Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
April-2025 Volume 55 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2025 Volume 55 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

The role of autophagy in fibrosis: Mechanisms, progression and therapeutic potential (Review)

  • Authors:
    • Yongxin Chen
    • Zhuanghui Wang
    • Qinghong Ma
    • Chao Sun
  • View Affiliations / Copyright

    Affiliations: Department of Spine Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China, Department of Spine Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China
    Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 61
    |
    Published online on: February 11, 2025
       https://doi.org/10.3892/ijmm.2025.5502
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Various forms of tissue damage can lead to fibrosis, an abnormal reparative reaction. In the industrialized countries, 45% of deaths are attributable to fibrotic disorders. Autophagy is a highly preserved process. Lysosomes break down organelles and cytoplasmic components during autophagy. The cytoplasm is cleared of pathogens and dysfunctional organelles, and its constituent components are recycled. With the growing body of research on autophagy, it is becoming clear that autophagy and its associated mechanisms may have a role in the development of numerous fibrotic disorders. However, a comprehensive understanding of autophagy in fibrosis is still lacking and the progression of fibrotic disease has not yet been thoroughly investigated in relation to autophagy‑associated processes. The present review focused on the latest findings and most comprehensive understanding of macrophage autophagy, endoplasmic reticulum stress‑mediated autophagy and autophagy‑mediated endothelial‑to‑mesenchymal transition in the initiation, progression and treatment of fibrosis. The article also discusses treatment strategies for fibrotic diseases and highlights recent developments in autophagy‑targeted therapies.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Miguel V, Alcalde-Estévez E, Sirera B, Rodríguez-Pascual F and Lamas S: Metabolism and bioenergetics in the pathophysiology of organ fibrosis. Free Radic Biol Med. 222:85–105. 2024. View Article : Google Scholar : PubMed/NCBI

2 

Pan Z, El Sharkway R, Bayoumi A, Metwally M, Gloss BS, Brink R, Lu DB, Liddle C, Alqahtani SA, Yu J, et al: Inhibition of MERTK reduces organ fibrosis in mouse models of fibrotic disease. Sci Transl Med. 16:eadj01332024. View Article : Google Scholar : PubMed/NCBI

3 

Zhao X, Kwan JYY, Yip K, Liu PP and Liu FF: Targeting metabolic dysregulation for fibrosis therapy. Nat Rev Drug Discov. 19:57–75. 2020. View Article : Google Scholar

4 

Antar SA, Ashour NA, Marawan ME and Al-Karmalawy AA: Fibrosis: Types, effects, markers, mechanisms for disease progression, and its relation with oxidative stress, immunity, and inflammation. Int J Mol Sci. 24:40042023. View Article : Google Scholar : PubMed/NCBI

5 

Palmer JE, Wilson N, Son SM, Obrocki P, Wrobel L, Rob M, Takla M, Korolchuk VI and Rubinsztein DC: Autophagy, aging, and age-related neurodegeneration. Neuron. 113:29–48. 2025. View Article : Google Scholar

6 

Liang S, Wu YS, Li DY, Tang JX and Liu HF: Autophagy and renal fibrosis. Aging Dis. 13:712–731. 2022. View Article : Google Scholar : PubMed/NCBI

7 

Luo D, Lu X, Li H, Li Y, Wang Y, Jiang S, Li G, Xu Y, Wu K, Dou X, et al: The spermine oxidase/spermine axis coordinates ATG5-Mediated autophagy to orchestrate renal senescence and fibrosis. Adv Sci (Weinh). 11:e23069122024. View Article : Google Scholar : PubMed/NCBI

8 

Liu Y, Wu X, Wang Y and Guo Y: Endoplasmic reticulum stress and autophagy are involved in adipocyte-induced fibrosis in hepatic stellate cells. Mol Cell Biochem. 476:2527–2538. 2021. View Article : Google Scholar : PubMed/NCBI

9 

Wen JH, Li DY, Liang S, Yang C, Tang JX and Liu HF: Macrophage autophagy in macrophage polarization, chronic inflammation and organ fibrosis. Front Immunol. 13:9468322022. View Article : Google Scholar : PubMed/NCBI

10 

Zhu Y, Tan J, Wang Y, Gong Y, Zhang X, Yuan Z, Lu X, Tang H, Zhang Z, Jiang X, et al: Atg5 deficiency in macrophages protects against kidney fibrosis via the CCR6-CCL20 axis. Cell Commun Signal. 22:2232024. View Article : Google Scholar : PubMed/NCBI

11 

Wang Y, Ping Z, Gao H, Liu Z, Xv Q, Jiang X and Yu W: LYC inhibits the AKT signaling pathway to activate autophagy and ameliorate TGFB-induced renal fibrosis. Autophagy. 20:1114–1133. 2024. View Article : Google Scholar :

12 

Glick D, Barth S and Macleod KF: Autophagy: Cellular and molecular mechanisms. J Pathol. 221:3–12. 2010. View Article : Google Scholar : PubMed/NCBI

13 

Yamamoto H and Matsui T: Molecular mechanisms of macroautophagy, microautophagy, and chaperone-mediated autophagy. J Nippon Med Sch. 91:2–9. 2024. View Article : Google Scholar

14 

Li WW, Li J and Bao JK: Microautophagy: Lesser-known self-eating. Cell Mol Life Sci. 69:1125–1136. 2012. View Article : Google Scholar

15 

Xu Y, Qian C, Wang Q, Song L, He Z, Liu W and Wan W: Deacetylation of ATG7 drives the induction of macroautophagy and LC3-associated microautophagy. Autophagy. 20:1134–1146. 2024. View Article : Google Scholar :

16 

Mizushima N and Komatsu M: Autophagy: Renovation of cells and tissues. Cell. 147:728–741. 2011. View Article : Google Scholar : PubMed/NCBI

17 

Tukaj C: The significance of macroautophagy in health and disease. Folia Morphol (Warsz). 72:87–93. 2013. View Article : Google Scholar : PubMed/NCBI

18 

Nakahira K, Pabon Porras MA and Choi AM: Autophagy in pulmonary diseases. Am J Respir Crit Care Med. 194:1196–1207. 2016. View Article : Google Scholar : PubMed/NCBI

19 

Zachari M and Ganley IG: The mammalian ULK1 complex and autophagy initiation. Essays Biochem. 61:585–596. 2017. View Article : Google Scholar : PubMed/NCBI

20 

Kuma A, Mizushima N, Ishihara N and Ohsumi Y: Formation of the approximately 350-kDa Apg12-Apg5.Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J Biol Chem. 277:18619–18625. 2002. View Article : Google Scholar : PubMed/NCBI

21 

Silva VR, Neves SP, Santos LS, Dias RB and Bezerra DP: Challenges and therapeutic opportunities of autophagy in cancer therapy. Cancers (Basel). 12:34612020. View Article : Google Scholar : PubMed/NCBI

22 

Barth S, Glick D and Macleod KF: Autophagy: Assays and artifacts. J Pathol. 221:117–124. 2010. View Article : Google Scholar : PubMed/NCBI

23 

Pugsley HR: Quantifying autophagy: Measuring LC3 puncta and autolysosome formation in cells using multispectral imaging flow cytometry. Methods. 112:147–156. 2017. View Article : Google Scholar

24 

Agrotis A, Pengo N, Burden JJ and Ketteler R: Redundancy of human ATG4 protease isoforms in autophagy and LC3/GABARAP processing revealed in cells. Autophagy. 15:976–997. 2019. View Article : Google Scholar : PubMed/NCBI

25 

Saftig P, Beertsen W and Eskelinen EL: LAMP-2: A control step for phagosome and autophagosome maturation. Autophagy. 4:510–512. 2008. View Article : Google Scholar : PubMed/NCBI

26 

Kroemer G, Mariño G and Levine B: Autophagy and the integrated stress response. Mol Cell. 40:280–293. 2010. View Article : Google Scholar : PubMed/NCBI

27 

Gozuacik D and Kimchi A: Autophagy as a cell death and tumor suppressor mechanism. Oncogene. 23:2891–2906. 2004. View Article : Google Scholar : PubMed/NCBI

28 

Zhao XC, Livingston MJ, Liang XL and Dong Z: Cell apoptosis and autophagy in renal fibrosis. Adv Exp Med Biol. 1165:557–584. 2019. View Article : Google Scholar : PubMed/NCBI

29 

Kim YC and Guan KL: mTOR: A pharmacologic target for autophagy regulation. J Clin Invest. 125:25–32. 2015. View Article : Google Scholar : PubMed/NCBI

30 

Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura S, Natsume T, Takehana K, Yamada N, et al: Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell. 20:1981–1991. 2009. View Article : Google Scholar : PubMed/NCBI

31 

Kim J, Kundu M, Viollet B and Guan KL: AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 13:132–141. 2011. View Article : Google Scholar : PubMed/NCBI

32 

Wang Y and Zhang H: Regulation of autophagy by mTOR signaling pathway. Adv Exp Med Biol. 1206:67–83. 2019. View Article : Google Scholar : PubMed/NCBI

33 

Wan W, You Z, Xu Y, Zhou L, Guan Z, Peng C, Wong CCL, Su H, Zhou T, Xia H and Liu W: mTORC1 Phosphorylates Acetyltransferase p300 to regulate autophagy and lipogenesis. Mol Cell. 68:323–335.e6. 2017. View Article : Google Scholar : PubMed/NCBI

34 

Dooley HC, Razi M, Polson HE, Girardin SE, Wilson MI and Tooze SA: WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1. Mol Cell. 55:238–252. 2014. View Article : Google Scholar : PubMed/NCBI

35 

Roczniak-Ferguson A, Petit CS, Froehlich F, Qian S, Ky J, Angarola B, Walther TC and Ferguson SM: The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci Signal. 5:ra422012. View Article : Google Scholar : PubMed/NCBI

36 

Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F, Erdin S, Erdin SU, Huynh T, Medina D, Colella P, et al: TFEB links autophagy to lysosomal biogenesis. Science. 332:1429–1433. 2011. View Article : Google Scholar : PubMed/NCBI

37 

Sun Y, Wang H, Qu T, Luo J, An P, Ren F, Luo Y and Li Y: mTORC2: A multifaceted regulator of autophagy. Cell Commun Signal. 21:42023. View Article : Google Scholar : PubMed/NCBI

38 

Herzig S and Shaw RJ: AMPK: Guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol. 19:121–135. 2018. View Article : Google Scholar :

39 

Tamargo-Gómez I and Mariño G: AMPK: Regulation of metabolic dynamics in the context of autophagy. Int J Mol Sci. 19:38122018. View Article : Google Scholar : PubMed/NCBI

40 

Mihaylova MM and Shaw RJ: The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol. 13:1016–1023. 2011. View Article : Google Scholar : PubMed/NCBI

41 

Yang H, Yu Z, Chen X, Li J, Li N, Cheng J, Gao N, Yuan HX, Ye D, Guan KL and Xu Y: Structural insights into TSC complex assembly and GAP activity on Rheb. Nat Commun. 12:3392021. View Article : Google Scholar : PubMed/NCBI

42 

Chang NC: Autophagy and stem cells: Self-eating for self-renewal. Front Cell Dev Biol. 8:1382020. View Article : Google Scholar : PubMed/NCBI

43 

Wang S, Li H, Yuan M, Fan H and Cai Z: Role of AMPK in autophagy. Front Physiol. 13:10155002022. View Article : Google Scholar : PubMed/NCBI

44 

Alers S, Löffler AS, Wesselborg S and Stork B: Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol. 32:2–11. 2012. View Article : Google Scholar :

45 

Kim J, Kim YC, Fang C, Russell RC, Kim JH, Fan W, Liu R, Zhong Q and Guan KL: Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell. 152:290–303. 2013. View Article : Google Scholar : PubMed/NCBI

46 

Carafa V, Rotili D, Forgione M, Cuomo F, Serretiello E, Hailu GS, Jarho E, Lahtela-Kakkonen M, Mai A and Altucci L: Sirtuin functions and modulation: from chemistry to the clinic. Clin Epigenetics. 8:612016. View Article : Google Scholar : PubMed/NCBI

47 

Begum MK, Konja D, Singh S, Chlopicki S and Wang Y: Endothelial SIRT1 as a target for the prevention of arterial aging: Promises and challenges. J Cardiovasc Pharmacol. 78(Suppl 6): S63–S77. 2021. View Article : Google Scholar : PubMed/NCBI

48 

Joo SY, Aung JM, Shin M, Moon EK, Kong HH, Goo YK, Chung DI and Hong Y: The role of the Acanthamoeba castellanii Sir2-like protein in the growth and encystation of Acanthamoeba. Parasit Vectors. 13:3682020. View Article : Google Scholar : PubMed/NCBI

49 

Ding X, Zhu C, Wang W, Li M, Ma C and Gao B: SIRT1 is a regulator of autophagy: Implications for the progression and treatment of myocardial ischemia-reperfusion. Pharmacol Res. 199:1069572024. View Article : Google Scholar

50 

Zhang Q, Wang SY, Fleuriel C, Leprince D, Rocheleau JV, Piston DW and Goodman RH: Metabolic regulation of SIRT1 transcription via a HIC1:CtBP corepressor complex. Proc Natl Acad Sci USA. 104:829–833. 2007. View Article : Google Scholar : PubMed/NCBI

51 

Yu H, Gan D, Luo Z, Yang Q, An D, Zhang H, Hu Y, Ma Z, Zeng Q, Xu D and Ren H: α-Ketoglutarate improves cardiac insufficiency through NAD(+)-SIRT1 signaling-mediated mitophagy and ferroptosis in pressure overload-induced mice. Mol Med. 30:152024. View Article : Google Scholar

52 

Gao Y, Kim K, Vitrac H, Salazar RL, Gould BD, Soedkamp D, Spivia W, Raedschelders K, Dinh AQ, Guzman AG, et al: Autophagic signaling promotes systems-wide remodeling in skeletal muscle upon oncometabolic stress by D2-HG. Mol Metab. 86:1019692024. View Article : Google Scholar : PubMed/NCBI

53 

Yang J, Wang H, Li B, Liu J, Zhang X, Wang Y, Peng J, Gao L, Wang X, Hu S, et al: Inhibition of ACSS2 triggers glycolysis inhibition and nuclear translocation to activate SIRT1/ATG5/ATG2B deacetylation axis, promoting autophagy and reducing malignancy and chemoresistance in ovarian cancer. Metabolism. 162:1560412025. View Article : Google Scholar

54 

Li X, Zhao C, Mao C, Sun G, Yang F, Wang L and Wang X: Oleic and linoleic acids promote chondrocyte apoptosis by inhibiting autophagy via downregulation of SIRT1/FOXO1 signaling. Biochim Biophys Acta Mol Basis Dis. 1870:1670902024. View Article : Google Scholar : PubMed/NCBI

55 

Yang Q, Sun K, Gao T, Gao Y, Yang Y, Li Z and Zuo D: SIRT1 silencing promotes EMT and Crizotinib resistance by regulating autophagy through AMPK/mTOR/S6K signaling pathway in EML4-ALK L1196M and EML4-ALK G1202R mutant non-small cell lung cancer cells. Mol Carcinog. 63:2133–2144. 2024. View Article : Google Scholar : PubMed/NCBI

56 

He C: Balancing nutrient and energy demand and supply via autophagy. Curr Biol. 32:R684–r696. 2022. View Article : Google Scholar : PubMed/NCBI

57 

Baeken MW: Sirtuins and their influence on autophagy. J Cell Biochem. 125:e303772024. View Article : Google Scholar

58 

Kim JY, Mondaca-Ruff D, Singh S and Wang Y: SIRT1 and autophagy: Implications in endocrine disorders. Front Endocrinol (Lausanne). 13:9309192022. View Article : Google Scholar : PubMed/NCBI

59 

Ghosh HS, McBurney M and Robbins PD: SIRT1 negatively regulates the mammalian target of rapamycin. PLoS One. 5:e91992010. View Article : Google Scholar : PubMed/NCBI

60 

Li Y, Corradetti MN, Inoki K and Guan KL: TSC2: filling the GAP in the mTOR signaling pathway. Trends Biochem Sci. 29:32–38. 2004. View Article : Google Scholar : PubMed/NCBI

61 

Kume S, Uzu T, Horiike K, Chin-Kanasaki M, Isshiki K, Araki S, Sugimoto T, Haneda M, Kashiwagi A and Koya D: Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J Clin Invest. 120:1043–1055. 2010. View Article : Google Scholar : PubMed/NCBI

62 

Yang X, Jiang T, Wang Y and Guo L: The role and mechanism of SIRT1 in resveratrol-regulated osteoblast autophagy in osteoporosis rats. Sci Rep. 9:184242019. View Article : Google Scholar : PubMed/NCBI

63 

Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouysségur J and Mazure NM: Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol. 29:2570–2581. 2009. View Article : Google Scholar : PubMed/NCBI

64 

Bánréti A, Sass M and Graba Y: The emerging role of acetylation in the regulation of autophagy. Autophagy. 9:819–829. 2013. View Article : Google Scholar : PubMed/NCBI

65 

Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE, Tsokos M, Alt FW and Finkel T: A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci USA. 105:3374–3379. 2008. View Article : Google Scholar : PubMed/NCBI

66 

Huang R, Xu Y, Wan W, Shou X, Qian J, You Z, Liu B, Chang C, Zhou T, Lippincott-Schwartz J and Liu W: Deacetylation of nuclear LC3 drives autophagy initiation under starvation. Mol Cell. 57:456–466. 2015. View Article : Google Scholar : PubMed/NCBI

67 

Hyttinen JM, Niittykoski M, Salminen A and Kaarniranta K: Maturation of autophagosomes and endosomes: A key role for Rab7. Biochim Biophys Acta. 1833:503–510. 2013. View Article : Google Scholar

68 

Lee J, Kim J, Lee JH, Choi YM, Choi H, Cho HD, Cha GH, Lee YH, Jo EK, Park BH and Yuk JM: SIRT1 promotes host protective immunity against toxoplasma gondii by controlling the FoxO-autophagy axis via the AMPK and PI3K/AKT signalling pathways. Int J Mol Sci. 23:135782022. View Article : Google Scholar : PubMed/NCBI

69 

Xu C, Wang L, Fozouni P, Evjen G, Chandra V, Jiang J, Lu C, Nicastri M, Bretz C, Winkler JD, et al: SIRT1 is downregulated by autophagy in senescence and ageing. Nat Cell Biol. 22:1170–1179. 2020. View Article : Google Scholar : PubMed/NCBI

70 

Wei F, Wang Y, Yao J, Mei L, Huang X, Kong H, Chen J, Chen X, Liu L, Wang Z, et al: ZDHHC7-mediated S-palmitoylation of ATG16L1 facilitates LC3 lipidation and autophagosome formation. Autophagy. 20:2719–2737. 2024. View Article : Google Scholar : PubMed/NCBI

71 

Mizushima N, Levine B, Cuervo AM and Klionsky DJ: Autophagy fights disease through cellular self-digestion. Nature. 451:1069–1075. 2008. View Article : Google Scholar : PubMed/NCBI

72 

Valdor R and Macian F: Autophagy and the regulation of the immune response. Pharmacol Res. 66:475–483. 2012. View Article : Google Scholar : PubMed/NCBI

73 

Hu YX, Han XS and Jing Q: Autophagy in Development and Differentiation. Adv Exp Med Biol. 1206:469–487. 2019. View Article : Google Scholar : PubMed/NCBI

74 

Adelipour M, Saleth LR, Ghavami S, Alagarsamy KN, Dhingra S and Allameh A: The role of autophagy in the metabolism and differentiation of stem cells. Biochim Biophys Acta Mol Basis Dis. 1868:1664122022. View Article : Google Scholar : PubMed/NCBI

75 

Pohl C and Dikic I: Cellular quality control by the ubiquitinproteasome system and autophagy. Science. 366:818–822. 2019. View Article : Google Scholar : PubMed/NCBI

76 

Henderson NC, Rieder F and Wynn TA: Fibrosis: From mechanisms to medicines. Nature. 587:555–566. 2020. View Article : Google Scholar : PubMed/NCBI

77 

Sun C, Zhang H, Wang X and Liu X: Ligamentum flavum fibrosis and hypertrophy: Molecular pathways, cellular mechanisms, and future directions. FASEB J. 34:9854–9868. 2020. View Article : Google Scholar : PubMed/NCBI

78 

Wynn TA and Ramalingam TR: Mechanisms of fibrosis: Therapeutic translation for fibrotic disease. Nat Med. 18:1028–1040. 2012. View Article : Google Scholar : PubMed/NCBI

79 

Schuster R, Younesi F, Ezzo M and Hinz B: The role of myofibroblasts in physiological and pathological tissue repair. Cold Spring Harb Perspect Biol. 15:a0412312023. View Article : Google Scholar

80 

Humphreys BD: Mechanisms of renal fibrosis. Annu Rev Physiol. 80:309–326. 2018. View Article : Google Scholar

81 

Weiskirchen R, Weiskirchen S and Tacke F: Organ and tissue fibrosis: Molecular signals, cellular mechanisms and translational implications. Mol Aspects Med. 65:2–15. 2019. View Article : Google Scholar

82 

Piersma B, Bank RA and Boersema M: Signaling in fibrosis: TGF-β, WNT, and YAP/TAZ converge. Front Med (Lausanne). 2:592015.

83 

Burgy O and Königshoff M: The WNT signaling pathways in wound healing and fibrosis. Matrix Biol. 68-69:67–80. 2018. View Article : Google Scholar : PubMed/NCBI

84 

Meng XM, Nikolic-Paterson DJ and Lan HY: TGF-β: The master regulator of fibrosis. Nat Rev Nephrol. 12:325–338. 2016. View Article : Google Scholar : PubMed/NCBI

85 

Noguchi S, Saito A and Nagase T: YAP/TAZ signaling as a molecular link between fibrosis and cancer. Int J Mol Sci. 19:36742018. View Article : Google Scholar : PubMed/NCBI

86 

Habibie H, Adhyatmika A, Schaafsma D and Melgert BN: The role of osteoprotegerin (OPG) in fibrosis: Its potential as a biomarker and/or biological target for the treatment of fibrotic diseases. Pharmacol Ther. 228:1079412021. View Article : Google Scholar : PubMed/NCBI

87 

Williams L, Layton T, Yang N, Feldmann M and Nanchahal J: Collagen VI as a driver and disease biomarker in human fibrosis. FEBS J. 289:3603–3629. 2022. View Article : Google Scholar

88 

Bai L, Li A, Gong C, Ning X and Wang Z: Protective effect of rutin against bleomycin induced lung fibrosis: Involvement of TGF-β1/α-SMA/Col I and III pathway. BioFactors. 46:637–644. 2020. View Article : Google Scholar : PubMed/NCBI

89 

Ge M, Zou H, Chen J, Zhang Q, Li C, Yang J, Wu J, Xie X, Liu J, Lei L, et al: Cellular fibronectin-targeted fluorescent aptamer probes for early detection and staging of liver fibrosis. Acta Biomater. 190:579–592. 2024. View Article : Google Scholar : PubMed/NCBI

90 

Biel C, Faber KN, Bank RA and Olinga P: Matrix metalloproteinases in intestinal fibrosis. J Crohns Colitis. 18:462–478. 2024. View Article : Google Scholar :

91 

Liu H, Yan W, Ma C, Zhang K, Li K, Jin R, Xu H, Xu R, Tong J, Yang Z and Guo Y: Early detection of cardiac fibrosis in diabetic mice by targeting myocardiopathy and matrix metalloproteinase 2. Acta Biomater. 176:367–378. 2024. View Article : Google Scholar : PubMed/NCBI

92 

Zhou D, Tian Y, Sun L, Zhou L, Xiao L, Tan RJ, Tian J, Fu H, Hou FF and Liu Y: Matrix metalloproteinase-7 is a urinary biomarker and pathogenic mediator of kidney fibrosis. J Am Soc Nephrol. 28:598–611. 2017. View Article : Google Scholar :

93 

Patel V and Noureddine L: MicroRNAs and fibrosis. Curr Opin Nephrol Hypertens. 21:410–416. 2012. View Article : Google Scholar : PubMed/NCBI

94 

Duan ZY, Bu R, Liang S, Chen XZ, Zhang C, Zhang QY, Li JJ, Chen XM and Cai GY: Urinary miR-185-5p is a biomarker of renal tubulointerstitial fibrosis in IgA nephropathy. Front Immunol. 15:13260262024. View Article : Google Scholar : PubMed/NCBI

95 

Zhao X, Xue X, Cui Z, Kwame Amevor F, Wan Y, Fu K, Wang C, Peng C and Li Y: microRNAs-based diagnostic and therapeutic applications in liver fibrosis. Wiley Interdiscip Rev RNA. 14:e17732023. View Article : Google Scholar

96 

Xuan Y, Wu D, Zhang Q, Yu Z, Yu J and Zhou D: Elevated ALT/AST ratio as a marker for NAFLD risk and severity: insights from a cross-sectional analysis in the United States. Front Endocrinol (Lausanne). 15:14575982024. View Article : Google Scholar : PubMed/NCBI

97 

Amernia B, Moosavy SH, Banookh F and Zoghi G: FIB-4, APRI, and AST/ALT ratio compared to FibroScan for the assessment of hepatic fibrosis in patients with non-alcoholic fatty liver disease in Bandar Abbas, Iran. BMC Gastroenterol. 21:4532021. View Article : Google Scholar : PubMed/NCBI

98 

Cylwik B, Bauer A, Gruszewska E, Gan K, Kazberuk M and Chrostek L: The diagnostic value of fibrotest and hepascore as non-invasive markers of liver fibrosis in primary sclerosing cholangitis (PSC). J Clin Med. 12:75522023. View Article : Google Scholar : PubMed/NCBI

99 

Dzudzor B, Hammond H, Tachi K, Alisi A, Vento S, Gyasi RK and Aheto JMK: Serum 25-hydroxyvitamin D and hyaluronic acid levels as markers of fibrosis in patients with chronic liver disease at the main tertiary referral hospital in Ghana: A case-control study design. Health Sci Rep. 6:e11012023. View Article : Google Scholar : PubMed/NCBI

100 

Soccio P, Moriondo G, d'Alessandro M, Scioscia G, Bergantini L, Gangi S, Tondo P, Foschino Barbaro MP, Cameli P, Bargagli E and Lacedonia D: Role of BAL and Serum Krebs von den Lungen-6 (KL-6) in patients with pulmonary fibrosis. Biomedicines. 12:2692024. View Article : Google Scholar : PubMed/NCBI

101 

Jehn LB, Costabel U, Boerner E, Wälscher J, Theegarten D, Taube C and Bonella F: Serum KL-6 as a biomarker of progression at any time in fibrotic interstitial lung disease. J Clin Med. 12:11732023. View Article : Google Scholar : PubMed/NCBI

102 

Chiba S, Ohta H, Abe K, Hisata S, Ohkouchi S, Hoshikawa Y, Kondo T and Ebina M: The diagnostic value of the interstitial biomarkers KL-6 and SP-D for the degree of fibrosis in combined pulmonary fibrosis and emphysema. Pulm Med. 2012:4929602012. View Article : Google Scholar : PubMed/NCBI

103 

White ES, Xia M, Murray S, Dyal R, Flaherty CM, Flaherty KR, Moore BB, Cheng L, Doyle TJ, Villalba J, et al: Plasma surfactant protein-D, matrix metalloproteinase-7, and osteopontin index distinguishes idiopathic pulmonary fibrosis from other idiopathic interstitial pneumonias. Am J Respir Crit Care Med. 194:1242–1251. 2016. View Article : Google Scholar : PubMed/NCBI

104 

Ikeda K, Chiba H, Nishikiori H, Azuma A, Kondoh Y, Ogura T, Taguchi Y, Ebina M, Sakaguchi H, Miyazawa S, et al: Serum surfactant protein D as a predictive biomarker for the efficacy of pirfenidone in patients with idiopathic pulmonary fibrosis: A post-hoc analysis of the phase 3 trial in Japan. Respir Res. 21:3162020. View Article : Google Scholar : PubMed/NCBI

105 

Saito H, Tanaka T, Tanaka S, Higashijima Y, Yamaguchi J, Sugahara M, Ito M, Uchida L, Hasegawa S, Wakashima T, et al: Persistent expression of neutrophil gelatinase-associated lipocalin and M2 macrophage markers and chronic fibrosis after acute kidney injury. Physiol Rep. 6:e137072018. View Article : Google Scholar : PubMed/NCBI

106 

Hijmans RS, Rasmussen DG, Yazdani S, Navis G, van Goor H, Karsdal MA, Genovese F and van den Born J: Urinary collagen degradation products as early markers of progressive renal fibrosis. J Transl Med. 15:632017. View Article : Google Scholar : PubMed/NCBI

107 

Papasotiriou M, Genovese F, Klinkhammer BM, Kunter U, Nielsen SH, Karsdal MA, Floege J and Boor P: Serum and urine markers of collagen degradation reflect renal fibrosis in experimental kidney diseases. Nephrol Dial Transplant. 30:1112–1121. 2015. View Article : Google Scholar : PubMed/NCBI

108 

Karabinowska-Małocha A, Dziewięcka E, Szymańska M, Banyś P, Urbańczyk-Zawadzka M, Krupiński M, Mielnik M, Wiśniowska-Śmiałek S, Podolec P, Budkiewicz A, et al: Link between fibrosis-specific biomarkers and interstitial fibrosis in hypertrophic cardiomyopathy. Kardiol Pol. 81:692–699. 2023. View Article : Google Scholar

109 

Scisciola L, Paolisso P, Belmonte M, Gallinoro E, Delrue L, Taktaz F, Fontanella RA, Degrieck I, Pesapane A, Casselman F, et al: Myocardial sodium-glucose cotransporter 2 expression and cardiac remodelling in patients with severe aortic stenosis: The BIO-AS study. Eur J Heart Fail. 26:471–482. 2024. View Article : Google Scholar : PubMed/NCBI

110 

Al Ali L, Meijers WC, Beldhuis IE, Groot HE, Lipsic E, van Veldhuisen DJ, Voors AA, van der Horst ICC, de Boer RA and van der Harst P: Association of fibrotic markers with diastolic function after STEMI. Sci Rep. 14:191222024. View Article : Google Scholar : PubMed/NCBI

111 

de Jong S, van Veen TA, de Bakker JM, Vos MA and van Rijen HV: Biomarkers of myocardial fibrosis. J Cardiovasc Pharmacol. 57:522–535. 2011. View Article : Google Scholar : PubMed/NCBI

112 

Yan L, Wang J, Cai X, Liou YC, Shen HM, Hao J, Huang C, Luo G and He W: Macrophage plasticity: Signaling pathways, tissue repair, and regeneration. MedComm (2020). 5:e6582024. View Article : Google Scholar : PubMed/NCBI

113 

Luo M, Zhao F, Cheng H, Su M and Wang Y: Macrophage polarization: An important role in inflammatory diseases. Front Immunol. 15:13529462024. View Article : Google Scholar : PubMed/NCBI

114 

Ge Z, Chen Y, Ma L, Hu F and Xie L: Macrophage polarization and its impact on idiopathic pulmonary fibrosis. Front Immunol. 15:14449642024. View Article : Google Scholar : PubMed/NCBI

115 

Stein M, Keshav S, Harris N and Gordon S: Interleukin 4 potently enhances murine macrophage mannose receptor activity: A marker of alternative immunologic macrophage activation. J Exp Med. 176:287–292. 1992. View Article : Google Scholar : PubMed/NCBI

116 

Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT and Sahebkar A: Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 233:6425–6440. 2018. View Article : Google Scholar : PubMed/NCBI

117 

Wang C, Ma C, Gong L, Guo Y, Fu K, Zhang Y, Zhou H and Li Y: Macrophage polarization and its role in liver disease. Front Immunol. 12:8030372021. View Article : Google Scholar :

118 

Wu MY and Lu JH: Autophagy and macrophage functions: Inflammatory response and phagocytosis. Cells. 9:702019. View Article : Google Scholar

119 

Rockey DC, Bell PD and Hill JA: Fibrosis-a common pathway to organ injury and failure. N Engl J Med. 372:1138–1149. 2015. View Article : Google Scholar : PubMed/NCBI

120 

Wang Y, Jiao L, Qiang C, Chen C, Shen Z, Ding F, Lv L, Zhu T, Lu Y and Cui X: The role of matrix metalloproteinase 9 in fibrosis diseases and its molecular mechanisms. Biomed Pharmacother. 171:1161162024. View Article : Google Scholar : PubMed/NCBI

121 

Ogawa T, Shichino S, Ueha S and Matsushima K: Macrophages in lung fibrosis. Int Immunol. 33:665–671. 2021. View Article : Google Scholar : PubMed/NCBI

122 

Huang WJ and Tang XX: Virus infection induced pulmonary fibrosis. J Transl Med. 19:4962021. View Article : Google Scholar : PubMed/NCBI

123 

Tian Y, Lv J, Su Z, Wu T, Li X, Hu X, Zhang J and Wu L: LRRK2 plays essential roles in maintaining lung homeostasis and preventing the development of pulmonary fibrosis. Proc Natl Acad Sci USA. 118:e21066851182021. View Article : Google Scholar : PubMed/NCBI

124 

Mornex JF, Cordier G and Revillard JP: Markers of lymphocyte activation in interstitial pulmonary disease. Rev Fr Mal Respir. 11:293–300. 1983.In Frence.

125 

Du S, Li C, Lu Y, Lei X, Zhang Y, Li S, Liu F, Chen Y, Weng D and Chen J: Dioscin alleviates crystalline silica-induced pulmonary inflammation and fibrosis through promoting alveolar macrophage autophagy. Theranostics. 9:1878–1892. 2019. View Article : Google Scholar : PubMed/NCBI

126 

Li C, Lu Y, Du S, Li S, Zhang Y, Liu F, Chen Y, Weng D and Chen J: Dioscin exerts protective effects against crystalline silica-induced pulmonary fibrosis in mice. Theranostics. 7:4255–4275. 2017. View Article : Google Scholar : PubMed/NCBI

127 

Zhong Y, Jin R, Luo R, Liu J, Ren L, Zhang Y, Shan Z and Peng X: Diosgenin targets CaMKK2 to alleviate type II diabetic nephropathy through improving autophagy, mitophagy and mitochondrial dynamics. Nutrients. 15:35542023. View Article : Google Scholar : PubMed/NCBI

128 

Qian Q, Ma Q, Wang B, Qian Q, Zhao C, Feng F and Dong X: MicroRNA-205-5p targets E2F1 to promote autophagy and inhibit pulmonary fibrosis in silicosis through impairing SKP2-mediated Beclin1 ubiquitination. J Cell Mol Med. 25:9214–9227. 2021. View Article : Google Scholar : PubMed/NCBI

129 

Jessop F, Hamilton RF, Rhoderick JF, Shaw PK and Holian A: Autophagy deficiency in macrophages enhances NLRP3 inflammasome activity and chronic lung disease following silica exposure. Toxicol Appl Pharmacol. 309:101–110. 2016. View Article : Google Scholar : PubMed/NCBI

130 

Tan S and Chen S: Macrophage autophagy and silicosis: Current perspective and latest insights. Int J Mol Sci. 22:4532021. View Article : Google Scholar : PubMed/NCBI

131 

Tang PM, Nikolic-Paterson DJ and Lan HY: Macrophages: Versatile players in renal inflammation and fibrosis. Nat Rev Nephrol. 15:144–158. 2019. View Article : Google Scholar : PubMed/NCBI

132 

Liu K, Zhao E, Ilyas G, Lalazar G, Lin Y, Haseeb M, Tanaka KE and Czaja MJ: Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization. Autophagy. 11:271–284. 2015. View Article : Google Scholar : PubMed/NCBI

133 

Liu T, Wang L, Liang P, Wang X, Liu Y, Cai J, She Y, Wang D, Wang Z, Guo Z, et al: USP19 suppresses inflammation and promotes M2-like macrophage polarization by manipulating NLRP3 function via autophagy. Cell Mol Immunol. 18:2431–2442. 2021. View Article : Google Scholar :

134 

Bhatia D, Chung KP, Nakahira K, Patino E, Rice MC, Torres LK, Muthukumar T, Choi AM, Akchurin OM and Choi ME: Mitophagy-dependent macrophage reprogramming protects against kidney fibrosis. JCI Insight. 4:e1328262019. View Article : Google Scholar : PubMed/NCBI

135 

Zhang Y, Zhang C, Li L, Liang X, Cheng P, Li Q, Chang X, Wang K, Huang S, Li Y, et al: Lymphangiogenesis in renal fibrosis arises from macrophages via VEGF-C/VEGFR3-dependent autophagy and polarization. Cell Death Dis. 12:1092021. View Article : Google Scholar : PubMed/NCBI

136 

Lodder J, Denaës T, Chobert MN, Wan J, El-Benna J, Pawlotsky JM, Lotersztajn S and Teixeira-Clerc F: Macrophage autophagy protects against liver fibrosis in mice. Autophagy. 11:1280–1292. 2015. View Article : Google Scholar : PubMed/NCBI

137 

Oakes SA and Papa FR: The role of endoplasmic reticulum stress in human pathology. Annu Rev Pathol. 10:173–194. 2015. View Article : Google Scholar

138 

Senft D and Ronai ZA: UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends Biochem Sci. 40:141–148. 2015. View Article : Google Scholar : PubMed/NCBI

139 

Ajoolabady A, Kaplowitz N, Lebeaupin C, Kroemer G, Kaufman RJ, Malhi H and Ren J: Endoplasmic reticulum stress in liver diseases. Hepatology. 77:619–639. 2023. View Article : Google Scholar

140 

Malhi H and Kaufman RJ: Endoplasmic reticulum stress in liver disease. J Hepatol. 54:795–809. 2011. View Article : Google Scholar

141 

Chen X, Shi C, He M, Xiong S and Xia X: Endoplasmic reticulum stress: Molecular mechanism and therapeutic targets. Signal Transduct Target Ther. 8:3522023. View Article : Google Scholar : PubMed/NCBI

142 

Ernst R, Renne MF, Jain A and von der Malsburg A: Endoplasmic reticulum membrane homeostasis and the unfolded protein response. Cold Spring Harb Perspect Biol. 16:a0414002024. View Article : Google Scholar : PubMed/NCBI

143 

Gong J, Wang XZ, Wang T, Chen JJ, Xie XY, Hu H, Yu F, Liu HL, Jiang XY and Fan HD: Molecular signal networks and regulating mechanisms of the unfolded protein response. J Zhejiang Univ Sci B. 18:1–14. 2017. View Article : Google Scholar : PubMed/NCBI

144 

Xia SW, Wang ZM, Sun SM, Su Y, Li ZH, Shao JJ, Tan SZ, Chen AP, Wang SJ, Zhang ZL, et al: Endoplasmic reticulum stress and protein degradation in chronic liver disease. Pharmacol Res. 161:1052182020. View Article : Google Scholar : PubMed/NCBI

145 

Benedetti R, Romeo MA, Arena A, Gilardini Montani MS, D'Orazi G and Cirone M: ATF6 supports lysosomal function in tumor cells to enable ER stress-activated macroautophagy and CMA: Impact on mutant TP53 expression. Autophagy. 20:1854–1867. 2024. View Article : Google Scholar : PubMed/NCBI

146 

Chen L, Wei M, Zhou B, Wang K, Zhu E and Cheng Z: The roles and mechanisms of endoplasmic reticulum stress-mediated autophagy in animal viral infections. Vet Res. 55:1072024. View Article : Google Scholar : PubMed/NCBI

147 

Shi Y, Jiang B and Zhao J: Induction mechanisms of autophagy and endoplasmic reticulum stress in intestinal ischemia-reperfusion injury, inflammatory bowel disease, and colorectal cancer. Biomed Pharmacother. 170:1159842024. View Article : Google Scholar

148 

Feng S, Ji J, Li H and Zhang X: H2S alleviates renal ischemia and reperfusion injury by suppressing ERS-induced autophagy. Transpl Immunol. 83:1020062024. View Article : Google Scholar

149 

He L, Li H, Li C, Liu ZK, Lu M, Zhang RY, Wu D, Wei D, Shao J, Liu M, et al: HMMR alleviates endoplasmic reticulum stress by promoting autophagolysosomal activity during endoplasmic reticulum stress-driven hepatocellular carcinoma progression. Cancer Commun (Lond). 43:981–1002. 2023. View Article : Google Scholar : PubMed/NCBI

150 

Habshi T, Shelke V, Kale A, Anders HJ and Gaikwad AB: Role of endoplasmic reticulum stress and autophagy in the transition from acute kidney injury to chronic kidney disease. J Cell Physiol. 238:82–93. 2023. View Article : Google Scholar

151 

Liao H, Liu S, Ma Q, Huang H, Goel A, Torabian P, Mohan CD and Duan C: Endoplasmic reticulum stress induced autophagy in cancer and its potential interactions with apoptosis and ferroptosis. Biochim Biophys Acta Mol Cell Res. 1872:1198692025. View Article : Google Scholar

152 

Baek AR, Hong J, Song KS, Jang AS, Kim DJ, Chin SS and Park SW: Spermidine attenuates bleomycin-induced lung fibrosis by inducing autophagy and inhibiting endoplasmic reticulum stress (ERS)-induced cell death in mice. Exp Mol Med. 52:2034–2045. 2020. View Article : Google Scholar : PubMed/NCBI

153 

Ma C, Liu Y and Fu Z: Implications of endoplasmic reticulum stress and autophagy in aging and cardiovascular diseases. Front Pharmacol. 15:14138532024. View Article : Google Scholar : PubMed/NCBI

154 

Zhou L, Liu Z, Chen S, Qiu J, Li Q, Wang S, Zhou W, Chen D, Yang G and Guo L: Transcription factor EB-mediated autophagy promotes dermal fibroblast differentiation and collagen production by regulating endoplasmic reticulum stress and autophagy-dependent secretion. Int J Mol Med. 47:547–560. 2021. View Article : Google Scholar : PubMed/NCBI

155 

Wu W, Zhao Y, Hu T, Long Y, Zeng Y, Li M, Peng S, Hu J and Shen Y: Endoplasmic reticulum stress is upregulated in inflammatory bowel disease and contributed TLR2 pathway-mediated inflammatory response. Immunopharmacol Immunotoxicol. 46:192–198. 2024. View Article : Google Scholar

156 

Shi Y, Gao Z, Xu B, Mao J, Wang Y, Liu Z and Wang J: Protective effect of naringenin on cadmium chloride-induced renal injury via alleviating oxidative stress, endoplasmic reticulum stress, and autophagy in chickens. Front Pharmacol. 15:14408772024. View Article : Google Scholar : PubMed/NCBI

157 

Feng J, Chen Y, Lu B and Sun X, Zhu H and Sun X: Autophagy activated via GRP78 to alleviate endoplasmic reticulum stress for cell survival in blue light-mediated damage of A2E-laden RPEs. BMC Ophthalmol. 19:2492019. View Article : Google Scholar : PubMed/NCBI

158 

Shu S, Wang H, Zhu J, Liu Z, Yang D, Wu W, Cai J, Chen A, Tang C and Dong Z: Reciprocal regulation between ER stress and autophagy in renal tubular fibrosis and apoptosis. Cell Death Dis. 12:10162021. View Article : Google Scholar : PubMed/NCBI

159 

Xiong X, Zhang X, Zhang Y, Xie J, Bian Y, Yin Q, Tong R, Yu D and Pan L: Sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA)-mediated ER stress crosstalk with autophagy is involved in tris(2-chloroethyl) phosphate stress-induced cardiac fibrosis. J Inorg Biochem. 236:1119722022. View Article : Google Scholar : PubMed/NCBI

160 

Ren Y, Cui Q, Zhang J, Liu W, Xu M, Lv Y, Wu Z, Zhang Y and Wu R: Milk fat globule-egf factor 8 alleviates pancreatic fibrosis by inhibiting ER stress-induced chaperone-mediated autophagy in mice. Front Pharmacol. 12:7072592021. View Article : Google Scholar : PubMed/NCBI

161 

Zheng Y, Zhang D, Su L, Wen Y and Wang Y: FAM172A supervises ER (endoplasmic reticulum) stress-triggered autophagy in the epidural fibrosis process. JOR Spine. 5:e12032022. View Article : Google Scholar : PubMed/NCBI

162 

Singh A, Bhatt KS, Nguyen HC, Frisbee JC and Singh KK: Endothelial-to-mesenchymal transition in cardiovascular pathophysiology. Int J Mol Sci. 25:61802024. View Article : Google Scholar : PubMed/NCBI

163 

Jimenez SA and Piera-Velazquez S: Endothelial to mesenchymal transition (EndoMT) in the pathogenesis of Systemic Sclerosis-associated pulmonary fibrosis and pulmonary arterial hypertension. Myth or reality? Matrix Biol. 51:26–36. 2016. View Article : Google Scholar : PubMed/NCBI

164 

Piera-Velazquez S, Li Z and Jimenez SA: Role of endothelial-mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. Am J Pathol. 179:1074–1080. 2011. View Article : Google Scholar : PubMed/NCBI

165 

Singh B, Cui K, Eisa-Beygi S, Zhu B, Cowan DB, Shi J, Wang DZ, Liu Z, Bischoff J and Chen H: Elucidating the crosstalk between endothelial-to-mesenchymal transition (EndoMT) and endothelial autophagy in the pathogenesis of atherosclerosis. Vascul Pharmacol. 155:1073682024. View Article : Google Scholar : PubMed/NCBI

166 

Jackson AO, Zhang J, Jiang Z and Yin K: Endothelial-to-mesenchymal transition: A novel therapeutic target for cardiovascular diseases. Trends Cardiovasc Med. 27:383–393. 2017. View Article : Google Scholar : PubMed/NCBI

167 

Lu X, Gong J, Dennery PA and Yao H: Endothelial-to-mesenchymal transition: Pathogenesis and therapeutic targets for chronic pulmonary and vascular diseases. Biochem Pharmacol. 168:100–107. 2019. View Article : Google Scholar : PubMed/NCBI

168 

Bischoff J: Endothelial-to-mesenchymal transition. Circ Res. 124:1163–1165. 2019. View Article : Google Scholar : PubMed/NCBI

169 

Zhang L, He J, Wang J, Liu J, Chen Z, Deng B, Wei L, Wu H, Liang B, Li H, et al: Knockout RAGE alleviates cardiac fibrosis through repressing endothelial-to-mesenchymal transition (EndMT) mediated by autophagy. Cell Death Dis. 12:4702021. View Article : Google Scholar : PubMed/NCBI

170 

Pan JA, Zhang H, Lin H, Gao L, Zhang HL, Zhang JF, Wang CQ and Gu J: Irisin ameliorates doxorubicin-induced cardiac perivascular fibrosis through inhibiting endothelial-to-mesenchymal transition by regulating ROS accumulation and autophagy disorder in endothelial cells. Redox Biol. 46:1021202021. View Article : Google Scholar : PubMed/NCBI

171 

Zhou Z, Wang H, Zhang X, Song M, Yao S, Jiang P, Liu D, Wang Z, Lv H, Li R, et al: Defective autophagy contributes to endometrial epithelial-mesenchymal transition in intrauterine adhesions. Autophagy. 18:2427–2442. 2022. View Article : Google Scholar : PubMed/NCBI

172 

Singh KK, Lovren F, Pan Y, Quan A, Ramadan A, Matkar PN, Ehsan M, Sandhu P, Mantella LE, Gupta N, et al: The essential autophagy gene ATG7 modulates organ fibrosis via regulation of endothelial-to-mesenchymal transition. J Biol Chem. 290:2547–2559. 2015. View Article : Google Scholar :

173 

Livingston MJ, Shu S, Fan Y, Li Z, Jiao Q, Yin XM, Venkatachalam MA and Dong Z: Tubular cells produce FGF2 via autophagy after acute kidney injury leading to fibroblast activation and renal fibrosis. Autophagy. 19:256–277. 2023. View Article : Google Scholar :

174 

Nam SA, Kim WY, Kim JW, Park SH, Kim HL, Lee MS, Komatsu M, Ha H, Lim JH, Park CW, et al: Autophagy attenuates tubulointerstital fibrosis through regulating transforming growth factor-β and NLRP3 inflammasome signaling pathway. Cell Death Dis. 10:782019. View Article : Google Scholar

175 

Liu X, Tan S, Liu H, Jiang J, Wang X, Li L and Wu B: Hepatocyte-derived MASP1-enriched small extracellular vesicles activate HSCs to promote liver fibrosis. Hepatology. 77:1181–1197. 2023. View Article : Google Scholar

176 

Li S, Liu G, Gu M, Li Y, Li Y, Ji Z, Li K and Wang Y, Zhai H and Wang Y: A novel therapeutic approach for IPF: Based on the 'Autophagy-Apoptosis' balance regulation of Zukamu Granules in alveolar macrophages. J Ethnopharmacol. 297:1155682022. View Article : Google Scholar

177 

Chen M, Menon MC, Wang W, Fu J, Yi Z, Sun Z, Liu J, Li Z, Mou L, Banu K, et al: HCK induces macrophage activation to promote renal inflammation and fibrosis via suppression of autophagy. Nat Commun. 14:42972023. View Article : Google Scholar : PubMed/NCBI

178 

Liu XY, Zhang W, Ma BF, Sun MM and Shang QH: Advances in research on the effectiveness and mechanism of active ingredients from traditional Chinese medicine in regulating hepatic stellate cells autophagy against hepatic fibrosis. Drug Des Devel Ther. 18:2715–2727. 2024. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Chen Y, Wang Z, Ma Q and Sun C: The role of autophagy in fibrosis: Mechanisms, progression and therapeutic potential (Review). Int J Mol Med 55: 61, 2025.
APA
Chen, Y., Wang, Z., Ma, Q., & Sun, C. (2025). The role of autophagy in fibrosis: Mechanisms, progression and therapeutic potential (Review). International Journal of Molecular Medicine, 55, 61. https://doi.org/10.3892/ijmm.2025.5502
MLA
Chen, Y., Wang, Z., Ma, Q., Sun, C."The role of autophagy in fibrosis: Mechanisms, progression and therapeutic potential (Review)". International Journal of Molecular Medicine 55.4 (2025): 61.
Chicago
Chen, Y., Wang, Z., Ma, Q., Sun, C."The role of autophagy in fibrosis: Mechanisms, progression and therapeutic potential (Review)". International Journal of Molecular Medicine 55, no. 4 (2025): 61. https://doi.org/10.3892/ijmm.2025.5502
Copy and paste a formatted citation
x
Spandidos Publications style
Chen Y, Wang Z, Ma Q and Sun C: The role of autophagy in fibrosis: Mechanisms, progression and therapeutic potential (Review). Int J Mol Med 55: 61, 2025.
APA
Chen, Y., Wang, Z., Ma, Q., & Sun, C. (2025). The role of autophagy in fibrosis: Mechanisms, progression and therapeutic potential (Review). International Journal of Molecular Medicine, 55, 61. https://doi.org/10.3892/ijmm.2025.5502
MLA
Chen, Y., Wang, Z., Ma, Q., Sun, C."The role of autophagy in fibrosis: Mechanisms, progression and therapeutic potential (Review)". International Journal of Molecular Medicine 55.4 (2025): 61.
Chicago
Chen, Y., Wang, Z., Ma, Q., Sun, C."The role of autophagy in fibrosis: Mechanisms, progression and therapeutic potential (Review)". International Journal of Molecular Medicine 55, no. 4 (2025): 61. https://doi.org/10.3892/ijmm.2025.5502
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team