|
1
|
Ritter J and Bielack SS: Osteosarcoma. Ann
Oncol. 21(Suppl 7): vii320–vii325. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Belayneh R, Fourman MS, Bhogal S and Weiss
KR: Update on osteosarcoma. Curr Oncol Rep. 23:712021. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Czarnecka AM, Synoradzki K, Firlej W,
Bartnik E, Sobczuk P, Fiedorowicz M, Grieb P and Rutkowski P:
Molecular biology of osteosarcoma. Cancers (Basel). 12:21302020.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Jiang Y, Wang J, Sun M, Zuo D, Wang H,
Shen J, Jiang W, Mu H, Ma X, Yin F, et al: Multi-omics analysis
identifies osteosarcoma subtypes with distinct prognosis indicating
stratified treatment. Nat Commun. 13:72072022. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Mirabello L, Troisi RJ and Savage SA:
Osteosarcoma incidence and survival rates from 1973 to 2004: Data
from the surveillance, epidemiology, and end results program.
Cancer. 115:1531–1543. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Meltzer PS and Helman LJ: New horizons in
the treatment of osteosarcoma. N Engl J Med. 385:2066–2076. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Garcia-Ortega DY, Cabrera-Nieto SA,
Caro-Sánchez HS and Cruz-Ramos M: An overview of resistance to
chemotherapy in osteosarcoma and future perspectives. Cancer Drug
Resist. 5:762–793. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Panez-Toro I, Muñoz-García J,
Vargas-Franco JW, Renodon-Cornière A, Heymann MF, Lézot F and
Heymann D: Advances in osteosarcoma. Curr Osteoporos Rep.
21:330–343. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Peled Y, Levin D, Manisterski M, Kollander
N, Shukrun R and Elhasid R: Weight loss and response to
chemotherapy in pediatric patients with osteosarcoma. Eur J Clin
Nutr. 78:541–543. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
He X, Liu X, Zuo F, Shi H and Jing J:
Artificial intelligence-based multi-omics analysis fuels cancer
precision medicine. Semin Cancer Biol. 88:187–200. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Wang L, Qu J, Harari O, Boddey JA, Wang Z
and Linna-Kuosmanen S: The impact of multi-omics in medicine. Cell
Rep Med. 5:1017422024. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Mohammadi-Shemirani P, Sood T and Paré G:
From omics to multi-omics technologies: The discovery of novel
causal mediators. Curr Atheroscler Rep. 25:55–65. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Tang S, Roberts RD, Cheng L and Li L:
Osteosarcoma multi-omics landscape and subtypes. Cancers (Basel).
15:49702023. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Donisi C, Pretta A, Pusceddu V, Ziranu P,
Lai E, Puzzoni M, Mariani S, Massa E, Madeddu C and Scartozzi M:
Immunotherapy and cancer: The multi-omics perspective. Int J Mol
Sci. 25:35632024. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Urban W, Krzystańska D, Piekarz M, Nazar J
and Jankowska A: Osteosarcoma's genetic landscape painted by genes'
mutations. Acta Biochim Pol. 70:671–678. 2023.PubMed/NCBI
|
|
16
|
Mirabello L, Yeager M, Mai PL,
Gastier-Foster JM, Gorlick R, Khanna C, Patiño-Garcia A,
Sierrasesúmaga L, Lecanda F, Andrulis IL, et al: Germline TP53
variants and susceptibility to osteosarcoma. J Natl Cancer Inst.
107:djv1012015. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Mokánszki A, Chang Chien YC, Mótyán JA,
Juhász P, Bádon ES, Madar L, Szegedi I, Kiss C and Méhes G: Novel
RB1 and MET gene mutations in a case with bilateral retinoblastoma
followed by multiple metastatic osteosarcoma. Diagnostics (Basel).
11:282020. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Righi A, Gambarotti M, Benini S, Gamberi
G, Cocchi S, Picci P and Bertoni F: MDM2 and CDK4 expression in
periosteal osteosarcoma. Hum Pathol. 46:549–553. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Monti P, Menichini P, Speciale A, Cutrona
G, Fais F, Taiana E, Neri A, Bomben R, Gentile M, Gattei V, et al:
Heterogeneity of TP53 mutations and P53 protein residual function
in cancer: Does it matter? Front Oncol. 10:5933832020. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Huang MF, Wang YX, Chou YT and Lee DF:
Therapeutic strategies for RB1-deficient cancers: Intersecting gene
regulation and targeted therapy. Cancers (Basel). 16:15582024.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Koo N, Sharma AK and Narayan S:
Therapeutics targeting p53-MDM2 interaction to induce cancer cell
death. Int J Mol Sci. 23:50052022. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Synoradzki KJ, Bartnik E, Czarnecka AM,
Fiedorowicz M, Firlej W, Brodziak A, Stasinska A, Rutkowski P and
Grieb P: TP53 in biology and treatment of osteosarcoma. Cancers
(Basel). 13:42842021. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Mannheimer JD, Tawa G, Gerhold D, Braisted
J, Sayers CM, McEachron TA, Meltzer P, Mazcko C, Beck JA and
LeBlanc AK: Transcriptional profiling of canine osteosarcoma
identifies prognostic gene expression signatures with translational
value for humans. Commun Biol. 6:8562023. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Nie JJ, Zhang B, Luo P, Luo M, Luo Y, Cao
J, Wang H, Mao J, Xing Y, Liu W, et al: Enhanced pyroptosis
induction with pore-forming gene delivery for osteosarcoma
microenvironment reshaping. Bioact Mater. 38:455–471.
2024.PubMed/NCBI
|
|
25
|
Jin J, Cong J, Lei S, Zhang Q, Zhong X, Su
Y, Lu M, Ma Y, Li Z, Wang L, et al: Cracking the code: Deciphering
the role of the tumor microenvironment in osteosarcoma metastasis.
Int Immunopharmacol. 121:1104222023. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Luo ZW, Liu PP, Wang ZX, Chen CY and Xie
H: Macrophages in osteosarcoma immune microenvironment:
Implications for immunotherapy. Front Oncol. 10:5865802020.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Ichikawa J, Schoenecker JG, Tatsuno R,
Kawasaki T, Suzuki-Inoue K and Haro H: Advancing tissue
factor-targeted therapy for osteosarcoma via understanding its role
in the tumor microenvironment. Curr Pharm Des. 29:1009–1012. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Tatsuno R, Ichikawa J, Komohara Y, Pan C,
Kawasaki T, Enomoto A, Aoki K, Hayakawa K, Iwata S, Jubashi T and
Haro H: Pivotal role of IL-8 derived from the interaction between
osteosarcoma and tumor-associated macrophages in osteosarcoma
growth and metastasis via the FAK pathway. Cell Death Dis.
15:1082024. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Cui J, Dean D, Hornicek FJ, Chen Z and
Duan Z: The role of extracelluar matrix in osteosarcoma progression
and metastasis. J Exp Clin Cancer Res. 39:1782020. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Zhou Y, Yang Q, Dong Y, Ji T, Zhang B,
Yang C, Zheng S, Tang L, Zhou C, Qian G, et al:
First-in-maintenance therapy for localized high-grade osteosarcoma:
An open-label phase I/II trial of the anti-PD-L1 antibody ZKAB001.
Clin Cancer Res. 29:764–774. 2023. View Article : Google Scholar
|
|
31
|
Sun Y, Zhang C, Fang Q, Zhang W and Liu W:
Abnormal signal pathways and tumor heterogeneity in osteosarcoma. J
Transl Med. 21:992023. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Rajan S, Franz EM, McAloney CA, Vetter TA,
Cam M, Gross AC, Taslim C, Wang M, Cannon MV, Oles A and Roberts
RD: Osteosarcoma tumors maintain intra-tumoral transcriptional
heterogeneity during bone and lung colonization. BMC Biol.
21:982023. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Tian H, Cao J, Li B, Nice EC, Mao H, Zhang
Y and Huang C: Managing the immune microenvironment of
osteosarcoma: The outlook for osteosarcoma treatment. Bone Res.
11:112023. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Lilienthal I and Herold N: Targeting
molecular mechanisms underlying treatment efficacy and resistance
in osteosarcoma: A review of current and future strategies. Int J
Mol Sci. 21:68852020. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Liao Y, Yi Q, He J, Huang D, Xiong J and
Sun W and Sun W: Extracellular vesicles in tumorigenesis,
metastasis, chemotherapy resistance and intercellular communication
in osteosarcoma. Bioengineered. 14:113–128. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Jia C, Liu M, Yao L, Zhao F, Liu S, Li Z
and Han Y: Multi-omics analysis reveals cuproptosis and
mitochondria-based signature for assessing prognosis and immune
landscape in osteosarcoma. Front Immunol. 14:12809452024.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Schott C, Shah AT and Sweet-Cordero EA:
Genomic complexity of osteosarcoma and its implication for
preclinical and clinical targeted therapies. Adv Exp Med Biol.
1258:1–19. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Li L, Sun M, Wang J and Wan S: Multi-omics
based artificial intelligence for cancer research. Adv Cancer Res.
163:303–356. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Meijer DM, Ruano D, Briaire-de Bruijn IH,
Wijers-Koster PM, van de Sande MAJ, Gelderblom H, Cleton-Jansen AM,
de Miranda NFCC, Kuijjer ML and Bovée JVMG: The variable genomic
landscape during osteosarcoma progression: Insights from a
longitudinal WGS analysis. Genes Chromosomes Cancer. 63:e232532024.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Bagger FO, Borgwardt L, Jespersen AS,
Hansen AR, Bertelsen B, Kodama M and Nielsen FC: Whole genome
sequencing in clinical practice. BMC Med Genomics. 17:392024.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Li Y and Yang S, Liu Y and Yang S:
Deletion of Trp53 and Rb1 in Ctsk-expressing cells drives
osteosarcoma progression by activating glucose metabolism and YAP
signaling. MedComm (2020). 3:e1312022. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Feng W, Wang Z, Feng D, Zhu Y, Zhang K and
Huang W: The effects of common variants in MDM2 and GNRH2 genes on
the risk and survival of osteosarcoma in Han populations from
Northwest China. Sci Rep. 10:159392020. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
He X, Pang Z, Zhang X, Lan T, Chen H, Chen
M, Yang H, Huang J, Chen Y, Zhang Z, et al: Consistent
amplification of FRS2 and MDM2 in low-grade osteosarcoma: A genetic
study of 22 cases with clinicopathologic analysis. Am J Surg
Pathol. 42:1143–1155. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Limbach AL, Lingen MW, McElherne J, Mashek
H, Fitzpatrick C, Hyjek E, Mostofi R and Cipriani NA: The utility
of MDM2 and CDK4 immunohistochemistry and MDM2 FISH in craniofacial
osteosarcoma. Head Neck Pathol. 14:889–898. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Kaur H, Kala S, Sood A, Mridha AR, Kakkar
A, Yadav R, Mishra S and Mishra D: Role of MDM2, CDK4, BCL2,
parafibromin and galectin 1 in differentiating osteosarcoma from
its benign fibro-osseous lesions. Head Neck Pathol. 16:728–737.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Ren C, Pan R, Hou L, Wu H, Sun J, Zhang W,
Tian X and Chen H: Suppression of CLEC3A inhibits osteosarcoma cell
proliferation and promotes their chemosensitivity through the
AKT1/mTOR/HIF1α signaling pathway. Mol Med Rep. 21:1739–1748.
2020.PubMed/NCBI
|
|
47
|
Wang J, Ni J, Song D, Ding M, Huang J, Li
W and He G: MAT1 facilitates the lung metastasis of osteosarcoma
through upregulation of AKT1 expression. Life Sci. 234:1167712019.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Madda R, Chen CM, Chen CF, Wang JY, Wu HY,
Wu PK and Chen WM: Analyzing BMP2, FGFR, and TGF beta expressions
in high-grade osteosarcoma untreated and treated autografts using
proteomic analysis. Int J Mol Sci. 23:74092022. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Huang YC, Chen WC, Yu CL, Chang TK, I-Chin
Wei A, Chang TM, Liu JF and Wang SW: FGF2 drives osteosarcoma
metastasis through activating FGFR1-4 receptor pathway-mediated
ICAM-1 expression. Biochem Pharmacol. 218:1158532023. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Kim JA, Berlow NE, Lathara M, Bharathy N,
Martin LR, Purohit R, Cleary MM, Liu Q, Michalek JE, Srinivasa G,
et al: Sensitization of osteosarcoma to irradiation by targeting
nuclear FGFR1. Biochem Biophys Res Commun. 621:101–108. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Cui J, Wang W, Li Z, Zhang Z, Wu B and
Zeng L: Epigenetic changes in osteosarcoma. Bull Cancer.
98:E62–E68. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Makise N, Sekimizu M, Kubo T, Wakai S,
Watanabe SI, Kato T, Kinoshita T, Hiraoka N, Fukayama M, Kawai A,
et al: Extraskeletal osteosarcoma: MDM2 and H3K27me3 analysis of 19
cases suggest disease heterogeneity. Histopathology. 73:147–156.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Saba KH, Cornmark L, Rissler M, Fioretos
T, Åström K, Haglund F, Rosenberg AE, Brosjö O and Nord KH: Genetic
profiling of a chondroblastoma-like osteosarcoma/malignant
phosphaturic mesenchymal tumor of bone reveals a homozygous
deletion of CDKN2A, intragenic deletion of DMD, and a targetable
FN1-FGFR1 gene fusion. Genes Chromosomes Cancer. 58:731–736. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Wu CC and Livingston JA: Genomics and the
immune landscape of osteosarcoma. Adv Exp Med Biol. 1258:21–36.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Yang S, Tian Z, Feng Y, Zhang K, Pan Y, Li
Y, Wang Z, Wei W, Qiao X, Zhou R, et al: Transcriptomics and
metabolomics reveal changes in the regulatory mechanisms of
osteosarcoma under different culture methods in vitro. BMC Med
Genomics. 15:2652022. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Yoon H, Liyanarachchi S, Wright FA,
Davuluri R, Lockman JC, de la Chapelle A and Pellegata NS: Gene
expression profiling of isogenic cells with different TP53 gene
dosage reveals numerous genes that are affected by TP53 dosage and
identifies CSPG2 as a direct target of p53. Proc Natl Acad Sci USA.
99:15632–15637. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Das S, Idate R, Regan DP, Fowles JS, Lana
SE, Thamm DH, Gustafson DL and Duval DL: Immune pathways and TP53
missense mutations are associated with longer survival in canine
osteosarcoma. Commun Biol. 4:11782021. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Luo M, Huang M, Yang N, Zhu Y, Huang P, Xu
Z, Wang W and Cai L: Impairment of rigidity sensing caused by
mutant TP53 gain of function in osteosarcoma. Bone Res. 11:282023.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Feng W, Dean DC, Hornicek FJ, Spentzos D,
Hoffman RM, Shi H and Duan Z: Myc is a prognostic biomarker and
potential therapeutic target in osteosarcoma. Ther Adv Med Oncol.
12:17588359209220552020. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Akkawi R, Hidmi O, Haj-Yahia A, Monin J,
Diment J, Drier Y, Stein GS and Aqeilan RI: WWOX promotes
osteosarcoma development via upregulation of Myc. Cell Death Dis.
15:132024. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Ma L, Xue W and Ma X: GATA3 is
downregulated in osteosarcoma and facilitates EMT as well as
migration through regulation of slug. Onco Targets Ther.
11:7579–7589. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Wu H, Zhang J, Dai R, Xu J and Feng H:
Transferrin receptor-1 and VEGF are prognostic factors for
osteosarcoma. J Orthop Surg Res. 14:2962019. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Gu J, Ji Z, Li D and Dong Q: Proliferation
inhibition and apoptosis promotion by dual silencing of VEGF and
survivin in human osteosarcoma. Acta Biochim Biophys Sin
(Shanghai). 51:59–67. 2019. View Article : Google Scholar
|
|
64
|
Quan B, Li Z, Yang H, Li S, Yan X and Wang
Y: The splicing factor YBX1 promotes the progression of
osteosarcoma by upregulating VEGF165 and downregulating
VEGF165b. Heliyon. 9:e187062023. View Article : Google Scholar
|
|
65
|
Luo P, Zhang YD, He F, Tong CJ, Liu K, Liu
H, Zhu SZ, Luo JZ and Yuan B: HIF-1α-mediated augmentation of
miRNA-18b-5p facilitates proliferation and metastasis in
osteosarcoma through attenuation PHF2. Sci Rep. 12:103982022.
View Article : Google Scholar
|
|
66
|
Zeng X, Liu S, Yang H, Jia M, Liu W and
Zhu W: Synergistic anti-tumour activity of ginsenoside Rg3 and
doxorubicin on proliferation, metastasis and angiogenesis in
osteosarcoma by modulating mTOR/HIF-1α/VEGF and EMT signalling
pathways. J Pharm Pharmacol. 75:1405–1417. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Liao YX, Zhou CH, Zeng H, Zuo DQ, Wang ZY,
Yin F, Hua YQ and Cai ZD: The role of the CXCL12-CXCR4/CXCR7 axis
in the progression and metastasis of bone sarcomas (Review). Int J
Mol Med. 32:1239–1246. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Zhang P, Dong L, Yan K, Long H, Yang TT,
Dong MQ, Zhou Y, Fan QY and Ma BA: CXCR4-mediated osteosarcoma
growth and pulmonary metastasis is promoted by mesenchymal stem
cells through VEGF. Oncol Rep. 30:1753–1761. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Li Z, Lu H, Zhang Y, Lv J, Zhang Y, Xu T,
Yang D, Duan Z, Guan Y, Jiang Z, et al: Blocking CXCR4-CARM1-YAP
axis overcomes osteosarcoma doxorubicin resistance by suppressing
aerobic glycolysis. Cancer Sci. 115:3305–3319. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Gong C, Sun K, Xiong HH, Sneh T, Zhang J,
Zhou X, Yan P and Wang JH: Expression of CXCR4 and MMP-2 is
associated with poor prognosis in patients with osteosarcoma.
Histol Histopathol. 35:863–870. 2020.PubMed/NCBI
|
|
71
|
Liu JF, Chen PC, Chang TM and Hou CH:
Monocyte chemoattractant protein-1 promotes cancer cell migration
via c-Raf/MAPK/AP-1 pathway and MMP-9 production in osteosarcoma. J
Exp Clin Cancer Res. 39:2542020. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Harrison BM and Loukopoulos P: Genomics
and transcriptomics in veterinary oncology. Oncol Lett. 21:3362021.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Feleke M, Feng W, Song D, Li H, Rothzerg
E, Wei Q, Kõks S, Wood D, Liu Y and Xu J: Single-cell RNA
sequencing reveals differential expression of EGFL7 and VEGF in
giant-cell tumor of bone and osteosarcoma. Exp Biol Med (Maywood).
247:1214–1227. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Chen T, Chen Z, Lian X, Wu W, Chu L, Zhang
S and Wang L: MUC 15 promotes osteosarcoma cell proliferation,
migration and invasion through livin, MMP-2/MMP-9 and Wnt/β-catenin
signal pathway. J Cancer. 12:467–473. 2021. View Article : Google Scholar :
|
|
75
|
Li AA, Zhang Y, Li F, Zhou Y, Liu ZL and
Long XH: The mechanism of VCP-mediated metastasis of osteosarcoma
based on cell autophagy and the EMT pathway. Clin Transl Oncol.
25:653–661. 2023. View Article : Google Scholar
|
|
76
|
Zheng X, Liu X, Zhang X, Zhao Z, Wu W and
Yu S: A single-cell and spatially resolved atlas of human
osteosarcomas. J Hematol Oncol. 17:712024. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Sirikaew N, Pruksakorn D, Chaiyawat P and
Chutipongtanate S: Mass spectrometric-based proteomics for
biomarker discovery in osteosarcoma: Current status and future
direction. Int J Mol Sci. 23:97412022. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Wu C, Gong S, Duan Y, Deng C, Kallendrusch
S, Berninghausen L, Osterhoff G and Schopow N: A tumor
microenvironment-based prognostic index for osteosarcoma. J Biomed
Sci. 30:232023. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Chang TY, Lan KC, Wu CH, Sheu ML, Yang RS
and Liu SH: Nε-(1-carboxymethyl)-L-lysine/RAGE signaling drives
metastasis and cancer stemness through ERK/NFκB axis in
osteosarcoma. Int J Biol Sci. 20:880–896. 2024. View Article : Google Scholar :
|
|
80
|
Jiang K, Li J, Zhang J, Wang L, Zhang Q,
Ge J, Guo Y, Wang B, Huang Y, Yang T, et al: SDF-1/CXCR4 axis
facilitates myeloid-derived suppressor cells accumulation in
osteosarcoma microenvironment and blunts the response to anti-PD-1
therapy. Int Immunopharmacol. 75:1058182019. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Liao YX, Lv JY, Zhou ZF, Xu TY, Yang D,
Gao QM, Fan L, Li GD, Yu HY and Liu KY: CXCR4 blockade sensitizes
osteosarcoma to doxorubicin by inducing autophagic cell death via
PI3K-Akt-mTOR pathway inhibition. Int J Oncol. 59:492021.
View Article : Google Scholar :
|
|
82
|
Zhang L, Pan Y, Pan F, Huang S, Wang F,
Zeng Z, Chen H and Tian X: MATN4 as a target gene of HIF-1α
promotes the proliferation and metastasis of osteosarcoma. Aging
(Albany NY). 16:10462–10476. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Shi X and Wang X, Yao W, Shi D, Shao X, Lu
Z, Chai Y, Song J, Tang W and Wang X: Mechanism insights and
therapeutic intervention of tumor metastasis: latest developments
and perspectives. Signal Transduct Target Ther. 9:1922024.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Gao Y, Qu Y, Zhou Q and Ma Y: SIRT6
inhibits proliferation and invasion in osteosarcoma cells by
targeting N-cadherin. Oncol Lett. 17:1237–1244. 2019.PubMed/NCBI
|
|
85
|
Masuelli L, Benvenuto M, Izzi V, Zago E,
Mattera R, Cerbelli B, Potenza V, Fazi S, Ciuffa S, Tresoldi I, et
al: In vivo and in vitro inhibition of osteosarcoma growth by the
pan Bcl-2 inhibitor AT-101. Invest New Drugs. 38:675–689. 2020.
View Article : Google Scholar
|
|
86
|
Esperança-Martins M, Fernandes I, Soares
do Brito J, Macedo D, Vasques H, Serafim T, Costa L and Dias S:
Sarcoma metabolomics: Current horizons and future perspectives.
Cells. 10:14322021. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Jiang Y, Li F, Gao B, Ma M, Chen M, Wu Y,
Zhang W, Sun Y, Liu S and Shen H: KDM6B-mediated histone
demethylation of LDHA promotes lung metastasis of osteosarcoma.
Theranostics. 11:3868–3881. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Mei Z, Shen Z, Pu J, Liu Q, Liu G, He X,
Wang Y, Yue J, Ge S, Li T, et al: NAT10 mediated ac4C acetylation
driven m6A modification via involvement of
YTHDC1-LDHA/PFKM regulates glycolysis and promotes osteosarcoma.
Cell Commun Signal. 22:512024. View Article : Google Scholar
|
|
89
|
Xia K, Zheng D, Wei Z, Liu W and Guo W:
TRIM26 inhibited osteosarcoma progression through destabilizing
RACK1 and thus inactivation of MEK/ERK signaling. Cell Death Dis.
14:5292023. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Liu W, Zhao Y, Wang G, Feng S, Ge X, Ye W,
Wang Z, Zhu Y, Cai W, Bai J and Zhou X: TRIM22 inhibits
osteosarcoma progression through destabilizing NRF2 and thus
activation of ROS/AMPK/mTOR/autophagy signaling. Redox Biol.
53:1023442022. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Wei Z, Xia K, Zhou B, Zheng D and Guo W:
Zyxin inhibits the proliferation, migration, and invasion of
osteosarcoma via Rap1-mediated inhibition of the MEK/ERK signaling
pathway. Biomedicines. 11:23142023. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Li G, Stampas A, Komatsu Y, Gao X, Huard J
and Pan S: Proteomics in orthopedic research: Recent studies and
their translational implications. J Orthop Res. 42:1631–1640. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Dean DC, Shen S, Hornicek FJ and Duan Z:
From genomics to metabolomics: Emerging metastatic biomarkers in
osteosarcoma. Cancer Metastasis Rev. 37:719–731. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Yin Z, Shen G, Fan M and Zheng P: Lipid
metabolic reprogramming and associated ferroptosis in osteosarcoma:
From molecular mechanisms to potential targets. J Bone Oncol.
51:1006602025. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Hu X, Zhou X, Zhang J and Li L:
Sphingolipid metabolism is associated with osteosarcoma metastasis
and prognosis: Evidence from interaction analysis. Front Endocrinol
(Lausanne). 13:9836062022. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Cai F, Liu L, Bo Y, Yan W, Tao X, Peng Y,
Zhang Z, Liao Q and Yi Y: LncRNA RPARP-AS1 promotes the progression
of osteosarcoma cells through regulating lipid metabolism. BMC
Cancer. 24:1662024. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Bispo DSC, Correia M, Carneiro TJ, Martins
AS, Reis AAN, Carvalho ALMB, Marques MPM and Gil AM: Impact of
conventional and potential new metal-based drugs on lipid
metabolism in osteosarcoma MG-63 cells. Int J Mol Sci.
24:175562023. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Fritsche-Guenther R, Gloaguen Y, Kirchner
M, Mertins P, Tunn PU and Kirwan JA: Progression-dependent altered
metabolism in osteosarcoma resulting in different nutrient source
dependencies. Cancers (Basel). 12:13712020. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Shen S, Xu Y, Gong Z, Yao T, Qiao D, Huang
Y, Zhang Z, Gao J, Ni H, Jin Z, et al: Positive feedback regulation
of circular RNA Hsa_circ_0000566 and HIF-1α promotes osteosarcoma
progression and glycolysis metabolism. Aging Dis. 14:529–547.
2023.PubMed/NCBI
|
|
100
|
Li G, Li Y and Wang DY: Overexpression of
miR-329-3p sensitizes osteosarcoma cells to cisplatin through
suppression of glucose metabolism by targeting LDHA. Cell Biol Int.
45:766–774. 2021. View Article : Google Scholar
|
|
101
|
Wang B, Zhou Y, Zhang P, Li J and Lu X:
Solasonine inhibits cancer stemness and metastasis by modulating
glucose metabolism via Wnt/β-catenin/snail pathway in osteosarcoma.
Am J Chin Med. 51:1293–1308. 2023. View Article : Google Scholar
|
|
102
|
Ren J, Zhao C, Sun R, Sun J, Lu L, Wu J,
Li S and Cui L: Augmented drug resistance of osteosarcoma cells
within decalcified bone matrix scaffold: The role of glutamine
metabolism. Int J Cancer. 154:1626–1638. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Wang H, Tao Y, Han J, Shen J, Mu H, Wang
Z, Wang J, Jin X, Zhang Q, Yang Y, et al: Disrupting YAP1-mediated
glutamine metabolism induces synthetic lethality alongside ODC1
inhibition in osteosarcoma. Cell Oncol (Dordr). 47:1845–1861. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Lin S, Miao Y, Zheng X, Dong Y, Yang Q,
Yang Q, Du S, Xu J, Zhou S and Yuan T: ANGPTL4 negatively regulates
the progression of osteosarcoma by remodeling branched-chain amino
acid metabolism. Cell Death Discov. 8:2252022. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Qian H, Lei T, Hu Y and Lei P: Expression
of lipid-metabolism genes is correlated with immune
microenvironment and predicts prognosis in osteosarcoma. Front Cell
Dev Biol. 9:6738272021. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Wu C, Tan J, Shen H, Deng C, Kleber C,
Osterhoff G and Schopow N: Exploring the relationship between
metabolism and immune microenvironment in osteosarcoma based on
metabolic pathways. J Biomed Sci. 31:42024. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Li Q, Fang J, Liu K, Luo P and Wang X:
Multi-omic validation of the cuproptosis-sphingolipid metabolism
network: Modulating the immune landscape in osteosarcoma. Front
Immunol. 15:14248062024. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Lin Z, He Y, Wu Z, Yuan Y, Li X and Luo W:
Comprehensive analysis of copper-metabolism-related genes about
prognosis and immune microenvironment in osteosarcoma. Sci Rep.
13:150592023. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Chen C, Wang J, Pan D, Wang X, Xu Y, Yan
J, Wang L, Yang X, Yang M and Liu GP: Applications of multi-omics
analysis in human diseases. MedComm (2020). 4:e3152023. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Lin Y, Yang Y, Yuan K, Yang S, Zhang S, Li
H and Tang T: Multi-omics analysis based on 3D-bioprinted models
innovates therapeutic target discovery of osteosarcoma. Bioact
Mater. 18:459–470. 2022.PubMed/NCBI
|
|
111
|
Zhou Y, Yang D, Yang Q, Lv X, Huang W,
Zhou Z, Wang Y, Zhang Z, Yuan T, Ding X, et al: Single-cell RNA
landscape of intratumoral heterogeneity and immunosuppressive
microenvironment in advanced osteosarcoma. Nat Commun. 11:63222020.
View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Jia C, Yao X, Dong Z, Wang L, Zhao F, Gao
J and Cai T: Molecular landscape and prognostic value in the
post-translational ubiquitination, SUMOylation and neddylation in
osteosarcoma: A transcriptome study. J Inflamm Res. 17:4315–4330.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Truong DD, Weistuch C, Murgas KA, Admane
P, King BL, Chauviere Lee J, Lamhamedi-Cherradi SE, Swaminathan J,
Daw NC, Gordon N, et al: Mapping the single-cell differentiation
landscape of osteosarcoma. Clin Cancer Res. 30:3259–3272. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Heo YJ, Hwa C, Lee GH, Park JM and An JY:
Integrative multi-omics approaches in cancer research: From
biological networks to clinical subtypes. Mol Cells. 44:433–443.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Wei Z, Xia K, Zheng D, Gong C and Guo W:
RILP inhibits tumor progression in osteosarcoma via Grb10-mediated
inhibition of the PI3K/AKT/mTOR pathway. Mol Med. 29:1332023.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Zhang X, Wen Z, Wang Q, Ren L and Zhao S:
A novel stratification framework based on anoikis-related genes for
predicting the prognosis in patients with osteosarcoma. Front
Immunol. 14:11998692023. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Fan J, Jahed V and Klavins K: Metabolomics
in bone research. Metabolites. 11:4342021. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Jiang Z, Han K, Min D, Kong W, Wang S and
Gao M: Identification of the methotrexate resistance-related
diagnostic markers in osteosarcoma via adaptive total variation
netNMF and multi-omics datasets. Front Genet. 14:12880732023.
View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Audinot B, Drubay D, Gaspar N, Mohr A,
Cordero C, Marec-Bérard P, Lervat C, Piperno-Neumann S, Jimenez M,
Mansuy L, et al: ctDNA quantification improves estimation of
outcomes in patients with high-grade osteosarcoma: A translational
study from the OS2006 trial. Ann Oncol. 35:559–568. 2024.
View Article : Google Scholar
|
|
120
|
Schaafsma E, Takacs EM, Kaur S, Cheng C
and Kurokawa M: Predicting clinical outcomes of cancer patients
with a p53 deficiency gene signature. Sci Rep. 12:13172022.
View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Chen Z, Guo J, Zhang K and Guo Y: TP53
mutations and survival in osteosarcoma patients: A meta-analysis of
published data. Dis Markers. 2016:46395752016. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Ru JY, Cong Y, Kang WB, Yu L, Guo T and
Zhao JN: Polymorphisms in TP53 are associated with risk and
survival of osteosarcoma in a Chinese population. Int J Clin Exp
Pathol. 8:3198–3203. 2015.PubMed/NCBI
|
|
123
|
Jeon DG, Koh JS, Cho WH, Song WS, Kong CB,
Cho SH and Lee SY and Lee SY: Clinical outcome of low-grade central
osteosarcoma and role of CDK4 and MDM2 immunohistochemistry as a
diagnostic adjunct. J Orthop Sci. 20:529–537. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Iwata S, Tatsumi Y, Yonemoto T, Araki A,
Itami M, Kamoda H, Tsukanishi T, Hagiwara Y, Kinoshita H, Ishii T,
et al: CDK4 overexpression is a predictive biomarker for resistance
to conventional chemotherapy in patients with osteosarcoma. Oncol
Rep. 46:1352021. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Schubert NA, Chen CY, Rodríguez A, Koster
J, Dowless M, Pfister SM, Shields DJ, Stancato LF, Vassal G, Caron
HN, et al: Target actionability review to evaluate CDK4/6 as a
therapeutic target in paediatric solid and brain tumours. Eur J
Cancer. 170:196–208. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Sun R, Shen J, Gao Y, Zhou Y, Yu Z,
Hornicek F, Kan Q and Duan Z: Overexpression of EZH2 is associated
with the poor prognosis in osteosarcoma and function analysis
indicates a therapeutic potential. Oncotarget. 7:38333–38346. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Yang X, Xu L and Yang L: Recent advances
in EZH2-based dual inhibitors in the treatment of cancers. Eur J
Med Chem. 256:1154612023. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Nazarizadeh A, Alizadeh-Fanalou S,
Hosseini A, Mirzaei A, Salimi V, Keshipour H, Safizadeh B, Jamshidi
K, Bahrabadi M and Tavakoli-Yaraki M: Evaluation of local and
circulating osteopontin in malignant and benign primary bone
tumors. J Bone Oncol. 29:1003772021. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Barris DM, Weiner SB, Dubin RA, Fremed M,
Zhang X, Piperdi S, Zhang W, Maqbool S, Gill J, Roth M, et al:
Detection of circulating tumor DNA in patients with osteosarcoma.
Oncotarget. 9:12695–12704. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Kathiresan N, Selvaraj C, Pandian S,
Subbaraj GK, Alothaim AS, Safi SZ and Kulathaivel L: Proteomics and
genomics insights on malignant osteosarcoma. Adv Protein Chem
Struct Biol. 138:275–300. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Zhao D, Jia P, Wang W and Zhang G:
VEGF-mediated suppression of cell proliferation and invasion by
miR-410 in osteosarcoma. Mol Cell Biochem. 400:87–95. 2015.
View Article : Google Scholar
|
|
132
|
Tawbi HA, Burgess M, Bolejack V, Van Tine
BA, Schuetze SM, Hu J, D'Angelo S, Attia S, Riedel RF, Priebat DA,
et al: Pembrolizumab in advanced soft-tissue sarcoma and bone
sarcoma (SARC028): A multicentre, two-cohort, single-arm,
open-label, phase 2 trial. Lancet Oncol. 18:1493–1501. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Assi T, Watson S, Samra B, Rassy E, Le
Cesne A, Italiano A and Mir O: Targeting the VEGF pathway in
osteosarcoma. Cells. 10:12402021. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Mickymaray S, Alfaiz FA, Paramasivam A,
Veeraraghavan VP, Periadurai ND, Surapaneni KM and Niu G:
Rhaponticin suppresses osteosarcoma through the inhibition of
PI3K-Akt-mTOR pathway. Saudi J Biol Sci. 28:3641–3649. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Lu DG, Tang QL, Wei JH, He FY, Lu L and
Tang YJ: Targeting EZH2 by microRNA-449a inhibits osteosarcoma cell
proliferation, invasion and migration via regulation of PI3K/AKT
signaling pathway and epithelial-mesenchymal transition. Eur Rev
Med Pharmacol Sci. 24:1656–1665. 2020.PubMed/NCBI
|
|
136
|
Chen ZY, Huang HH, Li QC, Zhan FB, Wang
LB, He T, Yang CH, Wang Y, Zhang Y and Quan ZX: Capsaicin reduces
cancer stemness and inhibits metastasis by downregulating SOX2 and
EZH2 in osteosarcoma. Am J Chin Med. 51:1041–1066. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Liu X, He S, Wu H, Xie H, Zhang T and Deng
Z: Blocking the PD-1/PD-L1 axis enhanced cisplatin chemotherapy in
osteosarcoma in vitro and in vivo. Environ Health Prev Med.
24:792019. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Yoshida K, Okamoto M, Sasaki J, Kuroda C,
Ishida H, Ueda K, Okano S, Ideta H, Kamanaka T, Sobajima A, et al:
Clinical outcome of osteosarcoma and its correlation with
programmed death-ligand 1 and T cell activation markers. Onco
Targets Ther. 12:2513–2518. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Davis KL, Fox E, Merchant MS, Reid JM,
Kudgus RA, Liu X, Minard CG, Voss S, Berg SL, Weigel BJ and Mackall
CL: Nivolumab in children and young adults with relapsed or
refractory solid tumours or lymphoma (ADVL1412): A multicentre,
openlabel, single-arm, phase 1-2 trial. Lancet Oncol. 21:541–550.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Zhou Y, Shen JK, Yu Z, Hornicek FJ, Kan Q
and Duan Z: Expression and therapeutic implications of
cyclin-dependent kinase 4 (CDK4) in osteosarcoma. Biochim Biophys
Acta Mol Basis Dis. 1864:1573–1582. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Oshiro H, Tome Y, Miyake K, Higuchi T,
Sugisawa N, Kanaya F, Nishida K and Hoffman RM: Combination of
CDK4/6 and mTOR inhibitors suppressed doxorubicin-resistant
osteosarcoma in a patient-derived orthotopic xenograft mouse model:
A translatable strategy for recalcitrant disease. Anticancer Res.
41:3287–3292. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Athieniti E and Spyrou GM: A guide to
multi-omics data collection and integration for translational
medicine. Comput Struct Biotechnol J. 21:134–149. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Downing JR, Wilson RK, Zhang J, Mardis ER,
Pui CH, Ding L, Ley TJ and Evans WE: The pediatric cancer genome
project. Nat Genet. 44:619–622. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Freeberg MA, Fromont LA, D'Altri T, Romero
AF, Ciges JI, Jene A, Kerry G, Moldes M, Ariosa R, Bahena S, et al:
The European genome-phenome archive in 2021. Nucleic Acids Res.
50(D1): D980–D987. 2022. View Article : Google Scholar :
|
|
145
|
Jovic D, Liang X, Zeng H, Lin L, Xu F and
Luo Y: Single-cell RNA sequencing technologies and applications: A
brief overview. Clin Transl Med. 12:e6942022. View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Liu W, Hu H, Shao Z, Lv X, Zhang Z, Deng
X, Song Q, Han Y, Guo T, Xiong L, et al: Characterizing the tumor
microenvironment at the single-cell level reveals a novel immune
evasion mechanism in osteosarcoma. Bone Res. 11:42023. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Huang X, Wang L, Guo H, Zhang W and Shao
Z: Single-cell transcriptomics reveals the regulative roles of
cancer associated fibroblasts in tumor immune microenvironment of
recurrent osteosarcoma. Theranostics. 12:5877–5887. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Liu Y, Feng W, Dai Y, Bao M, Yuan Z, He M,
Qin Z, Liao S, He J, Huang Q, et al: Single-cell transcriptomics
reveals the complexity of the tumor microenvironment of
treatment-naive osteosarcoma. Front Oncol. 11:7092102021.
View Article : Google Scholar : PubMed/NCBI
|
|
149
|
Fu Y, Xu Y, Liu W, Zhang J, Wang F, Jian
Q, Huang G, Zou C, Xie X, Kim AH, et al: Tumor-informed deep
sequencing of ctDNA detects minimal residual disease and predicts
relapse in osteosarcoma. EClinicalMedicine. 73:1026972024.
View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Landuzzi L, Manara MC, Lollini PL and
Scotlandi K: Patient derived xenografts for genome-driven therapy
of osteosarcoma. Cells. 10:4162021. View Article : Google Scholar : PubMed/NCBI
|
|
151
|
He A, Huang Y, Cheng W, Zhang D, He W, Bai
Y, Gu C, Ma Z, He Z, Si G, et al: Organoid culture system for
patient-derived lung metastatic osteosarcoma. Med Oncol.
37:1052020. View Article : Google Scholar : PubMed/NCBI
|