Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
May-2025 Volume 55 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2025 Volume 55 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data1.pdf
    • Supplementary_Data2.xlsx
Article Open Access

Inhibitors of the ubiquitin‑proteasome system rescue cellular levels and ion transport function of pathogenic pendrin (SLC26A4) protein variants

  • Authors:
    • Emanuele Bernardinelli
    • Rapolas Jamontas
    • Arnoldas Matulevičius
    • Florian Huber
    • Houssein Nasser
    • Sophie Klaus
    • Haixia Zhu
    • Jiangang Gao
    • Silvia Dossena
  • View Affiliations / Copyright

    Affiliations: Institute of Pharmacology and Toxicology, Paracelsus Medical University, A-5020 Salzburg, Austria, Institute of Developmental Biology, School of Life Science, Shandong University, Qingdao, Shandong 266237, P.R. China
    Copyright: © Bernardinelli et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 69
    |
    Published online on: February 28, 2025
       https://doi.org/10.3892/ijmm.2025.5510
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Pendrin (SLC26A4) is an anion exchanger abundantly expressed in the inner ear, kidney and thyroid, and its malfunction resulting from genetic mutation leads to Pendred syndrome and non‑syndromic deafness DFNB4. Pathogenic variants of the pendrin protein are less expressed than the wild‑type, but the mechanism underlying this phenomenon is unknown. In the present study, the hypothesis that reduced protein expression stems from increased protein degradation was explored. To verify this hypothesis, the protein levels and anion transport function of several pathogenic pendrin variants were measured following exposure to inhibitors of the ubiquitin‑proteasome system (UPS) and the lysosomal/autophagosomal pathways. Protein levels were measured by western blotting and quantitative imaging; ion transport was measured with a fluorometric method. Post‑translational modification of pendrin was investigated by immunoprecipitation and mass spectrometry. The results showed that the protein abundance and half‑life of pathogenic pendrin variants were significantly reduced compared with the wild‑type in cell‑based assays and in a mouse model of Pendred syndrome/DFNB4, pointing to accelerated protein degradation rather than defective protein production. Wild‑type pendrin and its variants are abundantly but differentially ubiquitinated, consistent with their different protein stability. While ubiquitination at the C‑terminus controls the stability of wild‑type pendrin, preferential ubiquitination of lysine 77 occurred in the pathogenic pendrin variant p.R409H. Inhibition of the UPS with investigational (MG132) or clinical (bortezomib, delanzomib, or carfilzomib) proteasome inhibitors rescued the expression, plasma membrane targeting, and ion transport function of pathogenic pendrin variants, while inhibition of the lysosomal/autophagosomal pathway was ineffective. Among the compounds tested, carfilzomib rescued the ion transport of pendrin p.R409H to wild‑type levels. These findings suggest that targeting specific molecular players within the UPS can rescue the expression and activity of pathogenic variants of the pendrin protein, which represents a novel therapeutic concept for Pendred syndrome/DFNB4. 
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Everett LA, Morsli H, Wu DK and Green ED: Expression pattern of the mouse ortholog of the Pendred's syndrome gene (Pds) suggests a key role for pendrin in the inner ear. Proc Natl Acad Sci USA. 96:9727–9732. 1999. View Article : Google Scholar : PubMed/NCBI

2 

Royaux IE, Wall SM, Karniski LP, Everett LA, Suzuki K, Knepper MA and Green ED: Pendrin, encoded by the Pendred syndrome gene, resides in the apical region of renal intercalated cells and mediates bicarbonate secretion. Proc Natl Acad Sci USA. 98:4221–4226. 2001. View Article : Google Scholar : PubMed/NCBI

3 

Royaux IE, Suzuki K, Mori A, Katoh R, Everett LA, Kohn LD and Green ED: Pendrin, the protein encoded by the Pendred syndrome gene (PDS), is an apical porter of iodide in the thyroid and is regulated by thyroglobulin in FRTL-5 cells. Endocrinology. 141:839–845. 2000. View Article : Google Scholar : PubMed/NCBI

4 

Dossena S and Paulmichl M: The role of Pendrin in health and disease. Springer International Publishing; Switzerland: 2017, View Article : Google Scholar

5 

Honda K, Kim SH, Kelly MC, Burns JC, Constance L, Li X, Zhou F, Hoa M, Kelley MW, Wangemann P, et al: Molecular architecture underlying fluid absorption by the developing inner ear. Elife. 6:e268512017. View Article : Google Scholar : PubMed/NCBI

6 

Kim HM and Wangemann P: Epithelial cell stretching and luminal acidification lead to a retarded development of stria vascularis and deafness in mice lacking pendrin. PLoS One. 6:e179492011. View Article : Google Scholar : PubMed/NCBI

7 

Wangemann P, Itza EM, Albrecht B, Wu T, Jabba SV, Maganti RJ, Lee JH, Everett LA, Wall SM, Royaux IE, et al: Loss of KCNJ10 protein expression abolishes endocochlear potential and causes deafness in Pendred syndrome mouse model. BMC Med. 2:302004. View Article : Google Scholar : PubMed/NCBI

8 

Fugazzola L, Cerutti N, Mannavola D, Vannucchi G and Beck-Peccoz P: The role of pendrin in iodide regulation. Exp Clin Endocrinol Diabetes. 109:18–22. 2001. View Article : Google Scholar : PubMed/NCBI

9 

Soleimani M: The multiple roles of pendrin in the kidney. Nephrol Dial Transplant. 30:1257–1266. 2015. View Article : Google Scholar :

10 

Brazier F, Corniere N, Picard N, Chambrey R and Eladari D: Pendrin: Linking acid base to blood pressure. Pflugers Arch. 476:533–543. 2024. View Article : Google Scholar

11 

Wall SM: Regulation of blood pressure and salt balance by Pendrin-Positive intercalated cells: Donald seldin lecture 2020. Hypertension. 79:706–716. 2022. View Article : Google Scholar : PubMed/NCBI

12 

Smith RJH: Pendred Syndrome/Nonsyndromic Enlarged Vestibular Aqueduct. GeneReviews®. Adam MP, Ardinger HH, Pagon RA, et al: Seattle, WA: 1993

13 

Fraser GR: Association of congenital deafness with goitre (Pendred's Syndrome) a study of 207 families. Ann Hum Genet. 28:201–249. 1965. View Article : Google Scholar : PubMed/NCBI

14 

Griffith AJ and Wangemann P: Hearing loss associated with enlargement of the vestibular aqueduct: Mechanistic insights from clinical phenotypes, genotypes, and mouse models. Hear Res. 281:11–17. 2011. View Article : Google Scholar : PubMed/NCBI

15 

Choi BY, Kim HM, Ito T, Lee KY, Li X, Monahan K, Wen Y, Wilson E, Kurima K, Saunders TL, et al: Mouse model of enlarged vestibular aqueducts defines temporal requirement of Slc26a4 expression for hearing acquisition. J Clin Invest. 121:4516–4525. 2011. View Article : Google Scholar : PubMed/NCBI

16 

Wangemann P: Mouse models for pendrin-associated loss of cochlear and vestibular function. Cell Physiol Biochem. 32:157–165. 2013. View Article : Google Scholar

17 

Wangemann P and Griffith AJ: Mouse models reveal the role of pendrin in the inner ear. The role of pendrin in health and disease. Dossena S and Paulmichl M: Springer International Publishing; Switzerland: pp. 7–22. 2017, View Article : Google Scholar

18 

Wangemann P, Nakaya K, Wu T, Maganti RJ, Itza EM, Sanneman JD, Harbidge DG, Billings S and Marcus DC: Loss of cochlear HCO3-secretion causes deafness via endolymphatic acidification and inhibition of Ca2+ reabsorption in a Pendred syndrome mouse model. Am J Physiol Renal Physiol. 292:F1345–F1353. 2007. View Article : Google Scholar : PubMed/NCBI

19 

Nishio A, Ito T, Cheng H, Fitzgerald TS, Wangemann P and Griffith AJ: Slc26a4 expression prevents fluctuation of hearing in a mouse model of large vestibular aqueduct syndrome. Neuroscience. 329:74–82. 2016. View Article : Google Scholar : PubMed/NCBI

20 

Wen Z, Zhu H, Li Z, Zhang S, Zhang A, Zhang T, Fu X, Sun D, Zhang J and Gao J: A knock-in mouse model of Pendred syndrome with Slc26a4 L236P mutation. Biochem Biophys Res Commun. 515:359–365. 2019. View Article : Google Scholar : PubMed/NCBI

21 

Taylor JP, Metcalfe RA, Watson PF, Weetman AP and Trembath RC: Mutations of the PDS gene, encoding pendrin, are associated with protein mislocalization and loss of iodide efflux: Implications for thyroid dysfunction in Pendred syndrome. J Clin Endocrinol Metab. 87:1778–1784. 2002. View Article : Google Scholar : PubMed/NCBI

22 

Rotman-Pikielny P, Hirschberg K, Maruvada P, Suzuki K, Royaux IE, Green ED, Kohn LD, Lippincott-Schwartz J and Yen PM: Retention of pendrin in the endoplasmic reticulum is a major mechanism for Pendred syndrome. Hum Mol Genet. 11:2625–2633. 2002. View Article : Google Scholar : PubMed/NCBI

23 

Dai P, Stewart AK, Chebib F, Hsu A, Rozenfeld J, Huang D, Kang D, Lip V, Fang H, Shao H, et al: Distinct and novel SLC26A4/Pendrin mutations in Chinese and U.S. patients with nonsyndromic hearing loss. Physiol Genomics. 38:281–290. 2009. View Article : Google Scholar : PubMed/NCBI

24 

Choi BY, Stewart AK, Madeo AC, Pryor SP, Lenhard S, Kittles R, Eisenman D, Kim HJ, Niparko J, Thomsen J, et al: Hypo-functional SLC26A4 variants associated with nonsyndromic hearing loss and enlargement of the vestibular aqueduct: Genotype-phenotype correlation or coincidental polymorphisms? Hum Mutat. 30:599–608. 2009. View Article : Google Scholar : PubMed/NCBI

25 

Wasano K, Takahashi S, Rosenberg SK, Kojima T, Mutai H, Matsunaga T, Ogawa K and Homma K: Systematic quantification of the anion transport function of pendrin (SLC26A4) and its disease-associated variants. Hum Mutat. 41:316–331. 2020. View Article : Google Scholar

26 

de Moraes VCS, Bernardinelli E, Zocal N, Fernandez JA, Nofziger C, Castilho AM, Sartorato EL, Paulmichl M and Dossena S: Reduction of cellular expression levels is a common feature of functionally affected pendrin (SLC26A4) protein variants. Mol Med. 22:41–53. 2016. View Article : Google Scholar : PubMed/NCBI

27 

Roesch S, Bernardinelli E, Nofziger C, Tóth M, Patsch W, Rasp G, Paulmichl M and Dossena S: Functional testing of SLC26A4 Variants-clinical and molecular analysis of a cohort with enlarged vestibular aqueduct from Austria. Int J Mol Sci. 19:2092018. View Article : Google Scholar : PubMed/NCBI

28 

Shepshelovich J, Goldstein-Magal L, Globerson A, Yen PM, Rotman-Pikielny P and Hirschberg K: Protein synthesis inhibitors and the chemical chaperone TMAO reverse endoplasmic reticulum perturbation induced by overexpression of the iodide transporter pendrin. J Cell Sci. 118:1577–1586. 2005. View Article : Google Scholar : PubMed/NCBI

29 

Lee K, Hong TJ and Hahn JS: Roles of 17-AAG-induced molecular chaperones and Rma1 E3 ubiquitin ligase in folding and degradation of Pendrin. FEBS Lett. 586:2535–2541. 2012. View Article : Google Scholar : PubMed/NCBI

30 

Jung J, Kim J, Roh SH, Jun I, Sampson RD, Gee HY, Choi JY and Lee MG: The HSP70 co-chaperone DNAJC14 targets misfolded pendrin for unconventional protein secretion. Nat Commun. 7:113862016. View Article : Google Scholar : PubMed/NCBI

31 

Nanami M, Pham TD, Kim YH, Yang B, Sutliff RL, Staub O, Klein JD, Lopez-Cayuqueo KI, Chambrey R, Park AY, et al: The role of intercalated cell Nedd4-2 in BP regulation, Ion transport, and transporter expression. J Am Soc Nephrol. 29:1706–1719. 2018. View Article : Google Scholar : PubMed/NCBI

32 

Galietta LJ, Haggie PM and Verkman AS: Green fluorescent protein-based halide indicators with improved chloride and iodide affinities. FEBS Lett. 499:220–224. 2001. View Article : Google Scholar : PubMed/NCBI

33 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar

34 

DiCiommo DP, Duckett A, Burcescu I, Bremner R and Gallie BL: Retinoblastoma protein purification and transduction of retina and retinoblastoma cells using improved alphavirus vectors. Invest Ophthalmol Vis Sci. 45:3320–3329. 2004. View Article : Google Scholar : PubMed/NCBI

35 

Procino G, Milano S, Tamma G, Dossena S, Barbieri C, Nicoletti MC, Ranieri M, Di Mise A, Nofziger C, Svelto M, et al: Co-regulated pendrin and aquaporin 5 expression and trafficking in Type-B intercalated cells under potassium depletion. Cell Physiol Biochem. 32:184–199. 2013. View Article : Google Scholar

36 

Pera A, Dossena S, Rodighiero S, Gandía M, Bottà G, Meyer G, Moreno F, Nofziger C, Hernández-Chico C and Paulmichl M: Functional assessment of allelic variants in the SLC26A4 gene involved in Pendred syndrome and nonsyndromic EVA. Proc Natl Acad Sci USA. 105:18608–18613. 2008. View Article : Google Scholar : PubMed/NCBI

37 

Fugazzola L, Cirello V, Dossena S, Rodighiero S, Muzza M, Castorina P, Lalatta F, Ambrosetti U, Beck-Peccoz P, Bottà G and Paulmichl M: High phenotypic intrafamilial variability in patients with Pendred syndrome and a novel duplication in the SLC26A4 gene: Clinical characterization and functional studies of the mutated SLC26A4 protein. Eur J Endocrinol. 157:331–338. 2007. View Article : Google Scholar : PubMed/NCBI

38 

Dror AA, Politi Y, Shahin H, Lenz DR, Dossena S, Nofziger C, Fuchs H, Hrabé de Angelis M, Paulmichl M, Weiner S and Avraham KB: Calcium oxalate stone formation in the inner ear as a result of an Slc26a4 mutation. J Biol Chem. 285:21724–21735. 2010. View Article : Google Scholar : PubMed/NCBI

39 

Dossena S, Bizhanova A, Nofziger C, Bernardinelli E, Ramsauer J, Kopp P and Paulmichl M: Identification of allelic variants of pendrin (SLC26A4) with loss and gain of function. Cell Physiol Biochem. 28:467–476. 2011. View Article : Google Scholar : PubMed/NCBI

40 

Dossena S, Nofziger C, Brownstein Z, Kanaan M, Avraham KB and Paulmichl M: Functional characterization of pendrin mutations found in the Israeli and Palestinian populations. Cell Physiol Biochem. 28:477–484. 2011. View Article : Google Scholar : PubMed/NCBI

41 

Bernardinelli E, Costa R, Nofziger C, Paulmichl M and Dossena S: Effect of known inhibitors of ion transport on pendrin (SLC26A4) activity in a human kidney cell line. Cell Physiol Biochem. 38:1984–1998. 2016. View Article : Google Scholar : PubMed/NCBI

42 

Dossena S, Rodighiero S, Vezzoli V, Bazzini C, Sironi C, Meyer G, Fürst J, Ritter M, Garavaglia ML, Fugazzola L, et al: Fast fluorometric method for measuring pendrin (SLC26A4) Cl-/I-transport activity. Cell Physiol Biochem. 18:67–74. 2006. View Article : Google Scholar

43 

Dossena S, Rodighiero S, Vezzoli V, Nofziger C, Salvioni E, Boccazzi M, Grabmayer E, Bottà G, Meyer G, Fugazzola L, et al: Functional characterization of wild-type and mutated pendrin (SLC26A4), the anion transporter involved in Pendred syndrome. J Mol Endocrinol. 43:93–103. 2009. View Article : Google Scholar : PubMed/NCBI

44 

Tsukada K, Nishio SY, Hattori M and Usami S: Ethnic-specific spectrum of GJB2 and SLC26A4 mutations: Their origin and a literature review. Ann Otol Rhinol Laryngol. 124(Suppl 1): 61S–76S. 2015. View Article : Google Scholar : PubMed/NCBI

45 

Mauthe M, Orhon I, Rocchi C, Zhou X, Luhr M, Hijlkema KJ, Coppes RP, Engedal N, Mari M and Reggiori F: Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy. 14:1435–1455. 2018. View Article : Google Scholar : PubMed/NCBI

46 

Van Goor F, Hadida S, Grootenhuis PD, Burton B, Stack JH, Straley KS, Decker CJ, Miller M, McCartney J, Olson ER, et al: Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809. Proc Natl Acad Sci USA. 108:18843–18848. 2011. View Article : Google Scholar : PubMed/NCBI

47 

Keating D, Marigowda G, Burr L, Daines C, Mall MA, McKone EF, Ramsey BW, Rowe SM, Sass LA, Tullis E, et al: VX-445-Tezacaftor-ivacaftor in patients with cystic fibrosis and one or two phe508del alleles. N Engl J Med. 379:1612–1620. 2018. View Article : Google Scholar : PubMed/NCBI

48 

Aslam AA, Sinha IP and Southern KW: Ataluren and similar compounds (specific therapies for premature termination codon class I mutations) for cystic fibrosis. Cochrane Database Syst Rev. 3:CD0120402023.PubMed/NCBI

49 

Hosoya M, Saeki T, Saegusa C, Matsunaga T, Okano H, Fujioka M and Ogawa K: Estimating the concentration of therapeutic range using disease-specific iPS cells: Low-dose rapamycin therapy for Pendred syndrome. Regen Ther. 10:54–63. 2019. View Article : Google Scholar

50 

Dossena S, Vezzoli V, Cerutti N, Bazzini C, Tosco M, Sironi C, Rodighiero S, Meyer G, Fascio U, Fürst J, et al: Functional characterization of wild-type and a mutated form of SLC26A4 identified in a patient with Pendred syndrome. Cell Physiol Biochem. 17:245–256. 2006. View Article : Google Scholar : PubMed/NCBI

51 

Rapid UBIquitination detection. http://old.protein.bio.unipd.it/rubi/. 2013 accessed 5 July 2024

52 

Wang L, Hoang A, Gil-Iturbe E, Laganowsky A, Quick M and Zhou M: Mechanism of anion exchange and small-molecule inhibition of pendrin. Nat Commun. 15:3462024. View Article : Google Scholar : PubMed/NCBI

53 

Ward CL, Omura S and Kopito RR: Degradation of CFTR by the ubiquitin-proteasome pathway. Cell. 83:121–127. 1995. View Article : Google Scholar : PubMed/NCBI

54 

Chen YA, Peng YJ, Hu MC, Huang JJ, Chien YC, Wu JT, Chen TY and Tang CY: The Cullin 4A/B-DDB1-Cereblon E3 ubiquitin ligase complex mediates the degradation of CLC-1 chloride channels. Sci Rep. 5:106672015. View Article : Google Scholar : PubMed/NCBI

55 

Hsu PH, Ma YT, Fang YC, Huang JJ, Gan YL, Chang PT, Jow GM, Tang CY and Jeng CJ: Cullin 7 mediates proteasomal and lysosomal degradations of rat Eag1 potassium channels. Sci Rep. 7:408252017. View Article : Google Scholar : PubMed/NCBI

56 

Iwai C, Li P, Kurata Y, Morikawa K, Maharani N, Higaki K, Sasano T, Notsu T, Ishido Y, Miake J, et al: Hsp90 prevents interaction between CHIP and HERG proteins to facilitate maturation of wild-type and mutant HERG proteins. Cardiovasc Res. 100:520–528. 2013. View Article : Google Scholar : PubMed/NCBI

57 

Gozzetti A, Papini G, Candi V, Brambilla CZ, Sirianni S and Bocchia M: Second generation proteasome inhibitors in multiple myeloma. Anticancer Agents Med Chem. 17:920–926. 2017. View Article : Google Scholar

58 

Zeniya M, Mori T, Yui N, Nomura N, Mandai S, Isobe K, Chiga M, Sohara E, Rai T and Uchida S: The proteasome inhibitor bortezomib attenuates renal fibrosis in mice via the suppression of TGF-β1. Sci Rep. 7:130862017. View Article : Google Scholar

59 

Ikeda T, Fujii H, Nose M, Kamogawa Y, Shirai T, Shirota Y, Ishii T and Harigae H: Bortezomib treatment induces a higher mortality rate in lupus model mice with a higher disease activity. Arthritis Res Ther. 19:1872017. View Article : Google Scholar : PubMed/NCBI

60 

Pohl C and Dikic I: Cellular quality control by the ubiquitin-proteasome system and autophagy. Science. 366:818–822. 2019. View Article : Google Scholar : PubMed/NCBI

61 

Sheridan C: Drug makers target ubiquitin proteasome pathway anew. Nat Biotechnol. 33:1115–1117. 2015. View Article : Google Scholar : PubMed/NCBI

62 

Sarikas A, Hartmann T and Pan ZQ: The cullin protein family. Genome Biol. 12:2202011. View Article : Google Scholar : PubMed/NCBI

63 

Bulatov E and Ciulli A: Targeting Cullin-RING E3 ubiquitin ligases for drug discovery: Structure, assembly and small-molecule modulation. Biochem J. 467:365–386. 2015. View Article : Google Scholar : PubMed/NCBI

64 

Guedat P and Colland F: Patented small molecule inhibitors in the ubiquitin proteasome system. BMC Biochem. 8(Suppl 1): S142007. View Article : Google Scholar : PubMed/NCBI

65 

Landre V, Rotblat B, Melino S, Bernassola F and Melino G: Screening for E3-ubiquitin ligase inhibitors: Challenges and opportunities. Oncotarget. 5:7988–8013. 2014. View Article : Google Scholar : PubMed/NCBI

66 

Younger JM, Chen L, Ren HY, Rosser MF, Turnbull EL, Fan CY, Patterson C and Cyr DM: Sequential quality-control checkpoints triage misfolded cystic fibrosis transmembrane conductance regulator. Cell. 126:571–582. 2006. View Article : Google Scholar : PubMed/NCBI

67 

Liu J, Ye J, Zou X, Xu Z, Feng Y, Zou X, Chen Z, Li Y and Cang Y: CRL4A(CRBN) E3 ubiquitin ligase restricts BK channel activity and prevents epileptogenesis. Nat Commun. 5:39242014. View Article : Google Scholar : PubMed/NCBI

68 

Mijnders M, Kleizen B and Braakman I: Correcting CFTR folding defects by small-molecule correctors to cure cystic fibrosis. Curr Opin Pharmacol. 34:83–90. 2017. View Article : Google Scholar : PubMed/NCBI

69 

Tomati V, Sondo E, Armirotti A, Caci E, Pesce E, Marini M, Gianotti A, Jeon YJ, Cilli M, Pistorio A, et al: Genetic inhibition of the ubiquitin ligase Rnf5 attenuates phenotypes associated to F508del cystic fibrosis mutation. Sci Rep. 5:121382015. View Article : Google Scholar : PubMed/NCBI

70 

Sondo E, Falchi F, Caci E, Ferrera L, Giacomini E, Pesce E, Tomati V, Mandrup Bertozzi S, Goldoni L, Armirotti A, et al: Pharmacological inhibition of the ubiquitin ligase RNF5 rescues F508del-CFTR in cystic fibrosis airway epithelia. Cell Chem Biol. 25:891–905.e8. 2018. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Bernardinelli E, Jamontas R, Matulevičius A, Huber F, Nasser H, Klaus S, Zhu H, Gao J and Dossena S: Inhibitors of the ubiquitin‑proteasome system rescue cellular levels and ion transport function of pathogenic pendrin (SLC26A4) protein variants. Int J Mol Med 55: 69, 2025.
APA
Bernardinelli, E., Jamontas, R., Matulevičius, A., Huber, F., Nasser, H., Klaus, S. ... Dossena, S. (2025). Inhibitors of the ubiquitin‑proteasome system rescue cellular levels and ion transport function of pathogenic pendrin (SLC26A4) protein variants. International Journal of Molecular Medicine, 55, 69. https://doi.org/10.3892/ijmm.2025.5510
MLA
Bernardinelli, E., Jamontas, R., Matulevičius, A., Huber, F., Nasser, H., Klaus, S., Zhu, H., Gao, J., Dossena, S."Inhibitors of the ubiquitin‑proteasome system rescue cellular levels and ion transport function of pathogenic pendrin (SLC26A4) protein variants". International Journal of Molecular Medicine 55.5 (2025): 69.
Chicago
Bernardinelli, E., Jamontas, R., Matulevičius, A., Huber, F., Nasser, H., Klaus, S., Zhu, H., Gao, J., Dossena, S."Inhibitors of the ubiquitin‑proteasome system rescue cellular levels and ion transport function of pathogenic pendrin (SLC26A4) protein variants". International Journal of Molecular Medicine 55, no. 5 (2025): 69. https://doi.org/10.3892/ijmm.2025.5510
Copy and paste a formatted citation
x
Spandidos Publications style
Bernardinelli E, Jamontas R, Matulevičius A, Huber F, Nasser H, Klaus S, Zhu H, Gao J and Dossena S: Inhibitors of the ubiquitin‑proteasome system rescue cellular levels and ion transport function of pathogenic pendrin (SLC26A4) protein variants. Int J Mol Med 55: 69, 2025.
APA
Bernardinelli, E., Jamontas, R., Matulevičius, A., Huber, F., Nasser, H., Klaus, S. ... Dossena, S. (2025). Inhibitors of the ubiquitin‑proteasome system rescue cellular levels and ion transport function of pathogenic pendrin (SLC26A4) protein variants. International Journal of Molecular Medicine, 55, 69. https://doi.org/10.3892/ijmm.2025.5510
MLA
Bernardinelli, E., Jamontas, R., Matulevičius, A., Huber, F., Nasser, H., Klaus, S., Zhu, H., Gao, J., Dossena, S."Inhibitors of the ubiquitin‑proteasome system rescue cellular levels and ion transport function of pathogenic pendrin (SLC26A4) protein variants". International Journal of Molecular Medicine 55.5 (2025): 69.
Chicago
Bernardinelli, E., Jamontas, R., Matulevičius, A., Huber, F., Nasser, H., Klaus, S., Zhu, H., Gao, J., Dossena, S."Inhibitors of the ubiquitin‑proteasome system rescue cellular levels and ion transport function of pathogenic pendrin (SLC26A4) protein variants". International Journal of Molecular Medicine 55, no. 5 (2025): 69. https://doi.org/10.3892/ijmm.2025.5510
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team