Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
April-2025 Volume 55 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2025 Volume 55 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

The molecular mechanisms underlying retinal ganglion cell apoptosis and optic nerve regeneration in glaucoma (Review)

  • Authors:
    • Xiaotong Wang
    • Liang Sun
    • Xudong Han
    • Zhanglong Li
    • Yuqing Xing
    • Xinyue Chen
    • Ruofan Xi
    • Yuecong Sun
    • Guilong Wang
    • Ping Zhao
  • View Affiliations / Copyright

    Affiliations: Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China, College of Artificial Intelligence and Big Data for Medical Sciences, Shandong First Medical University, Jinan, Shandong 250021, P.R. China, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China, Shandong Provincial Education Department, Jinan, Shandong 250012, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 63
    |
    Published online on: February 13, 2025
       https://doi.org/10.3892/ijmm.2025.5504
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Glaucoma is a neurodegenerative disease characterized by progressive and irreversible necrosis and apoptosis of retinal ganglion cells (RGCs). Deformation of the lamina cribrosa (LC) has been identified as a factor leading to damage to the optic nerve and capillaries passing through the LC, ultimately causing visual field defects and glaucoma development. Recent advancements in molecular biology, both domestically and internationally, have enabled a more comprehensive and in‑depth understanding of glaucoma pathogenesis. In the present review, the role of molecular signaling pathways associated with RGCs apoptosis, optic nerve protection and regeneration, and LC damage and remodeling in the development of glaucoma, are summarized and discussed. The insights provided herein may offer new targets and ideas for interventions and treatment strategies for glaucoma.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Jayaram H, Kolko M, Friedman DS and Gazzard G: Glaucoma: Now and beyond. Lancet. 402:1788–1801. 2023. View Article : Google Scholar : PubMed/NCBI

2 

Tham YC, Li X, Wong TY, Quigley HA, Aung T and Cheng CY: Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology. 121:2081–2090. 2014. View Article : Google Scholar : PubMed/NCBI

3 

Kang JM and Tanna AP: Glaucoma. Med Clin North Am. 105:493–510. 2021. View Article : Google Scholar : PubMed/NCBI

4 

Downs JC and Girkin CA: Lamina cribrosa in glaucoma. Curr Opin Ophthalmol. 28:113–119. 2017. View Article : Google Scholar :

5 

Fernández-Albarral JA, Ramírez AI, de Hoz R, Matamoros JA, Salobrar-García E, Elvira-Hurtado L, López-Cuenca I, Sánchez-Puebla L, Salazar JJ and Ramírez JM: Glaucoma: From pathogenic mechanisms to retinal glial cell response to damage. Front Cell Neurosci. 18:13545692024. View Article : Google Scholar : PubMed/NCBI

6 

Syc-Mazurek SB and Libby RT: Axon injury signaling and compartmentalized injury response in glaucoma. Prog Retin Eye Res. 73:1007692019. View Article : Google Scholar : PubMed/NCBI

7 

Li L and Song F: Biomechanical research into lamina cribrosa in glaucoma. Natl Sci Rev. 7:1277–1279. 2020. View Article : Google Scholar : PubMed/NCBI

8 

Crupi L, Capra AP, Paterniti I, Lanza M, Calapai F, Cuzzocrea S, Ardizzone A and Esposito E: Evaluation of the nutraceutical Palmitoylethanolamide in reducing intraocular pressure (IOP) in patients with glaucoma or ocular hypertension: A systematic review and meta-analysis. Nat Prod Res. 1–20. 2024. View Article : Google Scholar

9 

Keuthan CJ, Schaub JA, Wei M, Fang W, Quillen S, Kimball E, Johnson TV, Ji H, Zack DJ and Quigley HA: Regional gene expression in the retina, optic nerve head, and optic nerve of mice with optic nerve crush and experimental glaucoma. Int J Mol Sci. 24:137192023. View Article : Google Scholar : PubMed/NCBI

10 

Liu L and Yang X, Zhang J, Jiang W, Hou T, Zong Y, Bai H, Yang K and Yang X: Long non-coding RNA SNHG11 regulates the Wnt/β-catenin signaling pathway through rho/ROCK in trabecular meshwork cells. FASEB J. 37:e228732023. View Article : Google Scholar

11 

Tsai T, Reinehr S, Deppe L, Strubbe A, Kluge N, Dick HB and Joachim SC: Glaucoma animal models beyond chronic IOP increase. Int Mol Sci. 25:9062024. View Article : Google Scholar

12 

Leung DYL and Tham CC: Normal-tension glaucoma: Current concepts and approaches-A review. Clin Exp Ophthalmol. 50:247–259. 2022. View Article : Google Scholar : PubMed/NCBI

13 

Wang W and Wang H: Understanding the complex genetics and molecular mechanisms underlying glaucoma. Mol Aspects Med. 94:1012202023. View Article : Google Scholar : PubMed/NCBI

14 

Abbasi M, Gupta V, Chitranshi N, Moustardas P, Ranjbaran R and Graham SL: Molecular mechanisms of glaucoma pathogenesis with implications to caveolin adaptor protein and Caveolin-Shp2 axis. Aging Dis. 15:2051–2068. 2024. View Article : Google Scholar :

15 

Abbasi M, Gupta VK, Chitranshi N, Gupta V, Ranjbaran R, Rajput R, Pushpitha K, Kb D, You Y, Salekdeh GH, et al: Inner retinal injury in experimental glaucoma is prevented upon AAV mediated Shp2 silencing in a caveolin dependent manner. Theranostics. 11:6154–6172. 2021. View Article : Google Scholar : PubMed/NCBI

16 

Xi X, Chen Q, Ma J, Wang X, Xia Y, Wen X, Cai B and Li Y: Acteoside protects retinal ganglion cells from experimental glaucoma by activating the PI3K/AKT signaling pathway via caveolin 1 upregulation. Ann Transl Med. 10:3122022. View Article : Google Scholar : PubMed/NCBI

17 

Zhang JH, Wang MJ, Tan YT, Luo J and Wang SC: A bibliometric analysis of apoptosis in glaucoma. Front Neurosci. 17:11051582023. View Article : Google Scholar : PubMed/NCBI

18 

Erichev VP, Khachatryan GK and Khomchik OV: Current trends in studying pathogenesis of glaucoma. Vestn Oftalmol. 137:268–274. 2021.In Russian. View Article : Google Scholar

19 

Xu F, Na L, Li Y and Chen L: Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell Biosci. 10:542020. View Article : Google Scholar : PubMed/NCBI

20 

Levkovitch-Verbin H: Retinal ganglion cell apoptotic pathway in glaucoma: Initiating and downstream mechanisms. Prog Brain Res. 220:37–57. 2015. View Article : Google Scholar : PubMed/NCBI

21 

Nie XG, Fan DS, Huang YX, He YY, Dong BL and Gao F: Downregulation of microRNA-149 in retinal ganglion cells suppresses apoptosis through activation of the PI3K/Akt signaling pathway in mice with glaucoma. Am J Physiol Cell Physiol. 315:C839–C849. 2018. View Article : Google Scholar : PubMed/NCBI

22 

Husain S, Ahmad A, Singh S, Peterseim C, Abdul Y and Nutaitis MJ: PI3K/Akt pathway: A role in δ-opioid receptor-mediated RGC Neuroprotection. Invest Ophthalmol Vis Sci. 58:6489–6499. 2017. View Article : Google Scholar : PubMed/NCBI

23 

Bilanges B, Posor Y and Vanhaesebroeck B: PI3K isoforms in cell signalling and vesicle trafficking. Nat Rev Mol Cell Biol. 20:515–534. 2019. View Article : Google Scholar : PubMed/NCBI

24 

Jafari M, Ghadami E, Dadkhah T and Akhavan-Niaki H: PI3k/AKT signaling pathway: Erythropoiesis and beyond. J Cell Physiol. 234:2373–2385. 2019. View Article : Google Scholar

25 

Sánchez-Alegría K, Flores-León M, Avila-Muñoz E, Rodríguez-Corona N and Arias C: PI3K signaling in neurons: A central node for the control of multiple functions. Int J Mol Sci. 19:37252018. View Article : Google Scholar : PubMed/NCBI

26 

Haddadi N, Lin Y, Travis G, Simpson AM, Nassif NT and McGowan EM: PTEN/PTENP1: 'Regulating the regulator of RTK-dependent PI3K/Akt signalling', new targets for cancer therapy. Mol Cancer. 17:372018. View Article : Google Scholar : PubMed/NCBI

27 

Yudushkin I: Getting the Akt Together: Guiding Intracellular Akt Activity by PI3K. Biomolecules. 9:672019. View Article : Google Scholar : PubMed/NCBI

28 

Xu K, Li S, Yang Q, Zhou Z, Fu M, Yang X, Hao K, Liu Y and Ji H: MicroRNA-145-5p targeting of TRIM2 mediates the apoptosis of retinal ganglion cells via the PI3K/AKT signaling pathway in glaucoma. J Gene Med. 23:e33782021. View Article : Google Scholar : PubMed/NCBI

29 

Ariotti N and Parton RG: SnapShot: Caveolae, caveolins, and cavins. Cell. 154:704–704.e1. 2013. View Article : Google Scholar : PubMed/NCBI

30 

Parton RG and Collins BM: The structure of caveolin finally takes shape. Sci Adv. 8:eabq69852022. View Article : Google Scholar : PubMed/NCBI

31 

Surguchov A: Caveolin: A new link between diabetes and AD. Cell Mol Neurobiol. 40:1059–1066. 2020. View Article : Google Scholar : PubMed/NCBI

32 

Elliott MH, Ashpole NE, Gu X, Herrnberger L, McClellan ME, Griffith GL, Reagan AM, Boyce TM, Tanito M, Tamm ER and Stamer WD: Caveolin-1 modulates intraocular pressure: Implications for caveolae mechanoprotection in glaucoma. Sci Rep. 6:371272016. View Article : Google Scholar : PubMed/NCBI

33 

Xu Q, Shi W, Lv P, Meng W, Mao G, Gong C, Chen Y, Wei Y, He X, Zhao J, et al: Critical role of caveolin-1 in aflatoxin B1-induced hepatotoxicity via the regulation of oxidation and autophagy. Cell Death Dis. 11:62020. View Article : Google Scholar : PubMed/NCBI

34 

De Almeida CJG: Caveolin-1 and Caveolin-2 can be antagonistic partners in inflammation and beyond. Front Immunol. 8:15302017. View Article : Google Scholar : PubMed/NCBI

35 

Kang Q, Xiang Y, Li D, Liang J, Zhang X, Zhou F, Qiao M, Nie Y, He Y, Cheng J, et al: MiR-124-3p attenuates hyperphosphorylation of Tau protein-induced apoptosis via caveolin-1-PI3K/Akt/GSK3β pathway in N2a/APP695swe cells. Oncotarget. 8:24314–24326. 2017. View Article : Google Scholar : PubMed/NCBI

36 

Yu H, Chen B and Ren Q: Baicalin relieves hypoxia-aroused H9c2 cell apoptosis by activating Nrf2/HO-1-mediated HIF1α/BNIP3 pathway. Artif Cells Nanomed Biotechnol. 47:3657–3663. 2019. View Article : Google Scholar : PubMed/NCBI

37 

Xiao JR, Do CW and To CH: Potential therapeutic effects of baicalein, baicalin, and wogonin in ocular disorders. J Ocul Pharmacol Ther. 30:605–614. 2014. View Article : Google Scholar : PubMed/NCBI

38 

Chen Q, Xi X, Zeng Y, He Z, Zhao J and Li Y: Acteoside inhibits autophagic apoptosis of retinal ganglion cells to rescue glaucoma-induced optic atrophy. J Cell Biochem. 120:13133–13140. 2019. View Article : Google Scholar : PubMed/NCBI

39 

Zhao N, Shi J, Xu H, Luo Q, Li Q and Liu M: Baicalin suppresses glaucoma pathogenesis by regulating the PI3K/AKT signaling in vitro and in vivo. Bioengineered. 12:10187–10198. 2021. View Article : Google Scholar : PubMed/NCBI

40 

Kim EK and Choi EJ: Compromised MAPK signaling in human diseases: An update. Arch Toxicol. 89:867–882. 2015. View Article : Google Scholar : PubMed/NCBI

41 

Moustardas P, Aberdam D and Lagali N: MAPK pathways in ocular pathophysiology: Potential therapeutic drugs and challenges. Cells. 12:6172023. View Article : Google Scholar : PubMed/NCBI

42 

Liu W, Li X, Chen X, Zhang J, Luo L, Hu Q, Zhou J, Yan J, Lin S and Ye J: JIP1 deficiency protects retinal ganglion cells from apoptosis in a Rotenone-induced injury model. Front Cell Dev Biol. 7:2252019. View Article : Google Scholar : PubMed/NCBI

43 

Silverman SM and Wong WT: Microglia in the retina: Roles in development, maturity, and disease. Annu Rev Vis Sci. 4:45–77. 2018. View Article : Google Scholar : PubMed/NCBI

44 

Canovas B and Nebreda AR: Diversity and versatility of p38 kinase signalling in health and disease. Nat Rev Mol Cell Biol. 22:346–366. 2021. View Article : Google Scholar : PubMed/NCBI

45 

Mazaheri N, Peymani M, Galehdari H, Ghaedi K, Ghoochani A, Kiani-Esfahani A and Nasr-Esfahani MH: Ameliorating Effect of Osteopontin on H2O2-Induced apoptosis of human oligodendrocyte progenitor cells. Cell Mol Neurobiol. 38:891–899. 2018. View Article : Google Scholar

46 

Sun CM, Enkhjargal B, Reis C, Zhou KR, Xie ZY, Wu LY, Zhang TY, Zhu QQ, Tang JP, Jiang XD and Zhang JH: Osteopontin attenuates early brain injury through regulating autophagy-apoptosis interaction after subarachnoid hemorrhage in rats. CNS Neurosci Ther. 25:1162–1172. 2019. View Article : Google Scholar : PubMed/NCBI

47 

Huang RH, Quan YJ, Chen JH, Wang TF, Xu M, Ye M, Yuan H, Zhang CJ, Liu XJ and Min ZJ: Osteopontin promotes cell migration and invasion, and inhibits apoptosis and autophagy in colorectal cancer by activating the p38 MAPK signaling pathway. Cell Physiol Biochem. 41:1851–1864. 2017. View Article : Google Scholar : PubMed/NCBI

48 

Ulland TK, Song WM, Huang SC, Ulrich JD, Sergushichev A, Beatty WL, Loboda AA, Zhou Y, Cairns NJ, Kambal A, et al: TREM2 maintains microglial metabolic fitness in Alzheimer's disease. Cell. 170:649–663.e13. 2017. View Article : Google Scholar : PubMed/NCBI

49 

Ruzafa N, Pereiro X, Aspichueta P, Araiz J and Vecino E: The retina of osteopontin deficient mice in aging. Mol Neurobiol. 55:213–221. 2018. View Article : Google Scholar :

50 

Lin EY, Xi W, Aggarwal N and Shinohara ML: Osteopontin (OPN)/SPP1: From its biochemistry to biological functions in the innate immune system and the central nervous system (CNS). Int Immunol. 35:171–180. 2023. View Article : Google Scholar :

51 

Yu H, Zhong H, Li N, Chen K, Chen J, Sun J, Xu L, Wang J, Zhang M, Liu X, et al: Osteopontin activates retinal microglia causing retinal ganglion cells loss via p38 MAPK signaling pathway in glaucoma. FASEB J. 35:e214052021. View Article : Google Scholar : PubMed/NCBI

52 

Ando K, Uemura K, Kuzuya A, Maesako M, Asada-Utsugi M, Kubota M, Aoyagi N, Yoshioka K, Okawa K, Inoue H, et al: N-cadherin regulates p38 MAPK signaling via association with JNK-associated leucine zipper protein: Implications for neurodegeneration in Alzheimer disease. J Biol Chem. 286:7619–7628. 2011. View Article : Google Scholar :

53 

Spigolon G, Cavaccini A, Trusel M, Tonini R and Fisone G: cJun N-terminal kinase (JNK) mediates cortico-striatal signaling in a model of Parkinson's disease. Neurobiol Dis. 110:37–46. 2018. View Article : Google Scholar

54 

Mammone T, Chidlow G, Casson RJ and Wood JPM: Expression and activation of mitogen-activated protein kinases in the optic nerve head in a rat model of ocular hypertension. Mol Cell Neurosci. 88:270–291. 2018. View Article : Google Scholar : PubMed/NCBI

55 

Kim BJ, Silverman SM, Liu Y, Wordinger RJ, Pang IH and Clark AF: In vitro and in vivo neuroprotective effects of cJun N-terminal kinase inhibitors on retinal ganglion cells. Mol Neurodegener. 11:302016. View Article : Google Scholar : PubMed/NCBI

56 

Kang EY, Liu PK, Wen YT, Quinn PMJ, Levi SR, Wang NK and Tsai RK: Role of oxidative stress in ocular diseases associated with retinal ganglion cells degeneration. Antioxidants (Basel). 10:19482021. View Article : Google Scholar : PubMed/NCBI

57 

Liu S, Chen S, Ren J, Li B and Qin B: Ghrelin protects retinal ganglion cells against rotenone via inhibiting apoptosis, restoring mitochondrial function, and activating AKT-mTOR signaling. Neuropeptides. 67:63–70. 2018. View Article : Google Scholar

58 

Yeo EJ, Eum WS, Yeo HJ, Choi YJ, Sohn EJ, Kwon HJ, Kim DW, Kim DS, Cho SW, Park J, et al: Protective role of transduced Tat-thioredoxin1 (Trx1) against oxidative stress-induced neuronal cell death via ASK1-MAPK signal pathway. Biomol Ther (Seoul). 29:321–330. 2021. View Article : Google Scholar : PubMed/NCBI

59 

Hu J, Liu J, Chen S, Zhang C, Shen L, Yao K and Yu Y: Thioredoxin-1 regulates the autophagy induced by oxidative stress through LC3-II in human lens epithelial cells. Clin Exp Pharmacol Physiol. 50:476–485. 2023. View Article : Google Scholar : PubMed/NCBI

60 

Gao S, Cheng Q, Hu Y, Fan X, Liang C, Niu C, Kang Q and Wei T: Correction to: Melatonin antagonizes oxidative stress-induced apoptosis in retinal ganglion cells through activating the thioredoxin-1 pathway. Mol Cell Biochem. 479:13172024. View Article : Google Scholar : PubMed/NCBI

61 

Bernardo-Colón A, Vest V, Cooper ML, Naguib SA, Calkins DJ and Rex TS: Progression and pathology of traumatic optic neuropathy from repeated primary blast exposure. Front Neurosci. 13:7192019. View Article : Google Scholar : PubMed/NCBI

62 

Chu X, Wang C, Wu Z, Fan L, Tao C, Lin J, Chen S, Lin Y and Ge Y: JNK/c-Jun-driven NLRP3 inflammasome activation in microglia contributed to retinal ganglion cells degeneration induced by indirect traumatic optic neuropathy. Exp Eye Res. 202:1083352021. View Article : Google Scholar

63 

Glab JA, Cao Z and Puthalakath H: Bcl-2 family proteins, beyond the veil. Int Rev Cell Mol Biol. 351:1–22. 2020. View Article : Google Scholar : PubMed/NCBI

64 

Maes ME, Schlamp CL and Nickells RW: BAX to basics: How the BCL2 gene family controls the death of retinal ganglion cells. Prog Retin Eye Res. 57:1–25. 2017. View Article : Google Scholar : PubMed/NCBI

65 

Singh R, Letai A and Sarosiek K: Regulation of apoptosis in health and disease: The balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol. 20:175–193. 2019. View Article : Google Scholar : PubMed/NCBI

66 

Kaloni D, Diepstraten ST, Strasser A and Kelly GL: BCL-2 protein family: Attractive targets for cancer therapy. Apoptosis. 28:20–38. 2023. View Article : Google Scholar :

67 

Aniogo EC, George BPA and Abrahamse H: Role of Bcl-2 family proteins in photodynamic therapy mediated cell survival and regulation. Molecules. 25:53082020. View Article : Google Scholar : PubMed/NCBI

68 

Tsuji T, Murase T, Konishi Y and Inatani M: Optic nerve injury enhanced mitochondrial fission and increased mitochondrial density without altering the uniform mitochondrial distribution in the unmyelinated axons of retinal ganglion cells in a mouse model. Int J Mol Sci. 24:43562023. View Article : Google Scholar : PubMed/NCBI

69 

Guo KM, Li W, Wang ZH, He LC, Feng Y and Liu HS: Low-dose aspirin inhibits trophoblast cell apoptosis by activating the CREB/Bcl-2 pathway in pre-eclampsia. Cell Cycle. 21:2223–2238. 2022. View Article : Google Scholar : PubMed/NCBI

70 

Ye D, Shi Y, Xu Y and Huang J: PACAP attenuates optic nerve Crush-induced retinal ganglion cell apoptosis via activation of the CREB-Bcl-2 pathway. J Mol Neurosci. 68:475–484. 2019. View Article : Google Scholar : PubMed/NCBI

71 

Ye D, Yang Y, Lu X, Xu Y, Shi Y, Chen H and Huang J: Spatiotemporal expression changes of PACAP and its receptors in retinal ganglion cells after optic nerve crush. J Mol Neurosci. 68:465–474. 2019. View Article : Google Scholar

72 

Michelessi M, Lucenteforte E, Oddone F, Brazzelli M, Parravano M, Franchi S, Ng SM and Virgili G: Optic nerve head and fibre layer imaging for diagnosing glaucoma. Cochrane Database Syst Rev. 2015:CD0088032015.PubMed/NCBI

73 

Hakim A, Guido B, Narsineni L, Chen DW and Foldvari M: Gene therapy strategies for glaucoma from IOP reduction to retinal neuroprotection: Progress towards non-viral systems. Adv Drug Deliv Rev. 196:1147812023. View Article : Google Scholar : PubMed/NCBI

74 

Kimura A, Namekata K, Guo X, Harada C and Harada T: Neuroprotection, growth factors and BDNF-TrkB signalling in retinal degeneration. Int J Mol Sci. 17:15842016. View Article : Google Scholar : PubMed/NCBI

75 

Mysona BA, Zhao J and Bollinger KE: Role of BDNF/TrkB pathway in the visual system: Therapeutic implications for glaucoma. Expert Rev Ophthalmol. 12:69–81. 2017. View Article : Google Scholar : PubMed/NCBI

76 

Dheer Y, Chitranshi N and Gupta V, Abbasi M, Mirzaei M, You Y, Chung R, Graham SL and Gupta V: Bexarotene modulates Retinoid-X-Receptor expression and is protective against neurotoxic endoplasmic reticulum stress response and apoptotic pathway activation. Mol Neurobiol. 55:9043–9056. 2018. View Article : Google Scholar : PubMed/NCBI

77 

Gupta VK, Rajala A and Rajala RV: Insulin receptor regulates photoreceptor CNG channel activity. Am J Physiol Endocrinol Metab. 303:E1363–E1372. 2012. View Article : Google Scholar : PubMed/NCBI

78 

Gómez del Rio MA, Sánchez-Reus MI, Iglesias I, Pozo MA, García-Arencibia M, Fernández-Ruiz J, García-García L, Delgado M and Benedí J: Neuroprotective properties of standardized extracts of hypericum perforatum on rotenone model of Parkinson's disease. CNS Neurol Disord Drug Targets. 12:665–679. 2013. View Article : Google Scholar : PubMed/NCBI

79 

Kim HY, Park EJ, Joe EH and Jou I: Curcumin suppresses Janus kinase-STAT inflammatory signaling through activation of Src homology 2 domain-containing tyrosine phosphatase 2 in brain microglia. J Immunol. 171:6072–6079. 2003. View Article : Google Scholar : PubMed/NCBI

80 

Gupta VK, You Y, Klistorner A and Graham SL: Shp-2 regulates the TrkB receptor activity in the retinal ganglion cells under glaucomatous stress. Biochim Biophys Acta. 1822:1643–1649. 2012. View Article : Google Scholar : PubMed/NCBI

81 

Gupta V, You Y, Li J, Gupta V, Golzan M, Klistorner A, van den Buuse M and Graham S: BDNF impairment is associated with age-related changes in the inner retina and exacerbates experimental glaucoma. Biochim Biophys Acta. 1842:1567–1578. 2014. View Article : Google Scholar : PubMed/NCBI

82 

Osborne A, Khatib TZ, Songra L, Barber AC, Hall K, Kong GYX, Widdowson PS and Martin KR: Neuroprotection of retinal ganglion cells by a novel gene therapy construct that achieves sustained enhancement of brain-derived neurotrophic factor/tropomyosin-related kinase receptor-B signaling. Cell Death Dis. 9:10072018. View Article : Google Scholar : PubMed/NCBI

83 

Wang X, Ma W, Wang T, Yang J, Wu Z, Liu K, Dai Y, Zang C, Liu W, Liu J, et al: BDNF-TrkB and proBDNF-p75NTR/Sortilin signaling pathways are involved in Mitochondria-mediated neuronal apoptosis in dorsal root ganglia after sciatic nerve transection. CNS Neurol Disord Drug Targets. 19:66–82. 2020. View Article : Google Scholar : PubMed/NCBI

84 

Wu MM, Zhu TT, Wang P, Kuang F, Hao DJ, You SW and Li YY: Dose-dependent protective effect of lithium chloride on retinal ganglion cells is interrelated with an upregulated intraretinal BDNF after optic nerve transection in adult rats. Int J Mol Sci. 15:13550–13563. 2014. View Article : Google Scholar : PubMed/NCBI

85 

Alexander MS and Velinov M: DOCK3-Associated neurodevelopmental Disorder-clinical features and molecular basis. Genes (Basel). 14:19402023. View Article : Google Scholar : PubMed/NCBI

86 

Namekata K, Tsuji N, Guo X, Nishijima E, Honda S, Kitamura Y, Yamasaki A, Kishida M, Takeyama J, Ishikawa H, et al: Neuroprotection and axon regeneration by novel low-molecular-weight compounds through the modification of DOCK3 conformation. Cell Death Discov. 9:1662023. View Article : Google Scholar : PubMed/NCBI

87 

Li L, Fang F, Feng X, Zhuang P, Huang H, Liu P, Liu L, Xu AZ, Qi LS, Cong L and Hu Y: Single-cell transcriptome analysis of regenerating RGCs reveals potent glaucoma neural repair genes. Neuron. 110:2646–2663.e6. 2022. View Article : Google Scholar : PubMed/NCBI

88 

Gauthier AC and Liu J: Epigenetics and signaling pathways in glaucoma. Biomed Res Int. 2017:57123412017. View Article : Google Scholar : PubMed/NCBI

89 

Chen AM, Azar SS, Har ris A, Brecha NC and Pérez de Sevilla Müller L: PTEN expression regulates gap junction connectivity in the retina. Front Neuroanat. 15:6292442021. View Article : Google Scholar : PubMed/NCBI

90 

Xu K, Yu L, Wang Z, Lin P, Zhang N, Xing Y and Yang N: Use of gene therapy for optic nerve protection: Current concepts. Front Neurosci. 17:11580302023. View Article : Google Scholar : PubMed/NCBI

91 

Mak HK, Ng SH, Ren T, Ye C and Leung CK: Impact of PTEN/SOCS3 deletion on amelioration of dendritic shrinkage of retinal ganglion cells after optic nerve injury. Exp Eye Res. 192:1079382020. View Article : Google Scholar : PubMed/NCBI

92 

Saleeb R, Kim SS, Ding Q, Scorilas A, Lin S, Khella HW, Boulos C, Ibrahim G and Yousef GM: The miR-200 family as prognostic markers in clear cell renal cell carcinoma. Urol Oncol. 37:955–963. 2019. View Article : Google Scholar : PubMed/NCBI

93 

Shen Y, Zhu Y and Rong F: miR-200c-3p regulates the proliferation and apoptosis of human trabecular meshwork cells by targeting PTEN. Mol Med Rep. 22:1605–1612. 2020. View Article : Google Scholar : PubMed/NCBI

94 

Li XY, Wang SS, Han Z, Han F, Chang YP, Yang Y, Xue M, Sun B and Chen LM: Triptolide restores autophagy to alleviate diabetic renal fibrosis through the miR-141-3p/PTEN/Akt/mTOR pathway. Mol Ther Nucleic Acids. 9:48–56. 2017. View Article : Google Scholar : PubMed/NCBI

95 

Wang Y, Niu L, Zhao J, Wang M, Li K and Zheng Y: An update: Mechanisms of microRNA in primary open-angle glaucoma. Brief Funct Genomics. 20:19–27. 2021. View Article : Google Scholar

96 

Rheaume BA, Xing J, Lukomska A, Theune WC, Damania A, Sjogren G and Trakhtenberg EF: Pten inhibition dedifferentiates long-distance axon-regenerating intrinsically photosensitive retinal ganglion cells and upregulates mitochondria-associated Dynlt1a and Lars2. Development. 150:dev2016442023. View Article : Google Scholar : PubMed/NCBI

97 

Van de Velde S, De Groef L, Stalmans I, Moons L and Van Hove I: Towards axonal regeneration and neuroprotection in glaucoma: Rho kinase inhibitors as promising therapeutics. Prog Neurobiol. 131:105–119. 2015. View Article : Google Scholar : PubMed/NCBI

98 

Wang J, Liu X and Zhong Y: Rho/Rho-associated kinase pathway in glaucoma (Review). Int J Oncol. 43:1357–1367. 2013. View Article : Google Scholar : PubMed/NCBI

99 

Al-Humimat G, Marashdeh I, Daradkeh D and Kooner K: Investigational rho kinase inhibitors for the treatment of glaucoma. J Exp Pharmacol. 13:197–212. 2021. View Article : Google Scholar : PubMed/NCBI

100 

Ahmad I and Subramani M: Microglia: Friends or foes in glaucoma? A Developmental Perspective. Stem Cells Transl Med. 11:1210–1218. 2022. View Article : Google Scholar : PubMed/NCBI

101 

Sato K, Ohno-Oishi M, Yoshida M, Sato T, Aizawa T, Sasaki Y, Maekawa S, Ishikawa M, Omodaka K, Kawano C, et al: The GPR84 molecule is a mediator of a subpopulation of retinal microglia that promote TNF/IL-1α expression via the rho-ROCK pathway after optic nerve injury. Glia. 71:2609–2622. 2023. View Article : Google Scholar : PubMed/NCBI

102 

Sagawa H, Terasaki H, Nakamura M, Ichikawa M, Yata T, Tokita Y and Watanabe M: A novel ROCK inhibitor, Y-39983, promotes regeneration of crushed axons of retinal ganglion cells into the optic nerve of adult cats. Exp Neurol. 205:230–240. 2007. View Article : Google Scholar : PubMed/NCBI

103 

Lingor P, Tönges L, Pieper N, Bermel C, Barski E, Planchamp V and Bähr M: ROCK inhibition and CNTF interact on intrinsic signalling pathways and differentially regulate survival and regeneration in retinal ganglion cells. Brain. 131:250–263. 2008. View Article : Google Scholar

104 

Shaw PX, Sang A, Wang Y, Ho D, Douglas C, Dia L and Goldberg JL: Topical administration of a Rock/Net inhibitor promotes retinal ganglion cell survival and axon regeneration after optic nerve injury. Exp Eye Res. 158:33–42. 2017. View Article : Google Scholar

105 

Nishijima E, Namekata K, Kimura A, Guo X, Harada C, Noro T, Nakano T and Harada T: Topical ripasudil stimulates neuroprotection and axon regeneration in adult mice following optic nerve injury. Sci Rep. 10:157092020. View Article : Google Scholar : PubMed/NCBI

106 

Pagano L, Lee JW, Posarelli M, Giannaccare G, Kaye S and Borgia A: ROCK inhibitors in corneal diseases and Glaucoma-A comprehensive review of these emerging drugs. J Clin Med. 12:67362023. View Article : Google Scholar : PubMed/NCBI

107 

Palmhof M, Wagner N, Nagel C, Biert N, Stute G, Dick HB and Joachim SC: Retinal ischemia triggers early microglia activation in the optic nerve followed by neurofilament degeneration. Exp Eye Res. 198:1081332020. View Article : Google Scholar : PubMed/NCBI

108 

Tokushige H, Waki M, Takayama Y and Tanihara H: Effects of Y-39983, a selective Rho-associated protein kinase inhibitor, on blood flow in optic nerve head in rabbits and axonal regeneration of retinal ganglion cells in rats. Curr Eye Res. 36:964–970. 2011. View Article : Google Scholar : PubMed/NCBI

109 

Liu Q, Liu C and Lei B: siRNA mediated downregulation of RhoA expression reduces oxidative induced apoptosis in retinal ganglion cells. Curr Mol Med. 24:630–636. 2024. View Article : Google Scholar

110 

Tan NY, Koh V, Girard MJ and Cheng CY: Imaging of the lamina cribrosa and its role in glaucoma: A review. Clin Exp Ophthalmol. 46:177–188. 2018. View Article : Google Scholar

111 

Liu XY and Fan N: Lamina cribrosa defect and progress of glaucoma. Zhonghua Yan Ke Za Zhi. 56:17–20. 2020.In Chinese. PubMed/NCBI

112 

Kim YW, Jeoung JW, Kim DW, Girard MJ, Mari JM, Park KH and Kim DM: Clinical assessment of lamina cribrosa curvature in eyes with primary Open-angle glaucoma. PLoS One. 11:e01502602016. View Article : Google Scholar : PubMed/NCBI

113 

Kim JA, Lee SH, Son DH, Kim TW, Lee EJ, Girard MJA and Mari JM: Morphologic changes in the lamina cribrosa upon intraocular pressure lowering in patients with normal tension glaucoma. Invest Ophthalmol Vis Sci. 63:232022. View Article : Google Scholar

114 

Strickland RG, Garner MA, Gross AK and Girkin CA: Remodeling of the lamina Cribrosa: Mechanisms and potential therapeutic approaches for glaucoma. Int J Mol Sci. 23:80682022. View Article : Google Scholar : PubMed/NCBI

115 

Yao X, Gao S and Yan N: Structural biology of voltage-gated calcium channels. Channels (Austin). 18:22908072024. View Article : Google Scholar

116 

Fan Gaskin JC, Shah MH and Chan EC: Oxidative stress and the role of NADPH oxidase in glaucoma. Antioxidants (Basel). 10:2382021. View Article : Google Scholar : PubMed/NCBI

117 

Irnaten M and O'Brien CJ: Calcium-Signalling in human glaucoma lamina cribrosa myofibroblasts. Int J Mol Sci. 24:12872023. View Article : Google Scholar : PubMed/NCBI

118 

Jain R, Watson U, Vasudevan L and Saini DK: ERK activation pathways downstream of GPCRs. Int Rev Cell Mol Biol. 338:79–109. 2018. View Article : Google Scholar : PubMed/NCBI

119 

Woll KA and Van Petegem F: Calcium-release channels: Structure and function of IP3 receptors and ryanodine receptors. Physiol Rev. 102:209–268. 2022. View Article : Google Scholar

120 

Irnaten M, Duff A, Clark A and O'Brien C: Intra-cellular calcium signaling pathways (PKC, RAS/RAF/MAPK, PI3K) in lamina cribrosa cells in glaucoma. J Clin Med. 10:622020. View Article : Google Scholar : PubMed/NCBI

121 

Gu X, Reagan AM, McClellan ME and Elliott MH: Caveolins and caveolae in ocular physiology and pathophysiology. Prog Retin Eye Res. 56:84–106. 2017. View Article : Google Scholar :

122 

Aga M, Bradley JM, Wanchu R, Yang YF, Acott TS and Keller KE: Differential effects of caveolin-1 and -2 knockdown on aqueous outflow and altered extracellular matrix turnover in caveolin-silenced trabecular meshwork cells. Invest Ophthalmol Vis Sci. 55:5497–5509. 2014. View Article : Google Scholar : PubMed/NCBI

123 

Irnaten M, Zhdanov A, Brennan D, Crotty T, Clark A, Papkovsky D and O'Brien C: Activation of the NFAT-calcium signaling pathway in human lamina cribrosa cells in glaucoma. Invest Ophthalmol Vis Sci. 59:831–842. 2018. View Article : Google Scholar : PubMed/NCBI

124 

Quill B, Irnaten M, Docherty NG, McElnea EM, Wallace DM, Clark AF and O'Brien CJ: Calcium channel blockade reduces mechanical strain-induced extracellular matrix gene response in lamina cribrosa cells. Br J Ophthalmol. 99:1009–1014. 2015. View Article : Google Scholar : PubMed/NCBI

125 

Irnaten M, O'Malley G, Clark AF and O'Brien CJ: Transient receptor potential channels TRPC1/TRPC6 regulate lamina cribrosa cell extracellular matrix gene transcription and proliferation. Exp Eye Res. 193:1079802020. View Article : Google Scholar : PubMed/NCBI

126 

Hu H, Nie D, Fang M, He W, Zhang J, Liu X and Zhang G: Müller cells under hydrostatic pressure modulate retinal cell survival via TRPV1/PLCγ1 complex-mediated calcium influx in experimental glaucoma. FEBS J. 291:2703–2714. 2024. View Article : Google Scholar : PubMed/NCBI

127 

Irnaten M, Barry RC, Wallace DM, Docherty NG, Quill B, Clark AF and O'Brien CJ: Elevated maxi-K(+) ion channel current in glaucomatous lamina cribrosa cells. Exp Eye Res. 115:224–229. 2013. View Article : Google Scholar : PubMed/NCBI

128 

McElnea EM, Quill B, Docherty NG, Irnaten M, Siah WF, Clark AF, O'Brien CJ and Wallace DM: Oxidative stress, mitochondrial dysfunction and calcium overload in human lamina cribrosa cells from glaucoma donors. Mol Vis. 17:1182–1191. 2011.PubMed/NCBI

129 

Wallace DM and O'Brien CJ: The role of lamina cribrosa cells in optic nerve head fibrosis in glaucoma. Exp Eye Res. 142:102–109. 2016. View Article : Google Scholar

130 

Das A, Kashyap O, Singh A, Shree J, Namdeo KP and Bodakhe SH: Oxymatrine protects TGFβ1-induced retinal fibrosis in an animal model of glaucoma. Front Med (Lausanne). 8:7503422021. View Article : Google Scholar

131 

Ling C, Zhang D, Zhang J, Sun H, Du Q and Li X: Updates on the molecular genetics of primary congenital glaucoma (Review). Exp Ther Med. 20:968–977. 2020. View Article : Google Scholar : PubMed/NCBI

132 

Tsukamoto T, Kajiwara K, Nada S and Okada M: Src mediates TGF-β-induced intraocular pressure elevation in glaucoma. J Cell Physiol. 234:1730–1744. 2019. View Article : Google Scholar

133 

Zhang YE: Non-smad signaling pathways of the TGF-β family. Cold Spring Harb Perspect Biol. 9:a0221292017. View Article : Google Scholar

134 

Hachana S and Larrivée B: TGF-β superfamily signaling in the eye: Implications for ocular pathologies. Cells. 11:23362022. View Article : Google Scholar

135 

Zode GS, Sethi A, Brun-Zinkernagel AM, Chang IF, Clark AF and Wordinger RJ: Transforming growth factor-β2 increases extracellular matrix proteins in optic nerve head cells via activation of the Smad signaling pathway. Mol Vis. 17:1745–1758. 2011.

136 

Murphy-Ullrich JE and Downs JC: The Thrombospondin1-TGF-β pathway and glaucoma. J Ocul Pharmacol Ther. 31:371–375. 2015. View Article : Google Scholar : PubMed/NCBI

137 

Lopez NN, Rangan R, Clark AF and Tovar-Vidales T: Mirna expression in glaucomatous and TGFβ2 treated lamina cribrosa cells. Int J Mol Sci. 22:2372. 2021. View Article : Google Scholar

138 

Zhou L, Wang L, Lu L, Jiang P, Sun H and Wang H: Inhibition of miR-29 by TGF-beta-Smad3 signaling through dual mechanisms promotes transdifferentiation of mouse myoblasts into myofibroblasts. PLoS One. 7:e337662012. View Article : Google Scholar : PubMed/NCBI

139 

Zhao Y, Zhang F, Pan Z, Luo H, Liu K and Duan X: LncRNA NR_003923 promotes cell proliferation, migration, fibrosis, and autophagy via the miR-760/miR-215-3p/IL22RA1 axis in human Tenon's capsule fibroblasts. Cell Death Dis. 10:5942019. View Article : Google Scholar : PubMed/NCBI

140 

Hurley DJ, Normile C, Irnaten M and O'Brien C: The intertwined roles of oxidative stress and endoplasmic reticulum stress in glaucoma. Antioxidants. 11:8862022. View Article : Google Scholar : PubMed/NCBI

141 

Baudouin C, Kolko M, Melik-Parsadaniantz S and Messmer EM: Inflammation in glaucoma: From the back to the front of the eye, and beyond. Prog Retin Eye Res. 83:1009162021. View Article : Google Scholar

142 

Feng L, Dai S, Zhang C, Zhang W, Zhu W, Wang C, He Y and Song W: Ripa-56 protects retinal ganglion cells in glutamate-induced retinal excitotoxic model of glaucoma. Sci Rep. 14:38342024. View Article : Google Scholar : PubMed/NCBI

143 

Vallée A, Lecarpentier Y and Vallée JN: Cannabidiol and the canonical WNT/β-catenin pathway in glaucoma. Int J Mol Sci. 22:37982021. View Article : Google Scholar

144 

Boesl F, Drexler K, Müller B, Seitz R, Weber GR, Priglinger SG, Fuchshofer R, Tamm ER and Ohlmann A: Endogenous Wnt/β-catenin signaling in Müller cells protects retinal ganglion cells from excitotoxic damage. Mol Vis. 26:135–149. 2020.

145 

Patel AK, Park KK and Hackam AS: Wnt signaling promotes axonal regeneration following optic nerve injury in the mouse. Neuroscience. 343:372–383. 2017. View Article : Google Scholar

146 

Wang X, Huai G, Wang H, Liu Y, Qi P, Shi W, Peng J, Yang H, Deng S and Wang Y: Mutual regulation of the Hippo/Wnt/LPA/TGF-β signaling pathways and their roles in glaucoma (Review). Int J Mol Med. 41:1201–1212. 2018.

147 

Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang X, Zhou Z, Shu G and Yin G: Wnt/β-catenin signalling: Function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther. 7:32022. View Article : Google Scholar

148 

Wang Z, Li Z and Ji H: Direct targeting of β-catenin in the Wnt signaling pathway: Current progress and perspectives. Med Res Rev. 41:2109–2129. 2021. View Article : Google Scholar : PubMed/NCBI

149 

Udeh A, Dvoriantchikova G, Carmy T, Ivanov D and Hackam AS: Wnt signaling induces neurite outgrowth in mouse retinal ganglion cells. Exp Eye Res. 182:39–43. 2019. View Article : Google Scholar : PubMed/NCBI

150 

Seitz R, Hackl S, Seibuchner T, Tamm ER and Ohlmann A: Norrin mediates neuroprotective effects on retinal ganglion cells via activation of the Wnt/beta-catenin signaling pathway and the induction of neuroprotective growth factors in Muller cells. Neurosci. 30:5998–6010. 2010. View Article : Google Scholar

151 

Fragoso MA, Patel AK, Nakamura RE, Yi H, Surapaneni K and Hackam AS: The Wnt/β-catenin pathway cross-talks with STAT3 signaling to regulate survival of retinal pigment epithelium cells. PLoS One. 7:e468922012. View Article : Google Scholar

152 

Schmitt AM, Shi J, Wolf AM, Lu CC, King LA and Zou Y: Wnt-Ryk signalling mediates medial-lateral retinotectal topographic mapping. Nature. 439:31–37. 2006. View Article : Google Scholar

153 

Cui J, Shi M, Quan M and Xie K: Regulation of EMT by KLF4 in gastrointestinal cancer. Curr Cancer Drug Targets. 13:986–995. 2013. View Article : Google Scholar : PubMed/NCBI

154 

Vallée A and Vallée JN: Warburg effect hypothesis in autism Spectrum disorders. Mol Brain. 11:12018. View Article : Google Scholar : PubMed/NCBI

155 

Lee TJ, Kodeboyina SK, Bollinger KE, Ulrich L, Bogorad D, Estes A, Zhi W, Sharma S and Sharma A: The abundance of serine protease inhibitors in human aqueous humor and race and gender-specific alterations in glaucoma patients. Investigative Ophthalmol Visual Sci. 62:3367. 2021.

156 

Basava rajappa D, Galindo-Romero C, Gupta V, Agudo-Barriuso M, Gupta VB, Graham SL and Chitranshi N: Signalling pathways and cell death mechanisms in glaucoma: Insights into the molecular pathophysiology. Mol Aspects Med. 94:1012162023. View Article : Google Scholar

157 

Park HL, Kim JH, Jung Y and Park CK: Racial differences in the extracellular matrix and histone acetylation of the lamina cribrosa and peripapillary sclera. Invest Ophthalmol Vis Sci. 58:4143–4154. 2017. View Article : Google Scholar : PubMed/NCBI

158 

Agarwal P and Agarwal R: Trabecular meshwork ECM remodeling in glaucoma: Could RAS be a target? Expert Opin Ther Targets. 22:629–638. 2018. View Article : Google Scholar : PubMed/NCBI

159 

Kontoh-Twumasi R, Budkin S, Edupuganti N, Vashishtha A and Sharma S: Role of serine protease inhibitors A1 and A3 in ocular pathologies. Invest Ophthalmol Vis Sci. 65:162024. View Article : Google Scholar : PubMed/NCBI

160 

Chitranshi N, Rajput R, Godinez A, Pushpitha K, Mirzaei M, Basavarajappa D, Gupta V, Sharma S, You Y, Galliciotti G, et al: Neuroserpin gene therapy inhibits retinal ganglion cell apoptosis and promotes functional preservation in glaucoma. Mol Ther. 31:2056–2076. 2023. View Article : Google Scholar : PubMed/NCBI

161 

Gupta V, Mirzaei M, Gupta VB, Chitranshi N, Dheer Y, Vander Wall R, Abbasi M, You Y, Chung R and Graham S: Glaucoma is associated with plasmin proteolytic activation mediated through oxidative inactivation of neuroserpin. Sci Rep. 7:84122017. View Article : Google Scholar : PubMed/NCBI

162 

Tsuda Y, Nakahara T, Ueda K, Mori A, Sakamoto K and Ishii K: Effect of nafamostat on N-methyl-D-aspartate-induced retinal neuronal and capillary degeneration in rats. Biol Pharm Bull. 35:2209–2213. 2012. View Article : Google Scholar : PubMed/NCBI

163 

Yang X, Zeng Q and Tezel G: Regulation of distinct caspase-8 functions in retinal ganglion cells and astroglia in experimental glaucoma. Neurobiol Dis. 150:1052582021. View Article : Google Scholar : PubMed/NCBI

164 

Choudhury S, Liu Y, Clark AF and Pang IH: Caspase-7: A critical mediator of optic nerve injury-induced retinal ganglion cell death. Mol Neurodegener. 10:402015. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang X, Sun L, Han X, Li Z, Xing Y, Chen X, Xi R, Sun Y, Wang G, Zhao P, Zhao P, et al: The molecular mechanisms underlying retinal ganglion cell apoptosis and optic nerve regeneration in glaucoma (Review). Int J Mol Med 55: 63, 2025.
APA
Wang, X., Sun, L., Han, X., Li, Z., Xing, Y., Chen, X. ... Zhao, P. (2025). The molecular mechanisms underlying retinal ganglion cell apoptosis and optic nerve regeneration in glaucoma (Review). International Journal of Molecular Medicine, 55, 63. https://doi.org/10.3892/ijmm.2025.5504
MLA
Wang, X., Sun, L., Han, X., Li, Z., Xing, Y., Chen, X., Xi, R., Sun, Y., Wang, G., Zhao, P."The molecular mechanisms underlying retinal ganglion cell apoptosis and optic nerve regeneration in glaucoma (Review)". International Journal of Molecular Medicine 55.4 (2025): 63.
Chicago
Wang, X., Sun, L., Han, X., Li, Z., Xing, Y., Chen, X., Xi, R., Sun, Y., Wang, G., Zhao, P."The molecular mechanisms underlying retinal ganglion cell apoptosis and optic nerve regeneration in glaucoma (Review)". International Journal of Molecular Medicine 55, no. 4 (2025): 63. https://doi.org/10.3892/ijmm.2025.5504
Copy and paste a formatted citation
x
Spandidos Publications style
Wang X, Sun L, Han X, Li Z, Xing Y, Chen X, Xi R, Sun Y, Wang G, Zhao P, Zhao P, et al: The molecular mechanisms underlying retinal ganglion cell apoptosis and optic nerve regeneration in glaucoma (Review). Int J Mol Med 55: 63, 2025.
APA
Wang, X., Sun, L., Han, X., Li, Z., Xing, Y., Chen, X. ... Zhao, P. (2025). The molecular mechanisms underlying retinal ganglion cell apoptosis and optic nerve regeneration in glaucoma (Review). International Journal of Molecular Medicine, 55, 63. https://doi.org/10.3892/ijmm.2025.5504
MLA
Wang, X., Sun, L., Han, X., Li, Z., Xing, Y., Chen, X., Xi, R., Sun, Y., Wang, G., Zhao, P."The molecular mechanisms underlying retinal ganglion cell apoptosis and optic nerve regeneration in glaucoma (Review)". International Journal of Molecular Medicine 55.4 (2025): 63.
Chicago
Wang, X., Sun, L., Han, X., Li, Z., Xing, Y., Chen, X., Xi, R., Sun, Y., Wang, G., Zhao, P."The molecular mechanisms underlying retinal ganglion cell apoptosis and optic nerve regeneration in glaucoma (Review)". International Journal of Molecular Medicine 55, no. 4 (2025): 63. https://doi.org/10.3892/ijmm.2025.5504
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team