Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
June-2025 Volume 55 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2025 Volume 55 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Epigenetic regulation of ferroptosis in gastrointestinal cancers (Review)

  • Authors:
    • Linqiang Gong
    • Linlin Wu
    • Shiyuan Zhao
    • Shuai Xiao
    • Xue Chu
    • Yazhou Zhang
    • Fengfeng Li
    • Shuhui Li
    • Hui Yang
    • Pei Jiang
  • View Affiliations / Copyright

    Affiliations: Department of Gastroenterology, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China, Oncology Department, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China, Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, Shandong 272000, P.R. China, Department of Intensive Care Medicine, Tengzhou Central People's Hospital, Jining Medical University, Tengzhou, Shandong 277500, P.R. China, Department of Foot and Ankle Surgery, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China, Neurosurgery Department, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China, Department of Gynecology, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
    Copyright: © Gong et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 93
    |
    Published online on: April 17, 2025
       https://doi.org/10.3892/ijmm.2025.5534
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Ferroptosis is a type of iron‑dependent cell death characterized by excessive lipid peroxidation and may serve as a potential therapeutic target in cancer treatment. While the mechanisms governing ferroptosis continue to be explored and elucidated, an increasing body of research highlights the significant impact of epigenetic modifications on the sensitivity of cancer cells to ferroptosis. Epigenetic processes, such as DNA methylation, histone modifications and non‑coding RNAs, have been identified as key regulators that modulate the expression of ferroptosis‑related genes. These alterations can either enhance or inhibit the sensitivity of gastrointestinal cancer (GIC) cells to ferroptosis, thereby affecting the fate of GICs. Drugs that target epigenetic markers for advanced‑stage cancer have shown promising results in enhancing ferroptosis and inhibiting tumor growth. This review explores the intricate relationship between epigenetic regulation and ferroptosis in GICs. Additionally, the potential of leveraging epigenetic modifications to trigger ferroptosis in GICs is investigated. This review highlights the importance of further research to elucidate the specific mechanisms underlying epigenetic control of ferroptosis and to advance the development of novel therapeutic approaches.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI

2 

Donohoe CL and Reynolds JV: Neoadjuvant treatment of locally advanced esophageal and junctional cancer: The evidence-base, current key questions and clinical trials. J Thorac Dis. 9(Suppl 8): S697–S704. 2017. View Article : Google Scholar : PubMed/NCBI

3 

Schmidt B, Lee HJ, Ryeom S and Yoon SS: Combining bevacizumab with radiation or chemoradiation for solid tumors: A review of the scientific rationale, and clinical trials. Curr Angiogenes. 1:169–179. 2012. View Article : Google Scholar : PubMed/NCBI

4 

Madden EC, Gorman AM, Logue SE and Samali A: Tumour cell secretome in chemoresistance and tumour recurrence. Trends Cancer. 6:489–505. 2020. View Article : Google Scholar : PubMed/NCBI

5 

Smyth EC, Nilsson M, Grabsch HI, van Grieken NC and Lordick F: Gastric cancer. Lancet. 396:635–648. 2020. View Article : Google Scholar : PubMed/NCBI

6 

Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI

7 

Jia M, Qin D, Zhao C, Chai L, Yu Z, Wang W, Tong L, Lv L, Wang Y, Rehwinkel J, et al: Redox homeostasis maintained by GPX4 facilitates STING activation. Nat Immunol. 21:727–735. 2020. View Article : Google Scholar : PubMed/NCBI

8 

Zhou B, Liu J, Kang R, Klionsky DJ, Kroemer G and Tang D: Ferroptosis is a type of autophagy-dependent cell death. Semin Cancer Biol. 66:89–100. 2020. View Article : Google Scholar

9 

Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB, et al: Regulation of ferroptotic cancer cell death by GPX4. Cell. 156:317–331. 2014. View Article : Google Scholar : PubMed/NCBI

10 

Yu Y, Xie Y, Cao L, Yang L, Yang M, Lotze MT, Zeh HJ, Kang R and Tang D: The ferroptosis inducer erastin enhances sensitivity of acute myeloid leukemia cells to chemotherapeutic agents. Mol Cell Oncol. 2:e10545492015. View Article : Google Scholar

11 

Louandre C, Ezzoukhry Z, Godin C, Barbare JC, Mazière JC, Chauffert B and Galmiche A: Iron-dependent cell death of hepatocellular carcinoma cells exposed to sorafenib. Int J Cancer. 133:1732–1742. 2013. View Article : Google Scholar : PubMed/NCBI

12 

Louandre C, Marcq I, Bouhlal H, Lachaier E, Godin C, Saidak Z, François C, Chatelain D, Debuysscher V, Barbare JC, et al: The retinoblastoma (Rb) protein regulates ferroptosis induced by sorafenib in human hepatocellular carcinoma cells. Cancer Lett. 356:971–977. 2015. View Article : Google Scholar

13 

Sun X, Niu X, Chen R, He W, Chen D, Kang R and Tang D: Metallothionein-1G facilitates sorafenib resistance through inhibition of ferroptosis. Hepatology. 64:488–500. 2016. View Article : Google Scholar : PubMed/NCBI

14 

Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R and Tang D: Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology. 63:173–184. 2016. View Article : Google Scholar

15 

Eling N, Reuter L, Hazin J, Hamacher-Brady A and Brady NR: Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells. Oncoscience. 2:517–532. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Zhu S, Zhang Q, Sun X, Zeh HJ III, Lotze MT, Kang R and Tang D: HSPA5 regulates ferroptotic cell death in cancer cells. Cancer Res. 77:2064–2077. 2017. View Article : Google Scholar : PubMed/NCBI

17 

Berger SL, Kouzarides T, Shiekhattar R and Shilatifard A: An operational definition of epigenetics. Genes Dev. 23:781–783. 2009. View Article : Google Scholar : PubMed/NCBI

18 

Holliday R: The inheritance of epigenetic defects. Science. 238:163–170. 1987. View Article : Google Scholar : PubMed/NCBI

19 

Zhou S, Liu J, Wan A, Zhang Y and Qi X: Epigenetic regulation of diverse cell death modalities in cancer: a focus on pyroptosis, ferroptosis, cuproptosis, and disulfidptosis. J Hematol Oncol. 17:222024. View Article : Google Scholar : PubMed/NCBI

20 

Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK, Kagan VE, et al: Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 171:273–285. 2017. View Article : Google Scholar : PubMed/NCBI

21 

Kuang F, Liu J, Tang D and Kang R: Oxidative damage and antioxidant defense in ferroptosis. Front Cell Dev Biol. 8:5865782020. View Article : Google Scholar : PubMed/NCBI

22 

Torti SV and Torti FM: Iron and cancer: More ore to be mined. Nat Rev Cancer. 13:342–355. 2013. View Article : Google Scholar : PubMed/NCBI

23 

Hassannia B, Vandenabeele P and Vanden Berghe T: Targeting ferroptosis to iron out cancer. Cancer Cell. 35:830–849. 2019. View Article : Google Scholar : PubMed/NCBI

24 

Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS and Stockwell BR: Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci USA. 113:E4966–E4975. 2016. View Article : Google Scholar : PubMed/NCBI

25 

Suttner DM and Dennery PA: Reversal of HO-1 related cytoprotection with increased expression is due to reactive iron. FASEB J. 13:1800–1809. 1999. View Article : Google Scholar : PubMed/NCBI

26 

Yang WS and Stockwell BR: Synthetic lethal screening identifies compounds activating Iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol. 15:234–245. 2008. View Article : Google Scholar : PubMed/NCBI

27 

Wang Y, Liu Y, Liu J, Kang R and Tang D: NEDD4L-mediated LTF protein degradation limits ferroptosis. Biochem Biophys Res Commun. 531:581–587. 2020. View Article : Google Scholar : PubMed/NCBI

28 

Drakesmith H, Nemeth E and Ganz T: Ironing out Ferroportin. Cell Metab. 22:777–787. 2015. View Article : Google Scholar : PubMed/NCBI

29 

Donovan A, Lima CA, Pinkus JL, Pinkus GS, Zon LI, Robine S and Andrews NC: The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab. 1:191–200. 2005. View Article : Google Scholar : PubMed/NCBI

30 

Donovan A, Brownlie A, Zhou Y, Shepard J, Pratt SJ, Moynihan J, Paw BH, Drejer A, Barut B, Zapata A, et al: Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature. 403:776–781. 2000. View Article : Google Scholar : PubMed/NCBI

31 

Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, Ganz T and Kaplan J: Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 306:2090–2093. 2004. View Article : Google Scholar : PubMed/NCBI

32 

De Domenico I, Ward DM, Langelier C, Vaughn MB, Nemeth E, Sundquist WI, Ganz T, Musci G and Kaplan J: The molecular mechanism of hepcidin-mediated ferroportin down-regulation. Mol Biol Cell. 18:2569–2578. 2007. View Article : Google Scholar : PubMed/NCBI

33 

Qiao B, Sugianto P, Fung E, Del-Castillo-Rueda A, Moran-Jimenez MJ, Ganz T and Nemeth E: Hepcidin-induced endocytosis of ferroportin is dependent on ferroportin ubiquitination. Cell Metab. 15:918–924. 2012. View Article : Google Scholar : PubMed/NCBI

34 

Ross SL, Tran L, Winters A, Lee KJ, Plewa C, Foltz I, King C, Miranda LP, Allen J, Beckman H, et al: Molecular mechanism of hepcidin-mediated ferroportin internalization requires ferroportin lysines, not tyrosines or JAK-STAT. Cell Metab. 15:905–917. 2012. View Article : Google Scholar : PubMed/NCBI

35 

Geng N, Shi BJ, Li SL, Zhong ZY, Li YC, Xua WL, Zhou H and Cai JH: Knockdown of ferroportin accelerates erastin-induced ferroptosis in neuroblastoma cells. Eur Rev Med Pharmacol Sci. 22:3826–3836. 2018.PubMed/NCBI

36 

Tang Z, Jiang W, Mao M, Zhao J, Chen J and Cheng N: Deubiquitinase USP35 modulates ferroptosis in lung cancer via targeting ferroportin. Clin Transl Med. 11:e3902021. View Article : Google Scholar : PubMed/NCBI

37 

Gao M, Monian P, Pan Q, Zhang W, Xiang J and Jiang X: Ferroptosis is an autophagic cell death process. Cell Res. 26:1021–1032. 2016. View Article : Google Scholar : PubMed/NCBI

38 

Hou W, Xie Y, Song X, Sun X, Lotze MT, Zeh HJ III, Kang R and Tang D: Autophagy promotes ferroptosis by degradation of ferritin. Autophagy. 12:1425–1428. 2016. View Article : Google Scholar : PubMed/NCBI

39 

Mancias JD, Wang X, Gygi SP, Harper JW and Kimmelman AC: Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature. 509:105–109. 2014. View Article : Google Scholar : PubMed/NCBI

40 

Wang YQ, Chang SY, Wu Q, Gou YJ, Jia L, Cui YM, Yu P, Shi ZH, Wu WS, Gao G and Chang YZ: The Protective role of mitochondrial ferritin on Erastin-induced ferroptosis. Front Aging Neurosci. 8:3082016. View Article : Google Scholar

41 

Torii S, Shintoku R, Kubota C, Yaegashi M, Torii R, Sasaki M, Suzuki T, Mori M, Yoshimoto Y, Takeuchi T and Yamada K: An essential role for functional lysosomes in ferroptosis of cancer cells. Biochem J. 473:769–777. 2016. View Article : Google Scholar : PubMed/NCBI

42 

Fang Y, Chen X, Tan Q, Zhou H, Xu J and Gu Q: Inhibiting ferroptosis through disrupting the NCOA4-FTH1 interaction: A new mechanism of action. ACS Cent Sci. 7:980–989. 2021. View Article : Google Scholar : PubMed/NCBI

43 

Chen PH, Wu J, Ding CC, Lin CC, Pan S, Bossa N, Xu Y, Yang WH, Mathey-Prevot B and Chi JT: Kinome screen of ferroptosis reveals a novel role of ATM in regulating iron metabolism. Cell Death Differ. 27:1008–1022. 2020. View Article : Google Scholar :

44 

Kagan VE, Mao G, Qu F, Angeli JP, Doll S, Croix CS, Dar HH, Liu B, Tyurin VA, Ritov VB, et al: Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol. 13:81–90. 2017. View Article : Google Scholar

45 

Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A, et al: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 13:91–98. 2017. View Article : Google Scholar :

46 

Yuan H, Li X, Zhang X, Kang R and Tang D: Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochem Biophys Res Commun. 478:1338–1343. 2016. View Article : Google Scholar : PubMed/NCBI

47 

Dixon SJ, Winter GE, Musavi LS, Lee ED, Snijder B, Rebsamen M, Superti-Furga G and Stockwell BR: Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS Chem Biol. 10:1604–1609. 2015. View Article : Google Scholar : PubMed/NCBI

48 

Conrad M and Pratt DA: The chemical basis of ferroptosis. Nat Chem Biol. 15:1137–1147. 2019. View Article : Google Scholar : PubMed/NCBI

49 

Yin H, Xu L and Porter NA: Free radical lipid peroxidation: Mechanisms and analysis. Chem Rev. 111:5944–5972. 2011. View Article : Google Scholar : PubMed/NCBI

50 

Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, Goya Grocin A, Xavier da Silva TN, Panzilius E, Scheel CH, et al: FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 575:693–698. 2019. View Article : Google Scholar : PubMed/NCBI

51 

Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, Roberts MA, Tong B, Maimone TJ, Zoncu R, et al: The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 575:688–692. 2019. View Article : Google Scholar : PubMed/NCBI

52 

Ayala A, Muñoz MF and Argüelles S: Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014:3604382014. View Article : Google Scholar : PubMed/NCBI

53 

Fenton HJH: LXXIII.-Oxidation of tartaric acid in presence of iron. J Chemical Soc Transactions. 65:899–910. 1894. View Article : Google Scholar

54 

Haeggström JZ and Funk CD: Lipoxygenase and leukotriene pathways: Biochemistry, biology, and roles in disease. Chem Rev. 111:5866–5898. 2011. View Article : Google Scholar : PubMed/NCBI

55 

Li Y, Maher P and Schubert D: A role for 12-lipoxygenase in nerve cell death caused by glutathione depletion. Neuron. 19:453–463. 1997. View Article : Google Scholar : PubMed/NCBI

56 

Seiler A, Schneider M, Förster H, Roth S, Wirth EK, Culmsee C, Plesnila N, Kremmer E, Rådmark O, Wurst W, et al: Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell Metab. 8:237–248. 2008. View Article : Google Scholar : PubMed/NCBI

57 

Brütsch SH, Wang CC, Li L, Stender H, Neziroglu N, Richter C, Kuhn H and Borchert A: Expression of inactive glutathione peroxidase 4 leads to embryonic lethality, and inactivation of the Alox15 gene does not rescue such knock-in mice. Antioxid Redox Signal. 22:281–293. 2015. View Article : Google Scholar

58 

Jiang X, Stockwell BR and Conrad M: Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 22:266–282. 2021. View Article : Google Scholar : PubMed/NCBI

59 

Chu B, Kon N, Chen D, Li T, Liu T, Jiang L, Song S, Tavana O and Gu W: ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway. Nat Cell Biol. 21:579–591. 2019. View Article : Google Scholar : PubMed/NCBI

60 

Zou Y, Li H, Graham ET, Deik AA, Eaton JK, Wang W, Sandoval-Gomez G, Clish CB, Doench JG and Schreiber SL: Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis. Nat Chem Biol. 16:302–309. 2020. View Article : Google Scholar : PubMed/NCBI

61 

Xie Y, Kang R, Klionsky DJ and Tang D: GPX4 in cell death, autophagy, and disease. Autophagy. 19:2621–2638. 2023. View Article : Google Scholar : PubMed/NCBI

62 

Yant LJ, Ran Q, Rao L, Van Remmen H, Shibatani T, Belter JG, Motta L, Richardson A and Prolla TA: The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults. Free Radic Biol Med. 34:496–502. 2003. View Article : Google Scholar : PubMed/NCBI

63 

Brigelius-Flohé R and Maiorino M: Glutathione peroxidases. Biochim Biophys Acta. 1830:3289–3303. 2013. View Article : Google Scholar

64 

Meister A: Glutathione metabolism. Methods Enzymol. 251:3–7. 1995. View Article : Google Scholar : PubMed/NCBI

65 

Lu SC: Regulation of glutathione synthesis. Mol Aspects Med. 30:42–59. 2009. View Article : Google Scholar :

66 

Cao JY and Dixon SJ: Mechanisms of ferroptosis. Cell Mol Life Sci. 73:2195–2209. 2016. View Article : Google Scholar : PubMed/NCBI

67 

Sato H, Tamba M, Ishii T and Bannai S: Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J Biol Chem. 274:11455–11458. 1999. View Article : Google Scholar : PubMed/NCBI

68 

Sato H, Shiiya A, Kimata M, Maebara K, Tamba M, Sakakura Y, Makino N, Sugiyama F, Yagami K, Moriguchi T, et al: Redox imbalance in cystine/glutamate transporter-deficient mice. J Biol Chem. 280:37423–37429. 2005. View Article : Google Scholar : PubMed/NCBI

69 

Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, Herbach N, Aichler M, Walch A, Eggenhofer E, et al: Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 16:1180–1191. 2014. View Article : Google Scholar : PubMed/NCBI

70 

Chen D, Tavana O, Chu B, Erber L, Chen Y, Baer R and Gu W: NRF2 is a major target of ARF in p53-independent tumor suppression. Mol Cell. 68:224–232.e4. 2017. View Article : Google Scholar : PubMed/NCBI

71 

Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H, Baer R and Gu W: Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 520:57–62. 2015. View Article : Google Scholar : PubMed/NCBI

72 

Zhang Y, Shi J, Liu X, Feng L, Gong Z, Koppula P, Sirohi K, Li X, Wei Y, Lee H, et al: BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat Cell Biol. 20:1181–1192. 2018. View Article : Google Scholar : PubMed/NCBI

73 

Song X, Zhu S, Chen P, Hou W, Wen Q, Liu J, Xie Y, Liu J, Klionsky DJ, Kroemer G, et al: AMPK-mediated BECN1 phosphorylation promotes ferroptosis by directly blocking system Xc-activity. Curr Biol. 28:2388–2399.e5. 2018. View Article : Google Scholar

74 

Yang M, Tsui MG, Tsang JKW, Goit RK, Yao KM, So KF, Lam WC and Lo ACY: Involvement of FSP1-CoQ(10)-NADH and GSH-GPx-4 pathways in retinal pigment epithelium ferroptosis. Cell Death Dis. 13:4682022. View Article : Google Scholar : PubMed/NCBI

75 

Zeng F, Chen X and Deng G: The anti-ferroptotic role of FSP1: Current molecular mechanism and therapeutic approach. Mol Biomed. 3:372022. View Article : Google Scholar : PubMed/NCBI

76 

Kraft VAN, Bezjian CT, Pfeiffer S, Ringelstetter L, Müller C, Zandkarimi F, Merl-Pham J, Bao X, Anastasov N, Kössl J, et al: GTP Cyclohydrolase 1/Tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent Sci. 6:41–53. 2020. View Article : Google Scholar : PubMed/NCBI

77 

Cheng Y, He C, Wang M, Ma X, Mo F, Yang S, Han J and Wei X: Targeting epigenetic regulators for cancer therapy: Mechanisms and advances in clinical trials. Signal Transduct Target Ther. 4:622019. View Article : Google Scholar : PubMed/NCBI

78 

Logie E, Van Puyvelde B, Cuypers B, Schepers A, Berghmans H, Verdonck J, Laukens K, Godderis L, Dhaenens M, Deforce D, et al: Ferroptosis induction in multiple myeloma cells triggers DNA methylation and histone modification changes associated with cellular senescence. Int J Mol Sci. 22:122342021. View Article : Google Scholar : PubMed/NCBI

79 

Bird A: DNA methylation patterns and epigenetic memory. Genes Dev. 16:6–21. 2002. View Article : Google Scholar : PubMed/NCBI

80 

Parry A, Rulands S and Reik W: Active turnover of DNA methylation during cell fate decisions. Nat Rev Genet. 22:59–66. 2021. View Article : Google Scholar

81 

Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, et al: Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 324:930–935. 2009. View Article : Google Scholar : PubMed/NCBI

82 

Ito S, D'Alessio AC, Taranova OV, Hong K, Sowers LC and Zhang Y: Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature. 466:1129–1133. 2010. View Article : Google Scholar : PubMed/NCBI

83 

Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C and Zhang Y: Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 333:1300–1303. 2011. View Article : Google Scholar : PubMed/NCBI

84 

Robertson KD: DNA methylation and human disease. Nat Rev Genet. 6:597–610. 2005. View Article : Google Scholar : PubMed/NCBI

85 

Esteller M: Epigenetic gene silencing in cancer: The DNA hypermethylome. Hum Mol Genet. 16(Spec No 1): R50–R59. 2007. View Article : Google Scholar : PubMed/NCBI

86 

Veigl ML, Kasturi L, Olechnowicz J, Ma AH, Lutterbaugh JD, Periyasamy S, Li GM, Drummond J, Modrich PL, Sedwick WD, et al: Biallelic inactivation of hMLH1 by epigenetic gene silencing, a novel mechanism causing human MSI cancers. Proc Natl Acad Sci USA. 95:8698–8702. 1998. View Article : Google Scholar : PubMed/NCBI

87 

Klutstein M, Nejman D, Greenfield R and Cedar H: DNA methylation in cancer and aging. Cancer Res. 76:3446–3450. 2016. View Article : Google Scholar : PubMed/NCBI

88 

Liu Z, Zhao Q, Zuo ZX, Yuan SQ, Yu K, Zhang Q, Zhang X, Sheng H, Ju HQ, Cheng H, et al: Systematic analysis of the aberrances and functional implications of ferroptosis in cancer. iScience. 23:1013022020. View Article : Google Scholar : PubMed/NCBI

89 

Lee JY, Nam M, Son HY, Hyun K, Jang SY, Kim JW, Kim MW, Jung Y, Jang E, Yoon SJ, et al: Polyunsaturated fatty acid biosynthesis pathway determines ferroptosis sensitivity in gastric cancer. Proc Natl Acad Sci USA. 117:32433–32442. 2020. View Article : Google Scholar : PubMed/NCBI

90 

Liu Y, Ouyang L, Mao C, Chen Y, Li T, Liu N, Wang Z, Lai W, Zhou Y, Cao Y, et al: PCDHB14 promotes ferroptosis and is a novel tumor suppressor in hepatocellular carcinoma. Oncogene. 41:3570–3583. 2022. View Article : Google Scholar : PubMed/NCBI

91 

Bolotta A, Abruzzo PM, Baldassarro VA, Ghezzo A, Scotlandi K, Marini M and Zucchini C: New insights into the Hepcidin-ferroportin axis and iron homeostasis in iPSC-derived cardiomyocytes from Friedreich's ataxia patient. Oxid Med Cell Longev. 2019:76230232019. View Article : Google Scholar : PubMed/NCBI

92 

Udali S, Castagna A, Corbella M, Ruzzenente A, Moruzzi S, Mazzi F, Campagnaro T, De Santis D, Franceschi A, Pattini P, et al: Hepcidin and DNA promoter methylation in hepatocellular carcinoma. Eur J Clin Invest. 48:e128702018. View Article : Google Scholar

93 

Udali S, Guarini P, Ruzzenente A, Ferrarini A, Guglielmi A, Lotto V, Tononi P, Pattini P, Moruzzi S, Campagnaro T, et al: DNA methylation and gene expression profiles show novel regulatory pathways in hepatocellular carcinoma. Clin Epigenetics. 7:432015. View Article : Google Scholar : PubMed/NCBI

94 

Cai C, Zhu Y, Mu J, Liu S, Yang Z, Wu Z, Zhao C, Song X, Ye Y, Gu J, et al: DNA methylation of RUNX3 promotes the progression of gallbladder cancer through repressing SLC7A11-mediated ferroptosis. Cell Signal. 108:1107102023. View Article : Google Scholar : PubMed/NCBI

95 

Cedar H and Bergman Y: Linking DNA methylation and histone modification: Patterns and paradigms. Nat Rev Genet. 10:295–304. 2009. View Article : Google Scholar : PubMed/NCBI

96 

Du Q, Luu PL, Stirzaker C and Clark SJ: Methyl-CpG-binding domain proteins: Readers of the epigenome. Epigenomics. 7:1051–1073. 2015. View Article : Google Scholar : PubMed/NCBI

97 

Shimazu T, Hirschey MD, Newman J, He W, Shirakawa K, Le Moan N, Grueter CA, Lim H, Saunders LR, Stevens RD, et al: Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science. 339:211–214. 2013. View Article : Google Scholar

98 

Cui X, Yun X, Sun M, Li R, Lyu X, Lao Y, Qin X and Yu W: HMGCL-induced β-hydroxybutyrate production attenuates hepatocellular carcinoma via DPP4-mediated ferroptosis susceptibility. Hepatol Int. 17:377–392. 2023. View Article : Google Scholar

99 

Li Y, Hu G, Huang F, Chen M, Chen Y, Xu Y and Tong G: MAT1A suppression by the CTBP1/HDAC1/HDAC2 transcriptional complex induces immune escape and reduces ferroptosis in hepatocellular carcinoma. Lab Invest. 103:1001802023. View Article : Google Scholar : PubMed/NCBI

100 

Xue X, Ma L, Zhang X, Xu X, Guo S, Wang Y, Qiu S, Cui J, Guo W, Yu Y, et al: Tumour cells are sensitised to ferroptosis via RB1CC1-mediated transcriptional reprogramming. Clin Transl Med. 12:e7472022. View Article : Google Scholar : PubMed/NCBI

101 

Ma M, Kong P, Huang Y, Wang J, Liu X, Hu Y, Chen X, Du C and Yang H: Activation of MAT2A-ACSL3 pathway protects cells from ferroptosis in gastric cancer. Free Radic Biol Med. 181:288–299. 2022. View Article : Google Scholar : PubMed/NCBI

102 

Jiang K, Yin X, Zhang Q, Yin J, Tang Q, Xu M, Wu L, Shen Y, Zhou Z, Yu H, et al: STC2 activates PRMT5 to induce radioresistance through DNA damage repair and ferroptosis pathways in esophageal squamous cell carcinoma. Redox Biol. 60:1026262023. View Article : Google Scholar : PubMed/NCBI

103 

Wang Y, Yang L, Zhang X, Cui W, Liu Y, Sun QR, He Q, Zhao S, Zhang GA, Wang Y, et al: Epigenetic regulation of ferroptosis by H2B monoubiquitination and p53. EMBO Rep. 20:e475632019. View Article : Google Scholar : PubMed/NCBI

104 

Quinn JJ and Chang HY: Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 17:47–62. 2016. View Article : Google Scholar

105 

Guttman M and Rinn JL: Modular regulatory principles of large Non-coding RNAs. Nature. 482:339–346. 2012. View Article : Google Scholar : PubMed/NCBI

106 

Ni H, Qin H, Sun C, Liu Y, Ruan G, Guo Q, Xi T, Xing Y and Zheng L: MiR-375 reduces the stemness of gastric cancer cells through triggering ferroptosis. Stem Cell Res Ther. 12:3252021. View Article : Google Scholar : PubMed/NCBI

107 

Mao SH, Zhu CH, Nie Y, Yu J and Wang L: Levobupivacaine Induces Ferroptosis by miR-489-3p/SLC7A11 Signaling in Gastric Cancer. Front Pharmacol. 12:6813382021. View Article : Google Scholar : PubMed/NCBI

108 

Dong X, Chen X, Zhao Y, Wu Q and Ren Y: CircTMEM87A promotes the tumorigenesis of gastric cancer by regulating the miR-1276/SLC7A11 axis. J Gastroenterol Hepatol. 39:121–132. 2024. View Article : Google Scholar

109 

Martino E, Balestrieri A, Aragona F, Bifulco G, Mele L, Campanile G, Balestrieri ML and D'Onofrio N: MiR-148a-3p promotes colorectal cancer cell ferroptosis by targeting SLC7A11. Cancers (Basel). 15:43422023. View Article : Google Scholar : PubMed/NCBI

110 

Elrebehy MA, Abdelghany TM, Elshafey MM, Gomaa MH and Doghish AS: miR-509-5p promotes colorectal cancer cell ferroptosis by targeting SLC7A11. Pathol Res Pract. 247:1545572023. View Article : Google Scholar : PubMed/NCBI

111 

Liu L, Yao H, Zhou X, Chen J, Chen G, Shi X, Wu G, Zhou G and He S: MiR-15a-3p regulates ferroptosis via targeting glutathione peroxidase GPX4 in colorectal cancer. Mol Carcinog. 61:301–310. 2022. View Article : Google Scholar

112 

He GN, Bao NR, Wang S, Xi M, Zhang TH and Chen FS: Ketamine induces ferroptosis of liver cancer cells by Targeting lncRNA PVT1/miR-214-3p/GPX4. Drug Des Devel Ther. 15:3965–3978. 2021. View Article : Google Scholar : PubMed/NCBI

113 

Yang Y, Lin Z, Han Z, Wu Z, Hua J, Zhong R, Zhao R, Ran H, Qu K, Huang H, et al: miR-539 activates the SAPK/JNK signaling pathway to promote ferropotosis in colorectal cancer by directly targeting TIPE. Cell Death Discov. 7:2722021. View Article : Google Scholar : PubMed/NCBI

114 

Dodson M, Castro-Portuguez R and Zhang DD: NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol. 23:1011072019. View Article : Google Scholar : PubMed/NCBI

115 

Zheng F, Bi JC, Wei YY, Wang Y, Zhang Q, Liang CL, Wu J and Dai Z: MiR-124-3p mediates gastric cancer cell ferroptosis induced by an anti-cancer drug polyphyllin I. Front Pharmacol. 14:12857992023. View Article : Google Scholar : PubMed/NCBI

116 

Yamamoto S, Inoue J, Kawano T, Kozaki K, Omura K and Inazawa J: The impact of miRNA-based molecular diagnostics and treatment of NRF2-stabilized tumors. Mol Cancer Res. 12:58–68. 2014. View Article : Google Scholar

117 

Xiao S, Liu N, Yang X, Ji G and Li M: Polygalacin D suppresses esophageal squamous cell carcinoma growth and metastasis through regulating miR-142-5p/Nrf2 axis. Free Radic Biol Med. 164:58–75. 2021. View Article : Google Scholar

118 

Akdemir B, Nakajima Y, Inazawa J and Inoue J: miR-432 Induces NRF2 stabilization by directly targeting KEAP1. Mol Cancer Res. 15:1570–1578. 2017. View Article : Google Scholar : PubMed/NCBI

119 

Liu M, Hu C, Xu Q, Chen L, Ma K, Xu N and Zhu H: Methylseleninic acid activates Keap1/Nrf2 pathway via up-regulating miR-200a in human oesophageal squamous cell carcinoma cells. Biosci Rep. 35:e002562015. View Article : Google Scholar : PubMed/NCBI

120 

Li P, Liu X, Xing W, Qiu H, Li R, Liu S and Sun H: Exosome-derived miR-200a promotes esophageal cancer cell proliferation and migration via the mediating Keap1 expression. Mol Cell Biochem. 477:1295–1308. 2022. View Article : Google Scholar : PubMed/NCBI

121 

Shi L, Wu L, Chen Z, Yang J, Chen X, Yu F, Zheng F and Lin X: MiR-141 activates Nrf2-dependent antioxidant pathway via Down-regulating the expression of keap1 conferring the resistance of hepatocellular carcinoma cells to 5-Fluorouracil. Cell Physiol Biochem. 35:2333–2348. 2015. View Article : Google Scholar : PubMed/NCBI

122 

Xiao Z, Zheng YB, Dao WX, Luo JF, Deng WH, Yan RC and Liu JS: MicroRNA-328-3p facilitates the progression of gastric cancer via KEAP1/NRF2 axis. Free Radic Res. 55:720–730. 2021. View Article : Google Scholar : PubMed/NCBI

123 

Lewerenz J and Maher P: Basal levels of eIF2alpha phosphorylation determine cellular antioxidant status by regulating ATF4 and xCT expression. J Biol Chem. 284:1106–1115. 2009. View Article : Google Scholar :

124 

He F, Zhang P, Liu J, Wang R, Kaufman RJ, Yaden BC and Karin M: ATF4 suppresses hepatocarcinogenesis by inducing SLC7A11 (xCT) to block stress-related ferroptosis. J Hepatol. 79:362–377. 2023. View Article : Google Scholar : PubMed/NCBI

125 

Bai T, Liang R, Zhu R, Wang W, Zhou L and Sun Y: MicroRNA-214-3p enhances Erastin-induced ferroptosis by targeting ATF4 in hepatoma cells. J Cell Physiol. 235:5637–5648. 2020. View Article : Google Scholar : PubMed/NCBI

126 

Yang H, Sun W, Bi T, Sun J, Lu Z, Li J and Wei H: ZNF8-miR-552-5p axis modulates ACSL4-Mediated ferroptosis in hepatocellular carcinoma. DNA Cell Biol. 42:336–347. 2023. View Article : Google Scholar : PubMed/NCBI

127 

Lu Y, Chan YT, Tan HY, Zhang C, Guo W, Xu Y, Sharma R, Chen ZS, Zheng YC, Wang N, et al: Epigenetic regulation of ferroptosis via ETS1/miR-23a-3p/ACSL4 axis mediates sorafenib resistance in human hepatocellular carcinoma. J Exp Clin Cancer Res. 41:32022. View Article : Google Scholar : PubMed/NCBI

128 

Qi R, Bai Y, Li K, Liu N, Xu Y, Dal E, Wang Y, Lin R, Wang H, Liu Z, et al: Cancer-associated fibroblasts suppress ferroptosis and induce gemcitabine resistance in pancreatic cancer cells by secreting exosome-derived ACSL4-targeting miRNAs. Drug Resist Updat. 68:1009602023. View Article : Google Scholar : PubMed/NCBI

129 

Wang W, Wang T, Zhang Y, Deng T, Zhang H and Ba YI: Gastric cancer secreted miR-214-3p inhibits the anti-angiogenesis effect of apatinib by suppressing ferroptosis in vascular endothelial cells. Oncol Res. 32:489–502. 2024. View Article : Google Scholar : PubMed/NCBI

130 

Xing K, Bian X, Shi D, Dong S, Zhou H, Xiao S, Bai J and Wu W: miR-612 Enhances RSL3-induced ferroptosis of hepatocellular carcinoma cells via mevalonate pathway. J Hepatocell Carcinoma. 10:2173–2185. 2023. View Article : Google Scholar : PubMed/NCBI

131 

Yang WS and Stockwell BR: Ferroptosis: Death by lipid peroxidation. Trends Cell Biol. 26:165–176. 2016. View Article : Google Scholar :

132 

Zhang H, Deng T, Liu R, Ning T, Yang H, Liu D, Zhang Q, Lin D, Ge S, Bai M, et al: CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Mol Cancer. 19:432020. View Article : Google Scholar : PubMed/NCBI

133 

Zheng S, Hu L, Song Q, Shan Y, Yin G, Zhu H, Kong W and Zhou C: miR-545 promotes colorectal cancer by inhibiting transferring in the non-normal ferroptosis signaling. Aging (Albany NY). 13:26137–26147. 2021. View Article : Google Scholar : PubMed/NCBI

134 

Hamara K, Bielecka-Kowalska A, Przybylowska-Sygut K, Sygut A, Dziki A and Szemraj J: Alterations in expression profile of iron-related genes in colorectal cancer. Mol Biol Rep. 40:5573–5585. 2013. View Article : Google Scholar : PubMed/NCBI

135 

Greene CM, Varley RB and Lawless MW: MicroRNAs and liver cancer associated with iron overload: Therapeutic targets unravelled. World J Gastroenterol. 19:5212–5226. 2013. View Article : Google Scholar : PubMed/NCBI

136 

Kindrat I, Tryndyak V, de Conti A, Shpyleva S, Mudalige TK, Kobets T, Erstenyuk AM, Beland FA and Pogribny IP: MicroRNA-152-mediated dysregulation of hepatic transferrin receptor 1 in liver carcinogenesis. Oncotarget. 7:1276–1287. 2016. View Article : Google Scholar :

137 

Galy B, Conrad M and Muckenthaler M: Mechanisms controlling cellular and systemic iron homeostasis. Nat Rev Mol Cell Biol. 25:133–155. 2023. View Article : Google Scholar : PubMed/NCBI

138 

Sangokoya C, Doss JF and Chi JT: Iron-responsive miR-485-3p regulates cellular iron homeostasis by targeting ferroportin. PLoS Genet. 9:e10034082013. View Article : Google Scholar : PubMed/NCBI

139 

Fan H, Ai R, Mu S, Niu X, Guo Z and Liu L: MiR-19a suppresses ferroptosis of colorectal cancer cells by targeting IREB2. Bioengineered. 13:12021–12029. 2022. View Article : Google Scholar : PubMed/NCBI

140 

Balihodzic A, Prinz F, Dengler MA, Calin GA, Jost PJ and Pichler M: Non-coding RNAs and ferroptosis: Potential implications for cancer therapy. Cell Death Differ. 29:1094–1106. 2022. View Article : Google Scholar : PubMed/NCBI

141 

Wu C, Hou X, Li S and Luo S: Long noncoding RNA ZEB1-AS1 attenuates ferroptosis of gastric cancer cells through modulating miR-429/BGN axis. J Biochem Mol Toxicol. 37:e233812023. View Article : Google Scholar : PubMed/NCBI

142 

Shi Z, Li Z, Jin B, Ye W, Wang L, Zhang S, Zheng J, Lin Z, Chen B, Liu F, et al: Loss of LncRNA DUXAP8 synergistically enhanced sorafenib induced ferroptosis in hepatocellular carcinoma via SLC7A11 de-palmitoylation. Clin Transl Med. 13:e13002023. View Article : Google Scholar : PubMed/NCBI

143 

Zhang B, Bao W, Zhang S, Chen B, Zhou X, Zhao J, Shi Z, Zhang T, Chen Z, Wang L, et al: LncRNA HEPFAL accelerates ferroptosis in hepatocellular carcinoma by regulating SLC7A11 ubiquitination. Cell Death Dis. 13:7342022. View Article : Google Scholar : PubMed/NCBI

144 

Wang J, Jia Q, Jiang S, Lu W and Ning H: POU6F1 promotes ferroptosis by increasing lncRNA-CASC2 transcription to regulate SOCS2/SLC7A11 signaling in gastric cancer. Cell Biol Toxicol. 40:32024. View Article : Google Scholar : PubMed/NCBI

145 

Lin Z, Song J, Gao Y, Huang S, Dou R, Zhong P, Huang G, Han L, Zheng J, Zhang X, et al: Hypoxia-induced HIF-1α/lncRNA-PMAN inhibits ferroptosis by promoting the cytoplasmic translocation of ELAVL1 in peritoneal dissemination from gastric cancer. Redox Biol. 52:1023122022. View Article : Google Scholar

146 

Yang R, Wan J, Ma L, Zhou F, Yang Z, Li Z, Zhang M and Ming L: TMEM44-AS1 promotes esophageal squamous cell carcinoma progression by regulating the IGF2BP2-GPX4 axis in modulating ferroptosis. Cell Death Discov. 9:4312023. View Article : Google Scholar : PubMed/NCBI

147 

Lei S, Cao W, Zeng Z, Zhang Z, Jin B, Tian Q, Wu Y, Zhang T, Li D, Hu C, et al: JUND/linc00976 promotes cholangiocarcinoma progression and metastasis, inhibits ferroptosis by regulating the miR-3202/GPX4 axis. Cell Death Dis. 13:9672022. View Article : Google Scholar : PubMed/NCBI

148 

Yuan J, Lv T, Yang J, Wu Z, Yan L, Yang J and Shi Y: HDLBP-stabilized lncFAL inhibits ferroptosis vulnerability by diminishing Trim69-dependent FSP1 degradation in hepatocellular carcinoma. Redox Biol. 58:1025462022. View Article : Google Scholar : PubMed/NCBI

149 

Han Y, Gao X, Wu N, Jin Y, Zhou H, Wang W, Liu H, Chu Y, Cao J, Jiang M, et al: Long noncoding RNA LINC00239 inhibits ferroptosis in colorectal cancer by binding to Keap1 to stabilize Nrf2. Cell Death Dis. 13:7422022. View Article : Google Scholar : PubMed/NCBI

150 

Gao Y, Tong M, Wong TL, Ng KY, Xie YN, Wang Z, Yu H, Loh JJ, Li M and Ma S: Long noncoding RNA URB1-antisense RNA 1 (AS1) suppresses sorafenib-induced ferroptosis in hepatocellular carcinoma by driving ferritin phase separation. ACS Nano. 17:22240–22258. 2023. View Article : Google Scholar : PubMed/NCBI

151 

Zhang Y, Luo M, Cui X, O'Connell D and Yang Y: Long noncoding RNA NEAT1 promotes ferroptosis by modulating the miR-362-3p/MIOX axis as a ceRNA. Cell Death Differ. 29:1850–1863. 2022. View Article : Google Scholar : PubMed/NCBI

152 

Guan L, Wang F, Wang M, Han S, Cui Z, Xi S, Xu H and Li S: Downregulation of HULC induces ferroptosis in hepatocellular carcinoma via targeting of the miR-3200-5p/ATF4 axis. Oxid Med Cell Longev. 2022:96130952022. View Article : Google Scholar : PubMed/NCBI

153 

Wang H, Klein MG, Zou H, Lane W, Snell G, Levin I, Li K and Sang BC: Crystal structure of human stearoyl-coenzyme A desaturase in complex with substrate. Nat Struct Mol Biol. 22:581–585. 2015. View Article : Google Scholar : PubMed/NCBI

154 

Li J, Condello S, Thomes-Pepin J, Ma X, Xia Y, Hurley TD, Matei D and Cheng JX: Lipid desaturation is a metabolic marker and therapeutic target of ovarian cancer stem cells. Cell Stem Cell. 20:303–314.e5. 2017. View Article : Google Scholar : PubMed/NCBI

155 

Sen U, Coleman C and Sen T: Stearoyl coenzyme A desaturase-1: Multitasker in cancer, metabolism, and ferroptosis. Trends Cancer. 9:480–489. 2023. View Article : Google Scholar : PubMed/NCBI

156 

Tesfay L, Paul BT, Konstorum A, Deng Z, Cox AO, Lee J, Furdui CM, Hegde P, Torti FM and Torti SV: Stearoyl-CoA desaturase 1 protects ovarian cancer cells from ferroptotic cell death. Cancer Res. 79:5355–5366. 2019. View Article : Google Scholar : PubMed/NCBI

157 

Luo Y, Huang S, Wei J, Zhou H, Wang W, Yang J, Deng Q, Wang H and Fu Z: Long noncoding RNA LINC01606 protects colon cancer cells from ferroptotic cell death and promotes stemness by SCD1-Wnt/β-catenin-TFE3 feedback loop signalling. Clin Transl Med. 12:e7522022. View Article : Google Scholar

158 

Yang H, Hu Y, Weng M, Liu X, Wan P, Hu Y, Ma M, Zhang Y, Xia H and Lv K: Hypoxia inducible lncRNA-CBSLR modulates ferroptosis through m6A-YTHDF2-dependent modulation of CBS in gastric cancer. J Adv Res. 37:91–106. 2022. View Article : Google Scholar : PubMed/NCBI

159 

Qu X, Liu B, Wang L, Liu L, Zhao W, Liu C, Ding J, Zhao S, Xu B, Yu H, et al: Loss of cancer-associated fibroblast-derived exosomal DACT3-AS1 promotes malignant transformation and Ferroptosis-mediated oxaliplatin resistance in gastric cancer. Drug Resist Updat. 68:1009362023. View Article : Google Scholar : PubMed/NCBI

160 

Kristensen LS, Hansen TB, Venø MT and Kjems J: Circular RNAs in cancer: Opportunities and challenges in the field. Oncogene. 37:555–565. 2018. View Article : Google Scholar :

161 

Zheng Q, Bao C, Guo W, Li S, Chen J, Chen B, Luo Y, Lyu D, Li Y, Shi G, et al: Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun. 7:112152016. View Article : Google Scholar : PubMed/NCBI

162 

Wang Y, Chen H and Wei X: Circ_0007142 downregulates miR-874-3p-mediated GDPD5 on colorectal cancer cells. Eur J Clin Invest. 51:e135412021. View Article : Google Scholar : PubMed/NCBI

163 

Gao X and Wang XL: Dexmedetomidine promotes ferroptotic cell death in gastric cancer via hsa_circ_0008035/miR-302a/E2F7 axis. Kaohsiung J Med Sci. 39:390–403. 2023. View Article : Google Scholar : PubMed/NCBI

164 

Yao W, Wang J, Meng F, Zhu Z, Jia X, Xu L, Zhang Q and Wei L: Circular RNA CircPVT1 Inhibits 5-Fluorouracil chemosensitivity by regulating ferroptosis through MiR-30a-5p/FZD3 axis in esophageal cancer cells. Front Oncol. 11:7809382021. View Article : Google Scholar : PubMed/NCBI

165 

Zhai H, Zhong S, Wu R, Mo Z, Zheng S, Xue J, Meng H, Liu M, Chen X, Zhang G, et al: Suppressing circIDE/miR-19b-3p/RBMS1 axis exhibits promoting-tumour activity through upregulating GPX4 to diminish ferroptosis in hepatocellular carcinoma. Epigenetics. 18:21924382023. View Article : Google Scholar : PubMed/NCBI

166 

Xu Q, Zhou L, Yang G, Meng F, Wan Y, Wang L and Zhang L: CircIL4R facilitates the tumorigenesis and inhibits ferroptosis in hepatocellular carcinoma by regulating the miR-541-3p/GPX4 axis. Cell Biol Int. 44:2344–2356. 2020. View Article : Google Scholar : PubMed/NCBI

167 

Liu Y and Li J: Circular RNA 0016142 knockdown induces ferroptosis in hepatocellular carcinoma cells via modulation of the MicroRNA-188-3p/Glutathione peroxidase 4 axis. Biochem Genet. 62:333–351. 2024. View Article : Google Scholar

168 

Tan YR, Jiang BH, Feng WJ, He ZL, Jiang YL, Xun Y, Wu XP, Li YH and Zhu HB: Circ0060467 sponges miR-6805 to promote hepatocellular carcinoma progression through regulating AIFM2 and GPX4 expression. Aging (Albany NY). 16:1796–1807. 2024. View Article : Google Scholar : PubMed/NCBI

169 

Lyu N, Zeng Y, Kong Y, Chen Q, Deng H, Ou S, Bai Y, Tang H, Wang X and Zhao M: Ferroptosis is involved in the progression of hepatocellular carcinoma through the circ0097009/miR-1261/SLC7A11 axis. Ann Transl Med. 9:6752021. View Article : Google Scholar : PubMed/NCBI

170 

Li Q, Li K, Guo Q and Yang T: CircRNA circSTIL inhibits ferroptosis in colorectal cancer via miR-431/SLC7A11 axis. Environ Toxicol. 38:981–989. 2023. View Article : Google Scholar : PubMed/NCBI

171 

Liu J, Yang H, Deng J, Jiang R, Meng E and Wu H: CircRPPH1 promotes the stemness of gastric cancer cells by targeting miR-375/SLC7A11 axis. Environ Toxicol. 38:115–125. 2023. View Article : Google Scholar

172 

Wang H, Breadner DA, Deng K and Niu J: CircRHOT1 restricts gastric cancer cell ferroptosis by epigenetically regulating GPX4. J Gastrointest Oncol. 14:1715–1725. 2023. View Article : Google Scholar : PubMed/NCBI

173 

Majumder M, Chakraborty P, Mohan S, Mehrotra S and Palanisamy V: HuR as a molecular target for cancer therapeutics and immune-related disorders. Adv Drug Deliv Rev. 188:1144422022. View Article : Google Scholar : PubMed/NCBI

174 

Long F, Zhong C, Long Q, Zhu K, Wang J, Yu Y, Xie C and Hu G: Circular RNA RHBDD1 regulates tumorigenicity and ferroptosis in colorectal cancer by mediating the ELAVL1/SCD mRNA interaction. Cancer Gene Ther. 31:237–249. 2024. View Article : Google Scholar

175 

Zhou P, Wu Z, Zhang Q, Wang L, Zhang W and Han X: A novel link between circPDE3B and ferroptosis in esophageal squamous cell carcinoma progression. Genomics. 116:1107612024. View Article : Google Scholar

176 

Zhang X, Sui S, Wang L, Li H, Zhang L, Xu S and Zheng X: Inhibition of tumor propellant glutathione peroxidase 4 induces ferroptosis in cancer cells and enhances anticancer effect of cisplatin. J Cell Physiol. 235:3425–3437. 2020. View Article : Google Scholar

177 

Katsha A, Belkhiri A, Goff L and El-Rifai W: Aurora kinase A in gastrointestinal cancers: Time to target. Mol Cancer. 14:1062015. View Article : Google Scholar : PubMed/NCBI

178 

Du R, Huang C, Liu K, Li X and Dong Z: Targeting AURKA in cancer: Molecular mechanisms and opportunities for cancer therapy. Mol Cancer. 20:152021. View Article : Google Scholar : PubMed/NCBI

179 

Gomaa A, Peng D, Chen Z, Soutto M, Abouelezz K, Corvalan A and El-Rifai W: Epigenetic regulation of AURKA by miR-4715-3p in upper gastrointestinal cancers. Sci Rep. 9:169702019. View Article : Google Scholar : PubMed/NCBI

180 

Prasad S, Gupta SC and Tyagi AK: Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer Lett. 387:95–105. 2017. View Article : Google Scholar

181 

Zhang X, Ma L and Wang J: Cross-regulation between redox and epigenetic systems in tumorigenesis: Molecular mechanisms and clinical applications. Antioxid Redox Signal. 39:445–471. 2023. View Article : Google Scholar : PubMed/NCBI

182 

Kang KA, Zhang R, Kim GY, Bae SC and Hyun JW: Epigenetic changes induced by oxidative stress in colorectal cancer cells: methylation of tumor suppressor RUNX3. Tumour Biol. 33:403–412. 2012. View Article : Google Scholar : PubMed/NCBI

183 

Zhang R, Kang KA, Kim KC, Na SY, Chang WY, Kim GY, Kim HS and Hyun JW: Oxidative stress causes epigenetic alteration of CDX1 expression in colorectal cancer cells. Gene. 524:214–219. 2013. View Article : Google Scholar : PubMed/NCBI

184 

Lim SO, Gu JM, Kim MS, Kim HS, Park YN, Park CK, Cho JW, Park YM and Jung G: Epigenetic changes induced by reactive oxygen species in hepatocellular carcinoma: Methylation of the E-cadherin promoter. Gastroenterology. 135:2128–2140. e1–e8. 2008. View Article : Google Scholar : PubMed/NCBI

185 

Liao P, Wang W, Wang W, Kryczek I, Li X, Bian Y, Sell A, Wei S, Grove S, Johnson JK, et al: CD8+ T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4. Cancer Cell. 40:365–378.e366. 2022. View Article : Google Scholar

186 

Wang W, Green M, Choi JE, Gijón M, Kennedy PD, Johnson JK, Liao P, Lang X, Kryczek I, Sell A, et al: CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature. 569:270–274. 2019. View Article : Google Scholar : PubMed/NCBI

187 

Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, Fearon D, Greten FR, Hingorani SR, Hunter T, et al: A framework for advancing our understanding of cancerassociated fibroblasts. Nat Rev Cancer. 20:174–186. 2020. View Article : Google Scholar : PubMed/NCBI

188 

Jiang F, Jia K, Chen Y, Ji C, Chong X, Li Z, Zhao F, Bai Y, Ge S, Gao J, et al: ANO1-mediated inhibition of cancer ferroptosis confers immunotherapeutic resistance through recruiting cancer-associated fibroblasts. Adv Sci (Weinh). 10:e23008812023. View Article : Google Scholar : PubMed/NCBI

189 

Leone RD and Powell JD: Metabolism of immune cells in cancer. Nat Rev Cancer. 20:516–531. 2020. View Article : Google Scholar : PubMed/NCBI

190 

Angelin A, Gil-de-Gómez L, Dahiya S, Jiao J, Guo L, Levine MH, Wang Z, Quinn WJ III, Kopinski PK, Wang L, et al: Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments. Cell Metab. 25:1282–1293.e7. 2017. View Article : Google Scholar : PubMed/NCBI

191 

Zhao Y, Li M, Yao X, Fei Y, Lin Z, Li Z, Cai K, Zhao Y and Luo Z: HCAR1/MCT1 regulates tumor ferroptosis through the lactate-mediated AMPK-SCD1 activity and its therapeutic implications. Cell Rep. 33:1084872020. View Article : Google Scholar : PubMed/NCBI

192 

Yang Z, Su W, Wei X, Qu S, Zhao D, Zhou J, Wang Y, Guan Q, Qin C, Xiang J, et al: HIF-1α drives resistance to ferroptosis in solid tumors by promoting lactate production and activating SLC1A1. Cell Rep. 42:1129452023. View Article : Google Scholar

193 

Babar Q, Saeed A, Tabish TA, Pricl S, Townley H and Thorat N: Novel epigenetic therapeutic strategies and targets in cancer. Biochim Biophys Acta Mol Basis Dis. 1868:1665522022. View Article : Google Scholar : PubMed/NCBI

194 

Fan F, Liu P, Bao R, Chen J, Zhou M, Mo Z, Ma Y, Liu H, Zhou Y, Cai X, et al: A dual PI3K/HDAC inhibitor induces immunogenic ferroptosis to potentiate cancer immune checkpoint therapy. Cancer Res. 81:6233–6245. 2021. View Article : Google Scholar : PubMed/NCBI

195 

Yang Z, Su W, Zhang Q, Niu L, Feng B, Zhang Y, Huang F, He J, Zhou Q, Zhou X, et al: Lactylation of HDAC1 confers resistance to ferroptosis in colorectal cancer. Adv Sci (Weinh). 12:e24088452025. View Article : Google Scholar : PubMed/NCBI

196 

Jenke R, Oliinyk D, Zenz T, Körfer J, Schäker-Hübner L, Hansen FK, Lordick F, Meier-Rosar F, Aigner A and Büch T: HDAC inhibitors activate lipid peroxidation and ferroptosis in gastric cancer. Biochem Pharmacol. 225:1162572024. View Article : Google Scholar : PubMed/NCBI

197 

Bitzer M, Horger M, Giannini EG, Ganten TM, Wörns MA, Siveke JT, Dollinger MM, Gerken G, Scheulen ME, Wege H, et al: Resminostat plus sorafenib as second-line therapy of advanced hepatocellular carcinoma-The SHELTER study. J Hepatol. 65:280–288. 2016. View Article : Google Scholar : PubMed/NCBI

198 

Baretti M, Danilova L, Durham JN, Betts CB, Cope L, Sidiropoulos DN, Tandurella JA, Charmsaz S, Gross N, Hernandez A, et al: Entinostat in combination with nivolumab in metastatic pancreatic ductal adenocarcinoma: A phase 2 clinical trial. Nat Commun. 15:98012024. View Article : Google Scholar : PubMed/NCBI

199 

Olsen EA, Kim YH, Kuzel TM, Pacheco TR, Foss FM, Parker S, Frankel SR, Chen C, Ricker JL, Arduino JM and Duvic M: Phase IIb multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma. J Clin Oncol. 25:3109–3115. 2007. View Article : Google Scholar : PubMed/NCBI

200 

Piekarz RL, Frye AR, Wright JJ, Steinberg SM, Liewehr DJ, Rosing DR, Sachdev V, Fojo T and Bates SE: Cardiac studies in patients treated with depsipeptide, FK228, in a phase II trial for T-cell lymphoma. Clin Cancer Res. 12:3762–3773. 2006. View Article : Google Scholar : PubMed/NCBI

201 

Duvic M, Talpur R, Ni X, Zhang C, Hazarika P, Kelly C, Chiao JH, Reilly JF, Ricker JL, Richon VM, et al: Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood. 109:31–39. 2007. View Article : Google Scholar

202 

Whittaker SJ, Demierre MF, Kim EJ, Rook AH, Lerner A, Duvic M, Scarisbrick J, Reddy S, Robak T, Becker JC, et al: Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T-cell lymphoma. J Clin Oncol. 28:4485–4491. 2010. View Article : Google Scholar : PubMed/NCBI

203 

O'Connor OA, Heaney ML, Schwartz L, Richardson S, Willim R, MacGregor-Cortelli B, Curly T, Moskowitz C, Portlock C, Horwitz S, et al: Clinical experience with intravenous and oral formulations of the novel histone deacetylase inhibitor suberoylanilide hydroxamic acid in patients with advanced hematologic malignancies. J Clin Oncol. 24:166–173. 2006. View Article : Google Scholar

204 

Chen S, Zheng Y, Liang B, Yin Y, Yao J, Wang Q, Liu Y and Neamati N: The application of PROTAC in HDAC. Eur J Med Chem. 260:1157462023. View Article : Google Scholar : PubMed/NCBI

205 

Cheng B, Pan W, Xiao Y, Ding Z, Zhou Y, Fei X, Liu J, Su Z, Peng X and Chen J: HDAC-targeting epigenetic modulators for cancer immunotherapy. Eur J Med Chem. 265:1161292024. View Article : Google Scholar : PubMed/NCBI

206 

Lai Y, Han X, Xie B, Xu Y, Yang Z, Wang D, Li W, Xie Y, Song W, Zhang X, et al: EZH2 suppresses ferroptosis in hepatocellular carcinoma and reduces sorafenib sensitivity through epigenetic regulation of TFR2. Cancer Sci. 115:2220–2234. 2024. View Article : Google Scholar : PubMed/NCBI

207 

Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ, et al: IDH1 and IDH2 mutations in gliomas. N Engl J Med. 360:765–773. 2009. View Article : Google Scholar : PubMed/NCBI

208 

Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K, Koboldt DC, Fulton RS, Delehaunty KD, McGrath SD, et al: Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med. 361:1058–1066. 2009. View Article : Google Scholar : PubMed/NCBI

209 

Amary MF, Bacsi K, Maggiani F, Damato S, Halai D, Berisha F, Pollock R, O'Donnell P, Grigoriadis A, Diss T, et al: IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours. J Pathol. 224:334–343. 2011. View Article : Google Scholar : PubMed/NCBI

210 

Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, Fantin VR, Jang HG, Jin S, Keenan MC, et al: Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 462:739–744. 2009. View Article : Google Scholar : PubMed/NCBI

211 

Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH, Ito S, Yang C, Wang P, Xiao MT, et al: Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell. 19:17–30. 2011. View Article : Google Scholar : PubMed/NCBI

212 

Turcan S, Rohle D, Goenka A, Walsh LA, Fang F, Yilmaz E, Campos C, Fabius AW, Lu C, Ward PS, et al: IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature. 483:479–483. 2012. View Article : Google Scholar : PubMed/NCBI

213 

Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A, Li Y, Bhagwat N, Vasanthakumar A, Fernandez HF, et al: Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 18:553–567. 2010. View Article : Google Scholar : PubMed/NCBI

214 

Zarei M, Hajihassani O, Hue JJ, Loftus AW, Graor HJ, Nakazzi F, Naji P, Boutros CS, Uppin V, Vaziri-Gohar A, et al: IDH1 inhibition potentiates chemotherapy efficacy in pancreatic cancer. Cancer Res. 84:3072–3085. 2024. View Article : Google Scholar : PubMed/NCBI

215 

Zhu AX, Macarulla T, Javle MM, Kelley RK, Lubner SJ, Adeva J, Cleary JM, Catenacci DVT, Borad MJ, Bridgewater JA, et al: Final overall survival efficacy results of ivosidenib for patients with advanced cholangiocarcinoma with IDH1 mutation: The phase 3 randomized clinical ClarIDHy trial. JAMA Oncol. 7:1669–1677. 2021. View Article : Google Scholar : PubMed/NCBI

216 

Chen W, Yang W, Zhang C, Liu T, Zhu J, Wang H, Li T, Jin A, Ding L, Xian J, et al: Modulation of the p38 MAPK pathway by anisomycin promotes ferroptosis of hepatocellular carcinoma through phosphorylation of H3S10. Oxid Med Cell Longev. 2022:69864452022. View Article : Google Scholar : PubMed/NCBI

217 

Sun X, Ou Z, Xie M, Kang R, Fan Y, Niu X, Wang H, Cao L and Tang D: HSPB1 as a novel regulator of ferroptotic cancer cell death. Oncogene. 34:5617–5625. 2015. View Article : Google Scholar : PubMed/NCBI

218 

Sun J, Liu Q, Jiang Y, Cai Z, Liu H and Zuo H: Engineered small extracellular vesicles loaded with miR-654-5p promote ferroptosis by targeting HSPB1 to alleviate sorafenib resistance in hepatocellular carcinoma. Cell Death Discov. 9:3622023. View Article : Google Scholar : PubMed/NCBI

219 

Cheng AL, Kang YK, Chen Z, Tsao CJ, Qin S, Kim JS, Luo R, Feng J, Ye S, Yang TS, et al: Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: A phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 10:25–34. 2009. View Article : Google Scholar

220 

Dixon SJ, Patel DN, Welsch M, Skouta R, Lee ED, Hayano M, Thomas AG, Gleason CE, Tatonetti NP, Slusher BS, et al: Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. Elife. 3:e025232014. View Article : Google Scholar : PubMed/NCBI

221 

Shi CJ, Pang FX, Lei YH, Deng LQ, Pan FZ, Liang ZQ, Xie T, Wu XL, Wang YY, Xian YF, et al: 5-methylcytosine methylation of MALAT1 promotes resistance to sorafenib in hepatocellular carcinoma through ELAVL1/SLC7A11-mediated ferroptosis. Drug Resist Updat. 78:1011812025. View Article : Google Scholar

222 

Terekhanova NV, Karpova A, Liang WW, Strzalkowski A, Chen S, Li Y, Southard-Smith AN, Iglesia MD, Wendl MC, Jayasinghe RG, et al: Epigenetic regulation during cancer transitions across 11 tumour types. Nature. 623:432–441. 2023. View Article : Google Scholar : PubMed/NCBI

223 

Rotem A, Ram O, Shoresh N, Sperling RA, Goren A, Weitz DA and Bernstein BE: Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nat Biotechnol. 33:1165–1172. 2015. View Article : Google Scholar : PubMed/NCBI

224 

Wang SW, Gao C, Zheng YM, Yi L, Lu JC, Huang XY, Cai JB, Zhang PF, Cui YH and Ke AW: Current applications and future perspective of CRISPR/Cas9 gene editing in cancer. Mol Cancer. 21:572022. View Article : Google Scholar : PubMed/NCBI

225 

Pun FW, Ozerov IV and Zhavoronkov A: AI-powered therapeutic target discovery. Trends Pharmacol Sci. 44:561–572. 2023. View Article : Google Scholar : PubMed/NCBI

226 

Pratt D, Sahm F and Aldape K: DNA methylation profiling as a model for discovery and precision diagnostics in neuro-oncology. Neuro Oncol. 23(23 Suppl 5): S16–S29. 2021. View Article : Google Scholar : PubMed/NCBI

227 

Dai Q, Ye C, Irkliyenko I, Wang Y, Sun HL, Gao Y, Liu Y, Beadell A, Perea J, Goel A, et al: Ultrafast bisulfite sequencing detection of 5-methylcytosine in DNA and RNA. Nat Biotechnol. 42:1559–1570. 2024. View Article : Google Scholar : PubMed/NCBI

228 

Lone SN, Nisar S, Masoodi T, Singh M, Rizwan A, Hashem S, El-Rifai W, Bedognetti D, Batra SK, Haris M, et al: Liquid biopsy: A step closer to transform diagnosis, prognosis and future of cancer treatments. Mol Cancer. 21:792022. View Article : Google Scholar : PubMed/NCBI

229 

Zhao J, Cui X, Zhan Q, Zhang K, Su D, Yang S, Hong B, Wang Q, Ju J, Cheng C, et al: CRISPR-Cas9 library screening combined with an exosome-targeted delivery system addresses tumorigenesis/TMZ resistance in the mesenchymal subtype of glioblastoma. Theranostics. 14:2835–2855. 2024. View Article : Google Scholar : PubMed/NCBI

230 

Gulati GS, D'Silva JP, Liu Y, Wang L and Newman AM: Profiling cell identity and tissue architecture with single-cell and spatial transcriptomics. Nat Rev Mol Cell Biol. 26:11–31. 2025. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Gong L, Wu L, Zhao S, Xiao S, Chu X, Zhang Y, Li F, Li S, Yang H, Jiang P, Jiang P, et al: Epigenetic regulation of ferroptosis in gastrointestinal cancers (Review). Int J Mol Med 55: 93, 2025.
APA
Gong, L., Wu, L., Zhao, S., Xiao, S., Chu, X., Zhang, Y. ... Jiang, P. (2025). Epigenetic regulation of ferroptosis in gastrointestinal cancers (Review). International Journal of Molecular Medicine, 55, 93. https://doi.org/10.3892/ijmm.2025.5534
MLA
Gong, L., Wu, L., Zhao, S., Xiao, S., Chu, X., Zhang, Y., Li, F., Li, S., Yang, H., Jiang, P."Epigenetic regulation of ferroptosis in gastrointestinal cancers (Review)". International Journal of Molecular Medicine 55.6 (2025): 93.
Chicago
Gong, L., Wu, L., Zhao, S., Xiao, S., Chu, X., Zhang, Y., Li, F., Li, S., Yang, H., Jiang, P."Epigenetic regulation of ferroptosis in gastrointestinal cancers (Review)". International Journal of Molecular Medicine 55, no. 6 (2025): 93. https://doi.org/10.3892/ijmm.2025.5534
Copy and paste a formatted citation
x
Spandidos Publications style
Gong L, Wu L, Zhao S, Xiao S, Chu X, Zhang Y, Li F, Li S, Yang H, Jiang P, Jiang P, et al: Epigenetic regulation of ferroptosis in gastrointestinal cancers (Review). Int J Mol Med 55: 93, 2025.
APA
Gong, L., Wu, L., Zhao, S., Xiao, S., Chu, X., Zhang, Y. ... Jiang, P. (2025). Epigenetic regulation of ferroptosis in gastrointestinal cancers (Review). International Journal of Molecular Medicine, 55, 93. https://doi.org/10.3892/ijmm.2025.5534
MLA
Gong, L., Wu, L., Zhao, S., Xiao, S., Chu, X., Zhang, Y., Li, F., Li, S., Yang, H., Jiang, P."Epigenetic regulation of ferroptosis in gastrointestinal cancers (Review)". International Journal of Molecular Medicine 55.6 (2025): 93.
Chicago
Gong, L., Wu, L., Zhao, S., Xiao, S., Chu, X., Zhang, Y., Li, F., Li, S., Yang, H., Jiang, P."Epigenetic regulation of ferroptosis in gastrointestinal cancers (Review)". International Journal of Molecular Medicine 55, no. 6 (2025): 93. https://doi.org/10.3892/ijmm.2025.5534
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team