You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
Siegel RL, Miller KD, Wagle NS and Jemal A: Cancer statistics, 2023. CA Cancer J Clin. 73:17–148. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Cao M, Li H, Sun D and Chen W: Cancer burden of major cancers in China: A need for sustainable actions. Cancer Commun (Lond). 40:205–210. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Cao W, Chen HD, Yu YW, Li N and Chen WQ: Changing profiles of cancer burden worldwide and in China: A secondary analysis of the global cancer statistics 2020. Chin Med J (Engl). 134:783–791. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Toden S, Zumwalt TJ and Goel A: Non-coding RNAs and potential therapeutic targeting in cancer. Biochim Biophys Acta Rev Cancer. 1875:1884912021. View Article : Google Scholar : | |
|
Chen B, Dragomir MP, Yang C, Li Q, Horst D and Calin GA: Targeting non-coding RNAs to overcome cancer therapy resistance. Signal Transduct Target Ther. 7:1212022. View Article : Google Scholar : PubMed/NCBI | |
|
Saw PE, Xu X, Chen J and Song EW: Non-coding RNAs: The new central dogma of cancer biology. Sci China Life Sci. 64:22–50. 2021. View Article : Google Scholar | |
|
Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, et al: Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 99:15524–15529. 2002. View Article : Google Scholar | |
|
Lee RC, Feinbaum RL and Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 75:843–854. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Wightman B, Ha I and Ruvkun G: Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 75:855–862. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Li C, Gao Y, Zhang K, Chen J, Han S, Feng B, Wang R and Chen L: Multiple roles of microRNA-100 in human cancer and its therapeutic potential. Cell Physiol Biochem. 37:2143–2159. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang S, Deng B, Zhang Y and Jiang N: Expression of miR-100 and RBSP3 in FTC-133 cells after exposure to 131I. Nucl Med Commun. 35:932–938. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Wang S, Xue S, Dai Y, Yang J, Chen Z, Fang X, Zhou W, Wu W and Li Q: Reduced expression of microRNA-100 confers unfavorable prognosis in patients with bladder cancer. Diagn Pathol. 7:1592012. View Article : Google Scholar : PubMed/NCBI | |
|
Wang G, Yang L, Hu M, Hu R, Wang Y, Chen B, Jiang X and Cui R: Comprehensive analysis of the prognostic significance of Hsa-miR-100-5p and its related gene signature in stomach adenocarcinoma. Front Cell Dev Biol. 9:7362742021. View Article : Google Scholar : PubMed/NCBI | |
|
Yang XD, Xu XH, Zhang SY, Wu Y, Xing CG, Ru G, Xu HT and Cao JP: Role of miR-100 in the radioresistance of colorectal cancer cells. Am J Cancer Res. 5:5452015.PubMed/NCBI | |
|
Qin X, Yu S, Zhou L, Shi M, Hu Y, Xu X, Shen B, Liu S, Yan D and Feng J: Cisplatin-resistant lung cancer cell-derived exosomes increase cisplatin resistance of recipient cells in exosomal miR-100-5p-dependent manner. Int J Nanomedicine. 12:3721–3733. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Dai Y, Xie CH, Neis JP, Fan CY, Vural E and Spring PM: MicroRNA expression profiles of head and neck squamous cell carcinoma with docetaxel-induced multidrug resistance. Head Neck. 33:786–791. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Zeng J, Wang L, Zhao J, Zheng Z, Peng J, Zhang W, Wen T, Nie J, Ding L and Yi D: MiR-100-5p regulates cardiac hypertrophy through activation of autophagy by targeting mTOR. Hum Cell. 34:1388–1397. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou Y, Huang Y, Hu K, Zhang Z, Yang J and Wang Z: HIF1A activates the transcription of lncRNA RAET1K to modulate hypoxia-induced glycolysis in hepatocellular carcinoma cells via miR-100-5p. Cell Death Dis. 11:1762020. View Article : Google Scholar : PubMed/NCBI | |
|
Assmann TS, Recamonde-Mendoza M, De Souza BM and Crispim D: MicroRNA expression profiles and type 1 diabetes mellitus:systematic review and bioinformatic analysis. Endocr Connect. 6:773–790. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Pek SL, Sum CF, Lin MX, Cheng AK, Wong MT, Lim SC and Tavintharan S: Circulating and visceral adipose miR-100 is down-regulated in patients with obesity and Type 2 diabetes. Mol Cell Endocrinol. 427:112–123. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Ai L, Yi W, Chen L, Wang H and Huang Q: Xian-Ling-Gu-Bao protects osteoporosis through promoting osteoblast differentiation by targeting miR-100-5p/KDM6B/RUNX2 axis. In Vitro Cell Dev Biol Anim. 57:3–9. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Kelch S, Balmayor ER, Seeliger C, Vester H, Kirschke JS and van Griensven M: miRNAs in bone tissue correlate to bone mineral density and circulating miRNAs are gender independent in osteoporotic patients. Sci Rep. 7:158612017. View Article : Google Scholar : PubMed/NCBI | |
|
Wu J, Kuang L, Chen C, Yang J, Zeng WN, Li T, Chen H, Huang S, Fu Z, Li J, et al: miR-100-5p-abundant exosomes derived from infrapatellar fat pad MSCs protect articular cartilage and ameliorate gait abnormalities via inhibition of mTOR in osteoarthritis. Biomaterials. 206:87–100. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Chang YS, Chang YC, Chen PH, Li CY, Wu WC and Kao YH: MicroRNA-100 mediates hydrogen peroxide-induced apoptosis of human retinal pigment epithelium ARPE-19 cells. Pharmaceuticals. 14:3142021. View Article : Google Scholar : PubMed/NCBI | |
|
Tan Q, Shi S, Liang J, Cao D, Wang S and Wang Z: Endometrial cell-derived small extracellular vesicle miR-100-5p promotes functions of trophoblast during embryo implantation. Mol Ther-Nucleic Acids. 23:217–231. 2021. View Article : Google Scholar | |
|
Huang YL, Huang GY, Lv J, Pan LN, Luo X and Shen J: miR-100 promotes the proliferation of spermatogonial stem cells via regulating Stat3. Mol Reprod Dev. 84:693–701. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Sempere LF, Sokol NS, Dubrovsky EB, Berger EM and Ambros V: Temporal regulation of microRNA expression in Drosophila melanogaster mediated by hormonal signals and broad-Complex gene activity. Dev Biol. 259:9–18. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Henson BJ, Bhattacharjee S, O'Dee DM, Feingold E and Gollin SM: Decreased expression of miR-125b and miR-100 in oral cancer cells contributes to malignancy. Genes Chromosomes Cancer. 48:569–582. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Gao S, Liu S, Wei W, Qi Y and Meng F: Advances in targeting of miR-10-associated lncRNAs/circRNAs for the management of cancer. Oncolo Lett. 25:892023. View Article : Google Scholar | |
|
Liu X, Zhong L, Li P and Zhao P: MicroRNA-100 enhances autophagy and suppresses migration and invasion of renal cell carcinoma cells via disruption of NOX4-dependent mTOR pathway. Clin Transl Sci. 15:567–575. 2022. View Article : Google Scholar | |
|
Zhou MK, Liu XJ, Zhao ZG and Cheng YM: MicroRNA-100 functions as a tumor suppressor by inhibiting Lgr5 expression in colon cancer cells. Mol Med Rep. 11:2947–2952. 2015. View Article : Google Scholar | |
|
Qi X, Zhang DH, Wu N, Xiao JH, Wang X and Ma W: ceRNA in cancer: Possible functions and clinical implications. J Med Genet. 52:710–718. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Basera A, Hull R, Demetriou D, Bates DO, Kaufmann AM, Dlamini Z and Marima R: Competing Endogenous RNA (ceRNA) Networks and Splicing Switches in Cervical Cancer: HPV Oncogenesis, Clinical Significance and Therapeutic Opportunities. Microorganisms. 10:18522022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang C, Zhou Y, Zhang B, Sheng Z, Sun N, Yuan B and Wu X: Identification of lncRNA, miRNA and mRNA expression profiles and ceRNA Networks in small cell lung cancer. BMC Genomics. 24:2172023. View Article : Google Scholar : PubMed/NCBI | |
|
Qin L, Li B, Wang S, Tang Y, Fahira A, Kou Y, Li T, Hu Z and Huang Z: Construction of an Immune-related prognostic signature and lncRNA-miRNA-mRNA ceRNA network in acute myeloid leukaemia. J Leukoc Biol. 116:146–165. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang W, Zhang Y and Xi S: Upregulation of lncRNA HAGLROS enhances the development of nasopharyngeal carcinoma via modulating miR-100/ATG14 axis-mediated PI3K/AKT/mTOR signals. Artif Cells Nanomed Biotechnol. 47:3043–3052. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Li L, Zhu H, Li X, Ke Y, Yang S and Cheng Q: Long non-coding RNA HAGLROS facilitates the malignant phenotypes of NSCLC cells via repressing miR-100 and up-regulating SMARCA5. Biomed J. 44(6 Suppl 2): S305–S315. 2021. View Article : Google Scholar | |
|
Yang M, Zhai Z, Zhang Y and Wang Y: Clinical significance and oncogene function of long noncoding RNA HAGLROS overexpression in ovarian cancer. Arch Gynecol Obstet. 300:703–710. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Shu L, Guo K, Lin ZH and Liu H: Long non-coding RNA HAGLROS promotes the development of diffuse large B-cell lymphoma via suppressing miR-100. J Clin Lab Anal. 36:e241682022. View Article : Google Scholar | |
|
Liu X, Liu C, Zhang A, Wang Q, Ge J, Li Q and Xiao J: Long non-coding RNA SDCBP2-AS1 delays the progression of ovarian cancer via microRNA-100-5p-targeted EPDR1. World J Surg Oncol. 19:1992021. View Article : Google Scholar : PubMed/NCBI | |
|
Chen F, Wu P, Xia R, Yang J, Huo XY, Gu DY, Tang CJ, De W and Yang F: STAT3-induced lncRNA HAGLROS overexpression contributes to the malignant progression of gastric cancer cells via mTOR signal-mediated inhibition of autophagy. Mol Cancer. 17:62018. View Article : Google Scholar : PubMed/NCBI | |
|
Peng J, Zheng H, Liu F, Wu Q and Liu S: The m6A methyltransferase METTL3 affects autophagy and progression of nasopharyngeal carcinoma by regulating the stability of lncRNA ZFAS1. Infect Agent Cancer. 17:12022. View Article : Google Scholar : PubMed/NCBI | |
|
Le F, Ou Y, Luo P and Zhong X: LncRNA NCK1-AS1 in plasma distinguishes oral ulcer from early-stage oral squamous cell carcinoma. J Biol Res (Thessalon). 27:162020. View Article : Google Scholar : PubMed/NCBI | |
|
Shi Y, Zhang DD, Liu JB, Yang XL, Xin R, Jia CY, Wang HM, Lu GX, Wang PY, Liu Y, et al: Comprehensive analysis to identify DLEU2L/TAOK1 axis as a prognostic biomarker in hepatocellular carcinoma. Mol Ther Nucleic Acids. 23:702–718. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Bai W, Peng H, Zhang J, Zhao Y, Li Z, Feng X, Zhang J, Liang F, Wang L, Zhang N, et al: LINC00589-dominated ceRNA networks regulate multiple chemoresistance and cancer stem cell-like properties in HER2+breast cancer. NPJ Breast Cancer. 8:1152022. View Article : Google Scholar | |
|
Lu Y, Zhao X, Liu Q, Li C, Graves-Deal R, Cao Z, Singh B, Franklin JL, Wang J, Hu H, et al: lncRNA MIR100HG-derived miR-100 and miR-125b mediate cetuximab resistance via Wnt/β-catenin signaling. Nat Med. 23:1331–1341. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Shi Y, Guo Z, Fang N, Jiang W, Fan Y, He Y, Ma Z and Chen Y: hsa_circ_0006168 sponges miR-100 and regulates mTOR to promote the proliferation, migration and invasion of esophageal squamous cell carcinoma. Biomed Pharmacother. 117:1091512019. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan F, Zhang S, Sun Q, Ye L, Xu Y, Xu Z, Deng G, Zhang S, Liu B and Chen Q: Hsa_circ_0072309 enhances autophagy and TMZ sensitivity in glioblastoma. CNS Neurosci Ther. 28:897–912. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Yao T, Yao Y, Chen Z, Peng Y, Zhong G, Huang C, Li J and Li R: CircCASC15-miR-100-mTOR may influence the cervical cancer radioresistance. Cancer Cell Int. 22:1652022. View Article : Google Scholar : PubMed/NCBI | |
|
Hill M and Tran N: miRNA interplay: Mechanisms and consequences in cancer. Dis Model Mech. 14:dmm0476622021. View Article : Google Scholar : PubMed/NCBI | |
|
Silkenstedt E, Linton K and Dreyling M: Mantle cell lymphoma-advances in molecular biology, prognostication and treatment approaches. Br J Haematol. 195:162–173. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Lin L, Huang Y, Zhuang W, Lin P and Ma X: miR-100 inhibits cell proliferation in mantle cell lymphoma by targeting mTOR. Exp Hematol Oncol. 9:252020. View Article : Google Scholar : PubMed/NCBI | |
|
Nepstad I, Hatfield KJ, Grønningsæter IS and Reikvam H: The PI3K-Akt-mTOR signaling pathway in human acute myeloid leukemia (AML) cells. Int J Mol Sci. 21:29072020. View Article : Google Scholar : PubMed/NCBI | |
|
Sun Y, Wang H and Luo C: MiR-100 regulates cell viability and apoptosis by targeting ATM in pediatric acute myeloid leukemia. Biochem Biophys Res Commun. 522:855–861. 2020. View Article : Google Scholar | |
|
Zheng YS, Zhang H, Zhang XJ, Feng DD, Luo XQ, Zeng CW, Lin KY, Zhou H, Qu LH, Zhang P and Chen YQ: MiR-100 regulates cell differentiation and survival by targeting RBSP3, a phosphatase-like tumor suppressor in acute myeloid leukemia. Oncogene. 31:80–92. 2012. View Article : Google Scholar : | |
|
Chang JH, Poppe MM, Hua CH, Marcus KJ and Esiashvili N: Acute lymphoblastic leukemia. Pediatr Blood Cancer. 68(Suppl 2): e283712021. View Article : Google Scholar : PubMed/NCBI | |
|
Li XJ, Luo XQ, Han BW, Duan FT, Wei PP and Chen YQ: MicroRNA-100/99a, deregulated in acute lymphoblastic leukaemia, suppress proliferation and promote apoptosis by regulating the FKBP51 and IGF1R/mTOR signalling pathways. Br J Cancer. 109:2189–2198. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Ou A, Yung WKA and Majd N: Molecular mechanisms of treatment resistance in glioblastoma. Int J Mol Sci. 22:3512020. View Article : Google Scholar | |
|
Alrfaei BM, Clark P, Vemuganti R and Kuo JS: MicroRNA miR-100 decreases glioblastoma growth by targeting SMARCA5 and ErbB3 in tumor-initiating cells. Technol Cancer Res Treat. 19:15330338209607482020. View Article : Google Scholar : PubMed/NCBI | |
|
Alrfaei BM, Vemuganti R and Kuo JS: microRNA-100 targets SMRT/NCOR2, reduces proliferation, and improves survival in glioblastoma animal models. PLoS One. 8:e808652013. View Article : Google Scholar : PubMed/NCBI | |
|
Guo R, Mao YP, Tang LL, Chen L, Sun Y and Ma J: The evolution of nasopharyngeal carcinoma staging. Br J Radiol. 92:201902442019. View Article : Google Scholar : PubMed/NCBI | |
|
Lee HM, Okuda KS, González FE and Patel V: Current perspectives on nasopharyngeal carcinoma. Adv Exp Med Biol. 1164:11–34. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Peng Q, Zhang L, Li J, Wang W, Cai J, Ban Y, Zhou Y, Hu M, Mei Y, Zeng Z, et al: FOXA1 suppresses the growth, migration, and invasion of nasopharyngeal carcinoma cells through repressing miR-100-5p and miR-125b-5p. J Cancer. 11:2485–2495. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
He W, Huang Y, Jiang CC, Zhu Y, Wang L, Zhang W, Huang W, Zhou T and Tang S: miR-100 inhibits cell growth and proliferation by targeting HOXA1 in nasopharyngeal carcinoma. Onco Targets Ther. 13:593–602. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Sun X, Liu X, Wang Y, Yang S, Chen Y and Yuan T: miR-100 inhibits the migration and invasion of nasopharyngeal carcinoma by targeting IGF1R. Oncol Lett. 15:8333–8338. 2018.PubMed/NCBI | |
|
Shi W, Alajez NM, Bastianutto C, Hui AB, Mocanu JD, Ito E, Busson P, Lo KW, Ng R, Waldron J, et al: Significance of Plk1 regulation by miR-100 in human nasopharyngeal cancer. Int J Cancer. 126:2036–2048. 2010. View Article : Google Scholar | |
|
Alexander M, Kim SY and Cheng H: Update 2020: Management of non-small cell lung cancer. Lung. 198:897–907. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Liu J, Lu KH, Liu ZL, Sun M, De W and Wang ZX: MicroRNA-100 is a potential molecular marker of non-small cell lung cancer and functions as a tumor suppressor by targeting polo-like kinase 1. BMC Cancer. 12:5192012. View Article : Google Scholar : PubMed/NCBI | |
|
Han W, Ren X, Yang Y, Li H, Zhao L and Lin Z: microRNA-100 functions as a tumor suppressor in non-small cell lung cancer via regulating epithelial-mesenchymal transition and Wnt/β-catenin by targeting HOXA1. Thorac Cancer. 11:1679–1688. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Nagata Y, Yamamoto S and Kato K: Immune checkpoint inhibitors in esophageal cancer: Clinical development and perspectives. Hum Vaccin Immunother. 18:21431772022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang N, Fu H, Song L, Ding Y, Wang X, Zhao C and Zhao Y, Jiao F and Zhao Y: MicroRNA-100 promotes migration and invasion through mammalian target of rapamycin in esophageal squamous cell carcinoma. Oncol Rep. 32:1409–1418. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou F, Tan F, Gao Y, Sun N, Xu X, Shao K and He J: MicroRNA-99a/100 promotes apoptosis by targeting mTOR in human esophageal squamous cell carcinoma. Med Oncol. 30:4112013. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou SM, Zhang F, Chen XB, Jun CM, Jing X, Wei DX, Xia Y, Zhou YB, Xiao XQ, Jia RQ, et al: miR-100 suppresses the proliferation and tumor growth of esophageal squamous cancer cells via targeting CXCR7. Oncol Rep. 35:3453–3459. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou S, Yang B, Zhao Y, Xu S, Zhang H and Li Z: Prognostic value of microRNA-100 in esophageal squamous cell carcinoma. J Surg Res. 192:515–520. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Nagaraju GP, Dariya B, Kasa P, Peela S and El-Rayes BF: Epigenetics in hepatocellular carcinoma. Semin Cancer Biol. 86:622–632. 2022. View Article : Google Scholar | |
|
Ren Z, Ma X, Duan Z and Chen X: Diagnosis, therapy, and prognosis for hepatocellular carcinoma. Anal Cell Pathol (Amst). 2020:81574062020.PubMed/NCBI | |
|
Ge Y, Shu J, Shi G, Yan F, Li Y and Ding H: miR-100 suppresses the proliferation, invasion, and migration of hepatocellular carcinoma cells via targeting CXCR7. J Immunol Res. 2021:99207862021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou HC, Fang JH, Shang LR, Zhang ZJ, Sang Y, Xu L, Yuan Y, Chen MS, Zheng L, Zhang Y and Zhuang S: MicroRNAs miR-125b and miR-100 suppress metastasis of hepatocellular carcinoma by disrupting the formation of vessels that encapsulate tumour clusters. J Pathol. 240:450–460. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Chen P, Zhao X and Ma L: Downregulation of microRNA-100 correlates with tumor progression and poor prognosis in hepatocellular carcinoma. Mol Cell Biochem. 383:49–58. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Machlowska J, Baj J, Sitarz M, Maciejewski R and Sitarz R: Gastric cancer: Epidemiology, risk factors, classification, genomic characteristics and treatment strategies. Int J Mol Sci. 21:40122020. View Article : Google Scholar : PubMed/NCBI | |
|
Wei L, Sun J, Zhang N, Zheng Y, Wang X, Lv L, Liu J, Xu Y, Shen Y and Yang M: Noncoding RNAs in gastric cancer: Implications for drug resistance. Mol Cancer. 19:622020. View Article : Google Scholar : PubMed/NCBI | |
|
Cao Y, Song J, Ge J, Song Z, Chen J and Wu C: MicroRNA-100 suppresses human gastric cancer cell proliferation by targeting CXCR7. Oncol Lett. 15:453–458. 2018.PubMed/NCBI | |
|
Chen Z, Liu X, Hu Z, Wang Y, Liu M, Liu X, Li H, Ji R, Guo Q and Zhou Y: Identification and characterization of tumor suppressor and oncogenic miRNAs in gastric cancer. Oncol Lett. 10:329–336. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang N, Hu X, Du Y and Du J: The role of miRNAs in colorectal cancer progression and chemoradiotherapy. Biomed Pharmacother. 134:1110992021. View Article : Google Scholar | |
|
Zhao W, Dai S, Yue L, Xu F, Gu J, Dai X and Qian X: Emerging mechanisms progress of colorectal cancer liver metastasis. Front Endocrinol (Lausanne). 13:10815852022. View Article : Google Scholar : PubMed/NCBI | |
|
Czauderna C, Luley K, von Bubnoff N and Marquardt JU: Tailored systemic therapy for colorectal cancer liver metastases. Int J Mol Sci. 22:117802021. View Article : Google Scholar : PubMed/NCBI | |
|
Peng H, Luo J, Hao H, Hu J, Xie SK, Ren D and Rao B: MicroRNA-100 regulates SW620 colorectal cancer cell proliferation and invasion by targeting RAP1B. Oncol Rep. 31:2055–2062. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Fujino Y, Takeishi S, Nishida K, Okamoto K, Muguruma N, Kimura T, Kitamura S, Miyamoto H, Fujimoto A, Higashijima J, et al: Downregulation of micro RNA-100/micro RNA-125b is associated with lymph node metastasis in early colorectal cancer with submucosal invasion. Cancer Sci. 108:390–397. 2017. View Article : Google Scholar : | |
|
Wood LD, Canto MI, Jaffee EM and Simeone DM: Pancreatic cancer: Pathogenesis, screening, diagnosis, and treatment. Gastroenterology. 163:386–402.e1. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang S, Fagman JB, Ma Y, Liu J, Vihav C, Engstrom C, Liu B and Chen C: A comprehensive review of pancreatic cancer and its therapeutic challenges. Aging (Albany NY). 14:7635–7649. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Huang JS, Egger ME, Grizzle WE and McNally LR: MicroRNA-100 regulates IGF1-receptor expression in metastatic pancreatic cancer cells. Biotech Histochem. 88:397–402. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Dobre M, Herlea V, Vlăduţ C, Ciocîrlan M, Balaban VD, Constantinescu G, Diculescu M and Milanesi E: Dysregulation of miRNAs targeting the IGF-1R pathway in pancreatic ductal adenocarcinoma. Cells. 10:18562021. View Article : Google Scholar : PubMed/NCBI | |
|
Deleuze A, Saout J, Dugay F, Peyronnet B, Mathieu R, Verhoest G, Bensalah K, Crouzet L, Laguerre B, Belaud-Rotureau MA, et al: Immunotherapy in renal cell carcinoma: The future is now. Int J Mol Sci. 21:25322020. View Article : Google Scholar : PubMed/NCBI | |
|
Li F, Aljahdali IAM, Zhang R, Nastiuk KL, Krolewski JJ and Ling X: Kidney cancer biomarkers and targets for therapeutics: Survivin (BIRC5), XIAP, MCL-1, HIF1α, HIF2α, NRF2, MDM2, MDM4, p53, KRAS and AKT in renal cell carcinoma. J Exp Clin Cancer Res. 40:2542021. View Article : Google Scholar | |
|
Chen P, Lin C, Quan J, Lai Y, He T, Zhou L, Pan X, Wu X, Wang Y, Ni L, et al: Oncogenic miR-100-5p is associated with cellular viability, migration and apoptosis in renal cell carcinoma. Mol Med Rep. 16:5023–5030. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Adamaki M and Zoumpourlis V: Prostate cancer biomarkers: From diagnosis to prognosis and precision-guided therapeutics. Pharmacol Ther. 228:1079322021. View Article : Google Scholar : PubMed/NCBI | |
|
Leite KR, Tomiyama A, Reis ST, Sousa-Canavez JM, Sañudo A, Dall'Oglio MF, Camara-Lopes LH and Srougi M: MicroRNA-100 expression is independently related to biochemical recurrence of prostate cancer. J Urol. 185:1118–1122. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Leite KR, Morais DR, Reis ST, Viana N, Moura C, Florez MG, Silva IA, Dip N and Srougi M: MicroRNA 100: A context dependent miRNA in prostate cancer. Clinics (Sao Paulo). 68:797–802. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Wang M, Ren D, Guo W, Wang Z, Huang S, Du H, Song L and Peng X: Loss of miR-100 enhances migration, invasion, epithelial-mesenchymal transition and stemness properties in prostate cancer cells through targeting Argonaute 2. Int J Oncol. 45:362–372. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Nabavi N, Saidy NRN, Venalainen E, Haegert A, Parolia A, Xue H, Wang Y, Wu R, Dong X, Collins C, et al: miR-100-5p inhibition induces apoptosis in dormant prostate cancer cells and prevents the emergence of castration-resistant prostate cancer. Sci Rep. 7:40792017. View Article : Google Scholar : PubMed/NCBI | |
|
Ye Y, Li SL and Wang JJ: miR-100-5p downregulates mTOR to suppress the proliferation, migration, and invasion of prostate cancer cells. Front Oncol. 10:5789482020. View Article : Google Scholar : PubMed/NCBI | |
|
Chen DW, Lang BHH, McLeod DSA, Newbold K and Haymart MR: Thyroid cancer. Lancet. 401:1531–1544. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Şah Ünal FT, Gökçay Canpolat A, Elhan AH, Sevim S, Sak SD, Emral R, Demir Ö, Güllü S, Erdoğan MF, Çorapçıoğlu D and Şahin M: Cancer rates and characteristics of thyroid nodules with macrocalcification. Endocrine. 84:1021–1029. 2024. View Article : Google Scholar | |
|
Ma P and Han J: Overexpression of miR-100-5p inhibits papillary thyroid cancer progression via targeting FZD8. Open Med (Wars). 17:1172–1182. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Trapani D, Ginsburg O, Fadelu T, Lin NU, Hassett M, Ilbawi AM, Anderson BO and Curigliano G: Global challenges and policy solutions in breast cancer control. Cancer Treat Rev. 104:1023392022. View Article : Google Scholar : PubMed/NCBI | |
|
Xie H, Xiao R, He Y, He L, Xie C, Chen J and Hong Y: MicroRNA-100 inhibits breast cancer cell proliferation, invasion and migration by targeting FOXA1. Oncol Lett. 22:8162021. View Article : Google Scholar : PubMed/NCBI | |
|
Gebeshuber CA and Martinez J: miR-100 suppresses IGF2 and inhibits breast tumorigenesis by interfering with proliferation and survival signaling. Oncogene. 32:3306–3310. 2013. View Article : Google Scholar | |
|
Li X, Ren Y, Liu D, Yu X and Chen K: Role of miR-100-5p and CDC25A in breast carcinoma cells. PeerJ. 9:e122632022. View Article : Google Scholar : PubMed/NCBI | |
|
Gong Y, He T, Yang L, Yang G, Chen Y and Zhang X: The role of miR-100 in regulating apoptosis of breast cancer cells. Sci Rep. 5:116502015. View Article : Google Scholar : PubMed/NCBI | |
|
Throwba H PK, Unnikrishnan L, Pangath M, Vasudevan K, Jayaraman S, Li M, Iyaswamy A, Palaniyandi K and Gnanasampanthapandian D: The epigenetic correlation among ovarian cancer, endometriosis and PCOS: A review. Crit Rev Oncol Hematol. 180:1038522022. View Article : Google Scholar : PubMed/NCBI | |
|
Volkova LV, Pashov AI and Omelchuk NN: Cervical carcinoma: Oncobiology and biomarkers. Int J Mol Sci. 22:125712021. View Article : Google Scholar : PubMed/NCBI | |
|
Schoutrop E, Moyano-Galceran L, Lheureux S, Mattsson J, Lehti K, Dahlstrand H and Magalhaes I: Molecular, cellular and systemic aspects of epithelial ovarian cancer and its tumor microenvironment. Semin Cancer Biol. 86:207–223. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Nam EJ, Yoon H, Kim SW, Kim H, Kim YT, Kim JH, Kim JW and Kim S: MicroRNA expression profiles in serous ovarian carcinoma. Clin Cancer Res. 14:2690–2695. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Huang C, Qin X, Zhao N, Jin H, Zhang S and Yang H: Erratum: MicroRNA-100 functions as a tumor suppressor in cervical cancer via downregulating the SATB1 expression and regulating AKT/mTOR signaling pathway and epithelial-to-mesenchymal transition. Oncol Lett. 22:7412021. View Article : Google Scholar : PubMed/NCBI | |
|
Li BH, Zhou JS, Ye F, Cheng XD, Zhou CY, Lu WG and Xie X: Reduced miR-100 expression in cervical cancer and precursors and its carcinogenic effect through targeting PLK1 protein. Eur J Cancer. 47:2166–2174. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Crosbie EJ, Kitson SJ, McAlpine JN, Mukhopadhyay A, Powell ME and Singh N: Endometrial cancer. Lancet. 399:1412–1428. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Chen C, Zhang Q and Kong B: miRNA-576-5p promotes endometrial cancer cell growth and metastasis by targeting ZBTB4. Clin Transl Oncol. 25:706–720. 2023. View Article : Google Scholar : | |
|
Takebayashi K, Nasu K, Okamoto M, Aoyagi Y, Hirakawa T and Narahara H: hsa-miR-100-5p, an overexpressed miRNA in human ovarian endometriotic stromal cells, promotes invasion through attenuation of SMARCD1 expression. Reprod Biol Endocrinol. 18:312020. View Article : Google Scholar : PubMed/NCBI | |
|
Valihrach L, Androvic P and Kubista M: Circulating miRNA analysis for cancer diagnostics and therapy. Mol Aspects Med. 72:1008252020. View Article : Google Scholar | |
|
O'Neill RS and Stoita A: Biomarkers in the diagnosis of pancreatic cancer: Are we closer to finding the golden ticket? World J Gastroenterol. 27:4045–40875. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang H, Meng Q, Qian J, Li M, Gu C and Yang Y: RNA-based diagnostic markers discovery and therapeutic targets development in cancer. Pharmacol Ther. 234:1081232022. View Article : Google Scholar | |
|
Wang S, Li L, Yang M, Wang X, Zhang H, Wu N, Jia K, Wang J, Li M, Wei L and Liu J: Identification of three circulating MicroRNAs in plasma as clinical biomarkers for breast cancer detection. J Clin Med. 12:3222022. View Article : Google Scholar | |
|
Fuso P, Di Salvatore M, Santonocito C, Guarino D, Autilio C, Mulè A, Arciuolo D, Rinninella A, Mignone F, Ramundo M, et al: Let-7a-5p, miR-100-5p, miR-101-3p, and miR-199a-3p hyperexpression as potential predictive biomarkers in early breast cancer patients. J Pers Med. 11:8162021. View Article : Google Scholar : PubMed/NCBI | |
|
Jin Y, Wong YS, Goh BKP, Chan CY, Cheow PC, Chow PKH, Lim TKH, Goh GBB, Krishnamoorthy TL, Kumar R, et al: Circulating microRNAs as potential diagnostic and prognostic biomarkers in hepatocellular carcinoma. Sci Rep. 9:104642019. View Article : Google Scholar : PubMed/NCBI | |
|
Qureshi A, Fahim A, Kazi N, Farsi Kazi SA and Nadeem F: Expression of miR-100 as a novel ancillary non-invasive biomarker for early detection of bladder carcinoma. J Pak Med Assoc. 68:759–763. 2018.PubMed/NCBI | |
|
Ludwig N, Nourkami-Tutdibi N, Backes C, Lenhof HP, Graf N, Keller A and Meese E: Circulating serum miRNAs as potential biomarkers for nephroblastoma. Pediatr Blood Cancer. 62:1360–1367. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Blanca A, Sanchez-Gonzalez A, Requena MJ, Carrasco-Valiente J, Gomez-Gomez E, Cheng L, Cimadamore A, Montironi R and Lopez-Beltran A: Expression of miR-100 and miR-138 as prognostic biomarkers in non-muscle-invasive bladder cancer. APMIS. 127:545–553. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Yamanaka Z, Sasaki T, Yamanaka A, Kato K and Nishi H: Circulating and tissue miR-100 acts as a potential diagnostic biomarker for cervical cancer. Cancer Biomark. 32:551–558. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Bahnassy AA, Salem SE, El-Sayed M, Khorshid O, Abdellateif MS, Youssef AS, Mohanad M, Hussein M, Zekri AN and Ali NM: MiRNAs as molecular biomarkers in stage II egyptian colorectal cancer patients. Exp Mol Pathol. 105:260–271. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Wang X, Chen L, Jin H, Wang S, Zhang Y, Tang X and Tang G: Screening miRNAs for early diagnosis of colorectal cancer by small RNA deep sequencing and evaluation in a Chinese patient population. Onco Targets Ther. 9:1159–1166. 2016.PubMed/NCBI | |
|
Gong Y, Yang G, Wang Q, Wang Y and Zhang X: NME2 is a master suppressor of apoptosis in gastric cancer cells via transcriptional regulation of miR-100 and other survival factors. Mol Cancer Res. 18:287–299. 2020. View Article : Google Scholar | |
|
Damodaran M, Chinambedu Dandapani M, Raj Simon Durai, Sundaram Sandhya, VenkatRamanan S, Ramachandran I and Venkatesan V: Differentially expressed miR-20, miR-21, miR-100, miR-125a and miR-146a as a potential biomarker for prostate cancer. Mol Biol Rep. 48:3349–3356. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Jakob M, Mattes LM, Küffer S, Unger K, Hess J, Bertlich M, Haubner F, Ihler F, Canis M, Weiss BG and Kitz J: MicroRNA expression patterns in oral squamous cell carcinoma: Hsa-mir-99b-3p and hsa-mir-100-5p as novel prognostic markers for oral cancer. Head Neck. 41:3499–3515. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao JY, Wang F, Li Y, Zhang XB, Yang L, Wang W, Xu H, Liu DZ and Zhang LY: Five miRNAs considered as molecular targets for predicting esophageal cancer. Med Sci Monit. 21:32222015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang HC and Tang KF: Clinical value of integrated-signature miRNAs in esophageal cancer. Cancer Med. 6:1893–1903. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wang G, Chen L, Meng J, Chen M, Zhuang L and Zhang L: Overexpression of microRNA-100 predicts an unfavorable prognosis in renal cell carcinoma. Int Urol Nephrol. 45:373–379. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Liu HT, Wang YW, Xing AY, Shi DB, Zhang H, Guo XY, Xu J and Gao P: Prognostic value of microRNA signature in patients with gastric cancers. Sci Rep. 7:428062017. View Article : Google Scholar : PubMed/NCBI | |
|
He QL, Qin SY, Tao L, Ning HJ and Jiang HX: Prognostic value and prospective molecular mechanism of miR-100-5p in hepatocellular carcinoma: A comprehensive study based on 1,258 samples. Oncol Lett. 18:6126–6142. 2019.PubMed/NCBI | |
|
Hassan NM, Refaat LA, Ismail GN, Abdellateif M, Fadel SA and AbdelAziz RS: Diagnostic, prognostic and predictive values of miR-100 and miR-210 in pediatric acute lymphoblastic Leukemia. Hematology. 25:405–413. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Nussinov R, Tsai CJ and Jang H: Anticancer drug resistance: An update and perspective. Drug Resist Updat. 59:1007962021. View Article : Google Scholar : PubMed/NCBI | |
|
Bukowski K, Kciuk M and Kontek R: Mechanisms of multidrug resistance in cancer chemotherapy. Int J Mol Sci. 21:32332020. View Article : Google Scholar : PubMed/NCBI | |
|
Luan Y, Zhang S, Zuo L and Zhou L: Overexpression of miR-100 inhibits cell proliferation, migration, and chemosensitivity in human glioblastoma through FGFR3. Onco Targets Ther. 8:3391–3400. 2015.PubMed/NCBI | |
|
Xiao F, Bai Y, Chen Z, Li Y, Luo L, Huang J, Yang J, Liao H and Guo L: Downregulation of HOXA1 gene affects small cell lung cancer cell survival and chemoresistance under the regulation of miR-100. Eur J Cancer. 50:1541–1554. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Feng B, Wang R and Chen LB: MiR-100 resensitizes docetaxel-resistant human lung adenocarcinoma cells (SPC-A1) to docetaxel by targeting Plk1. Cancer Lett. 317:184–191. 2012. View Article : Google Scholar | |
|
Guo P, Xiong X, Zhang S and Peng D: miR-100 resensitizes resistant epithelial ovarian cancer to cisplatin. Oncol Rep. 36:3552–3558. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Zhu ST, Wang X, Deng J, Li WH, Zhang P and Liu BS: MiR-100 inhibits osteosarcoma cell proliferation, migration, and invasion and enhances chemosensitivity by targeting IGFIR. Technol Cancer Res Treat. 15:NP40–NP48. 2016. View Article : Google Scholar | |
|
Lai Y, Kacal M, Kanony M, Stukan I, Jatta K, Kis L, Norberg E, Vakifahmetoglu-Norberg H, Lewensohn R, Hydbring P and Ekman S: miR-100-5p confers resistance to ALK tyrosine kinase inhibitors Crizotinib and Lorlatinib in EML4-ALK positive NSCLC. Biochem Biophys Res Commun. 511:260–265. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Lobert S, Jefferson B and Morris K: Regulation of β-tubulin isotypes by micro-RNA 100 in MCF7 breast cancer cells. Cytoskeleton. 68:355–362. 2011. View Article : Google Scholar | |
|
Moqadam FA, Lange-Turenhout EAM, Ariës IM, Pieters R and den Boer ML: MiR-125b, miR-100 and miR-99a co-regulate vincristine resistance in childhood acute lymphoblastic leukemia. Leuk Res. 37:1315–1321. 2013. View Article : Google Scholar | |
|
Ng WL, Yan D, Zhang X, Mo YY and Wang Y: Over-expression of miR-100 is responsible for the low-expression of ATM in the human glioma cell line: M059J. DNA Repair (Amst). 9:1170–1175. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou B, Lin W, Long Y, Yang Y, Zhang H, Wu K and Chu Q: Notch signaling pathway: Architecture, disease, and therapeutics. Signal Transduct Target Ther. 7:952022. View Article : Google Scholar : PubMed/NCBI | |
|
Lee YJ, Kim WR, Park EG, Lee DH, Kim JM, Shin HJ, Jeong HS, Roh HY and Kim HS: Exploring the key signaling pathways and ncRNAs in colorectal cancer. Int J Mol Sci. 25:45482024. View Article : Google Scholar : PubMed/NCBI | |
|
Peng WX, Koirala P and Mo YY: LncRNA-mediated regulation of cell signaling in cancer. Oncogene. 36:5661–5667. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Park JH, Pyun WY and Park HW: Cancer metabolism: Phenotype, signaling and therapeutic targets. Cells. 9:23082020. View Article : Google Scholar : PubMed/NCBI | |
|
Song SK, Jung WY, Park SK, Chung CW and Park Y: Significantly different expression levels of microRNAs associated with vascular invasion in hepatocellular carcinoma and their prognostic significance after surgical resection. PLoS One. 14:e02168472019. View Article : Google Scholar : PubMed/NCBI | |
|
Chen D, Sun Y, Yuan Y, Han Z, Zhang P, Zhang J, You MJ, Teruya-Feldstein J, Wang M, Gupta S, et al: miR-100 induces epithelial-mesenchymal transition but suppresses tumorigenesis, migration and invasion. PLoS Genet. 10:e10041772014. View Article : Google Scholar : PubMed/NCBI | |
|
Yang J, Chen Z, Wang X, Xu M, Fang H, Li F, Liu Y, Jiang Y, Ding Y, Li J and Wang S: Inactivation of miR-100 combined with arsenic treatment enhances the malignant transformation of BEAS-2B cells via stimulating epithelial-mesenchymal transition. Cancer Biol Ther. 18:965–973. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Huang C, Qin X, Zhao N, Jin H, Zhang S and Yang H: (Corrigendum) MicroRNA-100 functions as a tumor suppressor in cervical cancer via downregulating the SATB1 expression and regulating AKT/mTOR signaling pathway and epithelial-to-mesenchymal transition. Oncol Lett. 22:2021. View Article : Google Scholar | |
|
Glaviano A, Foo ASC, Lam HY, Yap KCH, Jacot W, Jones RH, Eng H, Nair MG, Makvandi P, Geoerger B, et al: PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol Cancer. 22:1382023. View Article : Google Scholar : PubMed/NCBI | |
|
Song P, Gao Z, Bao Y, Chen L, Huang Y, Liu Y, Dong Q and Wei X: Wnt/β-catenin signaling pathway in carcinogenesis and cancer therapy. J Hematol Oncol. 17:462024. View Article : Google Scholar | |
|
Peng CW, Yue LX, Zhou YQ, Tang S, Kan C, Xia LM, Yang F and Wang SY: miR-100-3p inhibits cell proliferation and induces apoptosis in human gastric cancer through targeting to BMPR2. Cancer Cell Int. 19:3542019. View Article : Google Scholar : | |
|
Yang G, Gong Y, Wang Q, Wang Y and Zhang X: The role of miR-100-mediated Notch pathway in apoptosis of gastric tumor cells. Cell Signal. 27:1087–1101. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Huang C, Qin X, Zhao N, Jin H, Zhang S and Yang H: MicroRNA-100 functions as a tumor suppressor in cervical cancer via downregulating the SATB1 expression and regulating AKT/mTOR signaling pathway and epithelial-to-mesenchymal transition. Oncol Lett. 20:1336–1344. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Morgos DT, Stefani C, Miricescu D, Greabu M, Stanciu S, Nica S, Stanescu-Spinu II, Balan DG, Balcangiu-Stroescu AE, Coculescu EC, et al: Targeting PI3K/AKT/mTOR and MAPK signaling pathways in gastric cancer. Int J Mol Sci. 25:18482024. View Article : Google Scholar : PubMed/NCBI | |
|
Qin C, Huang RY and Wang ZX: Potential role of miR-100 in cancer diagnosis, prognosis, and therapy. Tumour Biol. 36:1403–1409. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Wei X, Feng Y, Fu Y, Liu F, Chen Q, Zhang W, Zhao Y, Huang X, Chen Y, Li Q and Zhang Q: miR-100-5p is upregulated in multiple myeloma and involves in the pathogenesis of multiple myeloma through targeting MTMR3. Hematology. 28:21968572023. View Article : Google Scholar : PubMed/NCBI | |
|
Eniafe J and Jiang S: MicroRNA-99 family in cancer and immunity. Wiley Interdiscip Rev RNA. 12:e16352021. View Article : Google Scholar | |
|
Gu L, Li H, Chen L, Ma X, Gao Y, Li X, Zhang Y, Fan Y and Zhang X: MicroRNAs as prognostic molecular signatures in renal cell carcinoma: A systematic review and meta-analysis. Oncotarget. 6:32545–32560. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Ghafouri-Fard S, Glassy MC, Abak A, Hussen BM, Niazi V and Taheri M: The interaction between miRNAs/lncRNAs and Notch pathway in human disorders. Biomed Pharmacother. 138:1114962021. View Article : Google Scholar : PubMed/NCBI | |
|
Servín-González LS, Granados-López AJ and López JA: Families of microRNAs expressed in clusters regulate cell signaling in cervical cancer. Int J Mol Sci. 16:12773–12790. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Shemesh R, Laufer-Geva S, Gorzalczany Y, Anoze A, Sagi-Eisenberg R, Peled N and Roisman LC: The interaction of mast cells with membranes from lung cancer cells induces the release of extracellular vesicles with a unique miRNA signature. Sci Rep. 13:215442023. View Article : Google Scholar : PubMed/NCBI | |
|
Jamali L, Tofigh R, Tutunchi S, Panahi G, Borhani F, Akhavan S, Nourmohammadi P, Ghaderian SMH, Rasouli M and Mirzaei H: Circulating microRNAs as diagnostic and therapeutic biomarkers in gastric and esophageal cancers. J Cell Physiol. 233:8538–8550. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Farasati Far B, Vakili K, Fathi M, Yaghoobpoor S, Bhia M and Naimi-Jamal MR: The role of microRNA-21 (miR-21) in pathogenesis, diagnosis, and prognosis of gastrointestinal cancers: A review. Life Sci. 316:1213402023. View Article : Google Scholar : PubMed/NCBI | |
|
Grimaldi AM, Nuzzo S, Condorelli G, Salvatore M and Incoronato M: Prognostic and clinicopathological significance of miR-155 in breast cancer: A systematic review. Int J Mol Sci. 21:58342020. View Article : Google Scholar : PubMed/NCBI | |
|
Seyhan AA: Trials and tribulations of microRNA therapeutics. Int J Mol Sci. 25:14692024. View Article : Google Scholar : PubMed/NCBI | |
|
Qian H, Maghsoudloo M, Kaboli PJ, Babaeizad A, Cui Y, Fu J, Wang Q and Imani S: Decoding the promise and challenges of miRNA-based cancer therapies: An essential update on miR-21, miR-34, and miR-155. Int J Med Sci. 21:2781–2798. 2024. View Article : Google Scholar : PubMed/NCBI |