Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
May-2025 Volume 55 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2025 Volume 55 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Platelet activation stimulates macrophages to enhance ulcerative colitis through PF4/CXCR3 signaling

  • Authors:
    • Yuxiao Niu
    • Anhong Li
    • Weihua Xu
    • Rong Zhang
    • Ruya Mei
    • Langhua Zhang
    • Fenmin Zhou
    • Qin Pan
    • Yuzhong Yan
  • View Affiliations / Copyright

    Affiliations: Graduate School, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China, Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Zhoupu Hospital, Shanghai 201318, P.R. China, Department of Pharmacy, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China, School of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China, Department of Traditional Chinese Medicine, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China, Shanghai Institute of Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, P.R. China
    Copyright: © Niu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 78
    |
    Published online on: March 14, 2025
       https://doi.org/10.3892/ijmm.2025.5519
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Platelets are involved in hemostasis and immune regulation, but little is currently known regarding their role in inflammatory bowel disease. In the present study, the mechanism by which platelet activation affects macrophage C‑X‑C motif chemokine receptor 3 (CXCR3) by releasing platelet factor 4 (PF4), thus aggravating ulcerative colitis (UC) disease progression, was investigated. A dextran sulfate sodium‑induced mouse model showed co‑localization of the platelet marker PF4 with the macrophage M1 marker inducible nitric oxide synthase. Furthermore, co‑culturing platelets with monocytes (THP‑1) in vitro led to the transformation of monocytes into macrophages, as well as the activation of macrophages exhibiting proinflammatory properties. Meanwhile, reverse transcription‑quantitative PCR (RT‑qPCR) showed that inflammatory factors, such as IL‑1β, IL‑6 and TNF‑α were significantly increased in macrophages after platelet co‑culture. It was therefore hypothesized that the PF4/CXCR3 pathway may serve an important role in cell‑to‑cell communication. Furthermore, intervention with PF4 in THP‑1 cells induced the M1 macrophage phenotype and inflammatory cytokine expression, which was consistent with co‑culturing, whereas inhibition of CXCR3 (AMG487) reversed the effects of PF4. In addition, following treatment with PF4, THP‑1 cells were found to be under oxidative stress and apoptosis was enhanced, as determined by detecting reactive oxygen species, mitochondrial membrane potential and Annexin‑V, as well as the classical apoptotic proteins Bcl‑2/Bax/caspase‑3 through western blotting. In addition, changes in MAPK and NF‑κB, two classic inflammatory signaling pathways, were detected. Furthermore, mice were treated with an anti‑platelet medication or CXCR3 inhibitor to observe in vivo inflammatory changes; through phenotypic assessment, immunofluorescence staining, RT‑qPCR and TUNEL assay, it was demonstrated that the PF4/CXCR3 pathway may aggravate inflammation in mice with UC. In conclusion, platelets and macrophages may interact in UC through the PF4/CXCR3 pathway to exacerbate inflammation, providing novel options for the treatment of UC.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

View References

1 

van der Meijden PEJ and Heemskerk JWM: Platelet biology and functions: New concepts and clinical perspectives. Nat Rev Cardiol. 16:166–179. 2019. View Article : Google Scholar

2 

Dhillon AP, Anthony A, Sim R, Wakefield AJ, Sankey EA, Hudson M, Allison MC and Pounder RE: Mucosal capillary thrombi in rectal biopsies. Histopathology. 21:127–133. 1992. View Article : Google Scholar : PubMed/NCBI

3 

Custodio-Chablé SJ, Lezama RA and Reyes-Maldonado E: Platelet activation as a trigger factor for inflammation and atherosclerosis. Cir Cir. 88:233–243. 2020.PubMed/NCBI

4 

Huang B, Chen Z, Geng L, Wang J, Liang H, Cao Y, Chen H, Huang W, Su M, Wang H, et al: Mucosal profiling of pediatric-onset colitis and IBD reveals common pathogenics and therapeutic pathways. Cell. 179:1160–1176.e1124. 2019. View Article : Google Scholar : PubMed/NCBI

5 

Pan X, Zhu Q, Pan LL and Sun J: Macrophage immunometabolism in inflammatory bowel diseases: From pathogenesis to therapy. Pharmacol Ther. 238:1081762022. View Article : Google Scholar : PubMed/NCBI

6 

Carestia A, Mena HA, Olexen CM, Wilczyñski JM, Negrotto S, Errasti AE, Gómez RM, Jenne CN, Silva EA and Schattner M: Platelets promote macrophage polarization toward proinflammatory phenotype and increase survival of septic mice. Cell Rep. 28:896–908.e895. 2019. View Article : Google Scholar

7 

Laffont B, Corduan A, Rousseau M, Duchez AC, Lee CH, Boilard E and Provost P: Platelet microparticles reprogram macrophage gene expression and function. Thromb Haemost. 115:311–323. 2016. View Article : Google Scholar

8 

Heffron SP, Weinstock A, Scolaro B, Chen S, Sansbury BE, Marecki G, Rolling CC, El Bannoudi H, Barrett T, Canary JW, et al: Platelet-conditioned media induces an anti-inflammatory macrophage phenotype through EP4. J Thromb Haemost. 19:562–573. 2021. View Article : Google Scholar

9 

Rutten B, Tersteeg C, Vrijenhoek JE, van Holten TC, Elsenberg EH, Mak-Nienhuis EM, de Borst GJ, Jukema JW, Pijls NH, Waltenberger J, et al: Increased platelet reactivity is associated with circulating platelet-monocyte complexes and macrophages in human atherosclerotic plaques. PLoS One. 9:e1050192014. View Article : Google Scholar : PubMed/NCBI

10 

Pamuk GE, Vural O, Turgut B, Demir M, Umit H and Tezel A: Increased circulating platelet-neutrophil, platelet-monocyte complexes, and platelet activation in patients with ulcerative colitis: A comparative study. Am J Hematol. 81:753–759. 2006. View Article : Google Scholar : PubMed/NCBI

11 

Kasper B and Petersen F: Molecular pathways of platelet factor 4/CXCL4 signaling. Eur J Cell Biol. 90:521–526. 2011. View Article : Google Scholar : PubMed/NCBI

12 

Bakogiannis C, Sachse M, Stamatelopoulos K and Stellos K: Platelet-derived chemokines in inflammation and atherosclerosis. Cytokine. 122:1541572019. View Article : Google Scholar

13 

Simi M, Leardi S, Tebano MT, Castelli M, Costantini FM and Speranza V: Raised plasma concentrations of platelet factor 4 (PF4) in Crohn's disease. Gut. 28:336–338. 1987. View Article : Google Scholar : PubMed/NCBI

14 

Ye L, Zhang YP, Yu N, Jia YX, Wan SJ and Wang FY: Serum platelet factor 4 is a reliable activity parameter in adult patients with inflammatory bowel disease: A pilot study. Medicine (Baltimore). 96:e63232017. View Article : Google Scholar : PubMed/NCBI

15 

Mitsialis V, Wall S, Liu P, Ordovas-Montanes J, Parmet T, Vukovic M, Spencer D, Field M, McCourt C, Toothaker J, et al: Single-Cell analyses of colon and blood reveal distinct immune cell signatures of ulcerative colitis and Crohn's disease. Gastroenterology. 159:591–608.e510. 2020. View Article : Google Scholar : PubMed/NCBI

16 

Schroepf S, Kappler R, Brand S, Prell C, Lohse P, Glas J, Hoster E, Helmbrecht J, Ballauff A, Berger M, et al: Strong overexpression of CXCR3 axis components in childhood inflammatory bowel disease. Inflamm Bowel Dis. 16:1882–1890. 2010. View Article : Google Scholar : PubMed/NCBI

17 

Chami B, Yeung AW, van Vreden C, King NJ and Bao S: The role of CXCR3 in DSS-induced colitis. PLoS One. 9:e1016222014. View Article : Google Scholar : PubMed/NCBI

18 

Pandey V, Fleming-Martinez A, Bastea L, Doeppler HR, Eisenhauer J, Le T, Edenfield B and Storz P: CXCL10/CXCR3 signaling contributes to an inflammatory microenvironment and its blockade enhances progression of murine pancreatic precancerous lesions. Elife. 10:e606462021. View Article : Google Scholar : PubMed/NCBI

19 

Zhang C, Deng Y, Zhang Y, Ba T, Niu S, Chen Y, Gao Y and Dai H: CXCR3 Inhibition blocks the NF-κB signaling pathway by elevating autophagy to ameliorate lipopolysaccharide-induced intestinal dysfunction in mice. Cells. 12:1822023. View Article : Google Scholar

20 

Barone M, Catani L, Ricci F, Romano M, Forte D, Auteri G, Bartoletti D, Ottaviani E, Tazzari PL, Tazzari PL, et al: The role of circulating monocytes and JAK inhibition in the infectious-driven inflammatory response of myelofibrosis. Oncoimmunology. 9:17825752020. View Article : Google Scholar : PubMed/NCBI

21 

Gao J, Gao J, Qian L, Wang X, Wu M, Zhang Y, Ye H, Zhu S, Yu Y and Han W: Activation of p38-MAPK by CXCL4/CXCR3 axis contributes to p53-dependent intestinal apoptosis initiated by 5-fluorouracil. Cancer Biol Ther. 15:982–991. 2014.PubMed/NCBI

22 

Domschke G and Gleissner CA: CXCL4-induced macrophages in human atherosclerosis. Cytokine. 122:1541412019.

23 

Hoeft K, Schaefer GJL, Kim H, Schumacher D, Bleckwehl T, Long Q, Klinkhammer BM, Peisker F, Koch L, Nagai J, et al: Platelet-instructed SPP1(+) macrophages drive myofibroblast activation in fibrosis in a CXCL4-dependent manner. Cell Rep. 42:1121312023.PubMed/NCBI

24 

Bohlen J, Zhou Q, Philippot Q, Ogishi M, Rinchai D, Nieminen T, Seyedpour S, Parvaneh N, Rezaei N, Yazdanpanah N, et al: Human MCTS1-dependent translation of JAK2 is essential for IFN-γ immunity to mycobacteria. Cell. 186:5114–5134.e5127. 2023.

25 

Ojha A, Bhasym A, Mukherjee S, Annarapu GK, Bhakuni T, Akbar I, Seth T, Vikram NK, Vrati S, Basu A, et al: Platelet factor 4 promotes rapid replication and propagation of Dengue and Japanese encephalitis viruses. EBioMedicine. 39:332–347. 2019.

26 

Hwang Y, Cha SH, Kim D and Jun HS: Combination of PD98059 and TGF-β1 efficiently differentiates human urine-derived stem cells into smooth muscle cells. Int J Mol Sci. 22:105322021.

27 

Tian B, Cai D, Wang M, He T, Deng L, Wu L, Jia R, Zhu D, Liu M, Chen S, et al: SC75741 antagonizes vesicular stomatitis virus, duck Tembusu virus, and duck plague virus infection in duck cells through promoting innate immune responses. Poult Sci. 100:1010852021.PubMed/NCBI

28 

National Research Council Committee for the Update of the Guide for the Care and Use of Laboratory Animal: The National academies collection: Reports funded by National Institutes of Health. Guide for the Care and Use of Laboratory Animals. National Academy of Sciences; Washington, DC: 2011

29 

Zeng B, Huang Y, Chen S, Xu R, Xu L, Qiu J, Shi F, Liu S, Zha Q, Ouyang D and He X: Dextran sodium sulfate potentiates NLRP3 inflammasome activation by modulating the KCa3.1 potassium channel in a mouse model of colitis. Cell Mol Immunol. 19:925–943. 2022.PubMed/NCBI

30 

Wang XL, Deng HF, Li T, Miao SY, Xiao ZH, Liu MD, Liu K and Xiao XZ: Clopidogrel reduces lipopolysaccharide-induced inflammation and neutrophil-platelet aggregates in an experimental endotoxemic model. J Biochem Mol Toxicol. 33:e222792019.

31 

Korish AA: Clopidogrel prophylaxis abates myocardial ischemic injury and inhibits the hyperlipidemia-inflammation loop in hypercholestrolemic mice. Arch Med Res. 51:515–523. 2020. View Article : Google Scholar : PubMed/NCBI

32 

Du J, Zhang X, Han J, Man K, Zhang Y, Chu ES, Nan Y and Yu J: Pro-Inflammatory CXCR3 impairs mitochondrial function in experimental non-alcoholic steatohepatitis. Theranostics. 7:4192–4203. 2017. View Article : Google Scholar : PubMed/NCBI

33 

American Veterinary Medical Association (AVMA): AVMA guidelines for the euthanasia of animals: 2020 Edition. American Veterinary Medical Association; Schaumburg, IL: 2020

34 

Yang X, Liu Z, Zhou J, Guo J, Han T, Liu Y, Li Y, Bai Y, Xing Y, Wu J and Hu D: SPP1 promotes the polarization of M2 macrophages through the Jak2/Stat3 signaling pathway and accelerates the progression of idiopathic pulmonary fibrosis. Int J Mol Med. 54:892024. View Article : Google Scholar : PubMed/NCBI

35 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar

36 

Liu X, Li J, Huang Q, Jin M and Huang G: Ginsenoside Rh2 shifts tumor metabolism from aerobic glycolysis to oxidative phosphorylation through regulating the HIF1-α/PDK4 axis in non-small cell lung cancer. Mol Med. 30:562024. View Article : Google Scholar

37 

Mandel J, Casari M, Stepanyan M, Martyanov A and Deppermann C: Beyond hemostasis: Platelet innate immune interactions and thromboinflammation. Int J Mol Sci. 23:38682022. View Article : Google Scholar : PubMed/NCBI

38 

Koupenova M, Livada AC and Morrell CN: Platelet and megakaryocyte roles in innate and adaptive immunity. Circ Res. 130:288–308. 2022. View Article : Google Scholar : PubMed/NCBI

39 

Cibor D, Szczeklik K, Kozioł K, Pocztar H, Mach T and Owczarek D: Serum concentration of selected biochemical markers of endothelial dysfunction and inflammation in patients with the varying activity of inflammatory bowel disease. Pol Arch Intern Med. 130:598–606. 2020.PubMed/NCBI

40 

Takeyama H, Mizushima T, Iijima H, Shinichiro S, Uemura M, Nishimura J, Hata T, Takemasa I, Yamamoto H, Doki Y and Mori M: Platelet activation markers are associated with Crohn's disease activity in patients with low C-reactive protein. Dig Dis Sci. 60:3418–3423. 2015. View Article : Google Scholar : PubMed/NCBI

41 

Zhang M, Li X, Zhang Q, Yang J and Liu G: Roles of macrophages on ulcerative colitis and colitis-associated colorectal cancer. Front Immunol. 14:11036172023. View Article : Google Scholar : PubMed/NCBI

42 

Rolling CC, Sowa MA, Wang TT, Cornwell M, Myndzar K, Schwartz T, El Bannoudi H, Buyon J, Barrett TJ and Berger JS: P2Y12 inhibition suppresses proinflammatory platelet-monocyte interactions. Thromb Haemost. 123:231–244. 2023. View Article : Google Scholar : PubMed/NCBI

43 

Sano Y, Tomiyama T, Yagi N, Ito Y, Honzawa Y, Tahara T, Ikeura T, Fukui T, Shimoda S and Naganuma M: Platelet activation through CD62P and the formation of platelet-monocyte complexes are associated with the exacerbation of mucosal inflammation in patients with ulcerative colitis. Sci Rep. 14:280552024. View Article : Google Scholar : PubMed/NCBI

44 

Chao Y, Rebetz J, Bläckberg A, Hovold G, Sunnerhagen T, Rasmussen M, Semple JW and Shannon O: Distinct phenotypes of platelet, monocyte, and neutrophil activation occur during the acute and convalescent phase of COVID-19. Platelets. 32:1092–1102. 2021. View Article : Google Scholar : PubMed/NCBI

45 

Tunjungputri RN, van de Heijden W, Urbanus RT, de Groot PG, van der Ven A and de Mast Q: Higher platelet reactivity and platelet-monocyte complex formation in Gram-positive sepsis compared to Gram-negative sepsis. Platelets. 28:595–601. 2017. View Article : Google Scholar

46 

Tatiya-Aphiradee N, Chatuphonprasert W and Jarukamjorn K: Immune response and inflammatory pathway of ulcerative colitis. J Basic Clin Physiol Pharmacol. 30:1–10. 2018. View Article : Google Scholar : PubMed/NCBI

47 

Kim JI, Bae HC, Park HJ, Lee MC and Han HS: Effect of storage conditions and activation on growth factor concentration in platelet-rich plasma. J Orthop Res. 38:777–784. 2020. View Article : Google Scholar

48 

Nebie O, Barro L, Wu YW, Knutson F, Buée L, Devos D, Peng CW, Blum D and Burnouf T: Heat-treated human platelet pellet lysate modulates microglia activation, favors wound healing and promotes neuronal differentiation in vitro. Platelets. 32:226–237. 2021. View Article : Google Scholar

49 

Schroer AB, Ventura PB, Sucharov J, Misra R, Chui MKK, Bieri G, Horowitz AM, Smith LK, Encabo K, Tenggara I, et al: Platelet factors attenuate inflammation and rescue cognition in ageing. Nature. 620:1071–1079. 2023. View Article : Google Scholar : PubMed/NCBI

50 

Liu Z, Li L, Zhang H, Pang X, Qiu Z, Xiang Q and Cui Y: Platelet factor 4(PF4) and its multiple roles in diseases. Blood Rev. 64:1011552024. View Article : Google Scholar

51 

Yang C, Bachu M, Du Y, Brauner C, Yuan R, Ah Kioon MD, Chesi G, Barrat FJ and Ivashkiv LB: CXCL4 synergizes with TLR8 for TBK1-IRF5 activation, epigenomic remodeling and inflammatory response in human monocytes. Nat Commun. 13:34262022. View Article : Google Scholar : PubMed/NCBI

52 

Yu B, Jia S, Chen Y, Guan R, Chen S, Tang W, Bao T and Tian Z: CXCL4 deficiency limits M4 macrophage infiltration and attenuates hyperoxia-induced lung injury. Mol Med. 30:2532024. View Article : Google Scholar : PubMed/NCBI

53 

Li H, Cao Z, Wang L, Liu C, Lin H, Tang Y and Yao P: Macrophage subsets and death are responsible for atherosclerotic plaque formation. Front Immunol. 13:8437122022. View Article : Google Scholar : PubMed/NCBI

54 

Wang K, Wu J, Yang Z, Zheng B, Shen S, Wang RR, Zhang Y, Wang HY, Chen L and Qiu X: Hyperactivation of β-catenin signal in hepatocellular carcinoma recruits myeloid-derived suppressor cells through PF4-CXCR3 axis. Cancer Lett. 586:2166902024. View Article : Google Scholar

55 

Kuratani A, Okamoto M, Kishida K, Okuzaki D, Sasai M, Sakaguchi S, Arase H and Yamamoto M: Platelet factor 4-induced T(H)1-T(reg) polarization suppresses antitumor immunity. Science. 386:eadn86082024. View Article : Google Scholar : PubMed/NCBI

56 

Tan S, Li S, Min Y, Gisterå A, Moruzzi N, Zhang J, Sun Y, Andersson J, Malmström RE, Wang M, et al: Platelet factor 4 enhances CD4(+) T effector memory cell responses via Akt-PGC1α-TFAM signaling-mediated mitochondrial biogenesis. J Thromb Haemost. 18:2685–2700. 2020. View Article : Google Scholar : PubMed/NCBI

57 

Tan S, Zhang J, Sun Y, Gisterå A, Sheng Z, Malmström RE, Hou M, Peng J, Ma C, Liao W and Li N: Platelets enhance CD4+ central memory T cell responses via platelet factor 4-dependent mitochondrial biogenesis and cell proliferation. Platelets. 33:360–370. 2022. View Article : Google Scholar

58 

Arepally GM: Heparin-induced thrombocytopenia. Blood. 129:2864–2872. 2017. View Article : Google Scholar : PubMed/NCBI

59 

Alfaro R, Llorente S, Gonzalez-Martínez G, Jimenez-Coll V, Martínez-Banaclocha H, Galián JA, Botella C, Moya-Quiles MR, de la Peña-Moral J, Minguela A, et al: Clinical significance of the pre-transplant CXCR3 and CCR6 expression on T cells in kidney graft recipients. Transplant Proc. 55:66–71. 2023. View Article : Google Scholar : PubMed/NCBI

60 

Wang S, Zhang Y, Chen G, Zhao P, Wang X, Xu B and Yuan L: Expressions of CXCR3 and PD-1 on T cells and their clinical relevance in colorectal cancer. Int Immunopharmacol. 132:1119882024. View Article : Google Scholar : PubMed/NCBI

61 

Papadakis KA, Prehn J, Zhu D, Landers C, Gaiennie J, Fleshner PR and Targan SR: Expression and regulation of the chemokine receptor CXCR3 on lymphocytes from normal and inflammatory bowel disease mucosa. Inflamm Bowel Dis. 10:778–788. 2004. View Article : Google Scholar

62 

Altara R, Manca M, Brandão RD, Zeidan A, Booz GW and Zouein FA: Emerging importance of chemokine receptor CXCR3 and its ligands in cardiovascular diseases. Clin Sci (Lond). 130:463–478. 2016. View Article : Google Scholar : PubMed/NCBI

63 

Zhou H, Deng M, Liu Y, Yang C, Hoffman R, Zhou J, Loughran PA, Scott MJ, Neal MD and Billiar TR: Platelet HMGB1 is required for efficient bacterial clearance in intra-abdominal bacterial sepsis in mice. Blood Adv. 2:638–648. 2018. View Article : Google Scholar : PubMed/NCBI

64 

Woller G, Brandt E, Mittelstädt J, Rybakowski C and Petersen F: Platelet factor 4/CXCL4-stimulated human monocytes induce apoptosis in endothelial cells by the release of oxygen radicals. J Leukoc Biol. 83:936–945. 2008. View Article : Google Scholar : PubMed/NCBI

65 

Pervushina O, Scheuerer B, Reiling N, Behnke L, Schröder JM, Kasper B, Brandt E, Bulfone-Paus S and Petersen F: Platelet factor 4/CXCL4 induces phagocytosis and the generation of reactive oxygen metabolites in mononuclear phagocytes independently of Gi protein activation or intracellular calcium transients. J Immunol. 173:2060–2067. 2004. View Article : Google Scholar : PubMed/NCBI

66 

Saahene RO, Wang J, Wang ML, Agbo E and Pang D: The antitumor mechanism of paeonol on CXCL4/CXCR3-B signals in breast cancer through induction of tumor cell apoptosis. Cancer Biother Radiopharm. 33:233–240. 2018.PubMed/NCBI

67 

Liu X, Zhou M, Dai Z, Luo S, Shi Y, He Z and Chen Y: Salidroside alleviates ulcerative colitis via inhibiting macrophage pyroptosis and repairing the dysbacteriosis-associated Th17/Treg imbalance. Phytother Res. 37:367–382. 2023. View Article : Google Scholar

68 

Pedersen J, LaCasse EC, Seidelin JB, Coskun M and Nielsen OH: Inhibitors of apoptosis (IAPs) regulate intestinal immunity and inflammatory bowel disease (IBD) inflammation. Trends Mol Med. 20:652–665. 2014. View Article : Google Scholar : PubMed/NCBI

69 

Deng Z, Liu Q, Wang M, Wei HK and Peng J: GPA Peptide-Induced Nur77 localization at mitochondria inhibits inflammation and oxidative stress through activating autophagy in the intestine. Oxid Med Cell Longev. 2020:49642022020. View Article : Google Scholar : PubMed/NCBI

70 

Xiao JJ, Liu Q, Li Y, Peng FF, Wang S, Zhang Z, Liu H, Yu H, Tao S and Zhang BF: Regulator of calcineurin 1 deletion attenuates mitochondrial dysfunction and apoptosis in acute kidney injury through JNK/Mff signaling pathway. Cell Death Dis. 13:7742022. View Article : Google Scholar : PubMed/NCBI

71 

Xu W, Ye S, Liu W, Guo H, Zhang L, Wei S, Anwaier A, Chang K, Malafaia G, Zhang H, et al: Single-cell RNA-seq analysis decodes the kidney microenvironment induced by polystyrene microplastics in mice receiving a high-fat diet. J Nanobiotechnology. 22:132024. View Article : Google Scholar : PubMed/NCBI

72 

Nevzorova TA, Mordakhanova ER, Daminova AG, Ponomareva AA, Andrianova IA, Le Minh G, Rauova L, Litvinov RI and Weisel JW: Platelet factor 4-containing immune complexes induce platelet activation followed by calpain-dependent platelet death. Cell Death Discov. 5:1062019. View Article : Google Scholar : PubMed/NCBI

73 

Kulyar MF, Yao W, Ding Y, Du H, Li K, Zhang L, Li A, Huachun P, Waqas M, Mehmood K and Li J: Cluster of differentiation 147 (CD147) expression is linked with thiram induced chondrocyte's apoptosis via Bcl-2/Bax/Caspase-3 signalling in tibial growth plate under chlorogenic acid repercussion. Ecotoxicol Environ Saf. 213:1120592021. View Article : Google Scholar : PubMed/NCBI

74 

Ali N, Rashid S, Nafees S, Hasan SK, Shahid A, Majed F and Sultana S: Protective effect of Chlorogenic acid against methotrexate induced oxidative stress, inflammation and apoptosis in rat liver: An experimental approach. Chem Biol Interact. 272:80–91. 2017. View Article : Google Scholar : PubMed/NCBI

75 

Yang C, Wang ZQ, Zhang ZC, Lou G and Jin WL: CBL0137 activates ROS/BAX signaling to promote caspase-3/GSDME-dependent pyroptosis in ovarian cancer cells. Biomed Pharmacother. 161:1145292023. View Article : Google Scholar : PubMed/NCBI

76 

Zhang Y, Yang X, Ge X and Zhang F: Puerarin attenuates neurological deficits via Bcl-2/Bax/cleaved caspase-3 and Sirt3/SOD2 apoptotic pathways in subarachnoid hemorrhage mice. Biomed Pharmacother. 109:726–733. 2019. View Article : Google Scholar

77 

Hu Q, Lyon CJ, Fletcher JK, Tang W, Wan M and Hu TY: Extracellular vesicle activities regulating macrophage- and tissue-mediated injury and repair responses. Acta Pharm Sin B. 11:1493–1512. 2021. View Article : Google Scholar : PubMed/NCBI

78 

Wu MY, Liu L, Wang EJ, Xiao HT, Cai CZ, Wang J, Su H, Wang Y, Tan J, Zhang Z, et al: PI3KC3 complex subunit NRBF2 is required for apoptotic cell clearance to restrict intestinal inflammation. Autophagy. 17:1096–1111. 2021. View Article : Google Scholar :

79 

Kuo WT, Zuo L, Odenwald MA, Madha S, Singh G, Gurniak CB, Abraham C and Turner JR: The tight junction protein ZO-1 is dispensable for barrier function but critical for effective mucosal repair. Gastroenterology. 161:1924–1939. 2021. View Article : Google Scholar : PubMed/NCBI

80 

Kuo WT, Shen L, Zuo L, Shashikanth N, Ong M, Wu L, Zha J, Edelblum KL, Wang Y, Wang Y, et al: Inflammation-induced occludin downregulation limits epithelial apoptosis by suppressing caspase-3 expression. Gastroenterology. 157:1323–1337. 2019. View Article : Google Scholar : PubMed/NCBI

81 

Guo H, Guo H, Xie Y, Chen Y, Lu C, Yang Z, Zhu Y, Ouyang Y, Zhang Y and Wang X: Mo(3)Se(4) nanoparticle with ROS scavenging and multi-enzyme activity for the treatment of DSS-induced colitis in mice. Redox Biol. 56:1024412022. View Article : Google Scholar : PubMed/NCBI

82 

Wang R, Moniruzzaman M, Wong KY, Wiid P, Harding A, Giri R, Tong WH, Creagh J, Begun J, McGuckin MA and Hasnain SZ: Gut microbiota shape the inflammatory response in mice with an epithelial defect. Gut Microbes. 13:1–18. 2021. View Article : Google Scholar

83 

Bakheet SA, Alrwashied BS, Ansari MA, Nadeem A, Attia SM, Assiri MA, Alqahtani F, Ibrahim KE and Ahmad SF: CXCR3 antagonist AMG487 inhibits glucocorticoid-induced tumor necrosis factor-receptor-related protein and inflammatory mediators in CD45 expressing cells in collagen-induced arthritis mouse model. Int Immunopharmacol. 84:1064942020. View Article : Google Scholar : PubMed/NCBI

84 

Le HT, Golla K, Karimi R, Hughes MR, Lakschevitz F, Cines DB, Kowalska MA, Poncz M, McNagny KM, Häkkinen L and Kim H: Platelet factor 4 (CXCL4/PF4) upregulates matrix metalloproteinase-2 (MMP-2) in gingival fibroblasts. Sci Rep. 12:186362022. View Article : Google Scholar : PubMed/NCBI

85 

Kasirer-Friede A, Peuhu E, Ivaska J and Shattil SJ: Platelet SHARPIN regulates platelet adhesion and inflammatory responses through associations with αIIbβ3 and LUBAC. Blood Adv. 6:2595–2607. 2022. View Article : Google Scholar : PubMed/NCBI

86 

Yu G, Rux AH, Ma P, Bdeir K and Sachais BS: Endothelial expression of E-selectin is induced by the platelet-specific chemokine platelet factor 4 through LRP in an NF-kappaB-dependent manner. Blood. 105:3545–3551. 2005. View Article : Google Scholar

87 

Petrai I, Rombouts K, Lasagni L, Annunziato F, Cosmi L, Romanelli RG, Sagrinati C, Mazzinghi B, Pinzani M, Romagnani S, et al: Activation of p38(MAPK) mediates the angiostatic effect of the chemokine receptor CXCR3-B. Int J Biochem Cell Biol. 40:1764–1774. 2008. View Article : Google Scholar : PubMed/NCBI

88 

Zeng B, Sun Z, Zhao Q, Liu D, Chen H, Li X, Xing HR and Wang J: SEC23A inhibit melanoma metastatic through secretory PF4 cooperation with SPARC to inhibit MAPK signaling pathway. Int J Biol Sci. 17:3000–3012. 2021. View Article : Google Scholar : PubMed/NCBI

89 

Bonacchi A, Romagnani P, Romanelli RG, Efsen E, Annunziato F, Lasagni L, Francalanci M, Serio M, Laffi G, Pinzani M, et al: Signal transduction by the chemokine receptor CXCR3: Activation of Ras/ERK, Src, and phosphatidylinositol 3-kinase/Akt controls cell migration and proliferation in human vascular pericytes. J Biol Chem. 276:9945–9954. 2001. View Article : Google Scholar : PubMed/NCBI

90 

Van Raemdonck K, Gouwy M, Lepers SA, Van Damme J and Struyf S: CXCL4L1 and CXCL4 signaling in human lymphatic and microvascular endothelial cells and activated lymphocytes: Involvement of mitogen-activated protein (MAP) kinases, Src and p70S6 kinase. Angiogenesis. 17:631–640. 2014. View Article : Google Scholar : PubMed/NCBI

91 

Li LX, Xia YT, Sun XY, Li LR, Yao L, Ali MI, Gu W, Zhang JP, Liu J, Huang SG, et al: CXCL-10/CXCR3 in macrophages regulates tissue repair by controlling the expression of Arg1, VEGFa and TNFα. J Biol Regul Homeost Agents. 34:987–999. 2020.PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Niu Y, Li A, Xu W, Zhang R, Mei R, Zhang L, Zhou F, Pan Q and Yan Y: Platelet activation stimulates macrophages to enhance ulcerative colitis through PF4/CXCR3 signaling. Int J Mol Med 55: 78, 2025.
APA
Niu, Y., Li, A., Xu, W., Zhang, R., Mei, R., Zhang, L. ... Yan, Y. (2025). Platelet activation stimulates macrophages to enhance ulcerative colitis through PF4/CXCR3 signaling. International Journal of Molecular Medicine, 55, 78. https://doi.org/10.3892/ijmm.2025.5519
MLA
Niu, Y., Li, A., Xu, W., Zhang, R., Mei, R., Zhang, L., Zhou, F., Pan, Q., Yan, Y."Platelet activation stimulates macrophages to enhance ulcerative colitis through PF4/CXCR3 signaling". International Journal of Molecular Medicine 55.5 (2025): 78.
Chicago
Niu, Y., Li, A., Xu, W., Zhang, R., Mei, R., Zhang, L., Zhou, F., Pan, Q., Yan, Y."Platelet activation stimulates macrophages to enhance ulcerative colitis through PF4/CXCR3 signaling". International Journal of Molecular Medicine 55, no. 5 (2025): 78. https://doi.org/10.3892/ijmm.2025.5519
Copy and paste a formatted citation
x
Spandidos Publications style
Niu Y, Li A, Xu W, Zhang R, Mei R, Zhang L, Zhou F, Pan Q and Yan Y: Platelet activation stimulates macrophages to enhance ulcerative colitis through PF4/CXCR3 signaling. Int J Mol Med 55: 78, 2025.
APA
Niu, Y., Li, A., Xu, W., Zhang, R., Mei, R., Zhang, L. ... Yan, Y. (2025). Platelet activation stimulates macrophages to enhance ulcerative colitis through PF4/CXCR3 signaling. International Journal of Molecular Medicine, 55, 78. https://doi.org/10.3892/ijmm.2025.5519
MLA
Niu, Y., Li, A., Xu, W., Zhang, R., Mei, R., Zhang, L., Zhou, F., Pan, Q., Yan, Y."Platelet activation stimulates macrophages to enhance ulcerative colitis through PF4/CXCR3 signaling". International Journal of Molecular Medicine 55.5 (2025): 78.
Chicago
Niu, Y., Li, A., Xu, W., Zhang, R., Mei, R., Zhang, L., Zhou, F., Pan, Q., Yan, Y."Platelet activation stimulates macrophages to enhance ulcerative colitis through PF4/CXCR3 signaling". International Journal of Molecular Medicine 55, no. 5 (2025): 78. https://doi.org/10.3892/ijmm.2025.5519
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team