Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
May-2025 Volume 55 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2025 Volume 55 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role of lysine lactylation in neoplastic and inflammatory pulmonary diseases (Review)

  • Authors:
    • Shanshan Wang
    • Hongyan Zheng
    • Jianping Zhao
    • Jungang Xie
  • View Affiliations / Copyright

    Affiliations: Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 71
    |
    Published online on: March 4, 2025
       https://doi.org/10.3892/ijmm.2025.5512
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Protein lysine lactylation is a ubiquitous and post‑translational modification of lysine residues that involves the addition of a lactyl group on both histone and non‑histone proteins. This process plays a pivotal role in human health and disease and was first discovered in 2019. This epigenetic modification regulates gene transcription from chromatin or directly influences non‑histone proteins by modulating protein‑DNA/protein interactions, activity and stability. The dual functions of lactylation in both histone and non‑histone proteins establish it as a crucial mechanism involved in various cellular processes, such as cell proliferation, differentiation, immune and inflammatory responses and metabolism. Specific enzymes, referred to as ‘writers’ and ‘erasers’, catalyze the addition or removal of lactyl groups at designated lysine sites, thereby dynamically modulating lactylation through alterations in their enzymatic activities. The respiratory system has a remarkably intricate metabolic profile. Numerous pulmonary diseases feature an atypical transition towards glycolytic metabolism, which is linked to an overproduction of lactate, a possible substrate for lactylation. However, there has yet to be a comprehensive review elucidating the full impact of lactylation on the onset, progression and potential treatment of neoplastic and inflammatory pulmonary diseases. In the present review, an extensive overview of the discovery of lactylation and advancements in research on the existing lactylation sites were discussed. Furthermore, the review particularly investigated the potential roles and mechanisms of histone and non‑histone lactylation in various neoplastic and inflammatory pulmonary diseases, including non‑small cell lung cancers, malignant pleural effusion, pulmonary fibrosis, acute lung injury and asthma, to excavate the new therapeutic effects of post‑translational modification on various pulmonary diseases.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Faubert B, Solmonson A and DeBerardinis RJ: Metabolic reprogramming and cancer progression. Science. 368:eaaw54732020. View Article : Google Scholar : PubMed/NCBI

2 

Xia L, Oyang L, Lin J, Tan S, Han Y, Wu N, Yi P, Tang L, Pan Q, Rao S, et al: The cancer metabolic reprogramming and immune response. Mol Cancer. 20:282021. View Article : Google Scholar : PubMed/NCBI

3 

Brand A, Singer K, Koehl GE, Kolitzus M, Schoenhammer G, Thiel A, Matos C, Bruss C, Klobuch S, Peter K, et al: LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab. 24:657–671. 2016. View Article : Google Scholar : PubMed/NCBI

4 

Liu C, Wei W, Huang Y, Fu P, Zhang L and Zhao Y: Metabolic reprogramming in septic acute kidney injury: Pathogenesis and therapeutic implications. Metabolism. 158:1559742024. View Article : Google Scholar : PubMed/NCBI

5 

Certo M, Tsai CH, Pucino V, Ho PC and Mauro C: Lactate modulation of immune responses in inflammatory versus tumour microenvironments. Nat Rev Immunol. 21:151–161. 2021. View Article : Google Scholar

6 

Rabinowitz JD and Enerbäck S: Lactate: The ugly duckling of energy metabolism. Nat Metab. 2:566–571. 2020. View Article : Google Scholar : PubMed/NCBI

7 

Zhang D, Tang Z, Huang H, Zhou G, Cui C, Weng Y, Liu W, Kim S, Lee S, Perez-Neut M, et al: Metabolic regulation of gene expression by histone lactylation. Nature. 574:575–580. 2019. View Article : Google Scholar : PubMed/NCBI

8 

Yu J, Chai P, Xie M, Ge S, Ruan J, Fan X and Jia R: Histone lactylation drives oncogenesis by facilitating m6A reader protein YTHDF2 expression in ocular melanoma. Genome Biol. 22:852021. View Article : Google Scholar

9 

Wang Y, Li H, Jiang S, Fu D, Lu X, Lu M, Li Y, Luo D, Wu K, Xu Y, et al: The glycolytic enzyme PFKFB3 drives kidney fibrosis through promoting histone lactylation-mediated NF-κB family activation. Kidney Int. 106:226–240. 2024. View Article : Google Scholar : PubMed/NCBI

10 

Wang N, Wang W, Wang X, Mang G, Chen J, Yan X, Tong Z, Yang Q, Wang M, Chen L, et al: Histone lactylation boosts reparative gene activation post-myocardial infarction. Circ Res. 131:893–908. 2022. View Article : Google Scholar : PubMed/NCBI

11 

Cui H, Xie N, Banerjee S, Ge J, Jiang D, Dey T, Matthews QL, Liu RM and Liu G: Lung myofibroblasts promote macrophage profibrotic activity through lactate-induced histone lactylation. Am J Respir Cell Mol Biol. 64:115–125. 2021. View Article : Google Scholar :

12 

Schneider JL, Rowe JH, Garcia-de-Alba C, Kim CF, Sharpe AH and Haigis MC: The aging lung: Physiology, disease, and immunity. Cell. 184:1990–2019. 2021. View Article : Google Scholar : PubMed/NCBI

13 

Bueno M, Calyeca J, Rojas M and Mora AL: Mitochondria dysfunction and metabolic reprogramming as drivers of idiopathic pulmonary fibrosis. Redox Biol. 33:1015092020. View Article : Google Scholar : PubMed/NCBI

14 

Lin Z, Li J, Zhang J, Feng W, Lu J, Ma X, Ding W, Ouyang S, Lu J, Yue P, et al: Metabolic reprogramming driven by IGF2BP3 promotes acquired resistance to EGFR inhibitors in non-small cell lung cancer. Cancer Res. 83:2187–2207. 2023. View Article : Google Scholar : PubMed/NCBI

15 

Ma Q, Jiang H, Ma L, Zhao G, Xu Q, Guo D, He N, Liu H, Meng Z, Liu J, et al: The moonlighting function of glycolytic enzyme enolase-1 promotes choline phospholipid metabolism and tumor cell proliferation. Proc Natl Acad Sci USA. 120:e22094351202023. View Article : Google Scholar : PubMed/NCBI

16 

He Y, Ji Z, Gong Y, Fan L, Xu P, Chen X, Miao J, Zhang K, Zhang W, Ma P, et al: Numb/Parkin-directed mitochondrial fitness governs cancer cell fate via metabolic regulation of histone lactylation. Cell Rep. 42:1120332023. View Article : Google Scholar : PubMed/NCBI

17 

Gao M, Zhang N and Liang W: Systematic analysis of lysine lactylation in the plant fungal pathogen botrytis cinerea. Front Microbiol. 11:5947432020. View Article : Google Scholar : PubMed/NCBI

18 

Meng X, Baine JM, Yan T and Wang S: Comprehensive analysis of lysine lactylation in rice (Oryza sativa) grains. J Agric Food Chem. 69:8287–8297. 2021. View Article : Google Scholar : PubMed/NCBI

19 

Lu Y, Liu L, Pan J, Luo B, Zeng H, Shao Y, Zhang H, Guan H, Guo D, Zeng C, et al: MFG-E8 regulated by miR-99b-5p protects against osteoarthritis by targeting chondrocyte senescence and macrophage reprogramming via the NF-κB pathway. Cell Death Dis. 12:5332021. View Article : Google Scholar

20 

Yang Q, Liu J, Wang Y, Zhao W, Wang W, Cui J, Yang J, Yue Y, Zhang S, Chu M, et al: A proteomic atlas of ligand-receptor interactions at the ovine maternal-fetal interface reveals the role of histone lactylation in uterine remodeling. J Biol Chem. 298:1014562022. View Article : Google Scholar

21 

Pan RY, He L, Zhang J, Liu X, Liao Y, Gao J, Liao Y, Yan Y, Li Q, Zhou X, et al: Positive feedback regulation of microglial glucose metabolism by histone H4 lysine 12 lactylation in Alzheimer's disease. Cell Metab. 34:634–648.e6. 2022. View Article : Google Scholar : PubMed/NCBI

22 

Yang YH, Wang QC, Kong J, Yang JT and Liu JF: Global profiling of lysine lactylation in human lungs. Proteomics. 23:e22004372023. View Article : Google Scholar : PubMed/NCBI

23 

Neganova ME, Klochkov SG, Aleksandrova YR and Aliev G: Histone modifications in epigenetic regulation of cancer: Perspectives and achieved progress. Semin Cancer Biol. 83:452–471. 2022. View Article : Google Scholar

24 

Park J, Lee K, Kim K and Yi SJ: The role of histone modifications: From neurodevelopment to neurodiseases. Signal Transduct Target Ther. 7:2172022. View Article : Google Scholar : PubMed/NCBI

25 

Panwar V, Singh A, Bhatt M, Tonk RK, Azizov S, Raza AS, Sengupta S, Kumar D and Garg M: Multifaceted role of mTOR (mammalian target of rapamycin) signaling pathway in human health and disease. Signal Transduct Target Ther. 8:3752023. View Article : Google Scholar : PubMed/NCBI

26 

Lavoie H, Gagnon J and Therrien M: ERK signalling: A master regulator of cell behaviour, life and fate. Nat Rev Mol Cell Biol. 21:607–632. 2020. View Article : Google Scholar : PubMed/NCBI

27 

Li J, Hou W, Zhao Q, Han W, Cui H, Xiao S, Zhu L, Qu J, Liu X, Cong W, et al: Lactate regulates major zygotic genome activation by H3K18 lactylation in mammals. Natl Sci Rev. 11:nwad2952023. View Article : Google Scholar

28 

Pandkar MR, Sinha S, Samaiya A and Shukla S: Oncometabolite lactate enhances breast cancer progression by orchestrating histone lactylation-dependent c-Myc expression. Transl Oncol. 37:1017582023. View Article : Google Scholar : PubMed/NCBI

29 

Wang X, Ying T, Yuan J, Wang Y, Su X, Chen S, Zhao Y, Zhao Y, Sheng J, Teng L, et al: BRAFV600E restructures cellular lactylation to promote anaplastic thyroid cancer proliferation. Endocr Relat Cancer. 30:e2203442023. View Article : Google Scholar : PubMed/NCBI

30 

Nian F, Qian Y, Xu F, Yang M, Wang H and Zhang Z: LDHA promotes osteoblast differentiation through histone lactylation. Biochem Biophys Res Commun. 615:31–35. 2022. View Article : Google Scholar : PubMed/NCBI

31 

Fanzani A, Giuliani R, Colombo F, Zizioli D, Presta M, Preti A and Marchesini S: Overexpression of cytosolic sialidase Neu2 induces myoblast differentiation in C2C12 cells. FEBS Lett. 547:183–188. 2003. View Article : Google Scholar : PubMed/NCBI

32 

Dai W, Wu G, Liu K, Chen Q, Tao J, Liu H and Shen M: Lactate promotes myogenesis via activating H3K9 lactylation-dependent up-regulation of Neu2 expression. J Cachexia Sarcopenia Muscle. 14:2851–2865. 2023. View Article : Google Scholar : PubMed/NCBI

33 

Li L, Li Z, Meng X, Wang X, Song D, Liu Y, Xu T, Qin J, Sun N, Tian K, et al: Histone lactylation-derived LINC01127 promotes the self-renewal of glioblastoma stem cells via the cis-regulating the MAP4K4 to activate JNK pathway. Cancer Lett. 579:2164672023. View Article : Google Scholar : PubMed/NCBI

34 

Sabu A, Liu TI, Ng SS, Doong RA, Huang YF and Chiu HC: Nanomedicines targeting glioma stem cells. ACS Appl Mater Interfaces. 15:158–181. 2023. View Article : Google Scholar

35 

Dou X, Fu Q, Long Q, Liu S, Zou Y, Fu D, Xu Q, Jiang Z, Ren X, Zhang G, et al: PDK4-dependent hypercatabolism and lactate production of senescent cells promotes cancer malignancy. Nat Metab. 5:1887–1910. 2023. View Article : Google Scholar : PubMed/NCBI

36 

Wiley CD and Campisi J: From ancient pathways to aging cells-connecting metabolism and cellular senescence. Cell Metab. 23:1013–1021. 2016. View Article : Google Scholar : PubMed/NCBI

37 

Wei L, Yang X, Wang J, Wang Z, Wang Q, Ding Y and Yu A: H3K18 lactylation of senescent microglia potentiates brain aging and Alzheimer's disease through the NFκB signaling pathway. J Neuroinflammation. 20:2082023. View Article : Google Scholar

38 

Jiang X, Yang Y, Li X, Li T, Yu T and Fu X: Lactylation: An innovative approach to disease control. Aging Dis. Sep 6–2024.Epub ahead of print.

39 

Li X, Chen M, Chen X, He X, Li X, Wei H, Tan Y, Min J, Azam T, Xue M, et al: TRAP1 drives smooth muscle cell senescence and promotes atherosclerosis via HDAC3-primed histone H4 lysine 12 lactylation. Eur Heart J. 45:4219–4235. 2024. View Article : Google Scholar : PubMed/NCBI

40 

Greene JT, Brian BF IV, Senevirathne SE and Freedman TS: Regulation of myeloid-cell activation. Curr Opin Immunol. 73:34–42. 2021. View Article : Google Scholar : PubMed/NCBI

41 

Bassler K, Schulte-Schrepping J, Warnat-Herresthal S, Aschenbrenner AC and Schultze JL: The myeloid cell compartment-cell by cell. Annu Rev Immunol. 37:269–293. 2019. View Article : Google Scholar : PubMed/NCBI

42 

De Leo A, Ugolini A, Yu X, Scirocchi F, Scocozza D, Peixoto B, Pace A, D'Angelo L, Liu JKC, Etame AB, et al: Glucose-driven histone lactylation promotes the immunosuppressive activity of monocyte-derived macrophages in glioblastoma. Immunity. 57:1105–1123.e8. 2024. View Article : Google Scholar : PubMed/NCBI

43 

Ma XM, Geng K, Wang P, Jiang Z, Law BYK and Xu Y: MCT4-dependent lactate transport: A novel mechanism for cardiac energy metabolism injury and inflammation in type 2 diabetes mellitus. Cardiovasc Diabetol. 23:962024. View Article : Google Scholar : PubMed/NCBI

44 

Ma W, Ao S, Zhou J, Li J, Liang X, Yang X, Zhang H, Liu B, Tang W, Liu H, et al: Methylsulfonylmethane protects against lethal dose MRSA-induced sepsis through promoting M2 macrophage polarization. Mol Immunol. 146:69–77. 2022. View Article : Google Scholar : PubMed/NCBI

45 

Kolaczkowska E and Kubes P: Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 13:159–175. 2013. View Article : Google Scholar : PubMed/NCBI

46 

Zhou J, Xu W, Wu Y, Wang M, Zhang N, Wang L, Feng Y, Zhang T, Wang L and Mao A: GPR37 promotes colorectal cancer liver metastases by enhancing the glycolysis and histone lactylation via Hippo pathway. Oncogene. 42:3319–3330. 2023. View Article : Google Scholar : PubMed/NCBI

47 

Tong H, Jiang Z, Song L, Tan K, Yin X, He C, Huang J, Li X, Jing X, Yun H, et al: Dual impacts of serine/glycine-free diet in enhancing antitumor immunity and promoting evasion via PD-L1 lactylation. Cell Metab. 36:2493–2510.e9. 2024. View Article : Google Scholar : PubMed/NCBI

48 

Huang ZW, Zhang XN, Zhang L, Liu LL, Zhang JW, Sun YX, Xu JQ, Liu Q and Long ZJ: STAT5 promotes PD-L1 expression by facilitating histone lactylation to drive immunosuppression in acute myeloid leukemia. Signal Transduct Target Ther. 8:3912023. View Article : Google Scholar : PubMed/NCBI

49 

Sun T, Liu B, Li Y, Wu J, Cao Y, Yang S, Tan H, Cai L, Zhang S, Qi X, et al: Oxamate enhances the efficacy of CAR-T therapy against glioblastoma via suppressing ectonucleotidases and CCR8 lactylation. J Exp Clin Cancer Res. 42:2532023. View Article : Google Scholar : PubMed/NCBI

50 

Zhao Y, Jiang J, Zhou P, Deng K, Liu Z, Yang M, Yang X, Li J, Li R and Xia J: H3K18 lactylation-mediated VCAM1 expression promotes gastric cancer progression and metastasis via AKT-mTOR-CXCL1 axis. Biochem Pharmacol. 222:1161202024. View Article : Google Scholar : PubMed/NCBI

51 

Gu J, Zhou J, Chen Q, Xu X, Gao J, Li X, Shao Q, Zhou B, Zhou H, Wei S, et al: Tumor metabolite lactate promotes tumorigenesis by modulating MOESIN lactylation and enhancing TGF-β signaling in regulatory T cells. Cell Rep. 39:1109862022. View Article : Google Scholar

52 

Li HS, Zhou YN, Li L, Li SF, Long D, Chen XL, Zhang JB, Feng L and Li YP: HIF-1α protects against oxidative stress by directly targeting mitochondria. Redox Biol. 25:1011092019. View Article : Google Scholar

53 

Zhao Y, Xing C, Deng Y, Ye C and Peng H: HIF-1α signaling: Essential roles in tumorigenesis and implications in targeted therapies. Genes Dis. 11:234–251. 2023. View Article : Google Scholar :

54 

Zhao W, Wang Y, Liu J, Yang Q, Zhang S, Hu X, Shi Z, Zhang Z, Tian J, Chu D and An L: Progesterone activates the histone lactylation-Hif1α-glycolysis feedback loop to promote decidualization. Endocrinology. 165:bqad1692023. View Article : Google Scholar

55 

Wei S, Zhang J, Zhao R, Shi R, An L, Yu Z, Zhang Q, Zhang J, Yao Y, Li H and Wang H: Histone lactylation promotes malignant progression by facilitating USP39 expression to target PI3K/AKT/HIF-1α signal pathway in endometrial carcinoma. Cell Death Discov. 10:1212024. View Article : Google Scholar

56 

Yang J, Luo L, Zhao C, Li X, Wang Z, Zeng Z, Yang X, Zheng X, Jie H, Kang L, et al: A Positive feedback loop between inactive VHL-triggered histone lactylation and PDGFRβ signaling drives clear cell renal cell carcinoma progression. Int J Biol Sci. 18:3470–3483. 2022. View Article : Google Scholar :

57 

Chen J, Zhang M, Liu Y, Zhao S, Wang Y, Wang M, Niu W, Jin F and Li Z: Histone lactylation driven by mROS-mediated glycolytic shift promotes hypoxic pulmonary hypertension. J Mol Cell Biol. 14:mjac0732023. View Article : Google Scholar :

58 

Yang Z, Yan C, Ma J, Peng P, Ren X, Cai S, Shen X, Wu Y, Zhang S, Wang X, et al: Lactylome analysis suggests lactylation-dependent mechanisms of metabolic adaptation in hepatocellular carcinoma. Nat Metab. 5:61–79. 2023. View Article : Google Scholar : PubMed/NCBI

59 

Cheng Z, Huang H, Li M and Chen Y: Proteomic analysis identifies PFKP lactylation in SW480 colon cancer cells. iScience. 27:1086452023. View Article : Google Scholar : PubMed/NCBI

60 

Meng Q, Zhang Y, Sun H, Yang X, Hao S, Liu B, Zhou H, Wang Y and Xu ZX: Human papillomavirus-16 E6 activates the pentose phosphate pathway to promote cervical cancer cell proliferation by inhibiting G6PD lactylation. Redox Biol. 71:1031082024. View Article : Google Scholar : PubMed/NCBI

61 

Wang J, Yang P, Yu T, Gao M, Liu D, Zhang J, Lu C, Chen X, Zhang X and Liu Y: Lactylation of PKM2 suppresses inflammatory metabolic adaptation in pro-inflammatory macrophages. Int J Biol Sci. 18:6210–6225. 2022. View Article : Google Scholar : PubMed/NCBI

62 

Jia M, Yue X, Sun W, Zhou Q, Chang C, Gong W, Feng J, Li X, Zhan R, Mo K, et al: ULK1-mediated metabolic reprogramming regulates Vps34 lipid kinase activity by its lactylation. Sci Adv. 9:eadg49932023. View Article : Google Scholar : PubMed/NCBI

63 

Xie B, Zhang M, Li J, Cui J, Zhang P, Liu F, Wu Y, Deng W, Ma J, Li X, et al: KAT8-catalyzed lactylation promotes eEF1A2-mediated protein synthesis and colorectal carcinogenesis. Proc Natl Acad Sci USA. 121:e23141281212024. View Article : Google Scholar : PubMed/NCBI

64 

Cheng S, Chen L, Ying J, Wang Y, Jiang W, Zhang Q, Zhang H, Wang J, Wang C, Wu H, et al: 20(S)-ginsenoside Rh2 ameliorates ATRA resistance in APL by modulating lactylation-driven METTL3. J Ginseng Res. 48:298–309. 2024. View Article : Google Scholar : PubMed/NCBI

65 

Narita T, Weinert BT and Choudhary C: Functions and mechanisms of non-histone protein acetylation. Nat Rev Mol Cell Biol. 20:156–174. 2019. View Article : Google Scholar

66 

Wang S, Osgood AO and Chatterjee A: Uncovering post-translational modification-associated protein-protein interactions. Curr Opin Struct Biol. 74:1023522022. View Article : Google Scholar : PubMed/NCBI

67 

Li Q, Zhang F, Wang H, Tong Y, Fu Y, Wu K, Li J, Wang C, Wang Z, Jia Y, et al: NEDD4 lactylation promotes APAP induced liver injury through Caspase11 dependent non-canonical pyroptosis. Int J Biol Sci. 20:1413–1435. 2024. View Article : Google Scholar : PubMed/NCBI

68 

An S, Yao Y, Hu H, Wu J, Li J, Li L, Wu J, Sun M, Deng Z, Zhang Y, et al: PDHA1 hyperacetylation-mediated lactate overproduction promotes sepsis-induced acute kidney injury via Fis1 lactylation. Cell Death Dis. 14:4572023. View Article : Google Scholar : PubMed/NCBI

69 

Zong Z, Xie F, Wang S, Wu X, Zhang Z, Yang B and Zhou F: Alanyl-tRNA synthetase, AARS1, is a lactate sensor and lactyltransferase that lactylates p53 and contributes to tumorigenesis. Cell. 187:2375–2392.e33. 2024. View Article : Google Scholar : PubMed/NCBI

70 

Wang X, Fan W, Li N, Ma Y, Yao M, Wang G, He S, Li W, Tan J, Lu Q and Hou S: YY1 lactylation in microglia promotes angiogenesis through transcription activation-mediated upregulation of FGF2. Genome Biol. 24:872023. View Article : Google Scholar : PubMed/NCBI

71 

Liao J, Chen Z, Chang R, Yuan T, Li G, Zhu C, Wen J, Wei Y, Huang Z, Ding Z, et al: CENPA functions as a transcriptional regulator to promote hepatocellular carcinoma progression via cooperating with YY1. Int J Biol Sci. 19:5218–5232. 2023. View Article : Google Scholar : PubMed/NCBI

72 

Wang Y, Chen L, Zhang M, Li X, Yang X, Huang T, Ban Y, Li Y, Li Q, Zheng Y, et al: Exercise-induced endothelial Mecp2 lactylation suppresses atherosclerosis via the Ereg/MAPK signalling pathway. Atherosclerosis. 375:45–58. 2023. View Article : Google Scholar : PubMed/NCBI

73 

Meng Q, Sun H, Zhang Y, Yang X, Hao S, Liu B, Zhou H, Xu ZX and Wang Y: Lactylation stabilizes DCBLD1 activating the pentose phosphate pathway to promote cervical cancer progression. J Exp Clin Cancer Res. 43:362024. View Article : Google Scholar : PubMed/NCBI

74 

Wu Y and Gong P: Scopolamine regulates the osteogenic differentiation of human periodontal ligament stem cells through lactylation modification of RUNX2 protein. Pharmacol Res Perspect. 12:e11692024. View Article : Google Scholar : PubMed/NCBI

75 

Yang Z, Zheng Y and Gao Q: Lysine lactylation in the regulation of tumor biology. Trends Endocrinol Metab. 35:720–731. 2024. View Article : Google Scholar : PubMed/NCBI

76 

Chen H, Li Y, Li H, Chen X, Fu H, Mao D, Chen W, Lan L, Wang C, Hu K, et al: NBS1 lactylation is required for efficient DNA repair and chemotherapy resistance. Nature. 631:663–669. 2024. View Article : Google Scholar : PubMed/NCBI

77 

Shvedunova M and Akhtar A: Modulation of cellular processes by histone and non-histone protein acetylation. Nat Rev Mol Cell Biol. 23:329–349. 2022. View Article : Google Scholar : PubMed/NCBI

78 

Niu Z, Chen C, Wang S, Lu C, Wu Z, Wang A, Mo J, Zhang J, Han Y, Yuan Y, et al: HBO1 catalyzes lysine lactylation and mediates histone H3K9la to regulate gene transcription. Nat Commun. 15:35612024. View Article : Google Scholar : PubMed/NCBI

79 

Li F, Si W, Xia L, Yin D, Wei T, Tao M, Cui X, Yang J, Hong T and Wei R: Positive feedback regulation between glycolysis and histone lactylation drives oncogenesis in pancreatic ductal adenocarcinoma. Mol Cancer. 23:902024. View Article : Google Scholar : PubMed/NCBI

80 

Moreno-Yruela C, Zhang D, Wei W, Bæk M, Liu W, Gao J, Danková D, Nielsen AL, Bolding JE, Yang L, et al: Class I histone deacetylases (HDAC1-3) are histone lysine delactylases. Sci Adv. 8:eabi66962022. View Article : Google Scholar : PubMed/NCBI

81 

Dai SK, Liu PP, Li X, Jiao LF, Teng ZQ and Liu CM: Dynamic profiling and functional interpretation of histone lysine crotonylation and lactylation during neural development. Development. 149:dev2000492022. View Article : Google Scholar : PubMed/NCBI

82 

Hu X, Huang X, Yang Y, Sun Y, Zhao Y, Zhang Z, Qiu D, Wu Y, Wu G and Lei L: Dux activates metabolism-lactylation-MET network during early iPSC reprogramming with Brg1 as the histone lactylation reader. Nucleic Acids Res. 52:5529–5548. 2024. View Article : Google Scholar : PubMed/NCBI

83 

Yang L, Niu K, Wang J, Shen W, Jiang R, Liu L, Song W, Wang X, Zhang X, Zhang R, et al: Nucleolin lactylation contributes to intrahepatic cholangiocarcinoma pathogenesis via RNA splicing regulation of MADD. J Hepatol. 81:651–666. 2024. View Article : Google Scholar : PubMed/NCBI

84 

Huang H, Wang S, Xia H, Zhao X, Chen K, Jin G, Zhou S, Lu Z, Chen T, Yu H, et al: Lactate enhances NMNAT1 lactylation to sustain nuclear NAD+ salvage pathway and promote survival of pancreatic adenocarcinoma cells under glucose-deprived conditions. Cancer Lett. 588:2168062024. View Article : Google Scholar

85 

Fan M, Yang K, Wang X, Chen L, Gill PS, Ha T, Liu L, Lewis NH, Williams DL and Li C: Lactate promotes endothelial-to-mesenchymal transition via Snail1 lactylation after myocardial infarction. Sci Adv. 9:eadc94652023. View Article : Google Scholar : PubMed/NCBI

86 

Wang YH, Gao P, Wang YQ, Xu LZ, Zeng KW and Tu PF: Small-molecule targeting PKM2 provides a molecular basis of lactylation-dependent fibroblast-like synoviocytes proliferation inhibition against rheumatoid arthritis. Eur J Pharmacol. 972:1765512024. View Article : Google Scholar : PubMed/NCBI

87 

Mao Y, Zhang J, Zhou Q, He X, Zheng Z, Wei Y, Zhou K, Lin Y, Yu H, Zhang H, et al: Hypoxia induces mitochondrial protein lactylation to limit oxidative phosphorylation. Cell Res. 34:13–30. 2024. View Article : Google Scholar : PubMed/NCBI

88 

Sun L, Zhang Y, Yang B, Sun S, Zhang P, Luo Z, Feng T, Cui Z, Zhu T, Li Y, et al: Lactylation of METTL16 promotes cuproptosis via m6A-modification on FDX1 mRNA in gastric cancer. Nat Commun. 14:65232023. View Article : Google Scholar

89 

Jin J, Bai L, Wang D, Ding W, Cao Z, Yan P, Li Y, Xi L, Wang Y, Zheng X, et al: SIRT3-dependent delactylation of cyclin E2 prevents hepatocellular carcinoma growth. EMBO Rep. 24:e560522023. View Article : Google Scholar : PubMed/NCBI

90 

Zhang XW, Li L, Liao M, Liu D, Rehman A, Liu Y, Liu ZP, Tu PF and Zeng KW: Thermal proteome profiling strategy identifies CNPY3 as a cellular target of gambogic acid for inducing prostate cancer pyroptosis. J Med Chem. 67:10005–10011. 2024. View Article : Google Scholar : PubMed/NCBI

91 

Zhang N, Zhang Y, Xu J, Wang P, Wu B, Lu S, Lu X, You S, Huang X, Li M, et al: α-myosin heavy chain lactylation maintains sarcomeric structure and function and alleviates the development of heart failure. Cell Res. 33:679–698. 2023. View Article : Google Scholar : PubMed/NCBI

92 

Li MY, Liu LZ and Dong M: Progress on pivotal role and application of exosome in lung cancer carcinogenesis, diagnosis, therapy and prognosis. Mol Cancer. 20:222021. View Article : Google Scholar : PubMed/NCBI

93 

Thai AA, Solomon BJ, Sequist LV, Gainor JF and Heist RS: Lung cancer. Lancet. 398:535–554. 2021. View Article : Google Scholar : PubMed/NCBI

94 

Jiang J, Huang D, Jiang Y, Hou J, Tian M, Li J, Sun L, Zhang Y, Zhang T, Li Z, et al: Lactate modulates cellular metabolism through histone lactylation-mediated gene expression in non-small cell lung cancer. Front Oncol. 11:6475592021. View Article : Google Scholar : PubMed/NCBI

95 

Yan F, Teng Y, Li X, Zhong Y, Li C, Yan F and He X: Hypoxia promotes non-small cell lung cancer cell stemness, migration, and invasion via promoting glycolysis by lactylation of SOX9. Cancer Biol Ther. 25:23041612024. View Article : Google Scholar : PubMed/NCBI

96 

Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran WJ Jr, Wu YL and Paz-Ares L: Lung cancer: Current therapies and new targeted treatments. Lancet. 389:299–311. 2017. View Article : Google Scholar

97 

Ruprecht JJ and Kunji ERS: Structural mechanism of transport of mitochondrial carriers. Annu Rev Biochem. 90:535–558. 2021. View Article : Google Scholar : PubMed/NCBI

98 

Zheng P, Mao Z, Luo M, Zhou L, Wang L, Liu H, Liu W and Wei S: Comprehensive bioinformatics analysis of the solute carrier family and preliminary exploration of SLC25A29 in lung adenocarcinoma. Cancer Cell Int. 23:2222023. View Article : Google Scholar : PubMed/NCBI

99 

Herbst RS, Morgensztern D and Boshoff C: The biology and management of non-small cell lung cancer. Nature. 553:446–454. 2018. View Article : Google Scholar : PubMed/NCBI

100 

Hao B, Dong H, Xiong R, Song C, Xu C, Li N and Geng Q: Identification of SLC2A1 as a predictive biomarker for survival and response to immunotherapy in lung squamous cell carcinoma. Comput Biol Med. 171:1081832024. View Article : Google Scholar : PubMed/NCBI

101 

Steeg PS, Camphausen KA and Smith QR: Brain metastases as preventive and therapeutic targets. Nat Rev Cancer. 11:352–363. 2011. View Article : Google Scholar : PubMed/NCBI

102 

Liu W, Song J, Du X, Zhou Y, Li Y, Li R, Lyu L, He Y, Hao J, Ben J, et al: AKR1B10 (Aldo-keto reductase family 1 B10) promotes brain metastasis of lung cancer cells in a multi-organ microfluidic chip model. Acta Biomater. 91:195–208. 2019. View Article : Google Scholar : PubMed/NCBI

103 

Duan W, Liu W, Xia S, Zhou Y, Tang M, Xu M, Lin M, Li X and Wang Q: Warburg effect enhanced by AKR1B10 promotes acquired resistance to pemetrexed in lung cancer-derived brain metastasis. J Transl Med. 21:5472023. View Article : Google Scholar : PubMed/NCBI

104 

Feller-Kopman D and Light R: Pleural disease. N Engl J Med. 378:740–751. 2018. View Article : Google Scholar : PubMed/NCBI

105 

Morgensztern D, Waqar S, Subramanian J, Trinkaus K and Govindan R: Prognostic impact of malignant pleural effusion at presentation in patients with metastatic non-small-cell lung cancer. J Thorac Oncol. 7:1485–1489. 2012. View Article : Google Scholar : PubMed/NCBI

106 

Zamboni MM, da Silva CT Jr, Baretta R, Cunha ET and Cardoso GP: Important prognostic factors for survival in patients with malignant pleural effusion. BMC Pulm Med. 15:292015. View Article : Google Scholar : PubMed/NCBI

107 

Wang ZH, Peng WB, Zhang P, Yang XP and Zhou Q: Lactate in the tumour microenvironment: From immune modulation to therapy. EBioMedicine. 73:1036272021. View Article : Google Scholar : PubMed/NCBI

108 

Niu Y and Zhou Q: Th17 cells and their related cytokines: Vital players in progression of malignant pleural effusion. Cell Mol Life Sci. 79:1942022. View Article : Google Scholar : PubMed/NCBI

109 

Wang ZH, Zhang P, Peng WB, Ye LL, Xiang X, Wei XS, Niu YR, Zhang SY, Xue QQ, Wang HL and Zhou Q: Altered phenotypic and metabolic characteristics of FOXP3+CD3+CD56+ natural killer T (NKT)-like cells in human malignant pleural effusion. Oncoimmunology. 12:21605582022. View Article : Google Scholar

110 

Liu GY, Budinger GRS and Dematte JE: Advances in the management of idiopathic pulmonary fibrosis and progressive pulmonary fibrosis. BMJ. 377:e0663542022. View Article : Google Scholar

111 

Noble PW, Barkauskas CE and Jiang D: Pulmonary fibrosis: Patterns and perpetrators. J Clin Invest. 122:2756–2762. 2012. View Article : Google Scholar : PubMed/NCBI

112 

Wynn TA and Vannella KM: Macrophages in tissue repair, regeneration, and fibrosis. Immunity. 44:450–462. 2016. View Article : Google Scholar : PubMed/NCBI

113 

Okabe Y and Medzhitov R: Tissue biology perspective on macrophages. Nat Immunol. 17:9–17. 2016. View Article : Google Scholar

114 

Vannella KM and Wynn TA: Mechanisms of organ injury and repair by macrophages. Annu Rev Physiol. 79:593–617. 2017. View Article : Google Scholar

115 

Byrne AJ, Maher TM and Lloyd CM: Pulmonary macrophages: A new therapeutic pathway in fibrosing lung disease? Trends Mol Med. 22:303–316. 2016. View Article : Google Scholar : PubMed/NCBI

116 

Guth AM, Janssen WJ, Bosio CM, Crouch EC, Henson PM and Dow SW: Lung environment determines unique phenotype of alveolar macrophages. Am J Physiol Lung Cell Mol Physiol. 296:L936–L946. 2009. View Article : Google Scholar : PubMed/NCBI

117 

Li J, Zeng G, Zhang Z, Wang Y, Shao M, Li C, Lu Z, Zhao Y, Zhang F and Ding W: Urban airborne PM2.5 induces pulmonary fibrosis through triggering glycolysis and subsequent modification of histone lactylation in macrophages. Ecotoxicol Environ Saf. 273:1161622024. View Article : Google Scholar

118 

Kumar M, Jha A, Bharti K, Parmar G and Mishra B: Advances in lipid-based pulmonary nanomedicine for the management of inflammatory lung disorders. Nanomedicine (Lond). 17:913–934. 2022. View Article : Google Scholar : PubMed/NCBI

119 

Jin H, Luo R, Li J, Zhao H, Ouyang S, Yao Y, Chen D, Ling Z, Zhu W, Chen M, et al: Inhaled platelet vesicle-decoyed biomimetic nanoparticles attenuate inflammatory lung injury. Front Pharmacol. 13:10502242022. View Article : Google Scholar : PubMed/NCBI

120 

Chen N, Xie QM, Song SM, Guo SN, Fang Y, Fei GH and Wu HM: Dexamethasone protects against asthma via regulating Hif-1α-glycolysis-lactate axis and protein lactylation. Int Immunopharmacol. 131:1117912024. View Article : Google Scholar

121 

Smith LM and Kelleher NL; Consortium for Top Down Proteomics: Proteoform: A single term describing protein complexity. Nat Methods. 10:186–187. 2013. View Article : Google Scholar : PubMed/NCBI

122 

Zhao H, Dennery PA and Yao H: Metabolic reprogramming in the pathogenesis of chronic lung diseases, including BPD, COPD, and pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 314:L544–L554. 2018. View Article : Google Scholar : PubMed/NCBI

123 

Faubert B, Li KY, Cai L, Hensley CT, Kim J, Zacharias LG, Yang C, Do QN, Doucette S, Burguete D, et al: Lactate metabolism in human lung tumors. Cell. 171:358–371.e9. 2017. View Article : Google Scholar : PubMed/NCBI

124 

Pokharel MD, Marciano DP, Fu P, Franco MC, Unwalla H, Tieu K, Fineman JR, Wang T and Black SM: Metabolic reprogramming, oxidative stress, and pulmonary hypertension. Redox Biol. 64:1027972023. View Article : Google Scholar : PubMed/NCBI

125 

Babic M, Veljovic K, Popović N, Golic N, Radojkovic D and Stankovic M: Antioxidant effect of lactic acid bacteria in human bronchial epithelial cells exposed to cigarette smoke. J Appl Microbiol. 134:lxad2572023. View Article : Google Scholar : PubMed/NCBI

126 

Liu X, Wang G, You Z, Qian P, Chen H, Dou Y, Wei Z, Chen Y, Mao C and Zhang J: Inhibition of hypoxia-induced proliferation of pulmonary arterial smooth muscle cells by a mTOR siRNA-loaded cyclodextrin nanovector. Biomaterials. 35:4401–4416. 2014. View Article : Google Scholar : PubMed/NCBI

127 

Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM, Jairam V, Cyrus N, Brokowski CE, Eisenbarth SC, Phillips GM, et al: Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature. 513:559–563. 2014. View Article : Google Scholar : PubMed/NCBI

128 

MacDonald MI, Polkinghorne KR, MacDonald CJ, Leong P, Hamza K, Kathriachchige G, Osadnik CR, King PT and Bardin PG: Elevated blood lactate in COPD exacerbations associates with adverse clinical outcomes and signals excessive treatment with β2-agonists. Respirology. 28:860–868. 2023. View Article : Google Scholar : PubMed/NCBI

129 

Pacl HT, Chinta KC, Reddy VP, Nadeem S, Sevalkar RR, Nargan K, Lumamba K, Naidoo T, Glasgow JN, Agarwal A and Steyn AJC: NAD(H) homeostasis underlies host protection mediated by glycolytic myeloid cells in tuberculosis. Nat Commun. 14:54722023. View Article : Google Scholar : PubMed/NCBI

130 

Huang JJ, Yang XQ, Zhuo ZQ and Yuan L: Clinical characteristics of plastic bronchitis in children: A retrospective analysis of 43 cases. Respir Res. 23:512022. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang S, Zheng H, Zhao J and Xie J: Role of lysine lactylation in neoplastic and inflammatory pulmonary diseases (Review). Int J Mol Med 55: 71, 2025.
APA
Wang, S., Zheng, H., Zhao, J., & Xie, J. (2025). Role of lysine lactylation in neoplastic and inflammatory pulmonary diseases (Review). International Journal of Molecular Medicine, 55, 71. https://doi.org/10.3892/ijmm.2025.5512
MLA
Wang, S., Zheng, H., Zhao, J., Xie, J."Role of lysine lactylation in neoplastic and inflammatory pulmonary diseases (Review)". International Journal of Molecular Medicine 55.5 (2025): 71.
Chicago
Wang, S., Zheng, H., Zhao, J., Xie, J."Role of lysine lactylation in neoplastic and inflammatory pulmonary diseases (Review)". International Journal of Molecular Medicine 55, no. 5 (2025): 71. https://doi.org/10.3892/ijmm.2025.5512
Copy and paste a formatted citation
x
Spandidos Publications style
Wang S, Zheng H, Zhao J and Xie J: Role of lysine lactylation in neoplastic and inflammatory pulmonary diseases (Review). Int J Mol Med 55: 71, 2025.
APA
Wang, S., Zheng, H., Zhao, J., & Xie, J. (2025). Role of lysine lactylation in neoplastic and inflammatory pulmonary diseases (Review). International Journal of Molecular Medicine, 55, 71. https://doi.org/10.3892/ijmm.2025.5512
MLA
Wang, S., Zheng, H., Zhao, J., Xie, J."Role of lysine lactylation in neoplastic and inflammatory pulmonary diseases (Review)". International Journal of Molecular Medicine 55.5 (2025): 71.
Chicago
Wang, S., Zheng, H., Zhao, J., Xie, J."Role of lysine lactylation in neoplastic and inflammatory pulmonary diseases (Review)". International Journal of Molecular Medicine 55, no. 5 (2025): 71. https://doi.org/10.3892/ijmm.2025.5512
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team