
Developments in the connection between epithelial‑mesenchymal transition and endoplasmic reticulum stress (Review)
- Authors:
- Hongyu Chai
- Shun Yao
- Ya Gao
- Qian Hu
- Wei Su
-
Affiliations: Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China - Published online on: May 5, 2025 https://doi.org/10.3892/ijmm.2025.5543
- Article Number: 102
-
Copyright: © Chai et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
Santamaría PG, Mazón MJ, Eraso P and Portillo F: UPR: An upstream signal to EMT induction in cancer. J Clin Med. 8:6242019. View Article : Google Scholar : PubMed/NCBI | |
Marconi GD, Fonticoli L, Rajan TS, Pierdomenico SD, Trubiani O, Pizzicannella J and Diomede F: Epithelial-mesenchymal transition (EMT): The type-2 EMT in wound healing, tissue regeneration and organ fibrosis. Cells. 10:15872021. View Article : Google Scholar : PubMed/NCBI | |
Brabletz S, Schuhwerk H, Brabletz T and Stemmler MP: Dynamic EMT: A multi-tool for tumor progression. EMBO J. 40:e1086472021. View Article : Google Scholar : PubMed/NCBI | |
Kropski JA and Blackwell TS: Endoplasmic reticulum stress in the pathogenesis of fibrotic disease. J Clin Invest. 128:64–73. 2018. View Article : Google Scholar : PubMed/NCBI | |
Uddin MS, Tewari D, Sharma G, Kabir MT, Barreto GE, Bin-Jumah MN, Perveen A, Abdel-Daim MM and Ashraf GM: Molecular mechanisms of ER stress and UPr in the pathogenesis of Alzheimer's disease. Mol Neurobiol. 57:2902–2919. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yap KN, Yamada K, Zikeli S, Kiaris H and Hood WR: Evaluating endoplasmic reticulum stress and unfolded protein response through the lens of ecology and evolution. Biol Rev Camb Philos Soc. 96:541–556. 2021. View Article : Google Scholar | |
Sims SG, Cisney RN, Lipscomb MM and Meares GP: The role of endoplasmic reticulum stress in astrocytes. Glia. 70:5–19. 2022. View Article : Google Scholar : | |
Hu H, Tian M, Ding C and Yu S: The C/EBP homologous protein (CHOP) transcription factor functions in endoplasmic reticulum Stress-induced apoptosis and microbial infection. Front Immunol. 9:30832018. View Article : Google Scholar | |
Wang P, Li J, Tao J and Sha B: The luminal domain of the ER stress sensor protein PERK binds misfolded proteins and thereby triggers PERK oligomerization. J Biol Chem. 293:4110–4121. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sato R, Semba T, Saya H and Arima Y: Concise review: Stem cells and Epithelial-mesenchymal transition in cancer: Biological implications and therapeutic targets. Stem Cells. 34:1997–2007. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xu R, Won JY, Kim CH, Kim DE and Yim H: Roles of the phosphorylation of transcriptional factors in Epithelial-mesenchymal transition. J Oncol. 2019:58104652019. View Article : Google Scholar : PubMed/NCBI | |
Tomecka P, Kunachowicz D, Górczyńska J, Gebuza M, Kuźnicki J, Skinderowicz K and Choromańska A: Factors determining Epithelial-mesenchymal transition in cancer progression. Int J Mol Sci. 25:89722024. View Article : Google Scholar : PubMed/NCBI | |
Lin YT and Wu KJ: Epigenetic regulation of epithelial-mesenchymal transition: Focusing on hypoxia and TGF-β signaling. J Biomed Sci. 27:392020. View Article : Google Scholar | |
Sheikh KA, Amjad M, Irfan MT, Anjum S, Majeed T, Riaz MU, Jassim AY, Sharif EAM and Ibrahim WN: Exploring TGF-β signaling in cancer progression: Prospects and therapeutic strategies. Onco Targets Ther. 18:233–262. 2025. View Article : Google Scholar : | |
Ding C, Liu B, Yu T, Wang Z, Peng J, Gu Y and Li Z: SIRT7 protects against liver fibrosis by suppressing stellate cell activation via TGF-β/SMAD2/3 pathway. Biomed Pharmacother. 180:1174772024. View Article : Google Scholar | |
Zhang YE: Non-smad signaling pathways of the TGF-β family. Cold Spring Harb Perspect Biol. 9:a0221292017. View Article : Google Scholar | |
Kahlert UD, Joseph JV and Kruyt FAE: EMT-and MET-related processes in nonepithelial tumors: Importance for disease progression, prognosis, and therapeutic opportunities. Mol Oncol. 11:860–877. 2017. View Article : Google Scholar : PubMed/NCBI | |
Long Y, Niu Y, Liang K and Du Y: Mechanical communication in fibrosis progression. Trends Cell Biol. 32:70–90. 2022. View Article : Google Scholar | |
Huang C and Ogawa R: The vascular involvement in soft tissue Fibrosis-lessons learned from pathological scarring. Int J Mol Sci. 21:25422020. View Article : Google Scholar : PubMed/NCBI | |
Sun Z, He W, Meng H, Ji Z, Qu J and Yu G: Lactate activates ER stress to promote alveolar epithelial cells apoptosis in pulmonary fibrosis. Respir Res. 25:4012024. View Article : Google Scholar : PubMed/NCBI | |
Bradley KL, Stokes CA, Marciniak SJ, Parker LC and Condliffe AM: Role of unfolded proteins in lung disease. Thorax. 76:92–99. 2021. View Article : Google Scholar | |
Maiers JL, Kostallari E, Mushref M, de Assuncao TM, Li H, Jalan-Sakrikar N, Huebert RC, Cao S, Malhi H and Shah VH: The unfolded protein response mediates fibrogenesis and collagen I secretion through regulating TANGO1 in mice. Hepatology. 65:983–998. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li W, Liu P, Liu H, Zhang F and Fu Y: Integrative analysis of genes reveals endoplasmic reticulum stress-related immune responses involved in dilated cardiomyopathy with fibrosis. Apoptosis. 28:14222023. View Article : Google Scholar | |
Zhang Y, Chen W and Wang Y: STING is an essential regulator of heart inflammation and fibrosis in mice with pathological cardiac hypertrophy via endoplasmic reticulum (ER) stress. Biomed Pharmacother. 125:1100222020. View Article : Google Scholar : PubMed/NCBI | |
Ghafoor H, Chu H, Huang J, Chen M, Wang S, Wang J and Chao J: ZC3H4 promotes pulmonary fibrosis via an ER stress-related positive feedback loop. Toxicol Appl Pharmacol. 435:1158562022. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Li C, Liu J, He Y, Wei Y and Chen J: Inhibition of ER stress by targeting the IRE1α-TXNDC5 pathway alleviates crystalline silica-induced pulmonary fibrosis. Int Immunopharmacol. 95:1075192021. View Article : Google Scholar | |
Li Y, Cai W, Jin F, Wang X, Liu W, Li T, Yang X, Liu H, Xu H and Yang F: Thalidomide alleviates pulmonary fibrosis induced by silica in mice by inhibiting ER stress and the TLR4-NF-κB pathway. Int J Mol Sci. 23:56562022. View Article : Google Scholar | |
Yang X, Sun W, Jing X, Zhang Q, Huang H and Xu Z: Endoplasmic reticulum stress modulates the fate of lung resident mesenchymal stem cell to myofibroblast via C/EBP homologous protein during pulmonary fibrosis. Stem Cell Res Ther. 13:2792022. View Article : Google Scholar | |
Ajoolabady A, Kaplowitz N, Lebeaupin C, Kroemer G, Kaufman RJ, Malhi H and Ren J: Endoplasmic reticulum stress in liver diseases. Hepatology. 77:619–639. 2023. View Article : Google Scholar | |
Abdelfattah AM, Mahmoud SS, El-Wafaey DI, Abdelgeleel HM and Abdelhamid AM: Diacerein ameliorates cholestasis-induced liver fibrosis in rat via modulating HMGB1/RAGE/NF-κB/JNK pathway and endoplasmic reticulum stress. Sci Rep. 13:114552023. View Article : Google Scholar | |
Wu F, Yang J, Liu J, Wang Y, Mu J, Zeng Q, Deng S and Zhou H: Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer. Signal Transduct Target Ther. 6:2182021. View Article : Google Scholar : PubMed/NCBI | |
Wenxiu J, Mingyue Y, Fei H, Yuxin L, Mengyao W, Chenyang L, Jia S, Hong Z, Shih DQ, Targan SR and Xiaolan Z: Effect and mechanism of TL1A expression on Epithelial-mesenchymal transition during chronic Colitis-related intestinal fibrosis. Mediators Inflamm. 2021:59270642021. View Article : Google Scholar : PubMed/NCBI | |
Liu D, Zhang C and Zhang J, Xu GT and Zhang J: Molecular pathogenesis of subretinal fibrosis in neovascular AMD focusing on epithelial-mesenchymal transformation of retinal pigment epithelium. Neurobiol Dis. 185:1062502023. View Article : Google Scholar : PubMed/NCBI | |
Peng D, Fu M, Wang M, Wei Y and Wei X: Targeting TGF-β signal transduction for fibrosis and cancer therapy. Mol Cancer. 21:1042022. View Article : Google Scholar | |
Zhang C, Zhang Y, Hu X, Zhao Z, Chen Z, Wang X, Zhang Z, Jin H and Zhang J: Luteolin inhibits subretinal fibrosis and epithelial-mesenchymal transition in laser-induced mouse model via suppression of Smad2/3 and YAP signaling. Phytomedicine. 116:1548652023. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Chen J, Lin R, Huang Y, Wang Z, Xu S, Wang L, Chen F, Zhang J, Pan K and Yin Z: Lactate drives epithelial-mesenchymal transition in diabetic kidney disease via the H3K14la/KLF5 pathway. Redox Biol. 75:1032462024. View Article : Google Scholar : PubMed/NCBI | |
Yan Z, Zhu J, Liu Y, Li Z, Liang X, Zhou S, Hou Y, Chen H, Zhou L, Wang P, et al: DNA-PKcs/AKT1 inhibits epithelial-mesenchymal transition during radiation-induced pulmonary fibrosis by inducing ubiquitination and degradation of Twist1. Clin Transl Med. 14:e16902024. View Article : Google Scholar : PubMed/NCBI | |
Nagavally RR, Sunilkumar S, Akhtar M, Trombetta LD and Ford SM: Chrysin ameliorates Cyclosporine-A-induced renal fibrosis by inhibiting TGF-β1-Induced Epithelial-mesenchymal transition. Int J Mol Sci. 22:102522021. View Article : Google Scholar | |
Zhang W, Shi Y, Oyang L, Cui S, Li S, Li J, Liu L, Li Y, Peng M, Tan S, et al: Endoplasmic reticulum stress-a key guardian in cancer. Cell Death Discov. 10:3432024. View Article : Google Scholar : PubMed/NCBI | |
Zhao R, Lv Y, Feng T, Zhang R, Ge L, Pan J, Han B, Song G and Wang L: ATF6α promotes prostate cancer progression by enhancing PLA2G4A-mediated arachidonic acid metabolism and protecting tumor cells against ferroptosis. Prostate. 82:617–629. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ma X, Li Y and Zhao B: Ribosomal protein L5 (RPL5)/E2F transcription factor 1 (E2F1) signaling suppresses breast cancer progression via regulating endoplasmic reticulum stress and autophagy. Bioengineered. 13:8076–8086. 2022. View Article : Google Scholar : PubMed/NCBI | |
Pavlović N and Heindryckx F: Exploring the role of endoplasmic reticulum stress in hepatocellular carcinoma through mining of the human protein atlas. Biology (Basel). 10:6402021. | |
Chen J, Lei C, Zhang H, Huang X, Yang Y, Liu J, Jia Y, Shi H, Zhang Y, Zhang J and Du J: RPL11 promotes non-small cell lung cancer cell proliferation by regulating endoplasmic reticulum stress and cell autophagy. BMC Mol Cell Biol. 24:72023. View Article : Google Scholar : PubMed/NCBI | |
Oakes SA: Endoplasmic reticulum stress signaling in cancer cells. Am J Pathol. 190:934–946. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xue XC, Zhou YY, Xu LY, Wei LY, Hu YJ, Yang J, Zhang XQ, Wang MY, Han YL and Chen JJ: Tongguanteng injection exerts anti-osteosarcoma effects through the ER stress-associated IRE1/CHOP pathway. BMC Complement Med Ther. 24:4002024. View Article : Google Scholar : PubMed/NCBI | |
Bae H, Song G, Lee JY, Hong T, Chang MJ and Lim W: Laminarin-derived from brown algae suppresses the growth of ovarian cancer cells via mitochondrial dysfunction and ER stress. Mar Drugs. 18:1522020. View Article : Google Scholar : PubMed/NCBI | |
Labrie M, Brugge JS, Mills GB and Zervantonakis IK: Therapy resistance: Opportunities created by adaptive responses to targeted therapies in cancer. Nat Rev Cancer. 22:323–339. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ang HL, Mohan CD, Shanmugam MK, Leong HC, Makvandi P, Rangappa KS, Bishayee A, Kumar AP and Sethi G: Mechanism of epithelial-mesenchymal transition in cancer and its regulation by natural compounds. Med Res Rev. 43:1141–1200. 2023. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Hong W and Wei X: The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. J Hematol Oncol. 15:1292022. View Article : Google Scholar : PubMed/NCBI | |
Fontana R, Mestre-Farrera A and Yang J: Update on Epithelial-mesenchymal plasticity in cancer progression. Annu Rev Pathol. 19:133–156. 2024. View Article : Google Scholar : | |
Liang H, Chen Z, Yang R, Huang Q, Chen H, Chen W, Zou L, Wei P, Wei S, Yang Y and Zhang Y: Methyl gallate suppresses the migration, invasion, and Epithelial-mesenchymal transition of hepatocellular carcinoma cells via the AMPK/NF-κB signaling pathway in vitro and in vivo. Front Pharmacol. 13:8942852022. View Article : Google Scholar | |
Melisi D, Garcia-Carbonero R, Macarulla T, Pezet D, Deplanque G, Fuchs M, Trojan J, Oettle H, Kozloff M, Cleverly A, et al: Galunisertib plus gemcitabine vs. gemcitabine for first-line treatment of patients with unresectable pancreatic cancer. Br J Cancer. 119:1208–1214. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shah PP, Dupre TV, Siskind LJ and Beverly LJ: Common cytotoxic chemotherapeutics induce epithelial-mesenchymal transition (EMT) downstream of ER stress. Oncotarget. 8:22625–22639. 2017. View Article : Google Scholar : PubMed/NCBI | |
Delbrel E, Uzunhan Y, Soumare A, Gille T, Marchant D, Planès C and Boncoeur E: ER stress is involved in Epithelial-To-Mesenchymal transition of alveolar epithelial cells exposed to a hypoxic micro-environment. Int J Mol Sci. 20:12992019. View Article : Google Scholar | |
Gong L, Liu G, Zhu H, Li C, Li P, Liu C, Tang H, Wu K, Wu J, Liu D, et al: IL-32 induces epithelial-mesenchymal transition by triggering endoplasmic reticulum stress in A549 cells. BMC Pulm Med. 20:2782020. View Article : Google Scholar : PubMed/NCBI | |
Liang X, Duan N, Wang Y, Shu S, Xiang X, Guo T, Yang L, Zhang S, Tang X and Zhang J: Advanced oxidation protein products induce endothelial-to-mesenchymal transition in human renal glomerular endothelial cells through induction of endoplasmic reticulum stress. J Diabetes Complications. 30:573–579. 2016. View Article : Google Scholar : PubMed/NCBI | |
Han J, Pang X, Shi X, Zhang Y, Peng Z and Xing Y: Ginkgo biloba extract EGB761 ameliorates the extracellular matrix accumulation and mesenchymal transformation of renal tubules in diabetic kidney disease by inhibiting endoplasmic reticulum stress. Biomed Res Int. 2021:66572062021. View Article : Google Scholar : PubMed/NCBI | |
Zhou S, Yang J, Wang M, Zheng D and Liu Y: Endoplasmic reticulum stress regulates epithelial-mesenchymal transition in human lens epithelial cells. Mol Med Rep. 21:173–180. 2020. | |
Guo B, Cheng J, Jin X, He Y and Sun X: Different calcium ion concentrations affect epithelial mesenchymal transformation of human peritoneal mesothelial cells via endoplasmic reticulum stress. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 36:50–55. 2024.In Chinese. PubMed/NCBI | |
Bartoszewska S, Cabaj A, Dąbrowski M, Collawn JF and Bartoszewski R: miR-34c-5p modulates X-box-binding protein 1 (XBP1) expression during the adaptive phase of the unfolded protein response. FASEB J. 33:11541–11554. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cuevas EP, Eraso P, Mazón MJ, Santos V, Moreno-Bueno G, Cano A and Portillo F: LOXL2 drives epithelial-mesenchymal transition via activation of IRE1-XBP1 signalling pathway. Sci Rep. 7:449882017. View Article : Google Scholar : PubMed/NCBI | |
Lhomond S, Avril T, Dejeans N, Voutetakis K, Doultsinos D, McMahon M, Pineau R, Obacz J, Papadodima O, Jouan F, et al: Dual IRE1 RNase functions dictate glioblastoma development. EMBO Mol Med. 10:e79292018. View Article : Google Scholar : PubMed/NCBI | |
Wu S, Du R, Gao C, Kang J, Wen J and Sun T: The role of XBP1s in the metastasis and prognosis of hepatocellular carcinoma. Biochem Biophys Res Commun. 500:530–537. 2018. View Article : Google Scholar : PubMed/NCBI | |
Qiao D, Skibba M, Xu X, Garofalo RP, Zhao Y and Brasier AR: Paramyxovirus replication induces the hexosamine biosynthetic pathway and mesenchymal transition via the IRE1α-XBP1s arm of the unfolded protein response. Am J Physiol Lung Cell Mol Physiol. 321:L576–L594. 2021. View Article : Google Scholar | |
Zhu Y, Yang M, Li XH, Xu WJ, Gao W, Chen YH, Li JD and Li Q: Nogo-B promotes epithelial-mesenchymal transition in lung fibrosis via PERK branch of the endoplasmic reticulum stress pathway. Ann Transl Med. 9:5632021. View Article : Google Scholar : PubMed/NCBI | |
Meng X, Liu K, Xie H, Zhu Y, Jin W, Lu J and Wang R: Endoplasmic reticulum stress promotes epithelial-mesenchymal transition via the PERK signaling pathway in paraquat-induced pulmonary fibrosis. Mol Med Rep. 24:5252021. View Article : Google Scholar : | |
Liu F, Chang L and Hu J: Activating transcription factor 6 regulated cell growth, migration and inhibiteds cell apoptosis and autophagy via MAPK pathway in cervical cancer. J Reprod Immunol. 139:1031202020. View Article : Google Scholar : PubMed/NCBI | |
Li R, Zhou H, Li M, Mai Q, Fu Z, Jiang Y, Li C, Gao Y, Fan Y, Wu K, et al: Gremlin-1 promotes colorectal cancer cell metastasis by activating ATF6 and inhibiting ATF4 pathways. Cells. 11:21362022. View Article : Google Scholar : PubMed/NCBI | |
Ni YH, Deng HF, Zhou L, Huang CS, Wang NN, Yue LX, Li GF, Yu HJ, Zhou W and Gao Y: Ginsenoside Rb1 ameliorated Bavachin-induced renal fibrosis via Suppressing Bip/eIF2α/CHOP Signaling-Mediated EMT. Front Pharmacol. 13:8724742022. View Article : Google Scholar | |
Luo R, Wei Y, Chen P, Zhang J, Wang L, Wang W, Wang P and Tian W: Mesenchymal stem cells inhibit Epithelial-to-Mesenchymal transition by modulating the IRE1α branch of the endoplasmic reticulum stress response. Stem Cells Int. 2023:44837762023. View Article : Google Scholar | |
Imran M, Rauf A, Abu-Izneid T, Nadeem M, Shariati MA, Khan IA, Imran A, Orhan IE, Rizwan M, Atif M, et al: Luteolin, a flavonoid, as an anticancer agent: A review. Biomed Pharmacothe. 112:1086122019. View Article : Google Scholar | |
Pan X, Phanish MK, Baines DL and Dockrell MEC: High glucose-induced Smad3 linker phosphorylation and CCN2 expression are inhibited by dapagliflozin in a diabetic tubule epithelial cell model. Biosci Rep. 41:BSR202039472021. View Article : Google Scholar : PubMed/NCBI | |
Hao Y, Baker D and Ten Dijke P: TGF-β-mediated epithelial-mesenchymal transition and cancer metastasis. Int J Mol Sci. 202:7672019. | |
Noshita S, Kubo Y, Kajiwara K, Okuzaki D, Nada S and Okada M: A TGF-β-responsive enhancer regulates SRC expression and epithelial-mesenchymal transition-associated cell migration. J Cell Sci. 136:jcs2610012023. View Article : Google Scholar | |
Liu H, Lai W, Nie H, Shi Y, Zhu L, Yang L, Tian L, Li K, Bian L, Xi Z and Lin B: PM2.5 triggers autophagic degradation of Caveolin-1 via endoplasmic reticulum stress (ERS) to enhance the TGF-β1/Smad3 axis promoting pulmonary fibrosis. Environ Int. 181:1082902023. View Article : Google Scholar | |
Borok Z, Horie M, Flodby P, Wang H, Liu Y, Ganesh S, Firth AL, Minoo P, Li C, Beers MF, et al: Grp78 loss in epithelial progenitors reveals an Age-linked role for endoplasmic reticulum stress in pulmonary fibrosis. Am J Respir Crit Care Med. 201:198–211. 2020. View Article : Google Scholar : | |
Hu W, Xia M, Zhang C, Song B, Xia Z, Guo C, Cui Y, Jiang W, Zhang S, Xu D and Fang J: Chronic cadmium exposure induces epithelial mesenchymal transition in prostate cancer cells through a TGF-β-independent, endoplasmic reticulum stress induced pathway. Toxicol Lett. 353:107–117. 2021. View Article : Google Scholar : PubMed/NCBI | |
Bao M, Feng Q, Zou L, Huang J, Zhu C and Xia W: Endoplasmic reticulum stress promotes endometrial fibrosis through the TGF-β/SMAD pathway. Reproduction. 165:171–182. 2023. View Article : Google Scholar | |
Takahashi N, Harada M, Hirota Y, Nose E, Azhary JM, Koike H, Kunitomi C, Yoshino O, Izumi G, Hirata T, et al: Activation of endoplasmic reticulum stress in granulosa cells from patients with polycystic ovary syndrome contributes to ovarian fibrosis. Sci Rep. 7:108242017. View Article : Google Scholar : PubMed/NCBI | |
Yi X, Wang H, Yang Y, Wang H, Zhang H, Guo S, Chen J, Du J, Tian Y, Ma J, et al: SIRT7 orchestrates melanoma progression by simultaneously promoting cell survival and immune evasion via UPR activation. Signal Transduct Target Ther. 8:1072023. View Article : Google Scholar : PubMed/NCBI | |
Adamson RJ, Payne NC, Bartual SG, Mazitschek R and Bullock AN: Structural and biochemical characterization establishes a detailed understanding of KEAP1-CUL3 complex assembly. Free Radic Biol Med. 215–225. 2004. | |
Raghunath A, Nagarajan R, Sundarraj K, Palanisamy K and Perumal E: Identification of compounds that inhibit the binding of Keap1a/Keap1b Kelch DGR domain with Nrf2 ETGE/DLG motifs in zebrafish. Basic Clin Pharmacol Toxicol. 125:259–270. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Feng Y, Si Y, Lu C, Wang J, Wang S, Li L, Xie W, Yue Z, Yong J, et al: Shank3 ameliorates neuronal injury after cerebral ischemia/reperfusion via inhibiting oxidative stress and inflammation. Redox Biol. 69:1029832024. View Article : Google Scholar | |
Mukhopadhyay S, Goswami D, Adiseshaiah PP, Burgan W, Yi M, Guerin TM, Kozlov SV, Nissley DV and McCormick F: Undermining glutaminolysis bolsters chemotherapy while NRF2 promotes chemoresistance in KRAS-driven pancreatic cancers. Cancer Res. 80:1630–1643. 2020. View Article : Google Scholar : PubMed/NCBI | |
Adachi Y, Kimura R, Hirade K and Ebi H: Escaping KRAS: Gaining autonomy and resistance to KRAS inhibition in KRAS mutant cancers. Cancers (Basel). 13:50812021. View Article : Google Scholar : PubMed/NCBI | |
Ferino A, Rapozzi V and Xodo LE: The ROS-KRAS-Nrf2 axis in the control of the redox homeostasis and the intersection with survival-apoptosis pathways: Implications for photodynamic therapy. J Photochem Photobiol B. 202:1116722020. View Article : Google Scholar | |
Fu L, Zhao H, Xiang Y, Xiang HX, Hu B, Tan ZX, Lu X, Gao L, Wang B, Wang H, et al: Reactive oxygen species-evoked endoplasmic reticulum stress mediates 1-nitropyrene-induced epithelial-mesenchymal transition and pulmonary fibrosis. Environ Pollut. 283:1171342021. View Article : Google Scholar : PubMed/NCBI | |
Jin M, Wang J, Ji X, Cao H, Zhu J, Chen Y, Yang J, Zhao Z, Ren T and Xing J: MCUR1 facilitates epithelial-mesenchymal transition and metastasis via the mitochondrial calcium dependent ROS/Nrf2/Notch pathway in hepatocellular carcinoma. J Exp Clin Cancer Res. 38:1362019. View Article : Google Scholar : PubMed/NCBI | |
Gundamaraju R, Lu W, Paul MK, Jha NK, Gupta PK, Ojha S, Chattopadhyay I, Rao PV and Ghavami S: Autophagy and EMT in cancer and metastasis: Who controls whom? Biochim Biophys Acta Mol Basis Dis. 1868:1664312022. View Article : Google Scholar : PubMed/NCBI | |
Kapuy O: Mechanism of decision making between autophagy and apoptosis induction upon endoplasmic reticulum stress. Int J Mol Sci. 25:43682024. View Article : Google Scholar : PubMed/NCBI | |
Si L, Yang Z, Ding L and Zhang D: Regulatory effects of lncRNAs and miRNAs on the crosstalk between autophagy and EMT in cancer: A new era for cancer treatment. J Cancer Res Clin Oncol. 148:547–564. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Li J, Kang R, Klionsky DJ and Tang D: Ferroptosis: Machinery and regulation. Autophagy. 17:2054–2081. 2021. View Article : Google Scholar : | |
Zhang Z, Zhang L, Zhou L, Lei Y, Zhang Y and Huang C: Redox signaling and unfolded protein response coordinate cell fate decisions under ER stress. Redox Biol. 25:1010472019. View Article : Google Scholar : | |
Leonardi A, Donato A, Rosani U, Di Stefano A, Cavarzeran F and Brun P: Endoplasmic reticulum stress and unfolded protein response in vernal keratoconjunctivitis. Invest Ophthalmol Vis Sci. 65:232024. View Article : Google Scholar : PubMed/NCBI | |
Beilankouhi EAV, Sajadi MA, Alipourfard I, Hassani P, Valilo M and Safaralizadeh R: Role of the ER-induced UPR pathway, apoptosis, and autophagy in colorectal cancer. Pathol Res Practice. 248:1547062023. View Article : Google Scholar | |
Chang TK, Lawrence DA, Lu M, Tan J, Harnoss JM, Marsters SA, Liu P, Sandoval W, Martin SE and Ashkenazi A: Coordination between two branches of the unfolded protein response determines apoptotic cell fate. Mol Cell. 71:629–636.e5. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hetz C and Papa FR: The unfolded protein response and cell fate control. Mol Cell. 69:169–181. 2018. View Article : Google Scholar | |
Zhao H, Liu T, Yang CE, Hu YH, Niu Y, Lei SP, Chen L and Zhang MX: Poricoic acid A attenuates renal fibrosis by inhibiting endoplasmic reticulum stress-mediated apoptosis. Braz J Med Biol Res. 57:e142492024. View Article : Google Scholar : PubMed/NCBI | |
Eleftheriadis T, Pissas G, Golfinopoulos S, Efthymiadi M, Poulianiti C, Polyzou Konsta MA, Liakopoulos V and Stefanidis I: Routes of albumin overload toxicity in renal tubular epithelial cells. Int J Mol Sci. 24:96402023. View Article : Google Scholar : PubMed/NCBI | |
Hetz C, Zhang K and Kaufman RJ: Mechanisms, regulation and functions of the unfolded protein response. Nat Rev Mol Cell Biol. 21:421–438. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hsieh PC, Peng CK, Liu GT, Kuo CY, Tzeng IS, Wang MC, Lan CC and Huang KL: Aqueous extract of descuraniae semen attenuates lipopolysaccharide-induced inflammation and apoptosis by regulating the proteasomal degradation and IRE1α-dependent unfolded protein response in A549 cells. Front Immunol. 13:9161022022. View Article : Google Scholar | |
Wang WW, Liu YL, Wang MZ, Li H, Liu BH, Tu Y, Yuan CC, Fang QJ, Chen JX, Wang J, et al: Inhibition of renal tubular epithelial mesenchymal transition and endoplasmic reticulum stress-induced apoptosis with shenkang injection attenuates diabetic tubulopathy. Front Pharmacol. 12:6627062021. View Article : Google Scholar : PubMed/NCBI | |
Strippoli R, Niayesh-Mehr R, Adelipour M, Khosravi A, Cordani M, Zarrabi A and Allameh A: Contribution of autophagy to epithelial mesenchymal transition induction during cancer progression. Cancers. 16:8072024. View Article : Google Scholar : PubMed/NCBI | |
Chen HT, Liu H, Mao MJ, Tan Y, Mo XQ, Meng XJ, Cao MT, Zhong CY, Liu Y, Shan H and Jiang GM: Crosstalk between autophagy and epithelial-mesenchymal transition and its application in cancer therapy. Mol Cancer. 18:1012019. View Article : Google Scholar : PubMed/NCBI | |
Chen YM, Yang WQ, Gu CW, Fan YY, Liu YZ and Zhao BS: Amlodipine inhibits the proliferation and migration of esophageal carcinoma cells through the induction of endoplasmic reticulum stress. World J Gastroenterol. 30:367–380. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wu C, Qian Y, Jiang J, Li D and Feng L: Piperine inhibits the proliferation of colorectal adenocarcinoma by regulating ARL3-mediated endoplasmic reticulum stress. Biomol Biomed. 25:391–405. 2025. View Article : Google Scholar : | |
Gu W and Yang C: Zinc oxide nanoparticles inhibit malignant progression and chemotherapy resistance of ovarian cancer cells by activating endoplasmic reticulum stress and promoting autophagy. Exp Ther Med. 26:5082023. View Article : Google Scholar : PubMed/NCBI | |
Cho W, Oh H, Choi SW, Abd El-Aty AM, Birdal O, Jeong JH, Song JH and Jung TW: CTRP4 attenuates apoptosis and epithelial-mesenchymal transition markers in podocytes through an AMPK/autophagy-dependent pathway. Biochem Biophys Res Commun. 682:104–110. 2023. View Article : Google Scholar : PubMed/NCBI | |
Jiang R, Han L, Gao Q and Chao J: ZC3H4 mediates silica-induced EndoMT via ER stress and autophagy. Environ Toxicol Pharmacol. 84:1036052021. View Article : Google Scholar : PubMed/NCBI | |
Han X, Duan X, Liu Z, Long Y, Liu C, Zhou J, Li N, Qin J and Wang Y: ZEB1 directly inhibits GPX4 transcription contributing to ROS accumulation in breast cancer cells. Breast Cancer Res Treat. 188:329–342. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yuan L, Zhou M, Wasan HS, Zhang K, Li Z, Guo K, Shen F, Shen M and Ruan S: Jiedu Sangen decoction inhibits the invasion and metastasis of colorectal cancer cells by regulating EMT through the hippo signaling pathway. Evid Based Complement Alternat Med. 2019:14317262019. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Nan P, Gong Y, Tian L, Zheng Y and Wu Z: Endoplasmic reticulum stress-triggered ferroptosis via the XBP1-Hrd1-Nrf2 pathway induces EMT progression in diabetic nephropathy. Biomed Pharmacotherapy. 164:1148972023. View Article : Google Scholar | |
Tan W, Liang Z, Tan X and Tan G: Ginsenoside Rg1 improves cigarette smoke-induced ferroptosis in COPD by regulating PERK/ATF4 axis to inhibit endoplasmic reticulum stress. Biochem Biophys Res Commun. 739:1509462024. View Article : Google Scholar : PubMed/NCBI | |
Ao Q, Hu H and Huang Y: Ferroptosis and endoplasmic reticulum stress in rheumatoid arthritis. Front Immunol. 15:14388032024. View Article : Google Scholar : PubMed/NCBI | |
Zhou R, Wei K, Li X, Yan B and Li L: Mechanisms of ferroptosis and the relationship between ferroptosis and ER stress after JEV and HSV infection. Front Microbiol. 15:14154172024. View Article : Google Scholar : PubMed/NCBI | |
Nie Z, Chen M, Wen X, Gao Y, Huang D, Cao H, Peng Y, Guo N, Ni J and Zhang S: Endoplasmic reticulum stress and tumor microenvironment in bladder cancer: The missing link. Front Cell Dev Biol. 9:6839402021. View Article : Google Scholar : PubMed/NCBI | |
Urra H, Aravena R, González-Johnson L and Hetz C: The UPRising connection between endoplasmic reticulum stress and the tumor microenvironment. Trends Cancer. 10:1161–1173. 2024. View Article : Google Scholar : PubMed/NCBI | |
Liu B, Yin X, Jiang G, Li Y, Jiang Z, Qiang L, Chen N, Fan Y, Shen C, Dai L, et al: Identification of endoplasmic reticulum stress-related subtypes, infiltration analysis of tumor microenvironment, and construction of a prognostic model in colorectal cancer. Cancers (Basel). 14:33262022. View Article : Google Scholar : PubMed/NCBI | |
Alvarez CL, Troncoso MF and Espelt MV: Extracellular ATP and adenosine in tumor microenvironment: Roles in epithelial-mesenchymal transition, cell migration, and invasion. J Cell Physiol. 237:389–400. 2022. View Article : Google Scholar | |
Yang H, Li J, Niu Y, Zhou T, Zhang P, Liu Y and Li Y: Interactions between the metabolic reprogramming of liver cancer and tumor microenvironment. Front Immunol. 16:14947882025. View Article : Google Scholar : PubMed/NCBI | |
Daniel Y, Lelou E, Aninat C, Corlu A and Cabillic F: Interplay between metabolism reprogramming and Epithelial-to-Mesenchymal transition in cancer stem cells. Cancers (Basel). 13:19732021. View Article : Google Scholar : PubMed/NCBI | |
Balaji S, Kim U, Muthukkaruppan V and Vanniarajan A: Emerging role of tumor microenvironment derived exosomes in therapeutic resistance and metastasis through epithelial-to-mesenchymal transition. Life Sci. 280:1197502021. View Article : Google Scholar : PubMed/NCBI | |
Huang K, Han Y, Chen Y, Shen H, Zeng S and Cai C: Tumor metabolic regulators: Key drivers of metabolic reprogramming and the promising targets in cancer therapy. Mol Cancer. 24:72025. View Article : Google Scholar : PubMed/NCBI | |
Hu C, Xin Z, Sun X, Hu Y, Zhang C, Yan R, Wang Y, Lu M, Huang J, Du X, et al: Activation of ACLY by SEC63 deploys metabolic reprogramming to facilitate hepatocellular carcinoma metastasis upon endoplasmic reticulum stress. J Exp Clin Cancer Res. 42:1082023. View Article : Google Scholar : PubMed/NCBI | |
Tao J, Yin L, Wu A, Zhang J, Zhang J, Shi H, Liu S, Niu L, Xu L, Feng Y, et al: PDIA2 bridges endoplasmic reticulum stress and metabolic reprogramming during malignant transformation of chronic colitis. Front Oncol. 12:8360872022. View Article : Google Scholar : PubMed/NCBI | |
Pathak T, Benson JC, Johnson MT, Xin P, Abdelnaby AE, Walter V, Koltun WA, Yochum GS, Hempel N and Trebak M: Loss of STIM2 in colorectal cancer drives growth and metastasis through metabolic reprogramming and PERK-ATF4 endoplasmic reticulum stress pathway. bioRxiv. Oct 3–2023.PubMed/NCBI | |
Guimarães ES, Marinho FV, de Queiroz N, Antunes MM and Oliveira SC: Impact of STING inflammatory signaling during intracellular bacterial infections. Cells. 11:742021. View Article : Google Scholar | |
Kang H, Kim H, Lee S, Youn H and Youn B: Role of metabolic reprogramming in Epithelial-Mesenchymal transition (EMT). Int J Mol Sci. 20:20422019. View Article : Google Scholar | |
Bhattacharya D and Scimè A: Metabolic regulation of epithelial to mesenchymal transition: Implications for endocrine cancer. Front Endocrinol (Lausanne). 10:7732019. View Article : Google Scholar : PubMed/NCBI | |
Hua W, Ten Dijke P, Kostidis S, Giera M and Hornsveld M: TGFβ-induced metabolic reprogramming during epithelial-to-mesenchymal transition in cancer. Cell Mol Life Sci. 77:2103–2123. 2020. View Article : Google Scholar | |
Guo W, Duan Z, Wu J and Zhou BP: Epithelial-mesenchymal transition promotes metabolic reprogramming to suppress ferroptosis. Semin Cancer Biol. 112:20–35. 2025. View Article : Google Scholar : PubMed/NCBI | |
Kandasamy T, Sarkar S and Ghosh SS: Harnessing drug repurposing to combat breast cancer by targeting altered metabolism and Epithelial-to-Mesenchymal transition pathways. ACS Pharmacol Transl Sci. 7:3780–3794. 2024. View Article : Google Scholar : PubMed/NCBI | |
Liu B, Dan W, Wei Y, Zhang Y, Wang C, Lei Y, Hou T, Zhang Y and Gao Y: β-asarone inhibits the migration, invasion, and EMT of bladder cancer through activating ER stress. Cancer Med. 12:13610–13622. 2023. View Article : Google Scholar : PubMed/NCBI | |
Li CY, Chou TF and Lo YL: An innovative nanoformulation utilizing tumor microenvironment-responsive PEG-polyglutamic coating and dynamic charge adjustment for specific targeting of ER stress inducer, microRNA, and immunoadjuvant in pancreatic cancer: In vitro investigations. Int J Biol Macromol. 254:1279052024. View Article : Google Scholar | |
Granados-Principal S, Liu Y, Guevara ML, Blanco E, Choi DS, Qian W, Patel T, Rodriguez AA, Cusimano J, Weiss HL, et al: Inhibition of iNOS as a novel effective targeted therapy against triple-negative breast cancer. Breast Cancer Res. 17:252025. View Article : Google Scholar | |
Wang W, Zhang Y, Wang Z, Liu X, Lu S and Hu X: A native Drug-free macromolecular therapeutic to trigger mutual reinforcing of endoplasmic reticulum stress and mitochondrial dysfunction for cancer treatment. ACS Nano. 17:11023–11038. 2023. View Article : Google Scholar : PubMed/NCBI |