|
1
|
Jayaram H, Kolko M, Friedman DS and
Gazzard G: Glaucoma: Now and beyond. Lancet. 402:1788–1801. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Tham YC, Li X, Wong TY, Quigley HA, Aung T
and Cheng CY: Global prevalence of glaucoma and projections of
glaucoma burden through 2040: A systematic review and
meta-analysis. Ophthalmology. 121:2081–2090. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Kang JM and Tanna AP: Glaucoma. Med Clin
North Am. 105:493–510. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Downs JC and Girkin CA: Lamina cribrosa in
glaucoma. Curr Opin Ophthalmol. 28:113–119. 2017. View Article : Google Scholar :
|
|
5
|
Fernández-Albarral JA, Ramírez AI, de Hoz
R, Matamoros JA, Salobrar-García E, Elvira-Hurtado L, López-Cuenca
I, Sánchez-Puebla L, Salazar JJ and Ramírez JM: Glaucoma: From
pathogenic mechanisms to retinal glial cell response to damage.
Front Cell Neurosci. 18:13545692024. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Syc-Mazurek SB and Libby RT: Axon injury
signaling and compartmentalized injury response in glaucoma. Prog
Retin Eye Res. 73:1007692019. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Li L and Song F: Biomechanical research
into lamina cribrosa in glaucoma. Natl Sci Rev. 7:1277–1279. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Crupi L, Capra AP, Paterniti I, Lanza M,
Calapai F, Cuzzocrea S, Ardizzone A and Esposito E: Evaluation of
the nutraceutical Palmitoylethanolamide in reducing intraocular
pressure (IOP) in patients with glaucoma or ocular hypertension: A
systematic review and meta-analysis. Nat Prod Res. 1–20. 2024.
View Article : Google Scholar
|
|
9
|
Keuthan CJ, Schaub JA, Wei M, Fang W,
Quillen S, Kimball E, Johnson TV, Ji H, Zack DJ and Quigley HA:
Regional gene expression in the retina, optic nerve head, and optic
nerve of mice with optic nerve crush and experimental glaucoma. Int
J Mol Sci. 24:137192023. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Liu L and Yang X, Zhang J, Jiang W, Hou T,
Zong Y, Bai H, Yang K and Yang X: Long non-coding RNA SNHG11
regulates the Wnt/β-catenin signaling pathway through rho/ROCK in
trabecular meshwork cells. FASEB J. 37:e228732023. View Article : Google Scholar
|
|
11
|
Tsai T, Reinehr S, Deppe L, Strubbe A,
Kluge N, Dick HB and Joachim SC: Glaucoma animal models beyond
chronic IOP increase. Int Mol Sci. 25:9062024. View Article : Google Scholar
|
|
12
|
Leung DYL and Tham CC: Normal-tension
glaucoma: Current concepts and approaches-A review. Clin Exp
Ophthalmol. 50:247–259. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Wang W and Wang H: Understanding the
complex genetics and molecular mechanisms underlying glaucoma. Mol
Aspects Med. 94:1012202023. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Abbasi M, Gupta V, Chitranshi N,
Moustardas P, Ranjbaran R and Graham SL: Molecular mechanisms of
glaucoma pathogenesis with implications to caveolin adaptor protein
and Caveolin-Shp2 axis. Aging Dis. 15:2051–2068. 2024. View Article : Google Scholar :
|
|
15
|
Abbasi M, Gupta VK, Chitranshi N, Gupta V,
Ranjbaran R, Rajput R, Pushpitha K, Kb D, You Y, Salekdeh GH, et
al: Inner retinal injury in experimental glaucoma is prevented upon
AAV mediated Shp2 silencing in a caveolin dependent manner.
Theranostics. 11:6154–6172. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Xi X, Chen Q, Ma J, Wang X, Xia Y, Wen X,
Cai B and Li Y: Acteoside protects retinal ganglion cells from
experimental glaucoma by activating the PI3K/AKT signaling pathway
via caveolin 1 upregulation. Ann Transl Med. 10:3122022. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Zhang JH, Wang MJ, Tan YT, Luo J and Wang
SC: A bibliometric analysis of apoptosis in glaucoma. Front
Neurosci. 17:11051582023. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Erichev VP, Khachatryan GK and Khomchik
OV: Current trends in studying pathogenesis of glaucoma. Vestn
Oftalmol. 137:268–274. 2021.In Russian. View Article : Google Scholar
|
|
19
|
Xu F, Na L, Li Y and Chen L: Roles of the
PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and
tumours. Cell Biosci. 10:542020. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Levkovitch-Verbin H: Retinal ganglion cell
apoptotic pathway in glaucoma: Initiating and downstream
mechanisms. Prog Brain Res. 220:37–57. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Nie XG, Fan DS, Huang YX, He YY, Dong BL
and Gao F: Downregulation of microRNA-149 in retinal ganglion cells
suppresses apoptosis through activation of the PI3K/Akt signaling
pathway in mice with glaucoma. Am J Physiol Cell Physiol.
315:C839–C849. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Husain S, Ahmad A, Singh S, Peterseim C,
Abdul Y and Nutaitis MJ: PI3K/Akt pathway: A role in δ-opioid
receptor-mediated RGC Neuroprotection. Invest Ophthalmol Vis Sci.
58:6489–6499. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Bilanges B, Posor Y and Vanhaesebroeck B:
PI3K isoforms in cell signalling and vesicle trafficking. Nat Rev
Mol Cell Biol. 20:515–534. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Jafari M, Ghadami E, Dadkhah T and
Akhavan-Niaki H: PI3k/AKT signaling pathway: Erythropoiesis and
beyond. J Cell Physiol. 234:2373–2385. 2019. View Article : Google Scholar
|
|
25
|
Sánchez-Alegría K, Flores-León M,
Avila-Muñoz E, Rodríguez-Corona N and Arias C: PI3K signaling in
neurons: A central node for the control of multiple functions. Int
J Mol Sci. 19:37252018. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Haddadi N, Lin Y, Travis G, Simpson AM,
Nassif NT and McGowan EM: PTEN/PTENP1: 'Regulating the regulator of
RTK-dependent PI3K/Akt signalling', new targets for cancer therapy.
Mol Cancer. 17:372018. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Yudushkin I: Getting the Akt Together:
Guiding Intracellular Akt Activity by PI3K. Biomolecules. 9:672019.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Xu K, Li S, Yang Q, Zhou Z, Fu M, Yang X,
Hao K, Liu Y and Ji H: MicroRNA-145-5p targeting of TRIM2 mediates
the apoptosis of retinal ganglion cells via the PI3K/AKT signaling
pathway in glaucoma. J Gene Med. 23:e33782021. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Ariotti N and Parton RG: SnapShot:
Caveolae, caveolins, and cavins. Cell. 154:704–704.e1. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Parton RG and Collins BM: The structure of
caveolin finally takes shape. Sci Adv. 8:eabq69852022. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Surguchov A: Caveolin: A new link between
diabetes and AD. Cell Mol Neurobiol. 40:1059–1066. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Elliott MH, Ashpole NE, Gu X, Herrnberger
L, McClellan ME, Griffith GL, Reagan AM, Boyce TM, Tanito M, Tamm
ER and Stamer WD: Caveolin-1 modulates intraocular pressure:
Implications for caveolae mechanoprotection in glaucoma. Sci Rep.
6:371272016. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Xu Q, Shi W, Lv P, Meng W, Mao G, Gong C,
Chen Y, Wei Y, He X, Zhao J, et al: Critical role of caveolin-1 in
aflatoxin B1-induced hepatotoxicity via the regulation of oxidation
and autophagy. Cell Death Dis. 11:62020. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
De Almeida CJG: Caveolin-1 and Caveolin-2
can be antagonistic partners in inflammation and beyond. Front
Immunol. 8:15302017. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Kang Q, Xiang Y, Li D, Liang J, Zhang X,
Zhou F, Qiao M, Nie Y, He Y, Cheng J, et al: MiR-124-3p attenuates
hyperphosphorylation of Tau protein-induced apoptosis via
caveolin-1-PI3K/Akt/GSK3β pathway in N2a/APP695swe cells.
Oncotarget. 8:24314–24326. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Yu H, Chen B and Ren Q: Baicalin relieves
hypoxia-aroused H9c2 cell apoptosis by activating
Nrf2/HO-1-mediated HIF1α/BNIP3 pathway. Artif Cells Nanomed
Biotechnol. 47:3657–3663. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Xiao JR, Do CW and To CH: Potential
therapeutic effects of baicalein, baicalin, and wogonin in ocular
disorders. J Ocul Pharmacol Ther. 30:605–614. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Chen Q, Xi X, Zeng Y, He Z, Zhao J and Li
Y: Acteoside inhibits autophagic apoptosis of retinal ganglion
cells to rescue glaucoma-induced optic atrophy. J Cell Biochem.
120:13133–13140. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Zhao N, Shi J, Xu H, Luo Q, Li Q and Liu
M: Baicalin suppresses glaucoma pathogenesis by regulating the
PI3K/AKT signaling in vitro and in vivo. Bioengineered.
12:10187–10198. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Kim EK and Choi EJ: Compromised MAPK
signaling in human diseases: An update. Arch Toxicol. 89:867–882.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Moustardas P, Aberdam D and Lagali N: MAPK
pathways in ocular pathophysiology: Potential therapeutic drugs and
challenges. Cells. 12:6172023. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Liu W, Li X, Chen X, Zhang J, Luo L, Hu Q,
Zhou J, Yan J, Lin S and Ye J: JIP1 deficiency protects retinal
ganglion cells from apoptosis in a Rotenone-induced injury model.
Front Cell Dev Biol. 7:2252019. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Silverman SM and Wong WT: Microglia in the
retina: Roles in development, maturity, and disease. Annu Rev Vis
Sci. 4:45–77. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Canovas B and Nebreda AR: Diversity and
versatility of p38 kinase signalling in health and disease. Nat Rev
Mol Cell Biol. 22:346–366. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Mazaheri N, Peymani M, Galehdari H, Ghaedi
K, Ghoochani A, Kiani-Esfahani A and Nasr-Esfahani MH: Ameliorating
Effect of Osteopontin on H2O2-Induced apoptosis of human
oligodendrocyte progenitor cells. Cell Mol Neurobiol. 38:891–899.
2018. View Article : Google Scholar
|
|
46
|
Sun CM, Enkhjargal B, Reis C, Zhou KR, Xie
ZY, Wu LY, Zhang TY, Zhu QQ, Tang JP, Jiang XD and Zhang JH:
Osteopontin attenuates early brain injury through regulating
autophagy-apoptosis interaction after subarachnoid hemorrhage in
rats. CNS Neurosci Ther. 25:1162–1172. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Huang RH, Quan YJ, Chen JH, Wang TF, Xu M,
Ye M, Yuan H, Zhang CJ, Liu XJ and Min ZJ: Osteopontin promotes
cell migration and invasion, and inhibits apoptosis and autophagy
in colorectal cancer by activating the p38 MAPK signaling pathway.
Cell Physiol Biochem. 41:1851–1864. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Ulland TK, Song WM, Huang SC, Ulrich JD,
Sergushichev A, Beatty WL, Loboda AA, Zhou Y, Cairns NJ, Kambal A,
et al: TREM2 maintains microglial metabolic fitness in Alzheimer's
disease. Cell. 170:649–663.e13. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Ruzafa N, Pereiro X, Aspichueta P, Araiz J
and Vecino E: The retina of osteopontin deficient mice in aging.
Mol Neurobiol. 55:213–221. 2018. View Article : Google Scholar :
|
|
50
|
Lin EY, Xi W, Aggarwal N and Shinohara ML:
Osteopontin (OPN)/SPP1: From its biochemistry to biological
functions in the innate immune system and the central nervous
system (CNS). Int Immunol. 35:171–180. 2023. View Article : Google Scholar :
|
|
51
|
Yu H, Zhong H, Li N, Chen K, Chen J, Sun
J, Xu L, Wang J, Zhang M, Liu X, et al: Osteopontin activates
retinal microglia causing retinal ganglion cells loss via p38 MAPK
signaling pathway in glaucoma. FASEB J. 35:e214052021. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Ando K, Uemura K, Kuzuya A, Maesako M,
Asada-Utsugi M, Kubota M, Aoyagi N, Yoshioka K, Okawa K, Inoue H,
et al: N-cadherin regulates p38 MAPK signaling via association with
JNK-associated leucine zipper protein: Implications for
neurodegeneration in Alzheimer disease. J Biol Chem. 286:7619–7628.
2011. View Article : Google Scholar :
|
|
53
|
Spigolon G, Cavaccini A, Trusel M, Tonini
R and Fisone G: cJun N-terminal kinase (JNK) mediates
cortico-striatal signaling in a model of Parkinson's disease.
Neurobiol Dis. 110:37–46. 2018. View Article : Google Scholar
|
|
54
|
Mammone T, Chidlow G, Casson RJ and Wood
JPM: Expression and activation of mitogen-activated protein kinases
in the optic nerve head in a rat model of ocular hypertension. Mol
Cell Neurosci. 88:270–291. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Kim BJ, Silverman SM, Liu Y, Wordinger RJ,
Pang IH and Clark AF: In vitro and in vivo neuroprotective effects
of cJun N-terminal kinase inhibitors on retinal ganglion cells. Mol
Neurodegener. 11:302016. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Kang EY, Liu PK, Wen YT, Quinn PMJ, Levi
SR, Wang NK and Tsai RK: Role of oxidative stress in ocular
diseases associated with retinal ganglion cells degeneration.
Antioxidants (Basel). 10:19482021. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Liu S, Chen S, Ren J, Li B and Qin B:
Ghrelin protects retinal ganglion cells against rotenone via
inhibiting apoptosis, restoring mitochondrial function, and
activating AKT-mTOR signaling. Neuropeptides. 67:63–70. 2018.
View Article : Google Scholar
|
|
58
|
Yeo EJ, Eum WS, Yeo HJ, Choi YJ, Sohn EJ,
Kwon HJ, Kim DW, Kim DS, Cho SW, Park J, et al: Protective role of
transduced Tat-thioredoxin1 (Trx1) against oxidative stress-induced
neuronal cell death via ASK1-MAPK signal pathway. Biomol Ther
(Seoul). 29:321–330. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Hu J, Liu J, Chen S, Zhang C, Shen L, Yao
K and Yu Y: Thioredoxin-1 regulates the autophagy induced by
oxidative stress through LC3-II in human lens epithelial cells.
Clin Exp Pharmacol Physiol. 50:476–485. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Gao S, Cheng Q, Hu Y, Fan X, Liang C, Niu
C, Kang Q and Wei T: Correction to: Melatonin antagonizes oxidative
stress-induced apoptosis in retinal ganglion cells through
activating the thioredoxin-1 pathway. Mol Cell Biochem.
479:13172024. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Bernardo-Colón A, Vest V, Cooper ML,
Naguib SA, Calkins DJ and Rex TS: Progression and pathology of
traumatic optic neuropathy from repeated primary blast exposure.
Front Neurosci. 13:7192019. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Chu X, Wang C, Wu Z, Fan L, Tao C, Lin J,
Chen S, Lin Y and Ge Y: JNK/c-Jun-driven NLRP3 inflammasome
activation in microglia contributed to retinal ganglion cells
degeneration induced by indirect traumatic optic neuropathy. Exp
Eye Res. 202:1083352021. View Article : Google Scholar
|
|
63
|
Glab JA, Cao Z and Puthalakath H: Bcl-2
family proteins, beyond the veil. Int Rev Cell Mol Biol. 351:1–22.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Maes ME, Schlamp CL and Nickells RW: BAX
to basics: How the BCL2 gene family controls the death of retinal
ganglion cells. Prog Retin Eye Res. 57:1–25. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Singh R, Letai A and Sarosiek K:
Regulation of apoptosis in health and disease: The balancing act of
BCL-2 family proteins. Nat Rev Mol Cell Biol. 20:175–193. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Kaloni D, Diepstraten ST, Strasser A and
Kelly GL: BCL-2 protein family: Attractive targets for cancer
therapy. Apoptosis. 28:20–38. 2023. View Article : Google Scholar :
|
|
67
|
Aniogo EC, George BPA and Abrahamse H:
Role of Bcl-2 family proteins in photodynamic therapy mediated cell
survival and regulation. Molecules. 25:53082020. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Tsuji T, Murase T, Konishi Y and Inatani
M: Optic nerve injury enhanced mitochondrial fission and increased
mitochondrial density without altering the uniform mitochondrial
distribution in the unmyelinated axons of retinal ganglion cells in
a mouse model. Int J Mol Sci. 24:43562023. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Guo KM, Li W, Wang ZH, He LC, Feng Y and
Liu HS: Low-dose aspirin inhibits trophoblast cell apoptosis by
activating the CREB/Bcl-2 pathway in pre-eclampsia. Cell Cycle.
21:2223–2238. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Ye D, Shi Y, Xu Y and Huang J: PACAP
attenuates optic nerve Crush-induced retinal ganglion cell
apoptosis via activation of the CREB-Bcl-2 pathway. J Mol Neurosci.
68:475–484. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Ye D, Yang Y, Lu X, Xu Y, Shi Y, Chen H
and Huang J: Spatiotemporal expression changes of PACAP and its
receptors in retinal ganglion cells after optic nerve crush. J Mol
Neurosci. 68:465–474. 2019. View Article : Google Scholar
|
|
72
|
Michelessi M, Lucenteforte E, Oddone F,
Brazzelli M, Parravano M, Franchi S, Ng SM and Virgili G: Optic
nerve head and fibre layer imaging for diagnosing glaucoma.
Cochrane Database Syst Rev. 2015:CD0088032015.PubMed/NCBI
|
|
73
|
Hakim A, Guido B, Narsineni L, Chen DW and
Foldvari M: Gene therapy strategies for glaucoma from IOP reduction
to retinal neuroprotection: Progress towards non-viral systems. Adv
Drug Deliv Rev. 196:1147812023. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Kimura A, Namekata K, Guo X, Harada C and
Harada T: Neuroprotection, growth factors and BDNF-TrkB signalling
in retinal degeneration. Int J Mol Sci. 17:15842016. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Mysona BA, Zhao J and Bollinger KE: Role
of BDNF/TrkB pathway in the visual system: Therapeutic implications
for glaucoma. Expert Rev Ophthalmol. 12:69–81. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Dheer Y, Chitranshi N and Gupta V, Abbasi
M, Mirzaei M, You Y, Chung R, Graham SL and Gupta V: Bexarotene
modulates Retinoid-X-Receptor expression and is protective against
neurotoxic endoplasmic reticulum stress response and apoptotic
pathway activation. Mol Neurobiol. 55:9043–9056. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Gupta VK, Rajala A and Rajala RV: Insulin
receptor regulates photoreceptor CNG channel activity. Am J Physiol
Endocrinol Metab. 303:E1363–E1372. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Gómez del Rio MA, Sánchez-Reus MI,
Iglesias I, Pozo MA, García-Arencibia M, Fernández-Ruiz J,
García-García L, Delgado M and Benedí J: Neuroprotective properties
of standardized extracts of hypericum perforatum on rotenone model
of Parkinson's disease. CNS Neurol Disord Drug Targets. 12:665–679.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Kim HY, Park EJ, Joe EH and Jou I:
Curcumin suppresses Janus kinase-STAT inflammatory signaling
through activation of Src homology 2 domain-containing tyrosine
phosphatase 2 in brain microglia. J Immunol. 171:6072–6079. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Gupta VK, You Y, Klistorner A and Graham
SL: Shp-2 regulates the TrkB receptor activity in the retinal
ganglion cells under glaucomatous stress. Biochim Biophys Acta.
1822:1643–1649. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Gupta V, You Y, Li J, Gupta V, Golzan M,
Klistorner A, van den Buuse M and Graham S: BDNF impairment is
associated with age-related changes in the inner retina and
exacerbates experimental glaucoma. Biochim Biophys Acta.
1842:1567–1578. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Osborne A, Khatib TZ, Songra L, Barber AC,
Hall K, Kong GYX, Widdowson PS and Martin KR: Neuroprotection of
retinal ganglion cells by a novel gene therapy construct that
achieves sustained enhancement of brain-derived neurotrophic
factor/tropomyosin-related kinase receptor-B signaling. Cell Death
Dis. 9:10072018. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Wang X, Ma W, Wang T, Yang J, Wu Z, Liu K,
Dai Y, Zang C, Liu W, Liu J, et al: BDNF-TrkB and
proBDNF-p75NTR/Sortilin signaling pathways are involved in
Mitochondria-mediated neuronal apoptosis in dorsal root ganglia
after sciatic nerve transection. CNS Neurol Disord Drug Targets.
19:66–82. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Wu MM, Zhu TT, Wang P, Kuang F, Hao DJ,
You SW and Li YY: Dose-dependent protective effect of lithium
chloride on retinal ganglion cells is interrelated with an
upregulated intraretinal BDNF after optic nerve transection in
adult rats. Int J Mol Sci. 15:13550–13563. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Alexander MS and Velinov M:
DOCK3-Associated neurodevelopmental Disorder-clinical features and
molecular basis. Genes (Basel). 14:19402023. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Namekata K, Tsuji N, Guo X, Nishijima E,
Honda S, Kitamura Y, Yamasaki A, Kishida M, Takeyama J, Ishikawa H,
et al: Neuroprotection and axon regeneration by novel
low-molecular-weight compounds through the modification of DOCK3
conformation. Cell Death Discov. 9:1662023. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Li L, Fang F, Feng X, Zhuang P, Huang H,
Liu P, Liu L, Xu AZ, Qi LS, Cong L and Hu Y: Single-cell
transcriptome analysis of regenerating RGCs reveals potent glaucoma
neural repair genes. Neuron. 110:2646–2663.e6. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Gauthier AC and Liu J: Epigenetics and
signaling pathways in glaucoma. Biomed Res Int. 2017:57123412017.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Chen AM, Azar SS, Har ris A, Brecha NC and
Pérez de Sevilla Müller L: PTEN expression regulates gap junction
connectivity in the retina. Front Neuroanat. 15:6292442021.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Xu K, Yu L, Wang Z, Lin P, Zhang N, Xing Y
and Yang N: Use of gene therapy for optic nerve protection: Current
concepts. Front Neurosci. 17:11580302023. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Mak HK, Ng SH, Ren T, Ye C and Leung CK:
Impact of PTEN/SOCS3 deletion on amelioration of dendritic
shrinkage of retinal ganglion cells after optic nerve injury. Exp
Eye Res. 192:1079382020. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Saleeb R, Kim SS, Ding Q, Scorilas A, Lin
S, Khella HW, Boulos C, Ibrahim G and Yousef GM: The miR-200 family
as prognostic markers in clear cell renal cell carcinoma. Urol
Oncol. 37:955–963. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Shen Y, Zhu Y and Rong F: miR-200c-3p
regulates the proliferation and apoptosis of human trabecular
meshwork cells by targeting PTEN. Mol Med Rep. 22:1605–1612. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Li XY, Wang SS, Han Z, Han F, Chang YP,
Yang Y, Xue M, Sun B and Chen LM: Triptolide restores autophagy to
alleviate diabetic renal fibrosis through the
miR-141-3p/PTEN/Akt/mTOR pathway. Mol Ther Nucleic Acids. 9:48–56.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Wang Y, Niu L, Zhao J, Wang M, Li K and
Zheng Y: An update: Mechanisms of microRNA in primary open-angle
glaucoma. Brief Funct Genomics. 20:19–27. 2021. View Article : Google Scholar
|
|
96
|
Rheaume BA, Xing J, Lukomska A, Theune WC,
Damania A, Sjogren G and Trakhtenberg EF: Pten inhibition
dedifferentiates long-distance axon-regenerating intrinsically
photosensitive retinal ganglion cells and upregulates
mitochondria-associated Dynlt1a and Lars2. Development.
150:dev2016442023. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Van de Velde S, De Groef L, Stalmans I,
Moons L and Van Hove I: Towards axonal regeneration and
neuroprotection in glaucoma: Rho kinase inhibitors as promising
therapeutics. Prog Neurobiol. 131:105–119. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Wang J, Liu X and Zhong Y:
Rho/Rho-associated kinase pathway in glaucoma (Review). Int J
Oncol. 43:1357–1367. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Al-Humimat G, Marashdeh I, Daradkeh D and
Kooner K: Investigational rho kinase inhibitors for the treatment
of glaucoma. J Exp Pharmacol. 13:197–212. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Ahmad I and Subramani M: Microglia:
Friends or foes in glaucoma? A Developmental Perspective. Stem
Cells Transl Med. 11:1210–1218. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Sato K, Ohno-Oishi M, Yoshida M, Sato T,
Aizawa T, Sasaki Y, Maekawa S, Ishikawa M, Omodaka K, Kawano C, et
al: The GPR84 molecule is a mediator of a subpopulation of retinal
microglia that promote TNF/IL-1α expression via the rho-ROCK
pathway after optic nerve injury. Glia. 71:2609–2622. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Sagawa H, Terasaki H, Nakamura M, Ichikawa
M, Yata T, Tokita Y and Watanabe M: A novel ROCK inhibitor,
Y-39983, promotes regeneration of crushed axons of retinal ganglion
cells into the optic nerve of adult cats. Exp Neurol. 205:230–240.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Lingor P, Tönges L, Pieper N, Bermel C,
Barski E, Planchamp V and Bähr M: ROCK inhibition and CNTF interact
on intrinsic signalling pathways and differentially regulate
survival and regeneration in retinal ganglion cells. Brain.
131:250–263. 2008. View Article : Google Scholar
|
|
104
|
Shaw PX, Sang A, Wang Y, Ho D, Douglas C,
Dia L and Goldberg JL: Topical administration of a Rock/Net
inhibitor promotes retinal ganglion cell survival and axon
regeneration after optic nerve injury. Exp Eye Res. 158:33–42.
2017. View Article : Google Scholar
|
|
105
|
Nishijima E, Namekata K, Kimura A, Guo X,
Harada C, Noro T, Nakano T and Harada T: Topical ripasudil
stimulates neuroprotection and axon regeneration in adult mice
following optic nerve injury. Sci Rep. 10:157092020. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Pagano L, Lee JW, Posarelli M, Giannaccare
G, Kaye S and Borgia A: ROCK inhibitors in corneal diseases and
Glaucoma-A comprehensive review of these emerging drugs. J Clin
Med. 12:67362023. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Palmhof M, Wagner N, Nagel C, Biert N,
Stute G, Dick HB and Joachim SC: Retinal ischemia triggers early
microglia activation in the optic nerve followed by neurofilament
degeneration. Exp Eye Res. 198:1081332020. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Tokushige H, Waki M, Takayama Y and
Tanihara H: Effects of Y-39983, a selective Rho-associated protein
kinase inhibitor, on blood flow in optic nerve head in rabbits and
axonal regeneration of retinal ganglion cells in rats. Curr Eye
Res. 36:964–970. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Liu Q, Liu C and Lei B: siRNA mediated
downregulation of RhoA expression reduces oxidative induced
apoptosis in retinal ganglion cells. Curr Mol Med. 24:630–636.
2024. View Article : Google Scholar
|
|
110
|
Tan NY, Koh V, Girard MJ and Cheng CY:
Imaging of the lamina cribrosa and its role in glaucoma: A review.
Clin Exp Ophthalmol. 46:177–188. 2018. View Article : Google Scholar
|
|
111
|
Liu XY and Fan N: Lamina cribrosa defect
and progress of glaucoma. Zhonghua Yan Ke Za Zhi. 56:17–20. 2020.In
Chinese. PubMed/NCBI
|
|
112
|
Kim YW, Jeoung JW, Kim DW, Girard MJ, Mari
JM, Park KH and Kim DM: Clinical assessment of lamina cribrosa
curvature in eyes with primary Open-angle glaucoma. PLoS One.
11:e01502602016. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Kim JA, Lee SH, Son DH, Kim TW, Lee EJ,
Girard MJA and Mari JM: Morphologic changes in the lamina cribrosa
upon intraocular pressure lowering in patients with normal tension
glaucoma. Invest Ophthalmol Vis Sci. 63:232022. View Article : Google Scholar
|
|
114
|
Strickland RG, Garner MA, Gross AK and
Girkin CA: Remodeling of the lamina Cribrosa: Mechanisms and
potential therapeutic approaches for glaucoma. Int J Mol Sci.
23:80682022. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Yao X, Gao S and Yan N: Structural biology
of voltage-gated calcium channels. Channels (Austin).
18:22908072024. View Article : Google Scholar
|
|
116
|
Fan Gaskin JC, Shah MH and Chan EC:
Oxidative stress and the role of NADPH oxidase in glaucoma.
Antioxidants (Basel). 10:2382021. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Irnaten M and O'Brien CJ:
Calcium-Signalling in human glaucoma lamina cribrosa
myofibroblasts. Int J Mol Sci. 24:12872023. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Jain R, Watson U, Vasudevan L and Saini
DK: ERK activation pathways downstream of GPCRs. Int Rev Cell Mol
Biol. 338:79–109. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Woll KA and Van Petegem F: Calcium-release
channels: Structure and function of IP3 receptors and ryanodine
receptors. Physiol Rev. 102:209–268. 2022. View Article : Google Scholar
|
|
120
|
Irnaten M, Duff A, Clark A and O'Brien C:
Intra-cellular calcium signaling pathways (PKC, RAS/RAF/MAPK, PI3K)
in lamina cribrosa cells in glaucoma. J Clin Med. 10:622020.
View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Gu X, Reagan AM, McClellan ME and Elliott
MH: Caveolins and caveolae in ocular physiology and
pathophysiology. Prog Retin Eye Res. 56:84–106. 2017. View Article : Google Scholar :
|
|
122
|
Aga M, Bradley JM, Wanchu R, Yang YF,
Acott TS and Keller KE: Differential effects of caveolin-1 and -2
knockdown on aqueous outflow and altered extracellular matrix
turnover in caveolin-silenced trabecular meshwork cells. Invest
Ophthalmol Vis Sci. 55:5497–5509. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Irnaten M, Zhdanov A, Brennan D, Crotty T,
Clark A, Papkovsky D and O'Brien C: Activation of the NFAT-calcium
signaling pathway in human lamina cribrosa cells in glaucoma.
Invest Ophthalmol Vis Sci. 59:831–842. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Quill B, Irnaten M, Docherty NG, McElnea
EM, Wallace DM, Clark AF and O'Brien CJ: Calcium channel blockade
reduces mechanical strain-induced extracellular matrix gene
response in lamina cribrosa cells. Br J Ophthalmol. 99:1009–1014.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Irnaten M, O'Malley G, Clark AF and
O'Brien CJ: Transient receptor potential channels TRPC1/TRPC6
regulate lamina cribrosa cell extracellular matrix gene
transcription and proliferation. Exp Eye Res. 193:1079802020.
View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Hu H, Nie D, Fang M, He W, Zhang J, Liu X
and Zhang G: Müller cells under hydrostatic pressure modulate
retinal cell survival via TRPV1/PLCγ1 complex-mediated calcium
influx in experimental glaucoma. FEBS J. 291:2703–2714. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Irnaten M, Barry RC, Wallace DM, Docherty
NG, Quill B, Clark AF and O'Brien CJ: Elevated maxi-K(+) ion
channel current in glaucomatous lamina cribrosa cells. Exp Eye Res.
115:224–229. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
McElnea EM, Quill B, Docherty NG, Irnaten
M, Siah WF, Clark AF, O'Brien CJ and Wallace DM: Oxidative stress,
mitochondrial dysfunction and calcium overload in human lamina
cribrosa cells from glaucoma donors. Mol Vis. 17:1182–1191.
2011.PubMed/NCBI
|
|
129
|
Wallace DM and O'Brien CJ: The role of
lamina cribrosa cells in optic nerve head fibrosis in glaucoma. Exp
Eye Res. 142:102–109. 2016. View Article : Google Scholar
|
|
130
|
Das A, Kashyap O, Singh A, Shree J, Namdeo
KP and Bodakhe SH: Oxymatrine protects TGFβ1-induced retinal
fibrosis in an animal model of glaucoma. Front Med (Lausanne).
8:7503422021. View Article : Google Scholar
|
|
131
|
Ling C, Zhang D, Zhang J, Sun H, Du Q and
Li X: Updates on the molecular genetics of primary congenital
glaucoma (Review). Exp Ther Med. 20:968–977. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Tsukamoto T, Kajiwara K, Nada S and Okada
M: Src mediates TGF-β-induced intraocular pressure elevation in
glaucoma. J Cell Physiol. 234:1730–1744. 2019. View Article : Google Scholar
|
|
133
|
Zhang YE: Non-smad signaling pathways of
the TGF-β family. Cold Spring Harb Perspect Biol. 9:a0221292017.
View Article : Google Scholar
|
|
134
|
Hachana S and Larrivée B: TGF-β
superfamily signaling in the eye: Implications for ocular
pathologies. Cells. 11:23362022. View Article : Google Scholar
|
|
135
|
Zode GS, Sethi A, Brun-Zinkernagel AM,
Chang IF, Clark AF and Wordinger RJ: Transforming growth factor-β2
increases extracellular matrix proteins in optic nerve head cells
via activation of the Smad signaling pathway. Mol Vis.
17:1745–1758. 2011.
|
|
136
|
Murphy-Ullrich JE and Downs JC: The
Thrombospondin1-TGF-β pathway and glaucoma. J Ocul Pharmacol Ther.
31:371–375. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Lopez NN, Rangan R, Clark AF and
Tovar-Vidales T: Mirna expression in glaucomatous and TGFβ2 treated
lamina cribrosa cells. Int J Mol Sci. 22:2372. 2021. View Article : Google Scholar
|
|
138
|
Zhou L, Wang L, Lu L, Jiang P, Sun H and
Wang H: Inhibition of miR-29 by TGF-beta-Smad3 signaling through
dual mechanisms promotes transdifferentiation of mouse myoblasts
into myofibroblasts. PLoS One. 7:e337662012. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Zhao Y, Zhang F, Pan Z, Luo H, Liu K and
Duan X: LncRNA NR_003923 promotes cell proliferation, migration,
fibrosis, and autophagy via the miR-760/miR-215-3p/IL22RA1 axis in
human Tenon's capsule fibroblasts. Cell Death Dis. 10:5942019.
View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Hurley DJ, Normile C, Irnaten M and
O'Brien C: The intertwined roles of oxidative stress and
endoplasmic reticulum stress in glaucoma. Antioxidants. 11:8862022.
View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Baudouin C, Kolko M, Melik-Parsadaniantz S
and Messmer EM: Inflammation in glaucoma: From the back to the
front of the eye, and beyond. Prog Retin Eye Res. 83:1009162021.
View Article : Google Scholar
|
|
142
|
Feng L, Dai S, Zhang C, Zhang W, Zhu W,
Wang C, He Y and Song W: Ripa-56 protects retinal ganglion cells in
glutamate-induced retinal excitotoxic model of glaucoma. Sci Rep.
14:38342024. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Vallée A, Lecarpentier Y and Vallée JN:
Cannabidiol and the canonical WNT/β-catenin pathway in glaucoma.
Int J Mol Sci. 22:37982021. View Article : Google Scholar
|
|
144
|
Boesl F, Drexler K, Müller B, Seitz R,
Weber GR, Priglinger SG, Fuchshofer R, Tamm ER and Ohlmann A:
Endogenous Wnt/β-catenin signaling in Müller cells protects retinal
ganglion cells from excitotoxic damage. Mol Vis. 26:135–149.
2020.
|
|
145
|
Patel AK, Park KK and Hackam AS: Wnt
signaling promotes axonal regeneration following optic nerve injury
in the mouse. Neuroscience. 343:372–383. 2017. View Article : Google Scholar
|
|
146
|
Wang X, Huai G, Wang H, Liu Y, Qi P, Shi
W, Peng J, Yang H, Deng S and Wang Y: Mutual regulation of the
Hippo/Wnt/LPA/TGF-β signaling pathways and their roles in glaucoma
(Review). Int J Mol Med. 41:1201–1212. 2018.
|
|
147
|
Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang
X, Zhou Z, Shu G and Yin G: Wnt/β-catenin signalling: Function,
biological mechanisms, and therapeutic opportunities. Signal
Transduct Target Ther. 7:32022. View Article : Google Scholar
|
|
148
|
Wang Z, Li Z and Ji H: Direct targeting of
β-catenin in the Wnt signaling pathway: Current progress and
perspectives. Med Res Rev. 41:2109–2129. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
149
|
Udeh A, Dvoriantchikova G, Carmy T, Ivanov
D and Hackam AS: Wnt signaling induces neurite outgrowth in mouse
retinal ganglion cells. Exp Eye Res. 182:39–43. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Seitz R, Hackl S, Seibuchner T, Tamm ER
and Ohlmann A: Norrin mediates neuroprotective effects on retinal
ganglion cells via activation of the Wnt/beta-catenin signaling
pathway and the induction of neuroprotective growth factors in
Muller cells. Neurosci. 30:5998–6010. 2010. View Article : Google Scholar
|
|
151
|
Fragoso MA, Patel AK, Nakamura RE, Yi H,
Surapaneni K and Hackam AS: The Wnt/β-catenin pathway cross-talks
with STAT3 signaling to regulate survival of retinal pigment
epithelium cells. PLoS One. 7:e468922012. View Article : Google Scholar
|
|
152
|
Schmitt AM, Shi J, Wolf AM, Lu CC, King LA
and Zou Y: Wnt-Ryk signalling mediates medial-lateral retinotectal
topographic mapping. Nature. 439:31–37. 2006. View Article : Google Scholar
|
|
153
|
Cui J, Shi M, Quan M and Xie K: Regulation
of EMT by KLF4 in gastrointestinal cancer. Curr Cancer Drug
Targets. 13:986–995. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
154
|
Vallée A and Vallée JN: Warburg effect
hypothesis in autism Spectrum disorders. Mol Brain. 11:12018.
View Article : Google Scholar : PubMed/NCBI
|
|
155
|
Lee TJ, Kodeboyina SK, Bollinger KE,
Ulrich L, Bogorad D, Estes A, Zhi W, Sharma S and Sharma A: The
abundance of serine protease inhibitors in human aqueous humor and
race and gender-specific alterations in glaucoma patients.
Investigative Ophthalmol Visual Sci. 62:3367. 2021.
|
|
156
|
Basava rajappa D, Galindo-Romero C, Gupta
V, Agudo-Barriuso M, Gupta VB, Graham SL and Chitranshi N:
Signalling pathways and cell death mechanisms in glaucoma: Insights
into the molecular pathophysiology. Mol Aspects Med. 94:1012162023.
View Article : Google Scholar
|
|
157
|
Park HL, Kim JH, Jung Y and Park CK:
Racial differences in the extracellular matrix and histone
acetylation of the lamina cribrosa and peripapillary sclera. Invest
Ophthalmol Vis Sci. 58:4143–4154. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
158
|
Agarwal P and Agarwal R: Trabecular
meshwork ECM remodeling in glaucoma: Could RAS be a target? Expert
Opin Ther Targets. 22:629–638. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
159
|
Kontoh-Twumasi R, Budkin S, Edupuganti N,
Vashishtha A and Sharma S: Role of serine protease inhibitors A1
and A3 in ocular pathologies. Invest Ophthalmol Vis Sci. 65:162024.
View Article : Google Scholar : PubMed/NCBI
|
|
160
|
Chitranshi N, Rajput R, Godinez A,
Pushpitha K, Mirzaei M, Basavarajappa D, Gupta V, Sharma S, You Y,
Galliciotti G, et al: Neuroserpin gene therapy inhibits retinal
ganglion cell apoptosis and promotes functional preservation in
glaucoma. Mol Ther. 31:2056–2076. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
161
|
Gupta V, Mirzaei M, Gupta VB, Chitranshi
N, Dheer Y, Vander Wall R, Abbasi M, You Y, Chung R and Graham S:
Glaucoma is associated with plasmin proteolytic activation mediated
through oxidative inactivation of neuroserpin. Sci Rep. 7:84122017.
View Article : Google Scholar : PubMed/NCBI
|
|
162
|
Tsuda Y, Nakahara T, Ueda K, Mori A,
Sakamoto K and Ishii K: Effect of nafamostat on
N-methyl-D-aspartate-induced retinal neuronal and capillary
degeneration in rats. Biol Pharm Bull. 35:2209–2213. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
163
|
Yang X, Zeng Q and Tezel G: Regulation of
distinct caspase-8 functions in retinal ganglion cells and
astroglia in experimental glaucoma. Neurobiol Dis. 150:1052582021.
View Article : Google Scholar : PubMed/NCBI
|
|
164
|
Choudhury S, Liu Y, Clark AF and Pang IH:
Caspase-7: A critical mediator of optic nerve injury-induced
retinal ganglion cell death. Mol Neurodegener. 10:402015.
View Article : Google Scholar : PubMed/NCBI
|