Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
June-2025 Volume 55 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2025 Volume 55 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Harnessing multi‑omics to revolutionize understanding and management of osteosarcoma: A pathway to precision medicine (Review)

  • Authors:
    • Xuesong Chen
    • Bin Tian
    • Yiqun Wang
    • Jiang Zheng
    • Xin Kang
  • View Affiliations / Copyright

    Affiliations: Sports Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
    Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 92
    |
    Published online on: April 14, 2025
       https://doi.org/10.3892/ijmm.2025.5533
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Osteosarcoma, the most prevalent primary bone malignancy in children and adolescents, poses significant challenges due to its aggressive nature and propensity for metastasis. Despite advances in treatment, survival rates for high‑risk patients remain unsatisfactory, underscoring the urgent need for innovative approaches. This review explores the vital role of multi‑omics‑integrating genomics, transcriptomics, proteomics and metabolomics‑in unraveling the complex biological landscapes of osteosarcoma. By providing comprehensive insights into tumor heterogeneity, signaling pathways and metabolic reprogramming, multi‑omics facilitates the identification of novel biomarkers and therapeutic targets. The objective of the present study was to highlight the transformative potential of multi‑omics in enhancing the understanding and management of osteosarcoma, ultimately paving the way for personalized treatment strategies and improved patient outcomes. Through this synthesis, the study calls for a concerted effort to integrate multi‑omics into clinical practice, fostering a more precise approach to osteosarcoma care.
View Figures

Figure 1

Figure 2

View References

1 

Ritter J and Bielack SS: Osteosarcoma. Ann Oncol. 21(Suppl 7): vii320–vii325. 2010. View Article : Google Scholar : PubMed/NCBI

2 

Belayneh R, Fourman MS, Bhogal S and Weiss KR: Update on osteosarcoma. Curr Oncol Rep. 23:712021. View Article : Google Scholar : PubMed/NCBI

3 

Czarnecka AM, Synoradzki K, Firlej W, Bartnik E, Sobczuk P, Fiedorowicz M, Grieb P and Rutkowski P: Molecular biology of osteosarcoma. Cancers (Basel). 12:21302020. View Article : Google Scholar : PubMed/NCBI

4 

Jiang Y, Wang J, Sun M, Zuo D, Wang H, Shen J, Jiang W, Mu H, Ma X, Yin F, et al: Multi-omics analysis identifies osteosarcoma subtypes with distinct prognosis indicating stratified treatment. Nat Commun. 13:72072022. View Article : Google Scholar : PubMed/NCBI

5 

Mirabello L, Troisi RJ and Savage SA: Osteosarcoma incidence and survival rates from 1973 to 2004: Data from the surveillance, epidemiology, and end results program. Cancer. 115:1531–1543. 2009. View Article : Google Scholar : PubMed/NCBI

6 

Meltzer PS and Helman LJ: New horizons in the treatment of osteosarcoma. N Engl J Med. 385:2066–2076. 2021. View Article : Google Scholar : PubMed/NCBI

7 

Garcia-Ortega DY, Cabrera-Nieto SA, Caro-Sánchez HS and Cruz-Ramos M: An overview of resistance to chemotherapy in osteosarcoma and future perspectives. Cancer Drug Resist. 5:762–793. 2022. View Article : Google Scholar : PubMed/NCBI

8 

Panez-Toro I, Muñoz-García J, Vargas-Franco JW, Renodon-Cornière A, Heymann MF, Lézot F and Heymann D: Advances in osteosarcoma. Curr Osteoporos Rep. 21:330–343. 2023. View Article : Google Scholar : PubMed/NCBI

9 

Peled Y, Levin D, Manisterski M, Kollander N, Shukrun R and Elhasid R: Weight loss and response to chemotherapy in pediatric patients with osteosarcoma. Eur J Clin Nutr. 78:541–543. 2024. View Article : Google Scholar : PubMed/NCBI

10 

He X, Liu X, Zuo F, Shi H and Jing J: Artificial intelligence-based multi-omics analysis fuels cancer precision medicine. Semin Cancer Biol. 88:187–200. 2023. View Article : Google Scholar : PubMed/NCBI

11 

Wang L, Qu J, Harari O, Boddey JA, Wang Z and Linna-Kuosmanen S: The impact of multi-omics in medicine. Cell Rep Med. 5:1017422024. View Article : Google Scholar : PubMed/NCBI

12 

Mohammadi-Shemirani P, Sood T and Paré G: From omics to multi-omics technologies: The discovery of novel causal mediators. Curr Atheroscler Rep. 25:55–65. 2023. View Article : Google Scholar : PubMed/NCBI

13 

Tang S, Roberts RD, Cheng L and Li L: Osteosarcoma multi-omics landscape and subtypes. Cancers (Basel). 15:49702023. View Article : Google Scholar : PubMed/NCBI

14 

Donisi C, Pretta A, Pusceddu V, Ziranu P, Lai E, Puzzoni M, Mariani S, Massa E, Madeddu C and Scartozzi M: Immunotherapy and cancer: The multi-omics perspective. Int J Mol Sci. 25:35632024. View Article : Google Scholar : PubMed/NCBI

15 

Urban W, Krzystańska D, Piekarz M, Nazar J and Jankowska A: Osteosarcoma's genetic landscape painted by genes' mutations. Acta Biochim Pol. 70:671–678. 2023.PubMed/NCBI

16 

Mirabello L, Yeager M, Mai PL, Gastier-Foster JM, Gorlick R, Khanna C, Patiño-Garcia A, Sierrasesúmaga L, Lecanda F, Andrulis IL, et al: Germline TP53 variants and susceptibility to osteosarcoma. J Natl Cancer Inst. 107:djv1012015. View Article : Google Scholar : PubMed/NCBI

17 

Mokánszki A, Chang Chien YC, Mótyán JA, Juhász P, Bádon ES, Madar L, Szegedi I, Kiss C and Méhes G: Novel RB1 and MET gene mutations in a case with bilateral retinoblastoma followed by multiple metastatic osteosarcoma. Diagnostics (Basel). 11:282020. View Article : Google Scholar : PubMed/NCBI

18 

Righi A, Gambarotti M, Benini S, Gamberi G, Cocchi S, Picci P and Bertoni F: MDM2 and CDK4 expression in periosteal osteosarcoma. Hum Pathol. 46:549–553. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Monti P, Menichini P, Speciale A, Cutrona G, Fais F, Taiana E, Neri A, Bomben R, Gentile M, Gattei V, et al: Heterogeneity of TP53 mutations and P53 protein residual function in cancer: Does it matter? Front Oncol. 10:5933832020. View Article : Google Scholar : PubMed/NCBI

20 

Huang MF, Wang YX, Chou YT and Lee DF: Therapeutic strategies for RB1-deficient cancers: Intersecting gene regulation and targeted therapy. Cancers (Basel). 16:15582024. View Article : Google Scholar : PubMed/NCBI

21 

Koo N, Sharma AK and Narayan S: Therapeutics targeting p53-MDM2 interaction to induce cancer cell death. Int J Mol Sci. 23:50052022. View Article : Google Scholar : PubMed/NCBI

22 

Synoradzki KJ, Bartnik E, Czarnecka AM, Fiedorowicz M, Firlej W, Brodziak A, Stasinska A, Rutkowski P and Grieb P: TP53 in biology and treatment of osteosarcoma. Cancers (Basel). 13:42842021. View Article : Google Scholar : PubMed/NCBI

23 

Mannheimer JD, Tawa G, Gerhold D, Braisted J, Sayers CM, McEachron TA, Meltzer P, Mazcko C, Beck JA and LeBlanc AK: Transcriptional profiling of canine osteosarcoma identifies prognostic gene expression signatures with translational value for humans. Commun Biol. 6:8562023. View Article : Google Scholar : PubMed/NCBI

24 

Nie JJ, Zhang B, Luo P, Luo M, Luo Y, Cao J, Wang H, Mao J, Xing Y, Liu W, et al: Enhanced pyroptosis induction with pore-forming gene delivery for osteosarcoma microenvironment reshaping. Bioact Mater. 38:455–471. 2024.PubMed/NCBI

25 

Jin J, Cong J, Lei S, Zhang Q, Zhong X, Su Y, Lu M, Ma Y, Li Z, Wang L, et al: Cracking the code: Deciphering the role of the tumor microenvironment in osteosarcoma metastasis. Int Immunopharmacol. 121:1104222023. View Article : Google Scholar : PubMed/NCBI

26 

Luo ZW, Liu PP, Wang ZX, Chen CY and Xie H: Macrophages in osteosarcoma immune microenvironment: Implications for immunotherapy. Front Oncol. 10:5865802020. View Article : Google Scholar : PubMed/NCBI

27 

Ichikawa J, Schoenecker JG, Tatsuno R, Kawasaki T, Suzuki-Inoue K and Haro H: Advancing tissue factor-targeted therapy for osteosarcoma via understanding its role in the tumor microenvironment. Curr Pharm Des. 29:1009–1012. 2023. View Article : Google Scholar : PubMed/NCBI

28 

Tatsuno R, Ichikawa J, Komohara Y, Pan C, Kawasaki T, Enomoto A, Aoki K, Hayakawa K, Iwata S, Jubashi T and Haro H: Pivotal role of IL-8 derived from the interaction between osteosarcoma and tumor-associated macrophages in osteosarcoma growth and metastasis via the FAK pathway. Cell Death Dis. 15:1082024. View Article : Google Scholar : PubMed/NCBI

29 

Cui J, Dean D, Hornicek FJ, Chen Z and Duan Z: The role of extracelluar matrix in osteosarcoma progression and metastasis. J Exp Clin Cancer Res. 39:1782020. View Article : Google Scholar : PubMed/NCBI

30 

Zhou Y, Yang Q, Dong Y, Ji T, Zhang B, Yang C, Zheng S, Tang L, Zhou C, Qian G, et al: First-in-maintenance therapy for localized high-grade osteosarcoma: An open-label phase I/II trial of the anti-PD-L1 antibody ZKAB001. Clin Cancer Res. 29:764–774. 2023. View Article : Google Scholar

31 

Sun Y, Zhang C, Fang Q, Zhang W and Liu W: Abnormal signal pathways and tumor heterogeneity in osteosarcoma. J Transl Med. 21:992023. View Article : Google Scholar : PubMed/NCBI

32 

Rajan S, Franz EM, McAloney CA, Vetter TA, Cam M, Gross AC, Taslim C, Wang M, Cannon MV, Oles A and Roberts RD: Osteosarcoma tumors maintain intra-tumoral transcriptional heterogeneity during bone and lung colonization. BMC Biol. 21:982023. View Article : Google Scholar : PubMed/NCBI

33 

Tian H, Cao J, Li B, Nice EC, Mao H, Zhang Y and Huang C: Managing the immune microenvironment of osteosarcoma: The outlook for osteosarcoma treatment. Bone Res. 11:112023. View Article : Google Scholar : PubMed/NCBI

34 

Lilienthal I and Herold N: Targeting molecular mechanisms underlying treatment efficacy and resistance in osteosarcoma: A review of current and future strategies. Int J Mol Sci. 21:68852020. View Article : Google Scholar : PubMed/NCBI

35 

Liao Y, Yi Q, He J, Huang D, Xiong J and Sun W and Sun W: Extracellular vesicles in tumorigenesis, metastasis, chemotherapy resistance and intercellular communication in osteosarcoma. Bioengineered. 14:113–128. 2023. View Article : Google Scholar : PubMed/NCBI

36 

Jia C, Liu M, Yao L, Zhao F, Liu S, Li Z and Han Y: Multi-omics analysis reveals cuproptosis and mitochondria-based signature for assessing prognosis and immune landscape in osteosarcoma. Front Immunol. 14:12809452024. View Article : Google Scholar : PubMed/NCBI

37 

Schott C, Shah AT and Sweet-Cordero EA: Genomic complexity of osteosarcoma and its implication for preclinical and clinical targeted therapies. Adv Exp Med Biol. 1258:1–19. 2020. View Article : Google Scholar : PubMed/NCBI

38 

Li L, Sun M, Wang J and Wan S: Multi-omics based artificial intelligence for cancer research. Adv Cancer Res. 163:303–356. 2024. View Article : Google Scholar : PubMed/NCBI

39 

Meijer DM, Ruano D, Briaire-de Bruijn IH, Wijers-Koster PM, van de Sande MAJ, Gelderblom H, Cleton-Jansen AM, de Miranda NFCC, Kuijjer ML and Bovée JVMG: The variable genomic landscape during osteosarcoma progression: Insights from a longitudinal WGS analysis. Genes Chromosomes Cancer. 63:e232532024. View Article : Google Scholar : PubMed/NCBI

40 

Bagger FO, Borgwardt L, Jespersen AS, Hansen AR, Bertelsen B, Kodama M and Nielsen FC: Whole genome sequencing in clinical practice. BMC Med Genomics. 17:392024. View Article : Google Scholar : PubMed/NCBI

41 

Li Y and Yang S, Liu Y and Yang S: Deletion of Trp53 and Rb1 in Ctsk-expressing cells drives osteosarcoma progression by activating glucose metabolism and YAP signaling. MedComm (2020). 3:e1312022. View Article : Google Scholar : PubMed/NCBI

42 

Feng W, Wang Z, Feng D, Zhu Y, Zhang K and Huang W: The effects of common variants in MDM2 and GNRH2 genes on the risk and survival of osteosarcoma in Han populations from Northwest China. Sci Rep. 10:159392020. View Article : Google Scholar : PubMed/NCBI

43 

He X, Pang Z, Zhang X, Lan T, Chen H, Chen M, Yang H, Huang J, Chen Y, Zhang Z, et al: Consistent amplification of FRS2 and MDM2 in low-grade osteosarcoma: A genetic study of 22 cases with clinicopathologic analysis. Am J Surg Pathol. 42:1143–1155. 2018. View Article : Google Scholar : PubMed/NCBI

44 

Limbach AL, Lingen MW, McElherne J, Mashek H, Fitzpatrick C, Hyjek E, Mostofi R and Cipriani NA: The utility of MDM2 and CDK4 immunohistochemistry and MDM2 FISH in craniofacial osteosarcoma. Head Neck Pathol. 14:889–898. 2020. View Article : Google Scholar : PubMed/NCBI

45 

Kaur H, Kala S, Sood A, Mridha AR, Kakkar A, Yadav R, Mishra S and Mishra D: Role of MDM2, CDK4, BCL2, parafibromin and galectin 1 in differentiating osteosarcoma from its benign fibro-osseous lesions. Head Neck Pathol. 16:728–737. 2022. View Article : Google Scholar : PubMed/NCBI

46 

Ren C, Pan R, Hou L, Wu H, Sun J, Zhang W, Tian X and Chen H: Suppression of CLEC3A inhibits osteosarcoma cell proliferation and promotes their chemosensitivity through the AKT1/mTOR/HIF1α signaling pathway. Mol Med Rep. 21:1739–1748. 2020.PubMed/NCBI

47 

Wang J, Ni J, Song D, Ding M, Huang J, Li W and He G: MAT1 facilitates the lung metastasis of osteosarcoma through upregulation of AKT1 expression. Life Sci. 234:1167712019. View Article : Google Scholar : PubMed/NCBI

48 

Madda R, Chen CM, Chen CF, Wang JY, Wu HY, Wu PK and Chen WM: Analyzing BMP2, FGFR, and TGF beta expressions in high-grade osteosarcoma untreated and treated autografts using proteomic analysis. Int J Mol Sci. 23:74092022. View Article : Google Scholar : PubMed/NCBI

49 

Huang YC, Chen WC, Yu CL, Chang TK, I-Chin Wei A, Chang TM, Liu JF and Wang SW: FGF2 drives osteosarcoma metastasis through activating FGFR1-4 receptor pathway-mediated ICAM-1 expression. Biochem Pharmacol. 218:1158532023. View Article : Google Scholar : PubMed/NCBI

50 

Kim JA, Berlow NE, Lathara M, Bharathy N, Martin LR, Purohit R, Cleary MM, Liu Q, Michalek JE, Srinivasa G, et al: Sensitization of osteosarcoma to irradiation by targeting nuclear FGFR1. Biochem Biophys Res Commun. 621:101–108. 2022. View Article : Google Scholar : PubMed/NCBI

51 

Cui J, Wang W, Li Z, Zhang Z, Wu B and Zeng L: Epigenetic changes in osteosarcoma. Bull Cancer. 98:E62–E68. 2011. View Article : Google Scholar : PubMed/NCBI

52 

Makise N, Sekimizu M, Kubo T, Wakai S, Watanabe SI, Kato T, Kinoshita T, Hiraoka N, Fukayama M, Kawai A, et al: Extraskeletal osteosarcoma: MDM2 and H3K27me3 analysis of 19 cases suggest disease heterogeneity. Histopathology. 73:147–156. 2018. View Article : Google Scholar : PubMed/NCBI

53 

Saba KH, Cornmark L, Rissler M, Fioretos T, Åström K, Haglund F, Rosenberg AE, Brosjö O and Nord KH: Genetic profiling of a chondroblastoma-like osteosarcoma/malignant phosphaturic mesenchymal tumor of bone reveals a homozygous deletion of CDKN2A, intragenic deletion of DMD, and a targetable FN1-FGFR1 gene fusion. Genes Chromosomes Cancer. 58:731–736. 2019. View Article : Google Scholar : PubMed/NCBI

54 

Wu CC and Livingston JA: Genomics and the immune landscape of osteosarcoma. Adv Exp Med Biol. 1258:21–36. 2020. View Article : Google Scholar : PubMed/NCBI

55 

Yang S, Tian Z, Feng Y, Zhang K, Pan Y, Li Y, Wang Z, Wei W, Qiao X, Zhou R, et al: Transcriptomics and metabolomics reveal changes in the regulatory mechanisms of osteosarcoma under different culture methods in vitro. BMC Med Genomics. 15:2652022. View Article : Google Scholar : PubMed/NCBI

56 

Yoon H, Liyanarachchi S, Wright FA, Davuluri R, Lockman JC, de la Chapelle A and Pellegata NS: Gene expression profiling of isogenic cells with different TP53 gene dosage reveals numerous genes that are affected by TP53 dosage and identifies CSPG2 as a direct target of p53. Proc Natl Acad Sci USA. 99:15632–15637. 2002. View Article : Google Scholar : PubMed/NCBI

57 

Das S, Idate R, Regan DP, Fowles JS, Lana SE, Thamm DH, Gustafson DL and Duval DL: Immune pathways and TP53 missense mutations are associated with longer survival in canine osteosarcoma. Commun Biol. 4:11782021. View Article : Google Scholar : PubMed/NCBI

58 

Luo M, Huang M, Yang N, Zhu Y, Huang P, Xu Z, Wang W and Cai L: Impairment of rigidity sensing caused by mutant TP53 gain of function in osteosarcoma. Bone Res. 11:282023. View Article : Google Scholar : PubMed/NCBI

59 

Feng W, Dean DC, Hornicek FJ, Spentzos D, Hoffman RM, Shi H and Duan Z: Myc is a prognostic biomarker and potential therapeutic target in osteosarcoma. Ther Adv Med Oncol. 12:17588359209220552020. View Article : Google Scholar : PubMed/NCBI

60 

Akkawi R, Hidmi O, Haj-Yahia A, Monin J, Diment J, Drier Y, Stein GS and Aqeilan RI: WWOX promotes osteosarcoma development via upregulation of Myc. Cell Death Dis. 15:132024. View Article : Google Scholar : PubMed/NCBI

61 

Ma L, Xue W and Ma X: GATA3 is downregulated in osteosarcoma and facilitates EMT as well as migration through regulation of slug. Onco Targets Ther. 11:7579–7589. 2018. View Article : Google Scholar : PubMed/NCBI

62 

Wu H, Zhang J, Dai R, Xu J and Feng H: Transferrin receptor-1 and VEGF are prognostic factors for osteosarcoma. J Orthop Surg Res. 14:2962019. View Article : Google Scholar : PubMed/NCBI

63 

Gu J, Ji Z, Li D and Dong Q: Proliferation inhibition and apoptosis promotion by dual silencing of VEGF and survivin in human osteosarcoma. Acta Biochim Biophys Sin (Shanghai). 51:59–67. 2019. View Article : Google Scholar

64 

Quan B, Li Z, Yang H, Li S, Yan X and Wang Y: The splicing factor YBX1 promotes the progression of osteosarcoma by upregulating VEGF165 and downregulating VEGF165b. Heliyon. 9:e187062023. View Article : Google Scholar

65 

Luo P, Zhang YD, He F, Tong CJ, Liu K, Liu H, Zhu SZ, Luo JZ and Yuan B: HIF-1α-mediated augmentation of miRNA-18b-5p facilitates proliferation and metastasis in osteosarcoma through attenuation PHF2. Sci Rep. 12:103982022. View Article : Google Scholar

66 

Zeng X, Liu S, Yang H, Jia M, Liu W and Zhu W: Synergistic anti-tumour activity of ginsenoside Rg3 and doxorubicin on proliferation, metastasis and angiogenesis in osteosarcoma by modulating mTOR/HIF-1α/VEGF and EMT signalling pathways. J Pharm Pharmacol. 75:1405–1417. 2023. View Article : Google Scholar : PubMed/NCBI

67 

Liao YX, Zhou CH, Zeng H, Zuo DQ, Wang ZY, Yin F, Hua YQ and Cai ZD: The role of the CXCL12-CXCR4/CXCR7 axis in the progression and metastasis of bone sarcomas (Review). Int J Mol Med. 32:1239–1246. 2013. View Article : Google Scholar : PubMed/NCBI

68 

Zhang P, Dong L, Yan K, Long H, Yang TT, Dong MQ, Zhou Y, Fan QY and Ma BA: CXCR4-mediated osteosarcoma growth and pulmonary metastasis is promoted by mesenchymal stem cells through VEGF. Oncol Rep. 30:1753–1761. 2013. View Article : Google Scholar : PubMed/NCBI

69 

Li Z, Lu H, Zhang Y, Lv J, Zhang Y, Xu T, Yang D, Duan Z, Guan Y, Jiang Z, et al: Blocking CXCR4-CARM1-YAP axis overcomes osteosarcoma doxorubicin resistance by suppressing aerobic glycolysis. Cancer Sci. 115:3305–3319. 2024. View Article : Google Scholar : PubMed/NCBI

70 

Gong C, Sun K, Xiong HH, Sneh T, Zhang J, Zhou X, Yan P and Wang JH: Expression of CXCR4 and MMP-2 is associated with poor prognosis in patients with osteosarcoma. Histol Histopathol. 35:863–870. 2020.PubMed/NCBI

71 

Liu JF, Chen PC, Chang TM and Hou CH: Monocyte chemoattractant protein-1 promotes cancer cell migration via c-Raf/MAPK/AP-1 pathway and MMP-9 production in osteosarcoma. J Exp Clin Cancer Res. 39:2542020. View Article : Google Scholar : PubMed/NCBI

72 

Harrison BM and Loukopoulos P: Genomics and transcriptomics in veterinary oncology. Oncol Lett. 21:3362021. View Article : Google Scholar : PubMed/NCBI

73 

Feleke M, Feng W, Song D, Li H, Rothzerg E, Wei Q, Kõks S, Wood D, Liu Y and Xu J: Single-cell RNA sequencing reveals differential expression of EGFL7 and VEGF in giant-cell tumor of bone and osteosarcoma. Exp Biol Med (Maywood). 247:1214–1227. 2022. View Article : Google Scholar : PubMed/NCBI

74 

Chen T, Chen Z, Lian X, Wu W, Chu L, Zhang S and Wang L: MUC 15 promotes osteosarcoma cell proliferation, migration and invasion through livin, MMP-2/MMP-9 and Wnt/β-catenin signal pathway. J Cancer. 12:467–473. 2021. View Article : Google Scholar :

75 

Li AA, Zhang Y, Li F, Zhou Y, Liu ZL and Long XH: The mechanism of VCP-mediated metastasis of osteosarcoma based on cell autophagy and the EMT pathway. Clin Transl Oncol. 25:653–661. 2023. View Article : Google Scholar

76 

Zheng X, Liu X, Zhang X, Zhao Z, Wu W and Yu S: A single-cell and spatially resolved atlas of human osteosarcomas. J Hematol Oncol. 17:712024. View Article : Google Scholar : PubMed/NCBI

77 

Sirikaew N, Pruksakorn D, Chaiyawat P and Chutipongtanate S: Mass spectrometric-based proteomics for biomarker discovery in osteosarcoma: Current status and future direction. Int J Mol Sci. 23:97412022. View Article : Google Scholar : PubMed/NCBI

78 

Wu C, Gong S, Duan Y, Deng C, Kallendrusch S, Berninghausen L, Osterhoff G and Schopow N: A tumor microenvironment-based prognostic index for osteosarcoma. J Biomed Sci. 30:232023. View Article : Google Scholar : PubMed/NCBI

79 

Chang TY, Lan KC, Wu CH, Sheu ML, Yang RS and Liu SH: Nε-(1-carboxymethyl)-L-lysine/RAGE signaling drives metastasis and cancer stemness through ERK/NFκB axis in osteosarcoma. Int J Biol Sci. 20:880–896. 2024. View Article : Google Scholar :

80 

Jiang K, Li J, Zhang J, Wang L, Zhang Q, Ge J, Guo Y, Wang B, Huang Y, Yang T, et al: SDF-1/CXCR4 axis facilitates myeloid-derived suppressor cells accumulation in osteosarcoma microenvironment and blunts the response to anti-PD-1 therapy. Int Immunopharmacol. 75:1058182019. View Article : Google Scholar : PubMed/NCBI

81 

Liao YX, Lv JY, Zhou ZF, Xu TY, Yang D, Gao QM, Fan L, Li GD, Yu HY and Liu KY: CXCR4 blockade sensitizes osteosarcoma to doxorubicin by inducing autophagic cell death via PI3K-Akt-mTOR pathway inhibition. Int J Oncol. 59:492021. View Article : Google Scholar :

82 

Zhang L, Pan Y, Pan F, Huang S, Wang F, Zeng Z, Chen H and Tian X: MATN4 as a target gene of HIF-1α promotes the proliferation and metastasis of osteosarcoma. Aging (Albany NY). 16:10462–10476. 2024. View Article : Google Scholar : PubMed/NCBI

83 

Shi X and Wang X, Yao W, Shi D, Shao X, Lu Z, Chai Y, Song J, Tang W and Wang X: Mechanism insights and therapeutic intervention of tumor metastasis: latest developments and perspectives. Signal Transduct Target Ther. 9:1922024. View Article : Google Scholar : PubMed/NCBI

84 

Gao Y, Qu Y, Zhou Q and Ma Y: SIRT6 inhibits proliferation and invasion in osteosarcoma cells by targeting N-cadherin. Oncol Lett. 17:1237–1244. 2019.PubMed/NCBI

85 

Masuelli L, Benvenuto M, Izzi V, Zago E, Mattera R, Cerbelli B, Potenza V, Fazi S, Ciuffa S, Tresoldi I, et al: In vivo and in vitro inhibition of osteosarcoma growth by the pan Bcl-2 inhibitor AT-101. Invest New Drugs. 38:675–689. 2020. View Article : Google Scholar

86 

Esperança-Martins M, Fernandes I, Soares do Brito J, Macedo D, Vasques H, Serafim T, Costa L and Dias S: Sarcoma metabolomics: Current horizons and future perspectives. Cells. 10:14322021. View Article : Google Scholar : PubMed/NCBI

87 

Jiang Y, Li F, Gao B, Ma M, Chen M, Wu Y, Zhang W, Sun Y, Liu S and Shen H: KDM6B-mediated histone demethylation of LDHA promotes lung metastasis of osteosarcoma. Theranostics. 11:3868–3881. 2021. View Article : Google Scholar : PubMed/NCBI

88 

Mei Z, Shen Z, Pu J, Liu Q, Liu G, He X, Wang Y, Yue J, Ge S, Li T, et al: NAT10 mediated ac4C acetylation driven m6A modification via involvement of YTHDC1-LDHA/PFKM regulates glycolysis and promotes osteosarcoma. Cell Commun Signal. 22:512024. View Article : Google Scholar

89 

Xia K, Zheng D, Wei Z, Liu W and Guo W: TRIM26 inhibited osteosarcoma progression through destabilizing RACK1 and thus inactivation of MEK/ERK signaling. Cell Death Dis. 14:5292023. View Article : Google Scholar : PubMed/NCBI

90 

Liu W, Zhao Y, Wang G, Feng S, Ge X, Ye W, Wang Z, Zhu Y, Cai W, Bai J and Zhou X: TRIM22 inhibits osteosarcoma progression through destabilizing NRF2 and thus activation of ROS/AMPK/mTOR/autophagy signaling. Redox Biol. 53:1023442022. View Article : Google Scholar : PubMed/NCBI

91 

Wei Z, Xia K, Zhou B, Zheng D and Guo W: Zyxin inhibits the proliferation, migration, and invasion of osteosarcoma via Rap1-mediated inhibition of the MEK/ERK signaling pathway. Biomedicines. 11:23142023. View Article : Google Scholar : PubMed/NCBI

92 

Li G, Stampas A, Komatsu Y, Gao X, Huard J and Pan S: Proteomics in orthopedic research: Recent studies and their translational implications. J Orthop Res. 42:1631–1640. 2024. View Article : Google Scholar : PubMed/NCBI

93 

Dean DC, Shen S, Hornicek FJ and Duan Z: From genomics to metabolomics: Emerging metastatic biomarkers in osteosarcoma. Cancer Metastasis Rev. 37:719–731. 2018. View Article : Google Scholar : PubMed/NCBI

94 

Yin Z, Shen G, Fan M and Zheng P: Lipid metabolic reprogramming and associated ferroptosis in osteosarcoma: From molecular mechanisms to potential targets. J Bone Oncol. 51:1006602025. View Article : Google Scholar : PubMed/NCBI

95 

Hu X, Zhou X, Zhang J and Li L: Sphingolipid metabolism is associated with osteosarcoma metastasis and prognosis: Evidence from interaction analysis. Front Endocrinol (Lausanne). 13:9836062022. View Article : Google Scholar : PubMed/NCBI

96 

Cai F, Liu L, Bo Y, Yan W, Tao X, Peng Y, Zhang Z, Liao Q and Yi Y: LncRNA RPARP-AS1 promotes the progression of osteosarcoma cells through regulating lipid metabolism. BMC Cancer. 24:1662024. View Article : Google Scholar : PubMed/NCBI

97 

Bispo DSC, Correia M, Carneiro TJ, Martins AS, Reis AAN, Carvalho ALMB, Marques MPM and Gil AM: Impact of conventional and potential new metal-based drugs on lipid metabolism in osteosarcoma MG-63 cells. Int J Mol Sci. 24:175562023. View Article : Google Scholar : PubMed/NCBI

98 

Fritsche-Guenther R, Gloaguen Y, Kirchner M, Mertins P, Tunn PU and Kirwan JA: Progression-dependent altered metabolism in osteosarcoma resulting in different nutrient source dependencies. Cancers (Basel). 12:13712020. View Article : Google Scholar : PubMed/NCBI

99 

Shen S, Xu Y, Gong Z, Yao T, Qiao D, Huang Y, Zhang Z, Gao J, Ni H, Jin Z, et al: Positive feedback regulation of circular RNA Hsa_circ_0000566 and HIF-1α promotes osteosarcoma progression and glycolysis metabolism. Aging Dis. 14:529–547. 2023.PubMed/NCBI

100 

Li G, Li Y and Wang DY: Overexpression of miR-329-3p sensitizes osteosarcoma cells to cisplatin through suppression of glucose metabolism by targeting LDHA. Cell Biol Int. 45:766–774. 2021. View Article : Google Scholar

101 

Wang B, Zhou Y, Zhang P, Li J and Lu X: Solasonine inhibits cancer stemness and metastasis by modulating glucose metabolism via Wnt/β-catenin/snail pathway in osteosarcoma. Am J Chin Med. 51:1293–1308. 2023. View Article : Google Scholar

102 

Ren J, Zhao C, Sun R, Sun J, Lu L, Wu J, Li S and Cui L: Augmented drug resistance of osteosarcoma cells within decalcified bone matrix scaffold: The role of glutamine metabolism. Int J Cancer. 154:1626–1638. 2024. View Article : Google Scholar : PubMed/NCBI

103 

Wang H, Tao Y, Han J, Shen J, Mu H, Wang Z, Wang J, Jin X, Zhang Q, Yang Y, et al: Disrupting YAP1-mediated glutamine metabolism induces synthetic lethality alongside ODC1 inhibition in osteosarcoma. Cell Oncol (Dordr). 47:1845–1861. 2024. View Article : Google Scholar : PubMed/NCBI

104 

Lin S, Miao Y, Zheng X, Dong Y, Yang Q, Yang Q, Du S, Xu J, Zhou S and Yuan T: ANGPTL4 negatively regulates the progression of osteosarcoma by remodeling branched-chain amino acid metabolism. Cell Death Discov. 8:2252022. View Article : Google Scholar : PubMed/NCBI

105 

Qian H, Lei T, Hu Y and Lei P: Expression of lipid-metabolism genes is correlated with immune microenvironment and predicts prognosis in osteosarcoma. Front Cell Dev Biol. 9:6738272021. View Article : Google Scholar : PubMed/NCBI

106 

Wu C, Tan J, Shen H, Deng C, Kleber C, Osterhoff G and Schopow N: Exploring the relationship between metabolism and immune microenvironment in osteosarcoma based on metabolic pathways. J Biomed Sci. 31:42024. View Article : Google Scholar : PubMed/NCBI

107 

Li Q, Fang J, Liu K, Luo P and Wang X: Multi-omic validation of the cuproptosis-sphingolipid metabolism network: Modulating the immune landscape in osteosarcoma. Front Immunol. 15:14248062024. View Article : Google Scholar : PubMed/NCBI

108 

Lin Z, He Y, Wu Z, Yuan Y, Li X and Luo W: Comprehensive analysis of copper-metabolism-related genes about prognosis and immune microenvironment in osteosarcoma. Sci Rep. 13:150592023. View Article : Google Scholar : PubMed/NCBI

109 

Chen C, Wang J, Pan D, Wang X, Xu Y, Yan J, Wang L, Yang X, Yang M and Liu GP: Applications of multi-omics analysis in human diseases. MedComm (2020). 4:e3152023. View Article : Google Scholar : PubMed/NCBI

110 

Lin Y, Yang Y, Yuan K, Yang S, Zhang S, Li H and Tang T: Multi-omics analysis based on 3D-bioprinted models innovates therapeutic target discovery of osteosarcoma. Bioact Mater. 18:459–470. 2022.PubMed/NCBI

111 

Zhou Y, Yang D, Yang Q, Lv X, Huang W, Zhou Z, Wang Y, Zhang Z, Yuan T, Ding X, et al: Single-cell RNA landscape of intratumoral heterogeneity and immunosuppressive microenvironment in advanced osteosarcoma. Nat Commun. 11:63222020. View Article : Google Scholar : PubMed/NCBI

112 

Jia C, Yao X, Dong Z, Wang L, Zhao F, Gao J and Cai T: Molecular landscape and prognostic value in the post-translational ubiquitination, SUMOylation and neddylation in osteosarcoma: A transcriptome study. J Inflamm Res. 17:4315–4330. 2024. View Article : Google Scholar : PubMed/NCBI

113 

Truong DD, Weistuch C, Murgas KA, Admane P, King BL, Chauviere Lee J, Lamhamedi-Cherradi SE, Swaminathan J, Daw NC, Gordon N, et al: Mapping the single-cell differentiation landscape of osteosarcoma. Clin Cancer Res. 30:3259–3272. 2024. View Article : Google Scholar : PubMed/NCBI

114 

Heo YJ, Hwa C, Lee GH, Park JM and An JY: Integrative multi-omics approaches in cancer research: From biological networks to clinical subtypes. Mol Cells. 44:433–443. 2021. View Article : Google Scholar : PubMed/NCBI

115 

Wei Z, Xia K, Zheng D, Gong C and Guo W: RILP inhibits tumor progression in osteosarcoma via Grb10-mediated inhibition of the PI3K/AKT/mTOR pathway. Mol Med. 29:1332023. View Article : Google Scholar : PubMed/NCBI

116 

Zhang X, Wen Z, Wang Q, Ren L and Zhao S: A novel stratification framework based on anoikis-related genes for predicting the prognosis in patients with osteosarcoma. Front Immunol. 14:11998692023. View Article : Google Scholar : PubMed/NCBI

117 

Fan J, Jahed V and Klavins K: Metabolomics in bone research. Metabolites. 11:4342021. View Article : Google Scholar : PubMed/NCBI

118 

Jiang Z, Han K, Min D, Kong W, Wang S and Gao M: Identification of the methotrexate resistance-related diagnostic markers in osteosarcoma via adaptive total variation netNMF and multi-omics datasets. Front Genet. 14:12880732023. View Article : Google Scholar : PubMed/NCBI

119 

Audinot B, Drubay D, Gaspar N, Mohr A, Cordero C, Marec-Bérard P, Lervat C, Piperno-Neumann S, Jimenez M, Mansuy L, et al: ctDNA quantification improves estimation of outcomes in patients with high-grade osteosarcoma: A translational study from the OS2006 trial. Ann Oncol. 35:559–568. 2024. View Article : Google Scholar

120 

Schaafsma E, Takacs EM, Kaur S, Cheng C and Kurokawa M: Predicting clinical outcomes of cancer patients with a p53 deficiency gene signature. Sci Rep. 12:13172022. View Article : Google Scholar : PubMed/NCBI

121 

Chen Z, Guo J, Zhang K and Guo Y: TP53 mutations and survival in osteosarcoma patients: A meta-analysis of published data. Dis Markers. 2016:46395752016. View Article : Google Scholar : PubMed/NCBI

122 

Ru JY, Cong Y, Kang WB, Yu L, Guo T and Zhao JN: Polymorphisms in TP53 are associated with risk and survival of osteosarcoma in a Chinese population. Int J Clin Exp Pathol. 8:3198–3203. 2015.PubMed/NCBI

123 

Jeon DG, Koh JS, Cho WH, Song WS, Kong CB, Cho SH and Lee SY and Lee SY: Clinical outcome of low-grade central osteosarcoma and role of CDK4 and MDM2 immunohistochemistry as a diagnostic adjunct. J Orthop Sci. 20:529–537. 2015. View Article : Google Scholar : PubMed/NCBI

124 

Iwata S, Tatsumi Y, Yonemoto T, Araki A, Itami M, Kamoda H, Tsukanishi T, Hagiwara Y, Kinoshita H, Ishii T, et al: CDK4 overexpression is a predictive biomarker for resistance to conventional chemotherapy in patients with osteosarcoma. Oncol Rep. 46:1352021. View Article : Google Scholar : PubMed/NCBI

125 

Schubert NA, Chen CY, Rodríguez A, Koster J, Dowless M, Pfister SM, Shields DJ, Stancato LF, Vassal G, Caron HN, et al: Target actionability review to evaluate CDK4/6 as a therapeutic target in paediatric solid and brain tumours. Eur J Cancer. 170:196–208. 2022. View Article : Google Scholar : PubMed/NCBI

126 

Sun R, Shen J, Gao Y, Zhou Y, Yu Z, Hornicek F, Kan Q and Duan Z: Overexpression of EZH2 is associated with the poor prognosis in osteosarcoma and function analysis indicates a therapeutic potential. Oncotarget. 7:38333–38346. 2016. View Article : Google Scholar : PubMed/NCBI

127 

Yang X, Xu L and Yang L: Recent advances in EZH2-based dual inhibitors in the treatment of cancers. Eur J Med Chem. 256:1154612023. View Article : Google Scholar : PubMed/NCBI

128 

Nazarizadeh A, Alizadeh-Fanalou S, Hosseini A, Mirzaei A, Salimi V, Keshipour H, Safizadeh B, Jamshidi K, Bahrabadi M and Tavakoli-Yaraki M: Evaluation of local and circulating osteopontin in malignant and benign primary bone tumors. J Bone Oncol. 29:1003772021. View Article : Google Scholar : PubMed/NCBI

129 

Barris DM, Weiner SB, Dubin RA, Fremed M, Zhang X, Piperdi S, Zhang W, Maqbool S, Gill J, Roth M, et al: Detection of circulating tumor DNA in patients with osteosarcoma. Oncotarget. 9:12695–12704. 2018. View Article : Google Scholar : PubMed/NCBI

130 

Kathiresan N, Selvaraj C, Pandian S, Subbaraj GK, Alothaim AS, Safi SZ and Kulathaivel L: Proteomics and genomics insights on malignant osteosarcoma. Adv Protein Chem Struct Biol. 138:275–300. 2024. View Article : Google Scholar : PubMed/NCBI

131 

Zhao D, Jia P, Wang W and Zhang G: VEGF-mediated suppression of cell proliferation and invasion by miR-410 in osteosarcoma. Mol Cell Biochem. 400:87–95. 2015. View Article : Google Scholar

132 

Tawbi HA, Burgess M, Bolejack V, Van Tine BA, Schuetze SM, Hu J, D'Angelo S, Attia S, Riedel RF, Priebat DA, et al: Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): A multicentre, two-cohort, single-arm, open-label, phase 2 trial. Lancet Oncol. 18:1493–1501. 2017. View Article : Google Scholar : PubMed/NCBI

133 

Assi T, Watson S, Samra B, Rassy E, Le Cesne A, Italiano A and Mir O: Targeting the VEGF pathway in osteosarcoma. Cells. 10:12402021. View Article : Google Scholar : PubMed/NCBI

134 

Mickymaray S, Alfaiz FA, Paramasivam A, Veeraraghavan VP, Periadurai ND, Surapaneni KM and Niu G: Rhaponticin suppresses osteosarcoma through the inhibition of PI3K-Akt-mTOR pathway. Saudi J Biol Sci. 28:3641–3649. 2021. View Article : Google Scholar : PubMed/NCBI

135 

Lu DG, Tang QL, Wei JH, He FY, Lu L and Tang YJ: Targeting EZH2 by microRNA-449a inhibits osteosarcoma cell proliferation, invasion and migration via regulation of PI3K/AKT signaling pathway and epithelial-mesenchymal transition. Eur Rev Med Pharmacol Sci. 24:1656–1665. 2020.PubMed/NCBI

136 

Chen ZY, Huang HH, Li QC, Zhan FB, Wang LB, He T, Yang CH, Wang Y, Zhang Y and Quan ZX: Capsaicin reduces cancer stemness and inhibits metastasis by downregulating SOX2 and EZH2 in osteosarcoma. Am J Chin Med. 51:1041–1066. 2023. View Article : Google Scholar : PubMed/NCBI

137 

Liu X, He S, Wu H, Xie H, Zhang T and Deng Z: Blocking the PD-1/PD-L1 axis enhanced cisplatin chemotherapy in osteosarcoma in vitro and in vivo. Environ Health Prev Med. 24:792019. View Article : Google Scholar : PubMed/NCBI

138 

Yoshida K, Okamoto M, Sasaki J, Kuroda C, Ishida H, Ueda K, Okano S, Ideta H, Kamanaka T, Sobajima A, et al: Clinical outcome of osteosarcoma and its correlation with programmed death-ligand 1 and T cell activation markers. Onco Targets Ther. 12:2513–2518. 2019. View Article : Google Scholar : PubMed/NCBI

139 

Davis KL, Fox E, Merchant MS, Reid JM, Kudgus RA, Liu X, Minard CG, Voss S, Berg SL, Weigel BJ and Mackall CL: Nivolumab in children and young adults with relapsed or refractory solid tumours or lymphoma (ADVL1412): A multicentre, openlabel, single-arm, phase 1-2 trial. Lancet Oncol. 21:541–550. 2020. View Article : Google Scholar : PubMed/NCBI

140 

Zhou Y, Shen JK, Yu Z, Hornicek FJ, Kan Q and Duan Z: Expression and therapeutic implications of cyclin-dependent kinase 4 (CDK4) in osteosarcoma. Biochim Biophys Acta Mol Basis Dis. 1864:1573–1582. 2018. View Article : Google Scholar : PubMed/NCBI

141 

Oshiro H, Tome Y, Miyake K, Higuchi T, Sugisawa N, Kanaya F, Nishida K and Hoffman RM: Combination of CDK4/6 and mTOR inhibitors suppressed doxorubicin-resistant osteosarcoma in a patient-derived orthotopic xenograft mouse model: A translatable strategy for recalcitrant disease. Anticancer Res. 41:3287–3292. 2021. View Article : Google Scholar : PubMed/NCBI

142 

Athieniti E and Spyrou GM: A guide to multi-omics data collection and integration for translational medicine. Comput Struct Biotechnol J. 21:134–149. 2022. View Article : Google Scholar : PubMed/NCBI

143 

Downing JR, Wilson RK, Zhang J, Mardis ER, Pui CH, Ding L, Ley TJ and Evans WE: The pediatric cancer genome project. Nat Genet. 44:619–622. 2012. View Article : Google Scholar : PubMed/NCBI

144 

Freeberg MA, Fromont LA, D'Altri T, Romero AF, Ciges JI, Jene A, Kerry G, Moldes M, Ariosa R, Bahena S, et al: The European genome-phenome archive in 2021. Nucleic Acids Res. 50(D1): D980–D987. 2022. View Article : Google Scholar :

145 

Jovic D, Liang X, Zeng H, Lin L, Xu F and Luo Y: Single-cell RNA sequencing technologies and applications: A brief overview. Clin Transl Med. 12:e6942022. View Article : Google Scholar : PubMed/NCBI

146 

Liu W, Hu H, Shao Z, Lv X, Zhang Z, Deng X, Song Q, Han Y, Guo T, Xiong L, et al: Characterizing the tumor microenvironment at the single-cell level reveals a novel immune evasion mechanism in osteosarcoma. Bone Res. 11:42023. View Article : Google Scholar : PubMed/NCBI

147 

Huang X, Wang L, Guo H, Zhang W and Shao Z: Single-cell transcriptomics reveals the regulative roles of cancer associated fibroblasts in tumor immune microenvironment of recurrent osteosarcoma. Theranostics. 12:5877–5887. 2022. View Article : Google Scholar : PubMed/NCBI

148 

Liu Y, Feng W, Dai Y, Bao M, Yuan Z, He M, Qin Z, Liao S, He J, Huang Q, et al: Single-cell transcriptomics reveals the complexity of the tumor microenvironment of treatment-naive osteosarcoma. Front Oncol. 11:7092102021. View Article : Google Scholar : PubMed/NCBI

149 

Fu Y, Xu Y, Liu W, Zhang J, Wang F, Jian Q, Huang G, Zou C, Xie X, Kim AH, et al: Tumor-informed deep sequencing of ctDNA detects minimal residual disease and predicts relapse in osteosarcoma. EClinicalMedicine. 73:1026972024. View Article : Google Scholar : PubMed/NCBI

150 

Landuzzi L, Manara MC, Lollini PL and Scotlandi K: Patient derived xenografts for genome-driven therapy of osteosarcoma. Cells. 10:4162021. View Article : Google Scholar : PubMed/NCBI

151 

He A, Huang Y, Cheng W, Zhang D, He W, Bai Y, Gu C, Ma Z, He Z, Si G, et al: Organoid culture system for patient-derived lung metastatic osteosarcoma. Med Oncol. 37:1052020. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Chen X, Tian B, Wang Y, Zheng J and Kang X: Harnessing multi‑omics to revolutionize understanding and management of osteosarcoma: A pathway to precision medicine (Review). Int J Mol Med 55: 92, 2025.
APA
Chen, X., Tian, B., Wang, Y., Zheng, J., & Kang, X. (2025). Harnessing multi‑omics to revolutionize understanding and management of osteosarcoma: A pathway to precision medicine (Review). International Journal of Molecular Medicine, 55, 92. https://doi.org/10.3892/ijmm.2025.5533
MLA
Chen, X., Tian, B., Wang, Y., Zheng, J., Kang, X."Harnessing multi‑omics to revolutionize understanding and management of osteosarcoma: A pathway to precision medicine (Review)". International Journal of Molecular Medicine 55.6 (2025): 92.
Chicago
Chen, X., Tian, B., Wang, Y., Zheng, J., Kang, X."Harnessing multi‑omics to revolutionize understanding and management of osteosarcoma: A pathway to precision medicine (Review)". International Journal of Molecular Medicine 55, no. 6 (2025): 92. https://doi.org/10.3892/ijmm.2025.5533
Copy and paste a formatted citation
x
Spandidos Publications style
Chen X, Tian B, Wang Y, Zheng J and Kang X: Harnessing multi‑omics to revolutionize understanding and management of osteosarcoma: A pathway to precision medicine (Review). Int J Mol Med 55: 92, 2025.
APA
Chen, X., Tian, B., Wang, Y., Zheng, J., & Kang, X. (2025). Harnessing multi‑omics to revolutionize understanding and management of osteosarcoma: A pathway to precision medicine (Review). International Journal of Molecular Medicine, 55, 92. https://doi.org/10.3892/ijmm.2025.5533
MLA
Chen, X., Tian, B., Wang, Y., Zheng, J., Kang, X."Harnessing multi‑omics to revolutionize understanding and management of osteosarcoma: A pathway to precision medicine (Review)". International Journal of Molecular Medicine 55.6 (2025): 92.
Chicago
Chen, X., Tian, B., Wang, Y., Zheng, J., Kang, X."Harnessing multi‑omics to revolutionize understanding and management of osteosarcoma: A pathway to precision medicine (Review)". International Journal of Molecular Medicine 55, no. 6 (2025): 92. https://doi.org/10.3892/ijmm.2025.5533
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team