Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
July-2025 Volume 56 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2025 Volume 56 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Developments in the connection between epithelial‑mesenchymal transition and endoplasmic reticulum stress (Review)

  • Authors:
    • Hongyu Chai
    • Shun Yao
    • Ya Gao
    • Qian Hu
    • Wei Su
  • View Affiliations / Copyright

    Affiliations: Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
    Copyright: © Chai et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 102
    |
    Published online on: May 5, 2025
       https://doi.org/10.3892/ijmm.2025.5543
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Endoplasmic reticulum stress (ERS) and epithelial‑mesenchymal transition (EMT) have important roles in fibrosis and tumour development. Moderate ERS activates cellular defence mechanisms in response to noxious stimuli; however, sustained or overly strong ERS induces apoptosis. In this disease process, EMT induces epithelial cells to acquire the ability to migrate and invade. Reportedly, ERS directly or indirectly regulates EMT processes through multiple mechanisms (such as key transcription factors, signalling pathways, ferroptosis, autophagy and oxidative stress), and both processes form a complex network of interactions. Given the critical roles of ERS and EMT in disease, targeted intervention of these two processes has emerged as a potential therapeutic strategy. In the present study, the molecular interaction mechanism of ERS and EMT was systematically explored, research progress in fibrotic and neoplastic diseases was reviewed and the potential application prospects of related targeted therapies were examined, which may provide new ideas for the development of drugs to reverse fibrosis and treat tumours.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Santamaría PG, Mazón MJ, Eraso P and Portillo F: UPR: An upstream signal to EMT induction in cancer. J Clin Med. 8:6242019. View Article : Google Scholar : PubMed/NCBI

2 

Marconi GD, Fonticoli L, Rajan TS, Pierdomenico SD, Trubiani O, Pizzicannella J and Diomede F: Epithelial-mesenchymal transition (EMT): The type-2 EMT in wound healing, tissue regeneration and organ fibrosis. Cells. 10:15872021. View Article : Google Scholar : PubMed/NCBI

3 

Brabletz S, Schuhwerk H, Brabletz T and Stemmler MP: Dynamic EMT: A multi-tool for tumor progression. EMBO J. 40:e1086472021. View Article : Google Scholar : PubMed/NCBI

4 

Kropski JA and Blackwell TS: Endoplasmic reticulum stress in the pathogenesis of fibrotic disease. J Clin Invest. 128:64–73. 2018. View Article : Google Scholar : PubMed/NCBI

5 

Uddin MS, Tewari D, Sharma G, Kabir MT, Barreto GE, Bin-Jumah MN, Perveen A, Abdel-Daim MM and Ashraf GM: Molecular mechanisms of ER stress and UPr in the pathogenesis of Alzheimer's disease. Mol Neurobiol. 57:2902–2919. 2020. View Article : Google Scholar : PubMed/NCBI

6 

Yap KN, Yamada K, Zikeli S, Kiaris H and Hood WR: Evaluating endoplasmic reticulum stress and unfolded protein response through the lens of ecology and evolution. Biol Rev Camb Philos Soc. 96:541–556. 2021. View Article : Google Scholar

7 

Sims SG, Cisney RN, Lipscomb MM and Meares GP: The role of endoplasmic reticulum stress in astrocytes. Glia. 70:5–19. 2022. View Article : Google Scholar :

8 

Hu H, Tian M, Ding C and Yu S: The C/EBP homologous protein (CHOP) transcription factor functions in endoplasmic reticulum Stress-induced apoptosis and microbial infection. Front Immunol. 9:30832018. View Article : Google Scholar

9 

Wang P, Li J, Tao J and Sha B: The luminal domain of the ER stress sensor protein PERK binds misfolded proteins and thereby triggers PERK oligomerization. J Biol Chem. 293:4110–4121. 2018. View Article : Google Scholar : PubMed/NCBI

10 

Sato R, Semba T, Saya H and Arima Y: Concise review: Stem cells and Epithelial-mesenchymal transition in cancer: Biological implications and therapeutic targets. Stem Cells. 34:1997–2007. 2016. View Article : Google Scholar : PubMed/NCBI

11 

Xu R, Won JY, Kim CH, Kim DE and Yim H: Roles of the phosphorylation of transcriptional factors in Epithelial-mesenchymal transition. J Oncol. 2019:58104652019. View Article : Google Scholar : PubMed/NCBI

12 

Tomecka P, Kunachowicz D, Górczyńska J, Gebuza M, Kuźnicki J, Skinderowicz K and Choromańska A: Factors determining Epithelial-mesenchymal transition in cancer progression. Int J Mol Sci. 25:89722024. View Article : Google Scholar : PubMed/NCBI

13 

Lin YT and Wu KJ: Epigenetic regulation of epithelial-mesenchymal transition: Focusing on hypoxia and TGF-β signaling. J Biomed Sci. 27:392020. View Article : Google Scholar

14 

Sheikh KA, Amjad M, Irfan MT, Anjum S, Majeed T, Riaz MU, Jassim AY, Sharif EAM and Ibrahim WN: Exploring TGF-β signaling in cancer progression: Prospects and therapeutic strategies. Onco Targets Ther. 18:233–262. 2025. View Article : Google Scholar :

15 

Ding C, Liu B, Yu T, Wang Z, Peng J, Gu Y and Li Z: SIRT7 protects against liver fibrosis by suppressing stellate cell activation via TGF-β/SMAD2/3 pathway. Biomed Pharmacother. 180:1174772024. View Article : Google Scholar

16 

Zhang YE: Non-smad signaling pathways of the TGF-β family. Cold Spring Harb Perspect Biol. 9:a0221292017. View Article : Google Scholar

17 

Kahlert UD, Joseph JV and Kruyt FAE: EMT-and MET-related processes in nonepithelial tumors: Importance for disease progression, prognosis, and therapeutic opportunities. Mol Oncol. 11:860–877. 2017. View Article : Google Scholar : PubMed/NCBI

18 

Long Y, Niu Y, Liang K and Du Y: Mechanical communication in fibrosis progression. Trends Cell Biol. 32:70–90. 2022. View Article : Google Scholar

19 

Huang C and Ogawa R: The vascular involvement in soft tissue Fibrosis-lessons learned from pathological scarring. Int J Mol Sci. 21:25422020. View Article : Google Scholar : PubMed/NCBI

20 

Sun Z, He W, Meng H, Ji Z, Qu J and Yu G: Lactate activates ER stress to promote alveolar epithelial cells apoptosis in pulmonary fibrosis. Respir Res. 25:4012024. View Article : Google Scholar : PubMed/NCBI

21 

Bradley KL, Stokes CA, Marciniak SJ, Parker LC and Condliffe AM: Role of unfolded proteins in lung disease. Thorax. 76:92–99. 2021. View Article : Google Scholar

22 

Maiers JL, Kostallari E, Mushref M, de Assuncao TM, Li H, Jalan-Sakrikar N, Huebert RC, Cao S, Malhi H and Shah VH: The unfolded protein response mediates fibrogenesis and collagen I secretion through regulating TANGO1 in mice. Hepatology. 65:983–998. 2017. View Article : Google Scholar : PubMed/NCBI

23 

Li W, Liu P, Liu H, Zhang F and Fu Y: Integrative analysis of genes reveals endoplasmic reticulum stress-related immune responses involved in dilated cardiomyopathy with fibrosis. Apoptosis. 28:14222023. View Article : Google Scholar

24 

Zhang Y, Chen W and Wang Y: STING is an essential regulator of heart inflammation and fibrosis in mice with pathological cardiac hypertrophy via endoplasmic reticulum (ER) stress. Biomed Pharmacother. 125:1100222020. View Article : Google Scholar : PubMed/NCBI

25 

Ghafoor H, Chu H, Huang J, Chen M, Wang S, Wang J and Chao J: ZC3H4 promotes pulmonary fibrosis via an ER stress-related positive feedback loop. Toxicol Appl Pharmacol. 435:1158562022. View Article : Google Scholar : PubMed/NCBI

26 

Chen X, Li C, Liu J, He Y, Wei Y and Chen J: Inhibition of ER stress by targeting the IRE1α-TXNDC5 pathway alleviates crystalline silica-induced pulmonary fibrosis. Int Immunopharmacol. 95:1075192021. View Article : Google Scholar

27 

Li Y, Cai W, Jin F, Wang X, Liu W, Li T, Yang X, Liu H, Xu H and Yang F: Thalidomide alleviates pulmonary fibrosis induced by silica in mice by inhibiting ER stress and the TLR4-NF-κB pathway. Int J Mol Sci. 23:56562022. View Article : Google Scholar

28 

Yang X, Sun W, Jing X, Zhang Q, Huang H and Xu Z: Endoplasmic reticulum stress modulates the fate of lung resident mesenchymal stem cell to myofibroblast via C/EBP homologous protein during pulmonary fibrosis. Stem Cell Res Ther. 13:2792022. View Article : Google Scholar

29 

Ajoolabady A, Kaplowitz N, Lebeaupin C, Kroemer G, Kaufman RJ, Malhi H and Ren J: Endoplasmic reticulum stress in liver diseases. Hepatology. 77:619–639. 2023. View Article : Google Scholar

30 

Abdelfattah AM, Mahmoud SS, El-Wafaey DI, Abdelgeleel HM and Abdelhamid AM: Diacerein ameliorates cholestasis-induced liver fibrosis in rat via modulating HMGB1/RAGE/NF-κB/JNK pathway and endoplasmic reticulum stress. Sci Rep. 13:114552023. View Article : Google Scholar

31 

Wu F, Yang J, Liu J, Wang Y, Mu J, Zeng Q, Deng S and Zhou H: Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer. Signal Transduct Target Ther. 6:2182021. View Article : Google Scholar : PubMed/NCBI

32 

Wenxiu J, Mingyue Y, Fei H, Yuxin L, Mengyao W, Chenyang L, Jia S, Hong Z, Shih DQ, Targan SR and Xiaolan Z: Effect and mechanism of TL1A expression on Epithelial-mesenchymal transition during chronic Colitis-related intestinal fibrosis. Mediators Inflamm. 2021:59270642021. View Article : Google Scholar : PubMed/NCBI

33 

Liu D, Zhang C and Zhang J, Xu GT and Zhang J: Molecular pathogenesis of subretinal fibrosis in neovascular AMD focusing on epithelial-mesenchymal transformation of retinal pigment epithelium. Neurobiol Dis. 185:1062502023. View Article : Google Scholar : PubMed/NCBI

34 

Peng D, Fu M, Wang M, Wei Y and Wei X: Targeting TGF-β signal transduction for fibrosis and cancer therapy. Mol Cancer. 21:1042022. View Article : Google Scholar

35 

Zhang C, Zhang Y, Hu X, Zhao Z, Chen Z, Wang X, Zhang Z, Jin H and Zhang J: Luteolin inhibits subretinal fibrosis and epithelial-mesenchymal transition in laser-induced mouse model via suppression of Smad2/3 and YAP signaling. Phytomedicine. 116:1548652023. View Article : Google Scholar : PubMed/NCBI

36 

Zhang X, Chen J, Lin R, Huang Y, Wang Z, Xu S, Wang L, Chen F, Zhang J, Pan K and Yin Z: Lactate drives epithelial-mesenchymal transition in diabetic kidney disease via the H3K14la/KLF5 pathway. Redox Biol. 75:1032462024. View Article : Google Scholar : PubMed/NCBI

37 

Yan Z, Zhu J, Liu Y, Li Z, Liang X, Zhou S, Hou Y, Chen H, Zhou L, Wang P, et al: DNA-PKcs/AKT1 inhibits epithelial-mesenchymal transition during radiation-induced pulmonary fibrosis by inducing ubiquitination and degradation of Twist1. Clin Transl Med. 14:e16902024. View Article : Google Scholar : PubMed/NCBI

38 

Nagavally RR, Sunilkumar S, Akhtar M, Trombetta LD and Ford SM: Chrysin ameliorates Cyclosporine-A-induced renal fibrosis by inhibiting TGF-β1-Induced Epithelial-mesenchymal transition. Int J Mol Sci. 22:102522021. View Article : Google Scholar

39 

Zhang W, Shi Y, Oyang L, Cui S, Li S, Li J, Liu L, Li Y, Peng M, Tan S, et al: Endoplasmic reticulum stress-a key guardian in cancer. Cell Death Discov. 10:3432024. View Article : Google Scholar : PubMed/NCBI

40 

Zhao R, Lv Y, Feng T, Zhang R, Ge L, Pan J, Han B, Song G and Wang L: ATF6α promotes prostate cancer progression by enhancing PLA2G4A-mediated arachidonic acid metabolism and protecting tumor cells against ferroptosis. Prostate. 82:617–629. 2022. View Article : Google Scholar : PubMed/NCBI

41 

Ma X, Li Y and Zhao B: Ribosomal protein L5 (RPL5)/E2F transcription factor 1 (E2F1) signaling suppresses breast cancer progression via regulating endoplasmic reticulum stress and autophagy. Bioengineered. 13:8076–8086. 2022. View Article : Google Scholar : PubMed/NCBI

42 

Pavlović N and Heindryckx F: Exploring the role of endoplasmic reticulum stress in hepatocellular carcinoma through mining of the human protein atlas. Biology (Basel). 10:6402021.

43 

Chen J, Lei C, Zhang H, Huang X, Yang Y, Liu J, Jia Y, Shi H, Zhang Y, Zhang J and Du J: RPL11 promotes non-small cell lung cancer cell proliferation by regulating endoplasmic reticulum stress and cell autophagy. BMC Mol Cell Biol. 24:72023. View Article : Google Scholar : PubMed/NCBI

44 

Oakes SA: Endoplasmic reticulum stress signaling in cancer cells. Am J Pathol. 190:934–946. 2020. View Article : Google Scholar : PubMed/NCBI

45 

Xue XC, Zhou YY, Xu LY, Wei LY, Hu YJ, Yang J, Zhang XQ, Wang MY, Han YL and Chen JJ: Tongguanteng injection exerts anti-osteosarcoma effects through the ER stress-associated IRE1/CHOP pathway. BMC Complement Med Ther. 24:4002024. View Article : Google Scholar : PubMed/NCBI

46 

Bae H, Song G, Lee JY, Hong T, Chang MJ and Lim W: Laminarin-derived from brown algae suppresses the growth of ovarian cancer cells via mitochondrial dysfunction and ER stress. Mar Drugs. 18:1522020. View Article : Google Scholar : PubMed/NCBI

47 

Labrie M, Brugge JS, Mills GB and Zervantonakis IK: Therapy resistance: Opportunities created by adaptive responses to targeted therapies in cancer. Nat Rev Cancer. 22:323–339. 2022. View Article : Google Scholar : PubMed/NCBI

48 

Ang HL, Mohan CD, Shanmugam MK, Leong HC, Makvandi P, Rangappa KS, Bishayee A, Kumar AP and Sethi G: Mechanism of epithelial-mesenchymal transition in cancer and its regulation by natural compounds. Med Res Rev. 43:1141–1200. 2023. View Article : Google Scholar : PubMed/NCBI

49 

Huang Y, Hong W and Wei X: The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. J Hematol Oncol. 15:1292022. View Article : Google Scholar : PubMed/NCBI

50 

Fontana R, Mestre-Farrera A and Yang J: Update on Epithelial-mesenchymal plasticity in cancer progression. Annu Rev Pathol. 19:133–156. 2024. View Article : Google Scholar :

51 

Liang H, Chen Z, Yang R, Huang Q, Chen H, Chen W, Zou L, Wei P, Wei S, Yang Y and Zhang Y: Methyl gallate suppresses the migration, invasion, and Epithelial-mesenchymal transition of hepatocellular carcinoma cells via the AMPK/NF-κB signaling pathway in vitro and in vivo. Front Pharmacol. 13:8942852022. View Article : Google Scholar

52 

Melisi D, Garcia-Carbonero R, Macarulla T, Pezet D, Deplanque G, Fuchs M, Trojan J, Oettle H, Kozloff M, Cleverly A, et al: Galunisertib plus gemcitabine vs. gemcitabine for first-line treatment of patients with unresectable pancreatic cancer. Br J Cancer. 119:1208–1214. 2018. View Article : Google Scholar : PubMed/NCBI

53 

Shah PP, Dupre TV, Siskind LJ and Beverly LJ: Common cytotoxic chemotherapeutics induce epithelial-mesenchymal transition (EMT) downstream of ER stress. Oncotarget. 8:22625–22639. 2017. View Article : Google Scholar : PubMed/NCBI

54 

Delbrel E, Uzunhan Y, Soumare A, Gille T, Marchant D, Planès C and Boncoeur E: ER stress is involved in Epithelial-To-Mesenchymal transition of alveolar epithelial cells exposed to a hypoxic micro-environment. Int J Mol Sci. 20:12992019. View Article : Google Scholar

55 

Gong L, Liu G, Zhu H, Li C, Li P, Liu C, Tang H, Wu K, Wu J, Liu D, et al: IL-32 induces epithelial-mesenchymal transition by triggering endoplasmic reticulum stress in A549 cells. BMC Pulm Med. 20:2782020. View Article : Google Scholar : PubMed/NCBI

56 

Liang X, Duan N, Wang Y, Shu S, Xiang X, Guo T, Yang L, Zhang S, Tang X and Zhang J: Advanced oxidation protein products induce endothelial-to-mesenchymal transition in human renal glomerular endothelial cells through induction of endoplasmic reticulum stress. J Diabetes Complications. 30:573–579. 2016. View Article : Google Scholar : PubMed/NCBI

57 

Han J, Pang X, Shi X, Zhang Y, Peng Z and Xing Y: Ginkgo biloba extract EGB761 ameliorates the extracellular matrix accumulation and mesenchymal transformation of renal tubules in diabetic kidney disease by inhibiting endoplasmic reticulum stress. Biomed Res Int. 2021:66572062021. View Article : Google Scholar : PubMed/NCBI

58 

Zhou S, Yang J, Wang M, Zheng D and Liu Y: Endoplasmic reticulum stress regulates epithelial-mesenchymal transition in human lens epithelial cells. Mol Med Rep. 21:173–180. 2020.

59 

Guo B, Cheng J, Jin X, He Y and Sun X: Different calcium ion concentrations affect epithelial mesenchymal transformation of human peritoneal mesothelial cells via endoplasmic reticulum stress. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 36:50–55. 2024.In Chinese. PubMed/NCBI

60 

Bartoszewska S, Cabaj A, Dąbrowski M, Collawn JF and Bartoszewski R: miR-34c-5p modulates X-box-binding protein 1 (XBP1) expression during the adaptive phase of the unfolded protein response. FASEB J. 33:11541–11554. 2019. View Article : Google Scholar : PubMed/NCBI

61 

Cuevas EP, Eraso P, Mazón MJ, Santos V, Moreno-Bueno G, Cano A and Portillo F: LOXL2 drives epithelial-mesenchymal transition via activation of IRE1-XBP1 signalling pathway. Sci Rep. 7:449882017. View Article : Google Scholar : PubMed/NCBI

62 

Lhomond S, Avril T, Dejeans N, Voutetakis K, Doultsinos D, McMahon M, Pineau R, Obacz J, Papadodima O, Jouan F, et al: Dual IRE1 RNase functions dictate glioblastoma development. EMBO Mol Med. 10:e79292018. View Article : Google Scholar : PubMed/NCBI

63 

Wu S, Du R, Gao C, Kang J, Wen J and Sun T: The role of XBP1s in the metastasis and prognosis of hepatocellular carcinoma. Biochem Biophys Res Commun. 500:530–537. 2018. View Article : Google Scholar : PubMed/NCBI

64 

Qiao D, Skibba M, Xu X, Garofalo RP, Zhao Y and Brasier AR: Paramyxovirus replication induces the hexosamine biosynthetic pathway and mesenchymal transition via the IRE1α-XBP1s arm of the unfolded protein response. Am J Physiol Lung Cell Mol Physiol. 321:L576–L594. 2021. View Article : Google Scholar

65 

Zhu Y, Yang M, Li XH, Xu WJ, Gao W, Chen YH, Li JD and Li Q: Nogo-B promotes epithelial-mesenchymal transition in lung fibrosis via PERK branch of the endoplasmic reticulum stress pathway. Ann Transl Med. 9:5632021. View Article : Google Scholar : PubMed/NCBI

66 

Meng X, Liu K, Xie H, Zhu Y, Jin W, Lu J and Wang R: Endoplasmic reticulum stress promotes epithelial-mesenchymal transition via the PERK signaling pathway in paraquat-induced pulmonary fibrosis. Mol Med Rep. 24:5252021. View Article : Google Scholar :

67 

Liu F, Chang L and Hu J: Activating transcription factor 6 regulated cell growth, migration and inhibiteds cell apoptosis and autophagy via MAPK pathway in cervical cancer. J Reprod Immunol. 139:1031202020. View Article : Google Scholar : PubMed/NCBI

68 

Li R, Zhou H, Li M, Mai Q, Fu Z, Jiang Y, Li C, Gao Y, Fan Y, Wu K, et al: Gremlin-1 promotes colorectal cancer cell metastasis by activating ATF6 and inhibiting ATF4 pathways. Cells. 11:21362022. View Article : Google Scholar : PubMed/NCBI

69 

Ni YH, Deng HF, Zhou L, Huang CS, Wang NN, Yue LX, Li GF, Yu HJ, Zhou W and Gao Y: Ginsenoside Rb1 ameliorated Bavachin-induced renal fibrosis via Suppressing Bip/eIF2α/CHOP Signaling-Mediated EMT. Front Pharmacol. 13:8724742022. View Article : Google Scholar

70 

Luo R, Wei Y, Chen P, Zhang J, Wang L, Wang W, Wang P and Tian W: Mesenchymal stem cells inhibit Epithelial-to-Mesenchymal transition by modulating the IRE1α branch of the endoplasmic reticulum stress response. Stem Cells Int. 2023:44837762023. View Article : Google Scholar

71 

Imran M, Rauf A, Abu-Izneid T, Nadeem M, Shariati MA, Khan IA, Imran A, Orhan IE, Rizwan M, Atif M, et al: Luteolin, a flavonoid, as an anticancer agent: A review. Biomed Pharmacothe. 112:1086122019. View Article : Google Scholar

72 

Pan X, Phanish MK, Baines DL and Dockrell MEC: High glucose-induced Smad3 linker phosphorylation and CCN2 expression are inhibited by dapagliflozin in a diabetic tubule epithelial cell model. Biosci Rep. 41:BSR202039472021. View Article : Google Scholar : PubMed/NCBI

73 

Hao Y, Baker D and Ten Dijke P: TGF-β-mediated epithelial-mesenchymal transition and cancer metastasis. Int J Mol Sci. 202:7672019.

74 

Noshita S, Kubo Y, Kajiwara K, Okuzaki D, Nada S and Okada M: A TGF-β-responsive enhancer regulates SRC expression and epithelial-mesenchymal transition-associated cell migration. J Cell Sci. 136:jcs2610012023. View Article : Google Scholar

75 

Liu H, Lai W, Nie H, Shi Y, Zhu L, Yang L, Tian L, Li K, Bian L, Xi Z and Lin B: PM2.5 triggers autophagic degradation of Caveolin-1 via endoplasmic reticulum stress (ERS) to enhance the TGF-β1/Smad3 axis promoting pulmonary fibrosis. Environ Int. 181:1082902023. View Article : Google Scholar

76 

Borok Z, Horie M, Flodby P, Wang H, Liu Y, Ganesh S, Firth AL, Minoo P, Li C, Beers MF, et al: Grp78 loss in epithelial progenitors reveals an Age-linked role for endoplasmic reticulum stress in pulmonary fibrosis. Am J Respir Crit Care Med. 201:198–211. 2020. View Article : Google Scholar :

77 

Hu W, Xia M, Zhang C, Song B, Xia Z, Guo C, Cui Y, Jiang W, Zhang S, Xu D and Fang J: Chronic cadmium exposure induces epithelial mesenchymal transition in prostate cancer cells through a TGF-β-independent, endoplasmic reticulum stress induced pathway. Toxicol Lett. 353:107–117. 2021. View Article : Google Scholar : PubMed/NCBI

78 

Bao M, Feng Q, Zou L, Huang J, Zhu C and Xia W: Endoplasmic reticulum stress promotes endometrial fibrosis through the TGF-β/SMAD pathway. Reproduction. 165:171–182. 2023. View Article : Google Scholar

79 

Takahashi N, Harada M, Hirota Y, Nose E, Azhary JM, Koike H, Kunitomi C, Yoshino O, Izumi G, Hirata T, et al: Activation of endoplasmic reticulum stress in granulosa cells from patients with polycystic ovary syndrome contributes to ovarian fibrosis. Sci Rep. 7:108242017. View Article : Google Scholar : PubMed/NCBI

80 

Yi X, Wang H, Yang Y, Wang H, Zhang H, Guo S, Chen J, Du J, Tian Y, Ma J, et al: SIRT7 orchestrates melanoma progression by simultaneously promoting cell survival and immune evasion via UPR activation. Signal Transduct Target Ther. 8:1072023. View Article : Google Scholar : PubMed/NCBI

81 

Adamson RJ, Payne NC, Bartual SG, Mazitschek R and Bullock AN: Structural and biochemical characterization establishes a detailed understanding of KEAP1-CUL3 complex assembly. Free Radic Biol Med. 215–225. 2004.

82 

Raghunath A, Nagarajan R, Sundarraj K, Palanisamy K and Perumal E: Identification of compounds that inhibit the binding of Keap1a/Keap1b Kelch DGR domain with Nrf2 ETGE/DLG motifs in zebrafish. Basic Clin Pharmacol Toxicol. 125:259–270. 2019. View Article : Google Scholar : PubMed/NCBI

83 

Zhang H, Feng Y, Si Y, Lu C, Wang J, Wang S, Li L, Xie W, Yue Z, Yong J, et al: Shank3 ameliorates neuronal injury after cerebral ischemia/reperfusion via inhibiting oxidative stress and inflammation. Redox Biol. 69:1029832024. View Article : Google Scholar

84 

Mukhopadhyay S, Goswami D, Adiseshaiah PP, Burgan W, Yi M, Guerin TM, Kozlov SV, Nissley DV and McCormick F: Undermining glutaminolysis bolsters chemotherapy while NRF2 promotes chemoresistance in KRAS-driven pancreatic cancers. Cancer Res. 80:1630–1643. 2020. View Article : Google Scholar : PubMed/NCBI

85 

Adachi Y, Kimura R, Hirade K and Ebi H: Escaping KRAS: Gaining autonomy and resistance to KRAS inhibition in KRAS mutant cancers. Cancers (Basel). 13:50812021. View Article : Google Scholar : PubMed/NCBI

86 

Ferino A, Rapozzi V and Xodo LE: The ROS-KRAS-Nrf2 axis in the control of the redox homeostasis and the intersection with survival-apoptosis pathways: Implications for photodynamic therapy. J Photochem Photobiol B. 202:1116722020. View Article : Google Scholar

87 

Fu L, Zhao H, Xiang Y, Xiang HX, Hu B, Tan ZX, Lu X, Gao L, Wang B, Wang H, et al: Reactive oxygen species-evoked endoplasmic reticulum stress mediates 1-nitropyrene-induced epithelial-mesenchymal transition and pulmonary fibrosis. Environ Pollut. 283:1171342021. View Article : Google Scholar : PubMed/NCBI

88 

Jin M, Wang J, Ji X, Cao H, Zhu J, Chen Y, Yang J, Zhao Z, Ren T and Xing J: MCUR1 facilitates epithelial-mesenchymal transition and metastasis via the mitochondrial calcium dependent ROS/Nrf2/Notch pathway in hepatocellular carcinoma. J Exp Clin Cancer Res. 38:1362019. View Article : Google Scholar : PubMed/NCBI

89 

Gundamaraju R, Lu W, Paul MK, Jha NK, Gupta PK, Ojha S, Chattopadhyay I, Rao PV and Ghavami S: Autophagy and EMT in cancer and metastasis: Who controls whom? Biochim Biophys Acta Mol Basis Dis. 1868:1664312022. View Article : Google Scholar : PubMed/NCBI

90 

Kapuy O: Mechanism of decision making between autophagy and apoptosis induction upon endoplasmic reticulum stress. Int J Mol Sci. 25:43682024. View Article : Google Scholar : PubMed/NCBI

91 

Si L, Yang Z, Ding L and Zhang D: Regulatory effects of lncRNAs and miRNAs on the crosstalk between autophagy and EMT in cancer: A new era for cancer treatment. J Cancer Res Clin Oncol. 148:547–564. 2022. View Article : Google Scholar : PubMed/NCBI

92 

Chen X, Li J, Kang R, Klionsky DJ and Tang D: Ferroptosis: Machinery and regulation. Autophagy. 17:2054–2081. 2021. View Article : Google Scholar :

93 

Zhang Z, Zhang L, Zhou L, Lei Y, Zhang Y and Huang C: Redox signaling and unfolded protein response coordinate cell fate decisions under ER stress. Redox Biol. 25:1010472019. View Article : Google Scholar :

94 

Leonardi A, Donato A, Rosani U, Di Stefano A, Cavarzeran F and Brun P: Endoplasmic reticulum stress and unfolded protein response in vernal keratoconjunctivitis. Invest Ophthalmol Vis Sci. 65:232024. View Article : Google Scholar : PubMed/NCBI

95 

Beilankouhi EAV, Sajadi MA, Alipourfard I, Hassani P, Valilo M and Safaralizadeh R: Role of the ER-induced UPR pathway, apoptosis, and autophagy in colorectal cancer. Pathol Res Practice. 248:1547062023. View Article : Google Scholar

96 

Chang TK, Lawrence DA, Lu M, Tan J, Harnoss JM, Marsters SA, Liu P, Sandoval W, Martin SE and Ashkenazi A: Coordination between two branches of the unfolded protein response determines apoptotic cell fate. Mol Cell. 71:629–636.e5. 2018. View Article : Google Scholar : PubMed/NCBI

97 

Hetz C and Papa FR: The unfolded protein response and cell fate control. Mol Cell. 69:169–181. 2018. View Article : Google Scholar

98 

Zhao H, Liu T, Yang CE, Hu YH, Niu Y, Lei SP, Chen L and Zhang MX: Poricoic acid A attenuates renal fibrosis by inhibiting endoplasmic reticulum stress-mediated apoptosis. Braz J Med Biol Res. 57:e142492024. View Article : Google Scholar : PubMed/NCBI

99 

Eleftheriadis T, Pissas G, Golfinopoulos S, Efthymiadi M, Poulianiti C, Polyzou Konsta MA, Liakopoulos V and Stefanidis I: Routes of albumin overload toxicity in renal tubular epithelial cells. Int J Mol Sci. 24:96402023. View Article : Google Scholar : PubMed/NCBI

100 

Hetz C, Zhang K and Kaufman RJ: Mechanisms, regulation and functions of the unfolded protein response. Nat Rev Mol Cell Biol. 21:421–438. 2020. View Article : Google Scholar : PubMed/NCBI

101 

Hsieh PC, Peng CK, Liu GT, Kuo CY, Tzeng IS, Wang MC, Lan CC and Huang KL: Aqueous extract of descuraniae semen attenuates lipopolysaccharide-induced inflammation and apoptosis by regulating the proteasomal degradation and IRE1α-dependent unfolded protein response in A549 cells. Front Immunol. 13:9161022022. View Article : Google Scholar

102 

Wang WW, Liu YL, Wang MZ, Li H, Liu BH, Tu Y, Yuan CC, Fang QJ, Chen JX, Wang J, et al: Inhibition of renal tubular epithelial mesenchymal transition and endoplasmic reticulum stress-induced apoptosis with shenkang injection attenuates diabetic tubulopathy. Front Pharmacol. 12:6627062021. View Article : Google Scholar : PubMed/NCBI

103 

Strippoli R, Niayesh-Mehr R, Adelipour M, Khosravi A, Cordani M, Zarrabi A and Allameh A: Contribution of autophagy to epithelial mesenchymal transition induction during cancer progression. Cancers. 16:8072024. View Article : Google Scholar : PubMed/NCBI

104 

Chen HT, Liu H, Mao MJ, Tan Y, Mo XQ, Meng XJ, Cao MT, Zhong CY, Liu Y, Shan H and Jiang GM: Crosstalk between autophagy and epithelial-mesenchymal transition and its application in cancer therapy. Mol Cancer. 18:1012019. View Article : Google Scholar : PubMed/NCBI

105 

Chen YM, Yang WQ, Gu CW, Fan YY, Liu YZ and Zhao BS: Amlodipine inhibits the proliferation and migration of esophageal carcinoma cells through the induction of endoplasmic reticulum stress. World J Gastroenterol. 30:367–380. 2024. View Article : Google Scholar : PubMed/NCBI

106 

Wu C, Qian Y, Jiang J, Li D and Feng L: Piperine inhibits the proliferation of colorectal adenocarcinoma by regulating ARL3-mediated endoplasmic reticulum stress. Biomol Biomed. 25:391–405. 2025. View Article : Google Scholar :

107 

Gu W and Yang C: Zinc oxide nanoparticles inhibit malignant progression and chemotherapy resistance of ovarian cancer cells by activating endoplasmic reticulum stress and promoting autophagy. Exp Ther Med. 26:5082023. View Article : Google Scholar : PubMed/NCBI

108 

Cho W, Oh H, Choi SW, Abd El-Aty AM, Birdal O, Jeong JH, Song JH and Jung TW: CTRP4 attenuates apoptosis and epithelial-mesenchymal transition markers in podocytes through an AMPK/autophagy-dependent pathway. Biochem Biophys Res Commun. 682:104–110. 2023. View Article : Google Scholar : PubMed/NCBI

109 

Jiang R, Han L, Gao Q and Chao J: ZC3H4 mediates silica-induced EndoMT via ER stress and autophagy. Environ Toxicol Pharmacol. 84:1036052021. View Article : Google Scholar : PubMed/NCBI

110 

Han X, Duan X, Liu Z, Long Y, Liu C, Zhou J, Li N, Qin J and Wang Y: ZEB1 directly inhibits GPX4 transcription contributing to ROS accumulation in breast cancer cells. Breast Cancer Res Treat. 188:329–342. 2021. View Article : Google Scholar : PubMed/NCBI

111 

Yuan L, Zhou M, Wasan HS, Zhang K, Li Z, Guo K, Shen F, Shen M and Ruan S: Jiedu Sangen decoction inhibits the invasion and metastasis of colorectal cancer cells by regulating EMT through the hippo signaling pathway. Evid Based Complement Alternat Med. 2019:14317262019. View Article : Google Scholar : PubMed/NCBI

112 

Liu Z, Nan P, Gong Y, Tian L, Zheng Y and Wu Z: Endoplasmic reticulum stress-triggered ferroptosis via the XBP1-Hrd1-Nrf2 pathway induces EMT progression in diabetic nephropathy. Biomed Pharmacotherapy. 164:1148972023. View Article : Google Scholar

113 

Tan W, Liang Z, Tan X and Tan G: Ginsenoside Rg1 improves cigarette smoke-induced ferroptosis in COPD by regulating PERK/ATF4 axis to inhibit endoplasmic reticulum stress. Biochem Biophys Res Commun. 739:1509462024. View Article : Google Scholar : PubMed/NCBI

114 

Ao Q, Hu H and Huang Y: Ferroptosis and endoplasmic reticulum stress in rheumatoid arthritis. Front Immunol. 15:14388032024. View Article : Google Scholar : PubMed/NCBI

115 

Zhou R, Wei K, Li X, Yan B and Li L: Mechanisms of ferroptosis and the relationship between ferroptosis and ER stress after JEV and HSV infection. Front Microbiol. 15:14154172024. View Article : Google Scholar : PubMed/NCBI

116 

Nie Z, Chen M, Wen X, Gao Y, Huang D, Cao H, Peng Y, Guo N, Ni J and Zhang S: Endoplasmic reticulum stress and tumor microenvironment in bladder cancer: The missing link. Front Cell Dev Biol. 9:6839402021. View Article : Google Scholar : PubMed/NCBI

117 

Urra H, Aravena R, González-Johnson L and Hetz C: The UPRising connection between endoplasmic reticulum stress and the tumor microenvironment. Trends Cancer. 10:1161–1173. 2024. View Article : Google Scholar : PubMed/NCBI

118 

Liu B, Yin X, Jiang G, Li Y, Jiang Z, Qiang L, Chen N, Fan Y, Shen C, Dai L, et al: Identification of endoplasmic reticulum stress-related subtypes, infiltration analysis of tumor microenvironment, and construction of a prognostic model in colorectal cancer. Cancers (Basel). 14:33262022. View Article : Google Scholar : PubMed/NCBI

119 

Alvarez CL, Troncoso MF and Espelt MV: Extracellular ATP and adenosine in tumor microenvironment: Roles in epithelial-mesenchymal transition, cell migration, and invasion. J Cell Physiol. 237:389–400. 2022. View Article : Google Scholar

120 

Yang H, Li J, Niu Y, Zhou T, Zhang P, Liu Y and Li Y: Interactions between the metabolic reprogramming of liver cancer and tumor microenvironment. Front Immunol. 16:14947882025. View Article : Google Scholar : PubMed/NCBI

121 

Daniel Y, Lelou E, Aninat C, Corlu A and Cabillic F: Interplay between metabolism reprogramming and Epithelial-to-Mesenchymal transition in cancer stem cells. Cancers (Basel). 13:19732021. View Article : Google Scholar : PubMed/NCBI

122 

Balaji S, Kim U, Muthukkaruppan V and Vanniarajan A: Emerging role of tumor microenvironment derived exosomes in therapeutic resistance and metastasis through epithelial-to-mesenchymal transition. Life Sci. 280:1197502021. View Article : Google Scholar : PubMed/NCBI

123 

Huang K, Han Y, Chen Y, Shen H, Zeng S and Cai C: Tumor metabolic regulators: Key drivers of metabolic reprogramming and the promising targets in cancer therapy. Mol Cancer. 24:72025. View Article : Google Scholar : PubMed/NCBI

124 

Hu C, Xin Z, Sun X, Hu Y, Zhang C, Yan R, Wang Y, Lu M, Huang J, Du X, et al: Activation of ACLY by SEC63 deploys metabolic reprogramming to facilitate hepatocellular carcinoma metastasis upon endoplasmic reticulum stress. J Exp Clin Cancer Res. 42:1082023. View Article : Google Scholar : PubMed/NCBI

125 

Tao J, Yin L, Wu A, Zhang J, Zhang J, Shi H, Liu S, Niu L, Xu L, Feng Y, et al: PDIA2 bridges endoplasmic reticulum stress and metabolic reprogramming during malignant transformation of chronic colitis. Front Oncol. 12:8360872022. View Article : Google Scholar : PubMed/NCBI

126 

Pathak T, Benson JC, Johnson MT, Xin P, Abdelnaby AE, Walter V, Koltun WA, Yochum GS, Hempel N and Trebak M: Loss of STIM2 in colorectal cancer drives growth and metastasis through metabolic reprogramming and PERK-ATF4 endoplasmic reticulum stress pathway. bioRxiv. Oct 3–2023.PubMed/NCBI

127 

Guimarães ES, Marinho FV, de Queiroz N, Antunes MM and Oliveira SC: Impact of STING inflammatory signaling during intracellular bacterial infections. Cells. 11:742021. View Article : Google Scholar

128 

Kang H, Kim H, Lee S, Youn H and Youn B: Role of metabolic reprogramming in Epithelial-Mesenchymal transition (EMT). Int J Mol Sci. 20:20422019. View Article : Google Scholar

129 

Bhattacharya D and Scimè A: Metabolic regulation of epithelial to mesenchymal transition: Implications for endocrine cancer. Front Endocrinol (Lausanne). 10:7732019. View Article : Google Scholar : PubMed/NCBI

130 

Hua W, Ten Dijke P, Kostidis S, Giera M and Hornsveld M: TGFβ-induced metabolic reprogramming during epithelial-to-mesenchymal transition in cancer. Cell Mol Life Sci. 77:2103–2123. 2020. View Article : Google Scholar

131 

Guo W, Duan Z, Wu J and Zhou BP: Epithelial-mesenchymal transition promotes metabolic reprogramming to suppress ferroptosis. Semin Cancer Biol. 112:20–35. 2025. View Article : Google Scholar : PubMed/NCBI

132 

Kandasamy T, Sarkar S and Ghosh SS: Harnessing drug repurposing to combat breast cancer by targeting altered metabolism and Epithelial-to-Mesenchymal transition pathways. ACS Pharmacol Transl Sci. 7:3780–3794. 2024. View Article : Google Scholar : PubMed/NCBI

133 

Liu B, Dan W, Wei Y, Zhang Y, Wang C, Lei Y, Hou T, Zhang Y and Gao Y: β-asarone inhibits the migration, invasion, and EMT of bladder cancer through activating ER stress. Cancer Med. 12:13610–13622. 2023. View Article : Google Scholar : PubMed/NCBI

134 

Li CY, Chou TF and Lo YL: An innovative nanoformulation utilizing tumor microenvironment-responsive PEG-polyglutamic coating and dynamic charge adjustment for specific targeting of ER stress inducer, microRNA, and immunoadjuvant in pancreatic cancer: In vitro investigations. Int J Biol Macromol. 254:1279052024. View Article : Google Scholar

135 

Granados-Principal S, Liu Y, Guevara ML, Blanco E, Choi DS, Qian W, Patel T, Rodriguez AA, Cusimano J, Weiss HL, et al: Inhibition of iNOS as a novel effective targeted therapy against triple-negative breast cancer. Breast Cancer Res. 17:252025. View Article : Google Scholar

136 

Wang W, Zhang Y, Wang Z, Liu X, Lu S and Hu X: A native Drug-free macromolecular therapeutic to trigger mutual reinforcing of endoplasmic reticulum stress and mitochondrial dysfunction for cancer treatment. ACS Nano. 17:11023–11038. 2023. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Chai H, Yao S, Gao Y, Hu Q and Su W: Developments in the connection between epithelial‑mesenchymal transition and endoplasmic reticulum stress (Review). Int J Mol Med 56: 102, 2025.
APA
Chai, H., Yao, S., Gao, Y., Hu, Q., & Su, W. (2025). Developments in the connection between epithelial‑mesenchymal transition and endoplasmic reticulum stress (Review). International Journal of Molecular Medicine, 56, 102. https://doi.org/10.3892/ijmm.2025.5543
MLA
Chai, H., Yao, S., Gao, Y., Hu, Q., Su, W."Developments in the connection between epithelial‑mesenchymal transition and endoplasmic reticulum stress (Review)". International Journal of Molecular Medicine 56.1 (2025): 102.
Chicago
Chai, H., Yao, S., Gao, Y., Hu, Q., Su, W."Developments in the connection between epithelial‑mesenchymal transition and endoplasmic reticulum stress (Review)". International Journal of Molecular Medicine 56, no. 1 (2025): 102. https://doi.org/10.3892/ijmm.2025.5543
Copy and paste a formatted citation
x
Spandidos Publications style
Chai H, Yao S, Gao Y, Hu Q and Su W: Developments in the connection between epithelial‑mesenchymal transition and endoplasmic reticulum stress (Review). Int J Mol Med 56: 102, 2025.
APA
Chai, H., Yao, S., Gao, Y., Hu, Q., & Su, W. (2025). Developments in the connection between epithelial‑mesenchymal transition and endoplasmic reticulum stress (Review). International Journal of Molecular Medicine, 56, 102. https://doi.org/10.3892/ijmm.2025.5543
MLA
Chai, H., Yao, S., Gao, Y., Hu, Q., Su, W."Developments in the connection between epithelial‑mesenchymal transition and endoplasmic reticulum stress (Review)". International Journal of Molecular Medicine 56.1 (2025): 102.
Chicago
Chai, H., Yao, S., Gao, Y., Hu, Q., Su, W."Developments in the connection between epithelial‑mesenchymal transition and endoplasmic reticulum stress (Review)". International Journal of Molecular Medicine 56, no. 1 (2025): 102. https://doi.org/10.3892/ijmm.2025.5543
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team