
Recent insights and perspectives into the role of the miRNA‑29 family in innate immunity (Review)
- Authors:
- Xing-Chen Yao
- Jun-Jie Wu
- Sheng-Tao Yuan
- Feng-Lai Yuan
-
Affiliations: State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China, Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041, P.R. China - Published online on: January 27, 2025 https://doi.org/10.3892/ijmm.2025.5494
- Article Number: 53
-
Copyright: © Yao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Nicholson LB: The immune system. Essays Biochem. 60:275–301. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gack MU and Diamond MS: Innate immune escape by Dengue and West Nile viruses. Curr Opin Virol. 20:119–128. 2016. View Article : Google Scholar : PubMed/NCBI | |
Su C, Zhan G and Zheng C: Evasion of host antiviral innate immunity by HSV-1, an update. Virol J. 13:382016. View Article : Google Scholar : PubMed/NCBI | |
Arce-Sillas A, Álvarez-Luquín DD, Tamaya-Domínguez B, Gomez-Fuentes S, Trejo-García A, Melo-Salas M, Cárdenas G, Rodríguez-Ramírez J and Adalid-Peralta L: Regulatory T cells: Molecular actions on effector cells in immune regulation. J Immunol Res. 2016:17208272016. View Article : Google Scholar : PubMed/NCBI | |
Denson LA: The role of the innate and adaptive immune system in pediatric inflammatory bowel disease. Inflamm Bowel Dis. 19:2011–2020. 2013.PubMed/NCBI | |
Broz P and Dixit VM: Inflammasomes: Mechanism of assembly, regulation and signalling. Nat Rev Immunol. 16:407–420. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gebert LFR and MacRae IJ: Regulation of microRNA function in animals. Nat Rev Mol Cell Biol. 20:21–37. 2018. View Article : Google Scholar | |
Raisch J, Darfeuille-Michaud A and Nguyen HT: Role of microRNAs in the immune system, inflammation and cancer. World J Gastroenterol. 19:2985–2996. 2013. View Article : Google Scholar : PubMed/NCBI | |
Krol J, Loedige I and Filipowicz W: The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 11:597–610. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ha M and Kim VN: Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 15:509–524. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang X: Composition of seed sequence is a major determinant of microRNA targeting patterns. Bioinformatics. 30:1377–1383. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lee RC and Feinbaum RLand Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 75:843–854. 1993. View Article : Google Scholar : PubMed/NCBI | |
Wightman B, Ha I and Ruvkun G: Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 75:855–862. 1993. View Article : Google Scholar : PubMed/NCBI | |
Kaur BP and Secord E: Innate immunity. Immunol Allergy Clin North Am. 41:535–541. 2021. View Article : Google Scholar : PubMed/NCBI | |
Roberto VP, Tiago DM, Silva IA and Cancela ML: MiR-29a is an enhancer of mineral deposition in bone-derived systems. Arch Biochem Biophys. 564:173–183. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yan B, Guo Q, Fu FJ, Wang Z, Yin Z, Wei YB and Yang JR: The role of miR-29b in cancer: Regulation, function, and signaling. Onco Targets Ther. 8:539–548. 2015.PubMed/NCBI | |
Liao JY, Ma LM, Guo YH, Zhang YC, Zhou H, Shao P, Chen YQ and Qu LH: Deep sequencing of human nuclear and cytoplasmic small RNAs reveals an unexpectedly complex subcellular distribution of miRNAs and tRNA 3′ trailers. PLoS One. 5:e105632010. View Article : Google Scholar | |
Hwang HW, Wentzel EA and Mendell JT: A hexanucleotide element directs microRNA nuclear import. Science. 315:97–100. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lian WS, Ko JY, Chen YS, Ke HJ, Hsieh CK, Kuo CW, Wang SY, Huang BW, Tseng JG and Wang FS: MicroRNA-29a represses osteoclast formation and protects against osteoporosis by regulating PCAF-mediated RANKL and CXCL12. Cell Death Dis. 10:7052019. View Article : Google Scholar : PubMed/NCBI | |
Wang B, Wang J, He W, Zhao Y, Zhang A, Liu Y, Hassounah F, Ma F, Klein JD, Wang XH and Wang H: Exogenous miR-29a attenuates muscle atrophy and kidney fibrosis in unilateral ureteral obstruction mice. Hum Gene Ther. 31:367–375. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Wang B, Zhang A, Hassounah F, Seow Y, Wood M, Ma F, Klein JD, Price SR and Wang XH: Exosome-mediated miR-29 transfer reduces muscle atrophy and kidney fibrosis in mice. Mol Ther. 27:571–583. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fang P, Li X, Dai J, Cole L, Camacho JA, Zhang Y, Ji Y, Wang J, Yang XF and Wang H: Immune cell subset differentiation and tissue inflammation. J Hematol Oncol. 11:972018. View Article : Google Scholar : PubMed/NCBI | |
Grabstein KH, Namen AE, Shanebeck K, Voice RF, Reed SG and Widmer MB: Regulation of T cell proliferation by IL-7. J Immunol. 144:3015–3020. 1990. View Article : Google Scholar : PubMed/NCBI | |
Bod L, Douguet L, Auffray C, Lengagne R, Bekkat F, Rondeau E, Molinier-Frenkel V, Castellano F, Richard Y and Prévost-Blondel A: IL-4-induced gene 1: A negative immune checkpoint controlling b cell differentiation and activation. J Immunol. 200:1027–1038. 2018. View Article : Google Scholar | |
Hosoya T, Maillard I and Engel JD: From the cradle to the grave: Activities of GATA-3 throughout T-cell development and differentiation. Immunol Rev. 238:110–125. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kueh HY, Champhekar A, Nutt SL, Elowitz MB and Rothenberg EV: Positive feedback between PU.1 and the cell cycle controls myeloid differentiation. Science. 341:670–673. 2013. View Article : Google Scholar : PubMed/NCBI | |
den Haan JMM, Arens R and van Zelm MC: The activation of the adaptive immune system: Cross-talk between antigen-presenting cells, T cells and B cells. Immunol Lett. 162:103–112. 2014. View Article : Google Scholar : PubMed/NCBI | |
Colonna M, Trinchieri G and Liu YJ: Plasmacytoid dendritic cells in immunity. Nat Immunol. 5:1219–1226. 2004. View Article : Google Scholar : PubMed/NCBI | |
McNab F, Mayer-Barber K, Sher A, Wack A and O'Garra A: Type I interferons in infectious disease. Nat Rev Immunol. 15:87–103. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fu YF, Shi SW, Wu JJ, Yuan ZD, Wang LS, Nie H, Zhang ZY, Wu X, Chen YC, Ti HB, et al: Osteoclast secretes stage-specific key molecules for modulating osteoclast-osteoblast communication. J Cell Physiol. Nov 28–2024.Epub ahead of print. PubMed/NCBI | |
Tokić S, Štefanić M, Glavaš-Obrovac L, Kishore A, Navratilova Z and Petrek M: miR-29a-3p/T-bet regulatory circuit is altered in T cells of patients with hashimoto's thyroiditis. Front Endocrinol (Lausanne). 9:2642018. View Article : Google Scholar | |
Ma F, Xu S, Liu X, Zhang Q, Xu X, Liu M, Hua M, Li N, Yao H and Cao X: The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-γ. Nat Immunol. 12:861–869. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cobb BS, Nesterova TB, Thompson E, Hertweck A, O'Connor E, Godwin J, Wilson CB, Brockdorff N, Fisher AG, Smale ST and Merkenschlager M: T cell lineage choice and differentiation in the absence of the RNase III enzyme Dicer. J Exp Med. 201:1367–1373. 2005. View Article : Google Scholar : PubMed/NCBI | |
Muljo SA, Ansel KM, Kanellopoulou C, Livingston DM, Rao A and Rajewsky K: Aberrant T cell differentiation in the absence of Dicer. J Exp Med. 202:261–269. 2005. View Article : Google Scholar : PubMed/NCBI | |
Papadopoulou AS, Dooley J, Linterman MA, Pierson W, Ucar O, Kyewski B, Zuklys S, Hollander GA, Matthys P, Gray DH, et al: The thymic epithelial microRNA network elevates the threshold for infection-associated thymic involution via miR-29a mediated suppression of the IFN-α receptor. Nat Immunol. 13:181–187. 2011. View Article : Google Scholar : PubMed/NCBI | |
Steiner DF, Thomas MF, Hu JK, Yang Z, Babiarz JE, Allen CD, Matloubian M, Blelloch R and Ansel KM: MicroRNA-29 regulates T-box transcription factors and interferon-γ production in helper T cells. Immunity. 35:169–181. 2011. View Article : Google Scholar : PubMed/NCBI | |
Smith KM, Guerau-de-Arellano M, Costinean S, Williams JL, Bottoni A, Mavrikis Cox G, Satoskar AR, Croce CM, Racke MK, Lovett-Racke AE and Whitacre CC: miR-29ab1 deficiency identifies a negative feedback loop controlling Th1 bias that is dysregulated in multiple sclerosis. J Immunol. 189:1567–1576. 2012. View Article : Google Scholar : PubMed/NCBI | |
Czopik AK, McNamee EN, Vaughn V, Huang X, Bang IH, Clark T, Wang Y, Ruan W, Nguyen T, Masterson JC, et al: HIF-2α-dependent induction of miR-29a restrains TH1 activity during T cell dependent colitis. Nat Commun. 15:80422024. View Article : Google Scholar | |
Yee Mon KJ, Zhu H, Daly CWP, Vu LT, Smith NL, Patel R, Topham DJ, Scheible K, Jambo K, Le MTN, et al: MicroRNA-29 specifies age-related differences in the CD8+ T cell immune response. Cell Rep. 37:1099692021. View Article : Google Scholar | |
Kwong YL, Chan AC, Liang R, Chiang AK, Chim CS, Chan TK, Todd D and Ho FC: CD56+ NK lymphomas: Clinicopathological features and prognosis. Br J Haematol. 97:821–829. 1997. View Article : Google Scholar : PubMed/NCBI | |
Sanchez-Correa B, Gayoso I, Bergua JM, Casado JG, Morgado S, Solana R and Tarazona R: Decreased expression of DNAM-1 on NK cells from acute myeloid leukemia patients. Immunol Cell Biol. 90:109–115. 2012. View Article : Google Scholar | |
Aggarwal N, Swerdlow SH, TenEyck SP, Boyiadzis M and Felgar RE: Natural killer cell (NK) subsets and NK-like T-cell populations in acute myeloid leukemias and myelodysplastic syndromes. Cytometry B Clin Cytom. 90:349–357. 2016. View Article : Google Scholar | |
Mundy-Bosse BL, Scoville SD, Chen L, McConnell K, Mao HC, Ahmed EH, Zorko N, Harvey S, Cole J, Zhang X, et al: MicroRNA-29b mediates altered innate immune development in acute leukemia. J Clin Invest. 126:4404–4416. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fehniger TA, Wylie T, Germino E, Leong JW, Magrini VJ, Koul S, Keppel CR, Schneider SE, Koboldt DC, Sullivan RP, et al: Next-generation sequencing identifies the natural killer cell microRNA transcriptome. Genome Res. 20:1590–1604. 2010. View Article : Google Scholar : PubMed/NCBI | |
Nanbakhsh A and Malarkannan S: The role of microRNAs in NK cell development and function. Cells. 10:20202021. View Article : Google Scholar : PubMed/NCBI | |
Scoville SD, Nalin AP, Chen L, Chen L, Zhang MH, McConnell K, Beceiro Casas S, Ernst G, Traboulsi AA, Hashi N, et al: Human AML activates the aryl hydrocarbon receptor pathway to impair NK cell development and function. Blood. 132:1792–1804. 2018. View Article : Google Scholar : PubMed/NCBI | |
Fang Z, Mao J, Huang J, Sun H, Lu X, Lei H, Dong J, Chen S and Wang X: Increased levels of villus-derived exosomal miR-29a-3p in normal pregnancy than uRPL patients suppresses decidual NK cell production of interferon-γ and exerts a therapeutic effect in abortion-prone mice. Cell Commun Signal. 22:2302024. View Article : Google Scholar | |
Zhao JJ, Lin J, Lwin T, Yang H, Guo J, Kong W, Dessureault S, Moscinski LC, Rezania D, Dalton WS, et al: microRNA expression profile and identification of miR-29 as a prognostic marker and pathogenetic factor by targeting CDK6 in mantle cell lymphoma. Blood. 115:2630–2639. 2010. View Article : Google Scholar : PubMed/NCBI | |
Santanam U, Zanesi N, Efanov A, Costinean S, Palamarchuk A, Hagan JP, Volinia S, Alder H, Rassenti L, Kipps T, et al: Chronic lymphocytic leukemia modeled in mouse by targeted miR-29 expression. Proc Natl Acad Sci USA. 107:12210–12215. 2010. View Article : Google Scholar : PubMed/NCBI | |
van Nieuwenhuijze A, Dooley J, Humblet-Baron S, Sreenivasan J, Koenders M, Schlenner SM, Linterman M and Liston A: Defective germinal center B-cell response and reduced arthritic pathology in microRNA-29a-deficient mice. Cell Mol Life Sci. 74:2095–2106. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hines MJ, Coffre M, Mudianto T, Panduro M, Wigton EJ, Tegla C, Osorio-Vasquez V, Kageyama R, Benhamou D, Perez O, et al: miR-29 sustains B cell survival and controls terminal differentiation via regulation of PI3K signaling. Cell Rep. 33:1084362020. View Article : Google Scholar : PubMed/NCBI | |
Calderón L, Schindler K, Malin SG, Schebesta A, Sun Q, Schwickert T, Alberti C, Fischer M, Jaritz M, Tagoh H, et al: Pax5 regulates B cell immunity by promoting PI3K signaling via PTEN down-regulation. Sci Immunol. 6:eabg50032021. View Article : Google Scholar : PubMed/NCBI | |
Recaldin T, Hobson PS, Mann EH, Ramadani F, Cousins DJ, Lavender P and Fear DJ: miR-29b directly targets activation-induced cytidine deaminase in human B cells and can limit its inappropriate expression in naïve B cells. Mol Immunol. 101:419–428. 2018. View Article : Google Scholar : PubMed/NCBI | |
Borbet TC, Hines MJ and Koralov SB: MicroRNA regulation of B cell receptor signaling. Immunol Rev. 304:111–125. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kumari R, Roy U, Desai S, Nilavar NM, Van Nieuwenhuijze A, Paranjape A, Radha G, Bawa P, Srivastava M, Nambiar M, et al: MicroRNA miR-29c regulates RAG1 expression and modulates V(D)J recombination during B cell development. Cell Rep. 36:1093902021. View Article : Google Scholar : PubMed/NCBI | |
Roy U, Desai SS, Kumari S, Bushra T, Choudhary B and Raghavan SC: Understanding the role of miR-29a in the regulation of RAG1, a gene associated with the development of the immune system. J Immunol. 213:1125–1138. 2024. View Article : Google Scholar : PubMed/NCBI | |
Franceschetti T, Kessler CB, Lee SK and Delany AM: miR-29 promotes murine osteoclastogenesis by regulating osteoclast commitment and migration. J Biol Chem. 288:33347–33360. 2013. View Article : Google Scholar : PubMed/NCBI | |
Shao W, Wang S, Wang X, Yao L, Yuan X, Huang D, Lv B, Ye Y and Xue H: miRNA-29a inhibits atherosclerotic plaque formation by mediating macrophage autophagy via PI3K/AKT/mTOR pathway. Aging (Albany NY). 14:24182022. View Article : Google Scholar : PubMed/NCBI | |
Janku F, Tsimberidou AM, Garrido-Laguna I, Wang X, Luthra R, Hong DS, Naing A, Falchook GS, Moroney JW, Piha-Paul SA, et al: PIK3CA mutations in patients with advanced cancers treated with PI3K/AKT/mTOR axis inhibitors. Mol Cancer Ther. 10:558–565. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cai J, Qiao B, Gao N, Lin N and He W: Oral squamous cell carcinoma-derived exosomes promote M2 subtype macrophage polarization mediated by exosome-enclosed miR-29a-3p. Am J Physiol Cell Physiol. 316:C731–C740. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Chen XQ, Jia YX, Ma J, Xu D and Xiang ZL: Circ-0044539 promotes lymph node metastasis of hepatocellular carcinoma through exosomal-miR-29a-3p. Cell Death Dis. 15:6302024. View Article : Google Scholar : PubMed/NCBI | |
Thounaojam MC, Kaushik DK, Kundu K and Basu A: MicroRNA-29b modulates Japanese encephalitis virus-induced microglia activation by targeting tumor necrosis factor alpha-induced protein 3. J Neurochem. 129:143–154. 2014. View Article : Google Scholar | |
Kang DY, Sp N, Jo ES, Rugamba A, Kim HD, Kim IH, Park JC, Bae SW, Jang KJ and Yang YM: Non-toxic sulfur inhibits LPS-induced inflammation by regulating TLR-4 and JAK2/STAT3 through IL-6 signaling. Mol Med Rep. 24:4852021. View Article : Google Scholar : | |
Ha YE, Ju So Y, Im J, Yun CH, Park JC and Hyun Han S: TLR3 recognition of viral double-stranded RNA in human dental pulp cells is important for the innate immunity. Int Immunopharmacol. 119:1101612023. View Article : Google Scholar : PubMed/NCBI | |
Saikh KU: MyD88 and beyond: A perspective on MyD88-targeted therapeutic approach for modulation of host immunity. Immunol Res. 69:117–128. 2021. View Article : Google Scholar : PubMed/NCBI | |
Schroeder P, Rivalan M, Zaqout S, Krüger C, Schüler J, Long M, Meisel A, Winter Y, Kaindl AM and Lehnardt S: Abnormal brain structure and behavior in MyD88-deficient mice. Brain Behav Immun. 91:181–193. 2021. View Article : Google Scholar | |
Ranganathan P, Ngankeu A, Zitzer NC, Leoncini P, Yu X, Casadei L, Challagundla K, Reichenbach DK, Garman S, Ruppert AS, et al: Serum miR-29a is upregulated in acute graft-versus-host disease and activates dendritic cells through TLR binding. J Immunol. 198:2500–2512. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hong Y, Wu J, Zhao J, Wang H, Liu Y, Chen T, Kan X, Tao Q, Shen X, Yan K and Zhai Z: miR-29b and miR-29c are involved in Toll-like receptor control of glucocorticoid-induced apoptosis in human plasmacytoid dendritic cells. PLoS One. 8:e699262013. View Article : Google Scholar : PubMed/NCBI | |
Fang J, Hao Q, Liu L, Li Y, Wu J, Huo X and Zhu Y: Epigenetic changes mediated by microRNA miR29 activate cyclooxygenase 2 and lambda-1 interferon production during viral infection. J Virol. 86:1010–1020. 2012. View Article : Google Scholar : | |
Cao Y, Zhang R, Zhang W, Zhu C, Yu Y, Song Y, Wang Q, Bai L, Liu Y, Wu K and Wu J: IL-27, a cytokine, and IFN-λ1, a type III IFN, are coordinated to regulate virus replication through type I IFN. J Immunol. 192:691–703. 2014. View Article : Google Scholar | |
Sharma S, Pavlasova GM, Seda V, Cerna KA, Vojackova E, Filip D, Ondrisova L, Sandova V, Kostalova L, Zeni PF, et al: miR-29 modulates CD40 signaling in chronic lymphocytic leukemia by targeting TRAF4: An axis affected by BCR inhibitors. Blood. 137:2481–2494. 2021. View Article : Google Scholar : | |
Tang B, Li X, Ren Y, Wang J, Xu D, Hang Y, Zhou T, Li F and Wang L: MicroRNA-29a regulates lipopolysaccharide (LPS)-induced inflammatory responses in murine macrophages through the Akt1/NF-κB pathway. Exp Cell Res. 360:74–80. 2017. View Article : Google Scholar : PubMed/NCBI | |
Torrealba N, Vera R, Fraile B, Martínez-Onsurbe P, Paniagua R and Royuela M: TGF-β/PI3K/AKT/mTOR/NF-kB pathway. Clinicopathological features in prostate cancer. Aging Male. 23:801–811. 2020. View Article : Google Scholar | |
Zha L, Chen J, Sun S, Mao L, Chu X, Deng H, Cai J, Li X, Liu Z and Cao W: Soyasaponins can blunt inflammation by inhibiting the reactive oxygen species-mediated activation of PI3K/Akt/NF-kB pathway. PLoS One. 9:e1076552014. View Article : Google Scholar : PubMed/NCBI | |
Tian R, Zheng Z, Huang R, Jiao Y and Du X: miR-29a participated in nacre formation and immune response by targeting Y2R in Pinctada martensii. Int J Mol Sci. 16:29436–29445. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li X, Zhang M, Yang M, Tian R, Deng Y and Jiao Y: Pm-miR-29b is involved in nacre formation by regulating tyrosinase-like protein in Pinctada martensii. Aquac Res. 53:6264–6271. 2022. View Article : Google Scholar | |
Xu H, Cheung IY, Guo HF and Cheung NK: MicroRNA miR-29 modulates expression of immunoinhibitory molecule B7-H3: potential implications for immune based therapy of human solid tumors. Cancer Res. 69:6275–6281. 2009. View Article : Google Scholar : PubMed/NCBI | |
Pathania AS, Chava H, Chaturvedi NK, Chava S, Byrareddy SN, Coulter DW and Challagundla KB: The miR-29 family facilitates the activation of NK-cell immune responses by targeting the B7-H3 immune checkpoint in neuroblastoma. Cell Death Dis. 15:4282024. View Article : Google Scholar : PubMed/NCBI | |
Nygren MK, Tekle C, Ingebrigtsen VA, Mäkelä R, Krohn M, Aure MR, Nunes-Xavier CE, Perälä M, Tramm T, Alsner J, et al: Identifying microRNAs regulating B7-H3 in breast cancer: The clinical impact of microRNA-29c. Br J Cancer. 110:2072–2080. 2014. View Article : Google Scholar : PubMed/NCBI | |
Brain O, Owens BM, Pichulik T, Allan P, Khatamzas E, Leslie A, Steevels T, Sharma S, Mayer A, Catuneanu AM, et al: The intracellular sensor NOD2 induces microRNA-29 expression in human dendritic cells to limit IL-23 release. Immunity. 39:521–536. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li S, Xie Y, Yu C, Zheng C and Xu Z: The battle between host antiviral innate immunity and immune evasion by cytomegalovirus. Cell Mol Life Sci. 81:3412024. View Article : Google Scholar : PubMed/NCBI | |
Rojas JM, Alejo A, Martín V and Sevilla N: Viral pathogen-induced mechanisms to antagonize mammalian interferon (IFN) signaling pathway. Cell Mol Life Sci. 78:1423–1444. 2021. View Article : Google Scholar | |
Platanias LC: Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol. 5:375–386. 2005. View Article : Google Scholar : PubMed/NCBI | |
Sarasin-Filipowicz M, Wang X, Yan M, Duong FH, Poli V, Hilton DJ, Zhang DE and Heim MH: Alpha interferon induces long-lasting refractoriness of JAK-STAT signaling in the mouse liver through induction of USP18/UBP43. Mol Cell Biol. 29:4841–4851. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chandiran K, Lawlor R, Pannuti A, Perez GG, Srinivasan J, Golde TE, Miele L, Osborne BA and Minter LM: Notch1 primes CD4 T cells for T helper type I differentiation through its early effects on miR-29. Mol Immunol. 99:191–198. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Yang L, Wang H, Zhang G and Sun X: Respiratory syncytial virus non-structural protein 1 facilitates virus replication through miR-29a-mediated inhibition of interferon-α receptor. Biochem Biophys Res Commun. 478:1436–1441. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang Y and Li Y: MiR-29c inhibits HCV replication via activation of type I IFN response by targeting STAT3 in JFH-1-infected Huh7 cells. RSC Adv. 8:8164–8172. 2018. View Article : Google Scholar : PubMed/NCBI | |
Schmitt MJ, Philippidou D, Reinsbach SE, Margue C, Wienecke-Baldacchino A, Nashan D, Behrmann I and Kreis S: Interferon-γ-induced activation of Signal Transducer and Activator of Transcription 1 (STAT1) up-regulates the tumor suppressing microRNA-29 family in melanoma cells. Cell Commun Signal. 10:412012. View Article : Google Scholar | |
Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, Mills AA, Elledge SJ, Anderson KV and Hannon GJ: Dicer is essential for mouse development. Nat Genet. 35:215–217. 2003. View Article : Google Scholar : PubMed/NCBI | |
Gantier MP, Stunden HJ, McCoy CE, Behlke MA, Wang D, Kaparakis-Liaskos M, Sarvestani ST, Yang YH, Xu D, Corr SC, et al: A miR-19 regulon that controls NF-κB signaling. Nucleic Acids Res. 40:8048–8058. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chong MMW, Rasmussen JP, Rudensky AY and Littman DR: The RNAseIII enzyme Drosha is critical in T cells for preventing lethal inflammatory disease. J Exp Med. 205:2005–2017. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wu HJ, Zhuo Y, Zhou YC, Wang XW, Wang YP, Si CY and Wang XH: miR-29a promotes hepatitis B virus replication and expression by targeting SMARCE1 in hepatoma carcinoma. World J Gastroenterol. 23:4569–4578. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sun G, Li H, Wu X, Covarrubias M, Scherer L, Meinking K, Luk B, Chomchan P, Alluin J, Gombart AF and Rossi JJ: Interplay between HIV-1 infection and host microRNAs. Nucleic Acids Res. 40:2181–2196. 2012. View Article : Google Scholar : | |
Bandyopadhyay S, Friedman RC, Marquez RT, Keck K, Kong B, Icardi MS, Brown KE, Burge CB, Schmidt WN, Wang Y and McCaffrey AP: Hepatitis C virus infection and hepatic stellate cell activation downregulate miR-29: miR-29 overexpression reduces hepatitis C viral abundance in culture. J Infect Dis. 203:1753–1762. 2011. View Article : Google Scholar : PubMed/NCBI | |
Plummer M, de Martel C, Vignat J, Ferlay J, Bray F and Franceschi S: Global burden of cancers attributable to infections in 2012: A synthetic analysis. Lancet Glob Health. 4:e609–e616. 2016. View Article : Google Scholar : PubMed/NCBI | |
Singal AG, Lampertico P and Nahon P: Epidemiology and surveillance for hepatocellular carcinoma: New trends. J Hepatol. 72:250–261. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang CM, Wang Y, Fan CG, Xu FF, Sun WS, Liu YG and Jia JH: miR-29c targets TNFAIP3, inhibits cell proliferation and induces apoptosis in hepatitis B virus-related hepatocellular carcinoma. Biochem Biophys Res Commun. 411:586–592. 2011. View Article : Google Scholar : PubMed/NCBI | |
Huang C, Zheng JM, Cheng Q, Yu KK, Ling QX, Chen MQ and Li N: Serum microRNA-29 levels correlate with disease progression in patients with chronic hepatitis B virus infection. J Dig Dis. 15:614–621. 2014. View Article : Google Scholar : PubMed/NCBI | |
Huang JH, Han TT, Li LX, Qu T, Zhang XY, Liao X and Zhong Y: Host microRNAs regulate expression of hepatitis B virus genes during transmission from patients' sperm to embryo. Reprod Toxicol. 100:1–6. 2021. View Article : Google Scholar | |
Fruhwirth GO, Loidl A and Hermetter A: Oxidized phospholipids: From molecular properties to disease. Biochim Biophys Acta. 1772:718–736. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhu HT, Dong QZ, Sheng YY, Wei JW, Wang G, Zhou HJ, Ren N, Jia HL, Ye QH and Qin LX: MicroRNA-29a-5p is a novel predictor for early recurrence of hepatitis B virus-related hepatocellular carcinoma after surgical resection. PLoS One. 7:e523932012. View Article : Google Scholar | |
Adoro S, Cubillos-Ruiz JR, Chen X, Deruaz M, Vrbanac VD, Song M, Park S, Murooka TT, Dudek TE, Luster AD, et al: IL-21 induces antiviral microRNA-29 in CD4 T cells to limit HIV-1 infection. Nat Commun. 6:75622015. View Article : Google Scholar : PubMed/NCBI | |
Ahluwalia JK, Khan SZ, Soni K, Rawat P, Gupta A, Hariharan M, Scaria V, Lalwani M, Pillai B, Mitra D and Brahmachari SK: Human cellular microRNA hsa-miR-29a interferes with viral nef protein expression and HIV-1 replication. Retrovirology. 5:1172008. View Article : Google Scholar : PubMed/NCBI | |
Nathans R, Chu CY, Serquina AK, Lu CC, Cao H and Rana TM: Cellular microRNA and P bodies modulate host-HIV-1 interactions. Mol Cell. 34:696–709. 2009. View Article : Google Scholar : PubMed/NCBI | |
Patel P, Ansari MY, Bapat S, Thakar M, Gangakhedkar R and Jameel S: The microRNA miR-29a is associated with human immunodeficiency virus latency. Retrovirology. 11:1082014. View Article : Google Scholar : PubMed/NCBI | |
Ortega PAS, Saulle I, Mercurio V, Ibba SV, Lori EM, Fenizia C, Masetti M, Trabattoni D, Caputo SL, Vichi F, et al: Interleukin 21 (IL-21)/microRNA-29 (miR-29) axis is associated with natural resistance to HIV-1 infection. AIDS. 32:2453–2461. 2018. View Article : Google Scholar : PubMed/NCBI | |
Whisnant AW, Bogerd HP, Flores O, Ho P, Powers JG, Sharova N, Stevenson M, Chen CH and Cullen BR: In-depth analysis of the interaction of HIV-1 with cellular microRNA biogenesis and effector mechanisms. mBio. 4:e0001932013. View Article : Google Scholar : PubMed/NCBI | |
Mahdy MM, El-Ekiaby NM, Hashish RM, Salah RA, Hanafi RS, Azzazy HM and Abdelaziz AI: miR-29a promotes lipid droplet and triglyceride formation in HCV infection by inducing expression of SREBP-1c and CAV1. J Clin Transl Hepatol. 4:293–299. 2016. | |
Guan Z, Shi N, Song Y, Zhang X, Zhang M and Duan M: Induction of the cellular microRNA-29c by influenza virus contributes to virus-mediated apoptosis through repression of antiapoptotic factors BCL2L2. Biochem Biophys Res Commun. 425:662–667. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lin J, Xia J, Chen YT, Zhang KY, Zeng Y and Yang Q: H9N2 avian influenza virus enhances the immune responses of BMDCs by down-regulating miR29c. Vaccine. 35:729–737. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Liang Y, Bamunuarachchi G, Xu Y, Vaddadi K, Pushparaj S, Xu D, Zhu Z, Blaha R, Huang C and Liu L: miR-29a is a negative regulator of influenza virus infection through targeting of the frizzled 5 receptor. Arch Virol. 166:363–373. 2021. View Article : Google Scholar | |
Zhang X, Dong C, Sun X, Li Z, Zhang M, Guan Z and Duan M: Induction of the cellular miR-29c by influenza virus inhibits the innate immune response through protection of A20 mRNA. Biochem Biophys Res Commun. 450:755–761. 2014. View Article : Google Scholar : PubMed/NCBI | |
Donyavi T, Bokharaei-Salim F, Baghi HB, Khanaliha K, Alaei Janat-Makan M, Karimi B, Sadri Nahand J, Mirzaei H, Khatami A, Garshasbi S, et al: Acute and post-acute phase of COVID-19: Analyzing expression patterns of miRNA-29a-3p, 146a-3p, 155-5p, and let-7b-3p in PBMC. Int Immunopharmacol. 97:1076412021. View Article : Google Scholar : PubMed/NCBI | |
Keikha R, Hashemi-Shahri SM and Jebali A: The relative expression of miR-31, miR-29, miR-126, and miR-17 and their mRNA targets in the serum of COVID-19 patients with different grades during hospitalization. Eur J Med Res. 26:752021. View Article : Google Scholar : PubMed/NCBI | |
Baluni M, Ghildiyal S, Singh D, Himanshu Reddy D, Kumar R and Dhole TN: Increased serum microRNA-29b expression and bad recovery in Japanese encephalitis virus infected patients; A new component to improve the disease recovery. J Neuroimmunol. 323:56–61. 2018. View Article : Google Scholar : PubMed/NCBI | |
Fayyad-Kazan M, ElDirani R, Hamade E, El Majzoub R, Akl H, Bitar N, Fayyad-Kazan H and Badran B: Circulating miR-29c, miR-30c, miR-193a-5p and miR-885-5p: Novel potential biomarkers for HTLV-1 infection diagnosis. Infect Genet Evol. 74:1039382019. View Article : Google Scholar : PubMed/NCBI | |
Anastasiadou E, Boccellato F, Vincenti S, Rosato P, Bozzoni I, Frati L, Faggioni A, Presutti C and Trivedi P: Epstein-Barr virus encoded LMP1 downregulates TCL1 oncogene through miR-29b. Oncogene. 29:1316–1328. 2010. View Article : Google Scholar | |
Surachetpong W, Nantakhruea S and Lekcharoensuk P: Molecular characterization and expression analysis of miR-29a in porcine cells and porcine reproductive and respiratory syndrome virus infected peripheral blood mononuclear cells. Thai J Vet Med. 44:125–132. 2014. View Article : Google Scholar | |
Zhou M, Li C, Lu C, Zhang X, Pan Y, Liu X, Liu G, Zhao Z and Sun B: miRNA29 promotes viral replication during early stage of PRRSV infection in vitro. DNA Cell Biol. 35:636–642. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fu Q, Shi H, Shi M, Meng L, Zhang H, Ren Y, Guo F, Jia B, Wang P, Ni W and Chen C: bta-miR-29b attenuates apoptosis by directly targeting caspase-7 and NAIF1 and suppresses bovine viral diarrhea virus replication in MDBK cells. Can J Microbiol. 60:455–460. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fu Q, Shi H, Ni W, Shi M, Meng L, Zhang H, Ren Y, Guo F, Wang P, Qiao J, et al: Lentivirus-mediated Bos taurus bta-miR-29b overexpression interferes with bovine viral diarrhoea virus replication and viral infection-related autophagy by directly targeting ATG14 and ATG9A in Madin-Darby bovine kidney cells. J Gen Virol. 96:85–94. 2015. View Article : Google Scholar | |
Fu Q, Shi H and Chen C: Roles of bta-miR-29b promoter regions DNA methylation in regulating miR-29b expression and bovine viral diarrhea virus NADL replication in MDBK cells. Arch Virol. 162:401–408. 2017. View Article : Google Scholar | |
Le LTT, Swingler TE, Crowe N, Vincent TL, Barter MJ, Donell ST, Delany AM, Dalmay T, Young DA and Clark IM: The microRNA-29 family in cartilage homeostasis and osteoarthritis. J Mol Med (Berl). 94:583–596. 2016. View Article : Google Scholar | |
Zhou Q, Zheng X, Chen L, Xu B, Yang X, Jiang J and Wu C: Smad2/3/4 pathway contributes to TGF-β-induced MiRNA-181b expression to promote gastric cancer metastasis by targeting Timp3. Cell Physiol Biochem. 39:453–466. 2016. View Article : Google Scholar | |
Tan J, Tong BD, Wu YJ and Xiong W: MicroRNA-29 mediates TGFβ1-induced extracellular matrix synthesis by targeting wnt/β-catenin pathway in human orbital fibroblasts. Int J Clin Exp Pathol. 7:7571–7577. 2014. | |
Mayer U, Benditz A and Grässel S: miR-29b regulates expression of collagens I and III in chondrogenically differentiating BMSC in an osteoarthritic environment. Sci Rep. 7:132972017. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Wang Y, Fu Z, Huang W, Yu Z, Wang J, Zheng K, Zhang S, Li S and Chen J: MiR-29b-3p inhibits migration and invasion of papillary thyroid carcinoma by downregulating COL1A1 and COL5A1. Front Oncol. 12:8375812022. View Article : Google Scholar : PubMed/NCBI | |
Jeon EJ, Lee KY, Choi NS, Lee MH, Kim HN, Jin YH, Ryoo HM, Choi JY, Yoshida M, Nishino N, et al: Bone morphogenetic protein-2 stimulates Runx2 acetylation. J Biol Chem. 281:16502–16511. 2006. View Article : Google Scholar : PubMed/NCBI | |
Maeda S, Hayashi M, Komiya S, Imamura T and Miyazono K: Endogenous TGF-beta signaling suppresses maturation of osteoblastic mesenchymal cells. EMBO J. 23:552–563. 2004. View Article : Google Scholar : PubMed/NCBI | |
Chen ZH, Wu JJ, Guo DY, Li YY, Chen MN, Zhang ZY, Yuan ZD, Zhang KW, Chen WW, Tian F, et al: Physiological functions of podosomes: From structure and function to therapy implications in osteoclast biology of bone resorption. Ageing Res Rev. 85:1018422023. View Article : Google Scholar : PubMed/NCBI | |
Horita M, Farquharson C and Stephen LA: The role of miR-29 family in disease. J Cell Biochem. 122:696–715. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ślusarz A and Pulakat L: The two faces of miR-29. J Cardiovasc Med (Hagerstown). 16:480–490. 2015. View Article : Google Scholar : PubMed/NCBI | |
Huang L, Zhang Y, Yang J, Li J, Wu J, Wang F, Lan Y and Zhang Q: Anti-fibrotic effects and the mechanism of action of miR-29c in silicosis. Mol Med Rep. 23:2922021. View Article : Google Scholar | |
Smyth A, Callaghan B, Willoughby CE and O'Brien C: The role of miR-29 family in TGF-β driven fibrosis in glaucomatous optic neuropathy. Int J Mol Sci. 23:102162022. View Article : Google Scholar | |
Garzon R, Liu S, Fabbri M, Liu Z, Heaphy CE, Callegari E, Schwind S, Pang J, Yu J, Muthusamy N, et al: MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood. 113:6411–6418. 2009. View Article : Google Scholar : PubMed/NCBI | |
Rothschild SI, Tschan MP, Federzoni EA, Jaggi R, Fey MF, Gugger M and Gautschi O: MicroRNA-29b is involved in the Src-ID1 signaling pathway and is dysregulated in human lung adenocarcinoma. Oncogene. 31:4221–4232. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Liu H, Zhang Q and Zhang Z: Long Noncoding RNA LINC01006 facilitates cell proliferation, migration, and epithelial-mesenchymal transition in lung adenocarcinoma via targeting the MicroRNA 129-2-3p/CTNNB1 axis and activating Wnt/β-catenin signaling pathway. Mol Cell Biol. 41:e00380202021. View Article : Google Scholar | |
Cittelly DM, Finlay-Schultz J, Howe EN, Spoelstra NS, Axlund SD, Hendricks P, Jacobsen BM, Sartorius CA and Richer JK: Progestin suppression of miR-29 potentiates dedifferentiation of breast cancer cells via KLF4. Oncogene. 32:2555–2564. 2013. View Article : Google Scholar | |
Moghoofei M, Najafipour S, Mostafaei S, Tavakoli A, Bokharaei-Salim F, Ghorbani S, Javanmard D, Ghaffari H and Monavari SH: MicroRNAs profiling in HIV, HCV, and HIV/HCV co-infected patients. Curr HIV Res. 19:27–34. 2021. View Article : Google Scholar | |
Eiring AM, Harb JG, Neviani P, Garton C, Oaks JJ, Spizzo R, Liu S, Schwind S, Santhanam R, Hickey CJ, et al: miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell. 140:652–665. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tang R, Li L, Zhu D, Hou D, Cao T, Gu H, Zhang J, Chen J, Zhang CY and Zen K: Mouse miRNA-709 directly regulates miRNA-15a/16-1 biogenesis at the posttranscriptional level in the nucleus: Evidence for a microRNA hierarchy system. Cell Res. 22:504–515. 2012. View Article : Google Scholar : | |
Lu L, Ling W and Ruan Z: TAM-derived extracellular vesicles containing microRNA-29a-3p explain the deterioration of ovarian cancer. Mol Ther Nucleic Acids. 25:468–482. 2021. View Article : Google Scholar : PubMed/NCBI |