang G, Zhou HJ, Ren N, Jia HL, Ye QH and Qin LX: MicroRNA-29a-5p is a novel predictor for early recurrence of hepatitis B virus-related hepatocellular carcinoma after surgical resection. PLoS One. 7:e523932012. View Article : Google Scholar

102 

Adoro S, Cubillos-Ruiz JR, Chen X, Deruaz M, Vrbanac VD, Song M, Park S, Murooka TT, Dudek TE, Luster AD, et al: IL-21 induces antiviral microRNA-29 in CD4 T cells to limit HIV-1 infection. Nat Commun. 6:75622015. View Article : Google Scholar : PubMed/NCBI

103 

Ahluwalia JK, Khan SZ, Soni K, Rawat P, Gupta A, Hariharan M, Scaria V, Lalwani M, Pillai B, Mitra D and Brahmachari SK: Human cellular microRNA hsa-miR-29a interferes with viral nef protein expression and HIV-1 replication. Retrovirology. 5:1172008. View Article : Google Scholar : PubMed/NCBI

104 

Nathans R, Chu CY, Serquina AK, Lu CC, Cao H and Rana TM: Cellular microRNA and P bodies modulate host-HIV-1 interactions. Mol Cell. 34:696–709. 2009. View Article : Google Scholar : PubMed/NCBI

105 

Patel P, Ansari MY, Bapat S, Thakar M, Gangakhedkar R and Jameel S: The microRNA miR-29a is associated with human immunodeficiency virus latency. Retrovirology. 11:1082014. View Article : Google Scholar : PubMed/NCBI

106 

Ortega PAS, Saulle I, Mercurio V, Ibba SV, Lori EM, Fenizia C, Masetti M, Trabattoni D, Caputo SL, Vichi F, et al: Interleukin 21 (IL-21)/microRNA-29 (miR-29) axis is associated with natural resistance to HIV-1 infection. AIDS. 32:2453–2461. 2018. View Article : Google Scholar : PubMed/NCBI

107 

Whisnant AW, Bogerd HP, Flores O, Ho P, Powers JG, Sharova N, Stevenson M, Chen CH and Cullen BR: In-depth analysis of the interaction of HIV-1 with cellular microRNA biogenesis and effector mechanisms. mBio. 4:e0001932013. View Article : Google Scholar : PubMed/NCBI

108 

Mahdy MM, El-Ekiaby NM, Hashish RM, Salah RA, Hanafi RS, Azzazy HM and Abdelaziz AI: miR-29a promotes lipid droplet and triglyceride formation in HCV infection by inducing expression of SREBP-1c and CAV1. J Clin Transl Hepatol. 4:293–299. 2016.

109 

Guan Z, Shi N, Song Y, Zhang X, Zhang M and Duan M: Induction of the cellular microRNA-29c by influenza virus contributes to virus-mediated apoptosis through repression of antiapoptotic factors BCL2L2. Biochem Biophys Res Commun. 425:662–667. 2012. View Article : Google Scholar : PubMed/NCBI

110 

Lin J, Xia J, Chen YT, Zhang KY, Zeng Y and Yang Q: H9N2 avian influenza virus enhances the immune responses of BMDCs by down-regulating miR29c. Vaccine. 35:729–737. 2017. View Article : Google Scholar : PubMed/NCBI

111 

Yang X, Liang Y, Bamunuarachchi G, Xu Y, Vaddadi K, Pushparaj S, Xu D, Zhu Z, Blaha R, Huang C and Liu L: miR-29a is a negative regulator of influenza virus infection through targeting of the frizzled 5 receptor. Arch Virol. 166:363–373. 2021. View Article : Google Scholar

112 

Zhang X, Dong C, Sun X, Li Z, Zhang M, Guan Z and Duan M: Induction of the cellular miR-29c by influenza virus inhibits the innate immune response through protection of A20 mRNA. Biochem Biophys Res Commun. 450:755–761. 2014. View Article : Google Scholar : PubMed/NCBI

113 

Donyavi T, Bokharaei-Salim F, Baghi HB, Khanaliha K, Alaei Janat-Makan M, Karimi B, Sadri Nahand J, Mirzaei H, Khatami A, Garshasbi S, et al: Acute and post-acute phase of COVID-19: Analyzing expression patterns of miRNA-29a-3p, 146a-3p, 155-5p, and let-7b-3p in PBMC. Int Immunopharmacol. 97:1076412021. View Article : Google Scholar : PubMed/NCBI

114 

Keikha R, Hashemi-Shahri SM and Jebali A: The relative expression of miR-31, miR-29, miR-126, and miR-17 and their mRNA targets in the serum of COVID-19 patients with different grades during hospitalization. Eur J Med Res. 26:752021. View Article : Google Scholar : PubMed/NCBI

115 

Baluni M, Ghildiyal S, Singh D, Himanshu Reddy D, Kumar R and Dhole TN: Increased serum microRNA-29b expression and bad recovery in Japanese encephalitis virus infected patients; A new component to improve the disease recovery. J Neuroimmunol. 323:56–61. 2018. View Article : Google Scholar : PubMed/NCBI

116 

Fayyad-Kazan M, ElDirani R, Hamade E, El Majzoub R, Akl H, Bitar N, Fayyad-Kazan H and Badran B: Circulating miR-29c, miR-30c, miR-193a-5p and miR-885-5p: Novel potential biomarkers for HTLV-1 infection diagnosis. Infect Genet Evol. 74:1039382019. View Article : Google Scholar : PubMed/NCBI

117 

Anastasiadou E, Boccellato F, Vincenti S, Rosato P, Bozzoni I, Frati L, Faggioni A, Presutti C and Trivedi P: Epstein-Barr virus encoded LMP1 downregulates TCL1 oncogene through miR-29b. Oncogene. 29:1316–1328. 2010. View Article : Google Scholar

118 

Surachetpong W, Nantakhruea S and Lekcharoensuk P: Molecular characterization and expression analysis of miR-29a in porcine cells and porcine reproductive and respiratory syndrome virus infected peripheral blood mononuclear cells. Thai J Vet Med. 44:125–132. 2014. View Article : Google Scholar

119 

Zhou M, Li C, Lu C, Zhang X, Pan Y, Liu X, Liu G, Zhao Z and Sun B: miRNA29 promotes viral replication during early stage of PRRSV infection in vitro. DNA Cell Biol. 35:636–642. 2016. View Article : Google Scholar : PubMed/NCBI

120 

Fu Q, Shi H, Shi M, Meng L, Zhang H, Ren Y, Guo F, Jia B, Wang P, Ni W and Chen C: bta-miR-29b attenuates apoptosis by directly targeting caspase-7 and NAIF1 and suppresses bovine viral diarrhea virus replication in MDBK cells. Can J Microbiol. 60:455–460. 2014. View Article : Google Scholar : PubMed/NCBI

121 

Fu Q, Shi H, Ni W, Shi M, Meng L, Zhang H, Ren Y, Guo F, Wang P, Qiao J, et al: Lentivirus-mediated Bos taurus bta-miR-29b overexpression interferes with bovine viral diarrhoea virus replication and viral infection-related autophagy by directly targeting ATG14 and ATG9A in Madin-Darby bovine kidney cells. J Gen Virol. 96:85–94. 2015. View Article : Google Scholar

122 

Fu Q, Shi H and Chen C: Roles of bta-miR-29b promoter regions DNA methylation in regulating miR-29b expression and bovine viral diarrhea virus NADL replication in MDBK cells. Arch Virol. 162:401–408. 2017. View Article : Google Scholar

123 

Le LTT, Swingler TE, Crowe N, Vincent TL, Barter MJ, Donell ST, Delany AM, Dalmay T, Young DA and Clark IM: The microRNA-29 family in cartilage homeostasis and osteoarthritis. J Mol Med (Berl). 94:583–596. 2016. View Article : Google Scholar

124 

Zhou Q, Zheng X, Chen L, Xu B, Yang X, Jiang J and Wu C: Smad2/3/4 pathway contributes to TGF-β-induced MiRNA-181b expression to promote gastric cancer metastasis by targeting Timp3. Cell Physiol Biochem. 39:453–466. 2016. View Article : Google Scholar

125 

Tan J, Tong BD, Wu YJ and Xiong W: MicroRNA-29 mediates TGFβ1-induced extracellular matrix synthesis by targeting wnt/β-catenin pathway in human orbital fibroblasts. Int J Clin Exp Pathol. 7:7571–7577. 2014.

126 

Mayer U, Benditz A and Grässel S: miR-29b regulates expression of collagens I and III in chondrogenically differentiating BMSC in an osteoarthritic environment. Sci Rep. 7:132972017. View Article : Google Scholar : PubMed/NCBI

127 

Wang C, Wang Y, Fu Z, Huang W, Yu Z, Wang J, Zheng K, Zhang S, Li S and Chen J: MiR-29b-3p inhibits migration and invasion of papillary thyroid carcinoma by downregulating COL1A1 and COL5A1. Front Oncol. 12:8375812022. View Article : Google Scholar : PubMed/NCBI

128 

Jeon EJ, Lee KY, Choi NS, Lee MH, Kim HN, Jin YH, Ryoo HM, Choi JY, Yoshida M, Nishino N, et al: Bone morphogenetic protein-2 stimulates Runx2 acetylation. J Biol Chem. 281:16502–16511. 2006. View Article : Google Scholar : PubMed/NCBI

129 

Maeda S, Hayashi M, Komiya S, Imamura T and Miyazono K: Endogenous TGF-beta signaling suppresses maturation of osteoblastic mesenchymal cells. EMBO J. 23:552–563. 2004. View Article : Google Scholar : PubMed/NCBI

130 

Chen ZH, Wu JJ, Guo DY, Li YY, Chen MN, Zhang ZY, Yuan ZD, Zhang KW, Chen WW, Tian F, et al: Physiological functions of podosomes: From structure and function to therapy implications in osteoclast biology of bone resorption. Ageing Res Rev. 85:1018422023. View Article : Google Scholar : PubMed/NCBI

131 

Horita M, Farquharson C and Stephen LA: The role of miR-29 family in disease. J Cell Biochem. 122:696–715. 2021. View Article : Google Scholar : PubMed/NCBI

132 

Ślusarz A and Pulakat L: The two faces of miR-29. J Cardiovasc Med (Hagerstown). 16:480–490. 2015. View Article : Google Scholar : PubMed/NCBI

133 

Huang L, Zhang Y, Yang J, Li J, Wu J, Wang F, Lan Y and Zhang Q: Anti-fibrotic effects and the mechanism of action of miR-29c in silicosis. Mol Med Rep. 23:2922021. View Article : Google Scholar

134 

Smyth A, Callaghan B, Willoughby CE and O'Brien C: The role of miR-29 family in TGF-β driven fibrosis in glaucomatous optic neuropathy. Int J Mol Sci. 23:102162022. View Article : Google Scholar

135 

Garzon R, Liu S, Fabbri M, Liu Z, Heaphy CE, Callegari E, Schwind S, Pang J, Yu J, Muthusamy N, et al: MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood. 113:6411–6418. 2009. View Article : Google Scholar : PubMed/NCBI

136 

Rothschild SI, Tschan MP, Federzoni EA, Jaggi R, Fey MF, Gugger M and Gautschi O: MicroRNA-29b is involved in the Src-ID1 signaling pathway and is dysregulated in human lung adenocarcinoma. Oncogene. 31:4221–4232. 2012. View Article : Google Scholar : PubMed/NCBI

137 

Zhang Y, Liu H, Zhang Q and Zhang Z: Long Noncoding RNA LINC01006 facilitates cell proliferation, migration, and epithelial-mesenchymal transition in lung adenocarcinoma via targeting the MicroRNA 129-2-3p/CTNNB1 axis and activating Wnt/β-catenin signaling pathway. Mol Cell Biol. 41:e00380202021. View Article : Google Scholar

138 

Cittelly DM, Finlay-Schultz J, Howe EN, Spoelstra NS, Axlund SD, Hendricks P, Jacobsen BM, Sartorius CA and Richer JK: Progestin suppression of miR-29 potentiates dedifferentiation of breast cancer cells via KLF4. Oncogene. 32:2555–2564. 2013. View Article : Google Scholar

139 

Moghoofei M, Najafipour S, Mostafaei S, Tavakoli A, Bokharaei-Salim F, Ghorbani S, Javanmard D, Ghaffari H and Monavari SH: MicroRNAs profiling in HIV, HCV, and HIV/HCV co-infected patients. Curr HIV Res. 19:27–34. 2021. View Article : Google Scholar

140 

Eiring AM, Harb JG, Neviani P, Garton C, Oaks JJ, Spizzo R, Liu S, Schwind S, Santhanam R, Hickey CJ, et al: miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell. 140:652–665. 2010. View Article : Google Scholar : PubMed/NCBI

141 

Tang R, Li L, Zhu D, Hou D, Cao T, Gu H, Zhang J, Chen J, Zhang CY and Zen K: Mouse miRNA-709 directly regulates miRNA-15a/16-1 biogenesis at the posttranscriptional level in the nucleus: Evidence for a microRNA hierarchy system. Cell Res. 22:504–515. 2012. View Article : Google Scholar :

142 

Lu L, Ling W and Ruan Z: TAM-derived extracellular vesicles containing microRNA-29a-3p explain the deterioration of ovarian cancer. Mol Ther Nucleic Acids. 25:468–482. 2021. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Yao X, Wu J, Yuan S and Yuan F: Recent insights and perspectives into the role of the miRNA‑29 family in innate immunity (Review). Int J Mol Med 55: 53, 2025.
APA
Yao, X., Wu, J., Yuan, S., & Yuan, F. (2025). Recent insights and perspectives into the role of the miRNA‑29 family in innate immunity (Review). International Journal of Molecular Medicine, 55, 53. https://doi.org/10.3892/ijmm.2025.5494
MLA
Yao, X., Wu, J., Yuan, S., Yuan, F."Recent insights and perspectives into the role of the miRNA‑29 family in innate immunity (Review)". International Journal of Molecular Medicine 55.3 (2025): 53.
Chicago
Yao, X., Wu, J., Yuan, S., Yuan, F."Recent insights and perspectives into the role of the miRNA‑29 family in innate immunity (Review)". International Journal of Molecular Medicine 55, no. 3 (2025): 53. https://doi.org/10.3892/ijmm.2025.5494
Copy and paste a formatted citation
x
Spandidos Publications style
Yao X, Wu J, Yuan S and Yuan F: Recent insights and perspectives into the role of the miRNA‑29 family in innate immunity (Review). Int J Mol Med 55: 53, 2025.
APA
Yao, X., Wu, J., Yuan, S., & Yuan, F. (2025). Recent insights and perspectives into the role of the miRNA‑29 family in innate immunity (Review). International Journal of Molecular Medicine, 55, 53. https://doi.org/10.3892/ijmm.2025.5494
MLA
Yao, X., Wu, J., Yuan, S., Yuan, F."Recent insights and perspectives into the role of the miRNA‑29 family in innate immunity (Review)". International Journal of Molecular Medicine 55.3 (2025): 53.
Chicago
Yao, X., Wu, J., Yuan, S., Yuan, F."Recent insights and perspectives into the role of the miRNA‑29 family in innate immunity (Review)". International Journal of Molecular Medicine 55, no. 3 (2025): 53. https://doi.org/10.3892/ijmm.2025.5494
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team