
Precision oncolytic viral therapy in colorectal cancer: Genetic targeting and immune modulation for personalized treatment (Review)
- Authors:
- Muhammad Haris Sultan
- Qi Zhan
- Yigang Wang
- Yulong Xia
- Xiaoyuan Jia
-
Affiliations: College of Life Sciences and Medicine, Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China, Center for Translational Medicine and Precision Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, P.R. China - Published online on: May 6, 2025 https://doi.org/10.3892/ijmm.2025.5545
- Article Number: 104
-
Copyright: © Sultan et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
Fadlallah H, El Masri J, Fakhereddine H, Youssef J, Chemaly C, Doughan S and Abou-Kheir W: Colorectal cancer: Recent advances in management and treatment. World J Clin Oncol. 15:1136–1156. 2024. View Article : Google Scholar : PubMed/NCBI | |
Morgan E, Arnold M, Gini A, Lorenzoni V, Cabasag CJ, Laversanne M, Vignat J, Ferlay J, Murphy N and Bray F: Global burden of colorectal cancer in 2020 and 2040: Incidence and mortality estimates from GLOBOCAN. Gut. 72:338–344. 2023. View Article : Google Scholar : PubMed/NCBI | |
Pan H, Zhao Z, Deng Y, Zheng Z, Huang Y, Huang S and Chi P: The global, regional, and national early-onset colorectal cancer burden and trends from 1990 to 2019: Results from the global burden of disease study 2019. BMC Public Health. 22:18962022. View Article : Google Scholar : PubMed/NCBI | |
Maida M, Dahiya DS, Shah YR, Tiwari A, Gopakumar H, Vohra I, Khan A, Jaber F, Ramai D and Facciorusso A: Screening and surveillance of colorectal cancer: A review of the literature. Cancers (Basel). 16:27462024. View Article : Google Scholar : PubMed/NCBI | |
Nordlinger B, Sorbye H, Glimelius B, Poston GJ, Schlag PM, Rougier P, Bechstein WO, Primrose JN, Walpole ET, Finch-Jones M, et al: Perioperative FOLFOX4 chemotherapy and surgery versus surgery alone for resectable liver metastases from colorectal cancer (EORTC 40983): Long-term results of a randomised, controlled, phase 3 trial. Lancet Oncol. 14:1208–1215. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zabaleta J, Iida T, Falcoz PE, Salah S, Jarabo JR, Correa AM, Zampino MG, Matsui T, Cho S, Ardissone F, et al: Individual data meta-analysis for the study of survival after pulmonary metastasectomy in colorectal cancer patients: A history of resected liver metastases worsens the prognosis. Eur J Surg Oncol. 44:1006–1012. 2018. View Article : Google Scholar : PubMed/NCBI | |
Verwaal VJ, van Ruth S, de Bree E, van Slooten GW, van Tinteren H, Boot H and Zoetmulder FAN: Randomized trial of cytoreduction and hyperthermic intraperitoneal chemotherapy versus systemic chemotherapy and palliative surgery in patients with peritoneal carcinomatosis of colorectal cancer. J Clin Oncol. 21:3737–3743. 2003. View Article : Google Scholar : PubMed/NCBI | |
Cercek A, Lumish M, Sinopoli J, Weiss J, Shia J, Lamendola-Essel M, El Dika IH, Segal N, Shcherba M, Sugarman R, et al: PD-1 blockade in mismatch repair-deficient, locally advanced rectal cancer. N Engl J Med. 386:2363–2376. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chalabi M, Verschoor YL, van den Berg J, Sikorska K, Beets G, Lent AV, Grootscholten MC, Aalbers A, Buller N, Marsman H, et al: LBA7 Neoadjuvant immune checkpoint inhibition in locally advanced MMR-deficient colon cancer: The NICHE-2 study. Ann Oncol. 33(Suppl 7): S13892022. View Article : Google Scholar | |
Yang J, Nie J, Ma X, Wei Y, Peng Y and Wei X: Targeting PI3K in cancer: Mechanisms and advances in clinical trials. Mol Cancer. 18:262019. View Article : Google Scholar : PubMed/NCBI | |
Javid H, Hashemian P, Yazdani S, Sharbaf Mashhad A and Karimi-Shahri M: The role of heat shock proteins in metastatic colorectal cancer: A review. J Cell Biochem. 123:1704–1735. 2022. View Article : Google Scholar : PubMed/NCBI | |
Golestaneh M, Firoozrai M, Javid H and Hashemy SI: The substance P/neurokinin-1 receptor signaling pathway mediates metastasis in human colorectal SW480 cancer cells. Mol Biol Rep. 49:4893–4900. 2022. View Article : Google Scholar : PubMed/NCBI | |
Aapro M, Jelkmann W, Constantinescu SN and Leyland-Jones B: Effects of erythropoietin receptors and erythropoiesis-stimulating agents on disease progression in cancer. Br J Cancer. 106:1249–1258. 2012. View Article : Google Scholar : PubMed/NCBI | |
González-Perera I, Gutiérrez-Nicolás F, Nazco-Casariego GJ, Ramos-Díaz R, Hernández-San Gil R, Pérez-Pérez JA, González García J and González De La Fuente GA: 5-fluorouracil toxicity in the treatment of colon cancer associated with the genetic polymorphism 2846 A>G (rs67376798). J Oncol Pharm Pract. 23:396–398. 2017. View Article : Google Scholar | |
Javid H, Karimi-Shahri M, Khorramdel M, Mashhad AS, Tabrizi AT, Sathyapalan T, Afshari AR and Sahebkar A: Probiotics as an adjuvant for management of gastrointestinal cancers through their anti-inflammatory effects: A mechanistic review. Curr Med Chem. 30:390–406. 2023. View Article : Google Scholar | |
Ogura A, Konishi T, Cunningham C, Garcia-Aguilar J, Iversen H, Toda S, Lee IK, Lee HX, Uehara K, Lee P, et al: Neoadjuvant (Chemo)radiotherapy with total mesorectal excision only is not sufficient to prevent lateral local recurrence in enlarged nodes: Results of the multicenter lateral node study of patients with low cT3/4 rectal cancer. J Clin Oncol. 37:33–43. 2019. View Article : Google Scholar : | |
Ye LY, Li YS, Ge T, Liu LC, Si JX, Yang X, Fan WJ, Liu XZ, Zhang YN, Wang JW, et al: Engineered luminescent oncolytic vaccinia virus activation of photodynamic-immune combination therapy for colorectal cancer. Adv Healthc Mater. 13:e23041362024. View Article : Google Scholar : PubMed/NCBI | |
Ruan Z, Chi J, Kong Y, Li C, Ruan X, Zhou X, Chen Y, Li Y and Luo Z: Natural oncolysis of enterovirus 71 in antitumor therapy of colorectal cancer. Adv Biol (Weinh). 7:e22003362023. View Article : Google Scholar : PubMed/NCBI | |
Komant S, Wang J, Favis N, Alex C, Evans DH, Noyce RS and Baldwin TA: Oncolytic vaccinia virus as a precision cancer vaccine platform. bioRxiv. 2024.08.16.608170. 2024. | |
Nasar RT, Uche IK and Kousoulas KG: Targeting cancers with oHSV-based oncolytic viral immunotherapy. Curr Issues Mol Biol. 46:5582–5594. 2024. View Article : Google Scholar : PubMed/NCBI | |
Ren Y, Miao JM, Wang YY, Fan Z, Kong XB, Yang L and Cheng G: Oncolytic viruses combined with immune checkpoint therapy for colorectal cancer is a promising treatment option. Front Immunol. 13:9617962022. View Article : Google Scholar : PubMed/NCBI | |
Wang XL, Xu HW and Liu NN: Oral microbiota: A new insight into cancer progression, diagnosis and treatment. Phenomics. 3:535–547. 2023. View Article : Google Scholar : PubMed/NCBI | |
Mai Z, Lin Y, Lin P, Zhao X and Cui L: Modulating extracellular matrix stiffness: A strategic approach to boost cancer immunotherapy. Cell Death Dis. 15:3072024. View Article : Google Scholar : PubMed/NCBI | |
Kalli M, Poskus MD, Stylianopoulos T and Zervantonakis IK: Beyond matrix stiffness: Targeting force-induced cancer drug resistance. Trends Cancer. 9:937–954. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yuan Z, Li Y, Zhang S, Wang X, Dou H, Yu X, Zhang Z, Yang S and Xiao M: Extracellular matrix remodeling in tumor progression and immune escape: From mechanisms to treatments. Mol Cancer. 22:482023. View Article : Google Scholar : PubMed/NCBI | |
Ahmed H, Mahmud AR, Siddiquee MF, Shahriar A, Biswas P, Shimul MEK, Ahmed SZ, Ema TI, Rahman N, Khan MA, et al: Role of T cells in cancer immunotherapy: Opportunities and challenges. Cancer Pathog Ther. 1:116–126. 2022. View Article : Google Scholar : PubMed/NCBI | |
Noro J, Vilaça-Faria H, Reis RL and Pirraco RP: Extracellular matrix-derived materials for tissue engineering and regenerative medicine: A journey from isolation to characterization and application. Bioact Mater. 34:494–519. 2024.PubMed/NCBI | |
Sorokin M, Zolotovskaia M, Nikitin D, Suntsova M, Poddubskaya E, Glusker A, Garazha A, Moisseev A, Li X, Sekacheva M, et al: Personalized targeted therapy prescription in colorectal cancer using algorithmic analysis of RNA sequencing data. BMC Cancer. 22:11132022. View Article : Google Scholar : PubMed/NCBI | |
Hu H, Zhang S, Cai L, Duan H, Li Y, Yang J, Wang Y and Liu B, Dong S, Fang Z and Liu B: A novel cocktail therapy based on quintuplet combination of oncolytic herpes simplex virus-2 vectors armed with interleukin-12, interleukin-15, GM-CSF, PD1v, and IL-7 x CCL19 results in enhanced antitumor efficacy. Virol J. 19:742022. View Article : Google Scholar | |
Ribas A, Dummer R, Puzanov I, VanderWalde A, Andtbacka RHI, Michielin O, Olszanski AJ, Malvehy J, Cebon J, Fernandez E, et al: Oncolytic virotherapy promotes intratumoral T cell infiltration and improves Anti-PD-1 immunotherapy. Cell. 170:1109–1119.e10. 2017. View Article : Google Scholar : PubMed/NCBI | |
Garcia-Carbonero R, Salazar R, Duran I, Osman-Garcia I, Paz-Ares L, Bozada JM, Boni V, Blanc C, Seymour L, Beadle J, et al: Phase 1 study of intravenous administration of the chimeric adenovirus enadenotucirev in patients undergoing primary tumor resection. J Immunother Cancer. 5:712017. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Ren Y, Wang F, Tu X, Tong Z, Liu L, Zheng Y, Zhao P, Cheng J, Li J, et al: The long-term effectiveness and mechanism of oncolytic virotherapy combined with anti-PD-L1 antibody in colorectal cancer patient. Cancer Gene Ther. 31:1412–1426. 2024. View Article : Google Scholar : PubMed/NCBI | |
Berkey SE, Thorne SH and Bartlett DL: Oncolytic virotherapy and the tumor microenvironment. Tumor Immune Microenvironment in Cancer Progression and Cancer Therapy. Kalinski P: Springer International Publishing; Cham: pp. 157–172. 2017 | |
Cai L, Chen A and Tang D: A new strategy for immunotherapy of microsatellite-stable (MSS)-type advanced colorectal cancer: Multi-pathway combination therapy with PD-1/PD-L1 inhibitors. Immunology. 173:209–226. 2024. View Article : Google Scholar : PubMed/NCBI | |
Hajeri PB, Sharma NS and Yamamoto M: Oncolytic adenoviruses: Strategies for improved targeting and specificity. Cancers (Basel). 12:15042020. View Article : Google Scholar : PubMed/NCBI | |
Samson A, Smolenschi C, Cassier P, Patel JV, Hammond C, Kurzawa M, Sainte-Croix S, West E, Sadoun A and Bendjama K: Abstract CT190: Oncolytic virus TG6002 safety and activity after intrahepatic artery administration in patients with liver-dominant metastatic colorectal cancer. Cancer Res. 83(8 Suppl): CT1902023. View Article : Google Scholar | |
Lavilla-Alonso S, Bauerschmitz G, Abo-Ramadan U, Halavaara J, Escutenaire S, Diaconu I, Tatlisumak T, Kanerva A, Hemminki A and Pesonen S: Adenoviruses with an αvβ integrin targeting moiety in the fiber shaft or the HI-loop increase tumor specificity without compromising antitumor efficacy in magnetic resonance imaging of colorectal cancer metastases. J Transl Med. 8:802010. View Article : Google Scholar | |
Naumenko VA, Stepanenko AA, Lipatova AV, Vishnevskiy DA and Chekhonin VP: Infection of non-cancer cells: A barrier or support for oncolytic virotherapy? Mol Ther Oncolytics. 24:663–682. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chen G, Wu K, Li H, Xia D and He T: Role of hypoxia in the tumor microenvironment and targeted therapy. Front Oncol. 12:9616372022. View Article : Google Scholar : PubMed/NCBI | |
Kingsak M, Meethong T, Jongkhumkrong J, Cai L and Wang Q: Therapeutic potential of oncolytic viruses in the era of precision oncology. Biomater Transl. 4:67–84. 2023. | |
Peng Z, Kalim M and Lu Y: Improving systemic delivery of oncolytic virus by cellular carriers. Cancer Biol Med. 21:1104–1119. 2025. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Zuo M, Zhou Q and Wang Y: Oncolytic virotherapy in cancer treatment: Challenges and optimization prospects. Front Immunol. 14:13088902023. View Article : Google Scholar | |
Crupi MJF, Taha Z, Janssen TJA, Petryk J, Boulton S, Alluqmani N, Jirovec A, Kassas O, Khan ST, Vallati S, et al: Oncolytic virus driven T-cell-based combination immunotherapy platform for colorectal cancer. Front Immunol. 13:10292692022. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Wang G, Qin L, Hu B and Li J: Intestinal microbiota modulates the antitumor effect of oncolytic virus vaccines in colorectal cancer. Dig Dis Sci. 69:1228–1241. 2024. View Article : Google Scholar : PubMed/NCBI | |
Kontermann RE, Ungerechts G and Nettelbeck DM: Viro-antibody therapy: Engineering oncolytic viruses for genetic delivery of diverse antibody-based biotherapeutics. MAbs. 13:19824472021. View Article : Google Scholar : PubMed/NCBI | |
Zheng M, Huang J, Tong A and Yang H: Oncolytic viruses for cancer therapy: Barriers and recent advances. Mol Ther Oncolytics. 15:234–247. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhu J, Ma J, Huang M, Deng H and Shi G: Emerging delivery strategy for oncolytic virotherapy. Mol Ther Oncol. 32:2008092024. View Article : Google Scholar : PubMed/NCBI | |
Song Z, Tao Y, Liu Y and Li J: Advances in delivery systems for CRISPR/Cas-mediated cancer treatment: A focus on viral vectors and extracellular vesicles. Front Immunol. 15:14444372024. View Article : Google Scholar : PubMed/NCBI | |
Mainenti PP, Stanzione A, Guarino S, Romeo V, Ugga L, Romano F, Storto G, Maurea S and Brunetti A: Colorectal cancer: Parametric evaluation of morphological, functional and molecular tomographic imaging. World J Gastroenterol. 25:5233–5256. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang T, Jiang S, Zhang L, Liu Y, Zheng H, Zhao H, Du S, Xu Y and Lu X: A bibliometric analysis of oncolytic virotherapy combined with immunotherapy. Hum Vaccin Immunother. 20:24066212024. View Article : Google Scholar : PubMed/NCBI | |
Chai C, Zhang J, Zhou Y, Yin H, Zhang F, Diao Y, Zan X, Ma Y, Wang Y, Wu Y and Wang W: The effects of oncolytic pseudorabies virus vaccine strain inhibited the growth of colorectal cancer HCT-8 cells in vitro and in vivo. Animals (Basel). 12:24162022. View Article : Google Scholar : PubMed/NCBI | |
Girod M, Geisler A, Hinze L, Elsner L, Dieringer B, Beling A, Kurreck J and Fechner H: Combination of FOLFOXIRI drugs with oncolytic coxsackie B3 virus PD-H synergistically induces oncolysis in the refractory colorectal cancer cell line Colo320. Int J Mol Sci. 25:56182024. View Article : Google Scholar : PubMed/NCBI | |
Enow JA, Sheikh HI and Rahman MM: Tumor tropism of DNA viruses for oncolytic virotherapy. Viruses. 15:22622023. View Article : Google Scholar : PubMed/NCBI | |
Tian Y, Xie D and Yang L: Engineering strategies to enhance oncolytic viruses in cancer immunotherapy. Signal Transduct Target Ther. 7:1172022. View Article : Google Scholar : PubMed/NCBI | |
Lin D, Shen Y and Liang T: Oncolytic virotherapy: Basic principles, recent advances and future directions. Signal Transduct Target Ther. 8:1562023. View Article : Google Scholar : PubMed/NCBI | |
Robilotti E, Zeitouni NC and Orloff M: Biosafety and biohazard considerations of HSV-1-based oncolytic viral immunotherapy. Front Mol Biosci. 10:11783822023. View Article : Google Scholar : PubMed/NCBI | |
Shalhout SZ, Miller DM, Emerick KS and Kaufman HL: Therapy with oncolytic viruses: progress and challenges. Nat Rev Clin Oncol. 20:160–177. 2023. View Article : Google Scholar : PubMed/NCBI | |
Alkayyal AA, Darwish M, Ajina R, Alabbas SY, Alotaibi MA, Alsofyani A, Bokhamseen M, Hakami M, Albaradie OA, Moglan AM, et al: Repurposing the oncolytic virus VSV∆51M as a COVID-19 vaccine. Front Bioeng Biotechnol. 11:11508922023. View Article : Google Scholar | |
Ranki T, Särkioja M, Hakkarainen T, von Smitten K, Kanerva A and Hemminki A: Systemic efficacy of oncolytic adenoviruses in imagable orthotopic models of hormone refractory metastatic breast cancer. Int J Cancer. 121:165–174. 2007. View Article : Google Scholar : PubMed/NCBI | |
Niemann J and Kühnel F: Oncolytic viruses: Adenoviruses. Virus Genes. 53:700–706. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bolyard C, Yoo JY, Wang PY, Saini U, Rath KS, Cripe TP, Zhang J, Selvendiran K and Kaur B: Doxorubicin synergizes with 34.5ENVE to enhance antitumor efficacy against metastatic ovarian cancer. Clin Cancer Res. 20:6479–6494. 2014. View Article : Google Scholar : PubMed/NCBI | |
Meisen WH, Dubin S, Sizemore ST, Mathsyaraja H, Thies K, Lehman NL, Boyer P, Jaime-Ramirez AC, Elder JB, Powell K, et al: Changes in BAI1 and nestin expression are prognostic indicators for survival and metastases in breast cancer and provide opportunities for dual targeted therapies. Mol Cancer Ther. 14:307–314. 2015. View Article : Google Scholar : | |
Medrano RFV, Hunger A, Mendonça SA, Barbuto JAM and Strauss BE: Immunomodulatory and antitumor effects of type I interferons and their application in cancer therapy. Oncotarget. 8:71249–71284. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hirvinen M, Rajecki M, Kapanen M, Parviainen S, Rouvinen-Lagerström N, Diaconu I, Nokisalmi P, Tenhunen M, Hemminki A and Cerullo V: Immunological effects of a tumor necrosis factor alpha-armed oncolytic adenovirus. Hum Gene Ther. 26:134–144. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang B, Wang X and Cheng P: Remodeling of tumor immune microenvironment by oncolytic viruses. Front Oncol. 10:5613722021. View Article : Google Scholar : PubMed/NCBI | |
Hazafa A, Mumtaz M, Farooq MF, Bilal S, Chaudhry SN, Firdous M, Naeem H, Ullah MO, Yameen M, Mukhtiar MS and Zafar F: CRISPR/Cas9: A powerful genome editing technique for the treatment of cancer cells with present challenges and future directions. Life Sci. 263:1185252020. View Article : Google Scholar : PubMed/NCBI | |
Zhang N, Li J, Yu J, Wan Y, Zhang C, Zhang H and Cao Y: Construction of an IL12 and CXCL11 armed oncolytic herpes simplex virus using the CRISPR/Cas9 system for colon cancer treatment. Virus Res. 323:1989792023. View Article : Google Scholar : | |
Wang L, Chen Y, Liu X, Li Z and Dai X: The application of CRISPR/Cas9 technology for cancer immunotherapy: Current status and problems. Front Oncol. 11:7049992022. View Article : Google Scholar : PubMed/NCBI | |
Ilkow CS and Bell JC: Optimizing oncolytic virus design: A 'Swiss army knife' approach to create a systemically delivered therapeutic. Signal Transduct Target Ther. 9:822024. View Article : Google Scholar | |
Xiao B, Ying C, Chen Y, Huang F, Wang B, Fang H, Guo W, Liu T, Zhou X, Huang B, et al: Doxorubicin hydrochloride enhanced antitumour effect of CEA-regulated oncolytic virotherapy in live cancer cells and a mouse model. J Cell Mol Med. 24:13431–13439. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xiao B, Zhang L, Liu H, Fang H, Wang C, Huang B, Liu X, Zhou X and Wang Y: Oncolytic adenovirus cd55-smad4 suppresses cell proliferation, metastasis, and tumor stemness in colorectal cancer by regulating wnt/β-catenin signaling pathway. Biomedicines. 8:5932020. View Article : Google Scholar | |
Zhang Y, Ye M, Huang F, Wang S, Wang H, Mou X and Wang Y: Oncolytic adenovirus expressing ST13 increases antitumor effect of tumor necrosis factor-related apoptosis-inducing ligand against pancreatic ductal adenocarcinoma. Hum Gene Ther. 31:891–903. 2020. View Article : Google Scholar : PubMed/NCBI | |
Luo Q, Song H, Deng X, Li J, Jian W, Zhao J, Zheng X, Basnet S, Ge H, Daniel T, et al: A triple-regulated oncolytic adenovirus carrying MicroRNA-143 exhibits potent antitumor efficacy in colorectal cancer. Mol Ther Oncolytics. 16:219–229. 2020. View Article : Google Scholar : PubMed/NCBI | |
Toropko M, Chuvpilo S and Karabelsky A: miRNA-mediated mechanisms in the generation of effective and safe oncolytic viruses. Pharmaceutics. 16:9862024. View Article : Google Scholar : PubMed/NCBI | |
Yu B, Kang J, Lei H, Li Z, Yang H and Zhang M: Immunotherapy for colorectal cancer. Front Immunol. 15:14333152024. View Article : Google Scholar : PubMed/NCBI | |
Zhao JL, Lin BL, Luo C, Yi YL, Huang P, Chen Y, Zhao S, Huang ZJ, Ma XY and Huang L: Challenges and strategies toward oncolytic virotherapy for leptomeningeal metastasis. J Transl Med. 22:10002024. View Article : Google Scholar : PubMed/NCBI | |
Oronsky B, Gastman B, Conley AP, Reid C, Caroen S and Reid T: Oncolytic adenoviruses: The cold war against cancer finally turns hot. Cancers (Basel). 14:47012022. View Article : Google Scholar : PubMed/NCBI | |
Yin L, Zhao C, Han J, Li Z, Zhen Y, Xiao R, Xu Z and Sun Y: Antitumor effects of oncolytic herpes simplex virus type 2 against colorectal cancer in vitro and in vivo. Ther Clin Risk Manag. 13:117–130. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gong J, Sachdev E, Mita AC and Mita MM: Clinical development of reovirus for cancer therapy: An oncolytic virus with immune-mediated antitumor activity. World J Methodol. 6:25–42. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li M, Zhang M, Ye Q, Liu Y and Qian W: Preclinical and clinical trials of oncolytic vaccinia virus in cancer immunotherapy: A comprehensive review. Cancer Biol Med. 20:646–661. 2023.PubMed/NCBI | |
Davis D and Lahiri SS: Application of oncolytic viruses for cure of colorectal cancer. Cancer Res J. 3:76–93. 2015. View Article : Google Scholar | |
Kana SI and Essani K: Immuno-oncolytic viruses: Emerging options in the treatment of colorectal cancer. Mol Diagn Ther. 25:301–313. 2021. View Article : Google Scholar : PubMed/NCBI | |
Larocca CJ, Wilber S, Jensen E, Steer C and Davydova J: 428 Development of an Oncolytic Adenovirus to Treat Metastatic Colorectal Cancer. J Clin Transl Sci. 7(Suppl 1): 1282023. View Article : Google Scholar : | |
Huang L, Zhao H, Shan M, Chen H, Xu B, He Y, Zhao Y, Liu Z, Chen J and Xu Q: Oncolytic adenovirus H101 ameliorate the efficacy of anti-PD-1 monotherapy in colorectal cancer. Cancer Med. 11:4575–4587. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li YS, Ye LY, Luo YX, Zheng WJ, Si JX, Yang X, Zhang YN, Wang SB, Zou H, Jin KT, et al: Tumor-targeted delivery of copper-manganese biomineralized oncolytic adenovirus for colorectal cancer immunotherapy. Acta Biomater. 179:243–255. 2024. View Article : Google Scholar : PubMed/NCBI | |
Scanlan H, Coffman Z, Bettencourt J, Shipley T and Bramblett DE: Herpes simplex virus 1 as an oncolytic viral therapy for refractory cancers. Front Oncol. 12:9400192022. View Article : Google Scholar : PubMed/NCBI | |
Ferrucci PF, Pala L, Conforti F and Cocorocchio E: Talimogene laherparepvec (T-VEC): An intralesional cancer immunotherapy for advanced melanoma. Cancers (Basel). 13:13832021. View Article : Google Scholar : PubMed/NCBI | |
Park SH, Breitbach CJ, Lee J, Park JO, Lim HY, Kang WK, Moon A, Mun JH, Sommermann EM, Maruri Avidal L, et al: Phase 1b trial of biweekly intravenous pexa-Vec (JX-594), an oncolytic and immunotherapeutic vaccinia virus in colorectal cancer. Mol Ther. 23:1532–1540. 2015. View Article : Google Scholar : PubMed/NCBI | |
Harrop R, Drury N, Shingler W, Chikoti P, Redchenko I, Carroll MW, Kingsman SM, Naylor S, Melcher A, Nicholls J, et al: Vaccination of colorectal cancer patients with modified vaccinia ankara encoding the tumor antigen 5T4 (TroVax) given alongside chemotherapy induces potent immune responses. Clin Cancer Res. 13:4487–4494. 2007. View Article : Google Scholar : PubMed/NCBI | |
Koch MS, Lawler SE and Chiocca EA: HSV-1 oncolytic viruses from bench to bedside: An overview of current clinical trials. Cancers (Basel). 12:35142020. View Article : Google Scholar : PubMed/NCBI | |
Snook AE, Baybutt TR, Xiang B, Abraham TS, Flickinger JC Jr, Hyslop T, Zhan T, Kraft WK, Sato T and Waldman SA: Split tolerance permits safe Ad5-GUCY2C-PADRE vaccine-induced T-cell responses in colon cancer patients. J Immunother Cancer. 7:1042019. View Article : Google Scholar : PubMed/NCBI | |
Balint JP, Gabitzsch ES, Rice A, Latchman Y, Xu Y, Messerschmidt GL, Chaudhry A, Morse MA and Jones FR: Extended evaluation of a phase 1/2 trial on dosing, safety, immunogenicity, and overall survival after immunizations with an advanced-generation Ad5 [E1-, E2b-]-CEA(6D) vaccine in late-stage colorectal cancer. Cancer Immunol Immunother. 64:977–987. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gögenur M, Balsevicius L, Bulut M, Colak N, Justesen TF, Fiehn AK, Jensen MB, Høst-Rasmussen K, Cappelen B, Gaggar S, et al: Neoadjuvant intratumoral influenza vaccine treatment in patients with proficient mismatch repair colorectal cancer leads to increased tumor infiltration of CD8+ T cells and upregulation of PD-L1: A phase 1/2 clinical trial. J Immunother Cancer. 11:e0067742023. View Article : Google Scholar : PubMed/NCBI | |
Jooss K, Ertl HC and Wilson JM: Cytotoxic T-lymphocyte target proteins and their major histocompatibility complex class I restriction in response to adenovirus vectors delivered to mouse liver. J Virol. 72:2945–2954. 1998. View Article : Google Scholar : PubMed/NCBI | |
Xue Y, Ruan Y, Wang Y, Xiao P and Xu J: Signaling pathways in liver cancer: Pathogenesis and targeted therapy. Mol Biomed. 5:202024. View Article : Google Scholar : PubMed/NCBI | |
Calistri D, Rengucci C, Seymour I, Lattuneddu A, Polifemo AM, Monti F, Saragoni L and Amadori D: Mutation analysis of p53, K-ras, and BRAF genes in colorectal cancer progression. J Cell Physiol. 204:484–488. 2005. View Article : Google Scholar : PubMed/NCBI | |
Fodde R: The APC gene in colorectal cancer. Eur J Cancer. 38:867–871. 2002. View Article : Google Scholar : PubMed/NCBI | |
Mehrvarz Sarshekeh A, Advani S, Overman MJ, Manyam G, Kee BK, Fogelman DR, Dasari A, Raghav K, Vilar E, Manuel S, et al: Association of SMAD4 mutation with patient demographics, tumor characteristics, and clinical outcomes in colorectal cancer. PLoS One. 12:e01733452017. View Article : Google Scholar : PubMed/NCBI | |
Chung Y, Wi YC, Kim Y, Bang SS, Yang JH, Jang K, Min KW and Paik SS: The Smad4/PTEN expression pattern predicts clinical outcomes in colorectal adenocarcinoma. J Pathol Transl Med. 52:37–44. 2018. View Article : Google Scholar : | |
Vaughn CP, ZoBell SD, Furtado LV, Baker CL and Samowitz WS: Frequency of KRAS, BRAF, and NRAS mutations in colorectal cancer. Genes Chromosomes Cancer. 50:307–312. 2011. View Article : Google Scholar : PubMed/NCBI | |
Überall I, Kolář Z, Trojanec R, Berkovcová J and Hajdúch M: The status and role of ErbB receptors in human cancer. Exp Mol Pathol. 84:79–89. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kerk SA, Papagiannakopoulos T, Shah YM and Lyssiotis CA: Metabolic networks in mutant KRAS-driven tumours: Tissue specificities and the microenvironment. Nat Rev Cancer. 21:510–525. 2021. View Article : Google Scholar : PubMed/NCBI | |
Schmitz KJ, Ademi C, Bertram S, Schmid KW and Baba HA: Prognostic relevance of autophagy-related markers LC3, p62/sequestosome 1, Beclin-1 and ULK1 in colorectal cancer patients with respect to KRAS mutational status. World J Surg Oncol. 14:1892016. View Article : Google Scholar : PubMed/NCBI | |
Jiffry J, Thavornwatanayong T, Rao D, Fogel EJ, Saytoo D, Nahata R, Guzik H, Chaudhary I, Augustine T, Goel S and Maitra R: Oncolytic reovirus (pelareorep) induces autophagy in KRAS-mutated colorectal cancer. Clin Cancer Res. 27:865–876. 2021. View Article : Google Scholar : | |
Goel S, Ocean AJ, Parakrama RY, Ghalib MH, Chaudhary I, Shah U, Viswanathan S, Kharkwal H, Coffey M and Maitra R: Elucidation of pelareorep pharmacodynamics in A phase I trial in patients with KRAS-mutated colorectal cancer. Mol Cancer Ther. 19:1148–1156. 2020. View Article : Google Scholar : PubMed/NCBI | |
Su Z, El Hage M and Linnebacher M: Mutation patterns in colorectal cancer and their relationship with prognosis. Heliyon. 10:e365502024. View Article : Google Scholar : PubMed/NCBI | |
Sommariva S, Caviglia G, Ravera S, Frassoni F, Benvenuto F, Tortolina L, Castagnino N, Parodi S and Piana M: Computational quantification of global effects induced by mutations and drugs in signaling networks of colorectal cancer cells. Sci Rep. 11:196022021. View Article : Google Scholar : PubMed/NCBI | |
Zeng M, Zhang W, Li Y and Yu L: Harnessing adenovirus in cancer immunotherapy: Evoking cellular immunity and targeting delivery in cell-specific manner. Biomark Res. 12:362024. View Article : Google Scholar : PubMed/NCBI | |
Liu CC, Liu JH, Wu SC, Yen CC, Chen WS and Tsai YC: A novel E1B-55kD-deleted oncolytic adenovirus carrying mutant KRAS-regulated hdm2 transgene exerts specific antitumor efficacy on colorectal cancer cells. Mol Cancer Ther. 9:450–460. 2010. View Article : Google Scholar : PubMed/NCBI | |
Planchard D, Besse B, Groen HJM, Souquet PJ, Quoix E, Baik CS, Barlesi F, Kim TM, Mazieres J, Novello S, et al: Dabrafenib plus trametinib in patients with previously treated BRAF(V600E)-mutant metastatic non-small cell lung cancer: An open-label, multicentre phase 2 trial. Lancet Oncol. 17:984–993. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kopetz S, Grothey A, Yaeger R, Van Cutsem E, Desai J, Yoshino T, Wasan H, Ciardiello F, Loupakis F, Hong YS, et al: Encorafenib, binimetinib, and cetuximab in BRAF V600E-mutated colorectal cancer. N Engl J Med. 381:1632–1643. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kopetz S, Murphy DA, Pu J, Ciardiello F, Desai J, Van Cutsem E, Wasan HS, Yoshino T, Saffari H, Zhang X, et al: Molecular profiling of BRAF-V600E-mutant metastatic colorectal cancer in the phase 3 BEACON CRC trial. Nat Med. 30:3261–3271. 2024. View Article : Google Scholar : PubMed/NCBI | |
Ivanova M, Venetis K, Guerini-Rocco E, Bottiglieri L, Mastropasqua MG, Garrone O, Fusco N and Ghidini M: HER2 in metastatic colorectal cancer: Pathology, somatic alterations, and perspectives for novel therapeutic schemes. Life (Basel). 12:14032022.PubMed/NCBI | |
Yonesaka K, Zejnullahu K, Okamoto I, Satoh T, Cappuzzo F, Souglakos J, Ercan D, Rogers A, Roncalli M, Takeda M, et al: Activation of ERBB2 signaling causes resistance to the EGFR-directed therapeutic antibody cetuximab. Sci Transl Med. 3:99ra86. 2011. View Article : Google Scholar : PubMed/NCBI | |
Takegawa N and Yonesaka K: HER2 as an emerging oncotarget for colorectal cancer treatment after failure of anti-epidermal growth factor receptor therapy. Clin Colorectal Cancer. 16:247–251. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Zhou D, Liu D, Xu X, Zhang K, Hu R, Xiong P, Wang C, Zeng X, Wang L and Zhang S: Synergistic antitumor activity between HER2 antibody-drug conjugate and chemotherapy for treating advanced colorectal cancer. Cell Death Dis. 15:1872024. View Article : Google Scholar : PubMed/NCBI | |
Li K, Luo H, Huang L, Luo H and Zhu X: Microsatellite instability: A review of what the oncologist should know. Cancer Cell Int. 20:162020. View Article : Google Scholar : PubMed/NCBI | |
Schumacher TN and Schreiber RD: Neoantigens in cancer immunotherapy. Science. 348:69–74. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xiao B, Qin Y, Ying C, Ma B, Wang B, Long F, Wang R, Fang L and Wang Y: Combination of oncolytic adenovirus and luteolin exerts synergistic antitumor effects in colorectal cancer cells and a mouse model. Mol Med Rep. 16:9375–9382. 2017. View Article : Google Scholar : PubMed/NCBI | |
Calu V, Ionescu A, Stanca L, Geicu OI, Iordache F, Pisoschi AM, Serban AI and Bilteanu L: Key biomarkers within the colorectal cancer related inflammatory microenvironment. Sci Rep. 11:79402021. View Article : Google Scholar : PubMed/NCBI | |
Mao C, Yang ZY, Hu XF, Chen Q and Tang JL: PIK3CA exon 20 mutations as a potential biomarker for resistance to anti-EGFR monoclonal antibodies in KRAS wild-type metastatic colorectal cancer: A systematic review and meta-analysis. Ann Oncol. 23:1518–1525. 2012. View Article : Google Scholar | |
Wu X, Yan H, Qiu M, Qu X, Wang J, Xu S, Zheng Y, Ge M, Yan L and Liang L: Comprehensive characterization of tumor microenvironment in colorectal cancer via molecular analysis. Elife. 12:e860322023. View Article : Google Scholar : PubMed/NCBI | |
Hirata E and Sahai E: Tumor microenvironment and differential responses to therapy. Cold Spring Harb Perspect Med. 7:a0267812017. View Article : Google Scholar : PubMed/NCBI | |
Jia Q, Wang A, Yuan Y, Zhu B and Long H: Heterogeneity of the tumor immune microenvironment and its clinical relevance. Exp Hematol Oncol. 11:242022. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Yu X, Zheng L, Zhang Y, Li Y, Fang Q, Gao R, Kang B, Zhang Q, Huang JY, et al: Lineage tracking reveals dynamic relationships of T cells in colorectal cancer. Nature. 564:268–272. 2018. View Article : Google Scholar : PubMed/NCBI | |
Karlsson S and Nyström H: The extracellular matrix in colorectal cancer and its metastatic settling-Alterations and biological implications. Crit Rev Oncol Hematol. 175:1037122022. View Article : Google Scholar | |
Becht E, de Reyniès A, Giraldo NA, Pilati C, Buttard B, Lacroix L, Selves J, Sautès-Fridman C, Laurent-Puig P and Fridman WH: Immune and stromal classification of colorectal cancer is associated with molecular subtypes and relevant for precision immunotherapy. Clin Cancer Res. 22:4057–4066. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen DS and Mellman I: Elements of cancer immunity and the cancer-immune set point. Nature. 541:321–330. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jin MZ and Jin WL: The updated landscape of tumor microenvironment and drug repurposing. Signal Transduct Target Ther. 5:1662020. View Article : Google Scholar : PubMed/NCBI | |
Ohta A, Kini R, Ohta A, Subramanian M, Madasu M and Sitkovsky M: The development and immunosuppressive functions of CD4(+) CD25(+) FoxP3(+) regulatory T cells are under influence of the adenosine-A2A adenosine receptor pathway. Front Immunol. 3:1902012. View Article : Google Scholar : PubMed/NCBI | |
Schmidt A, Oberle N and Krammer PH: Molecular mechanisms of treg-mediated T cell suppression. Front Immunol. 3:512012. View Article : Google Scholar : PubMed/NCBI | |
Ghiringhelli F, Puig PE, Roux S, Roux S, Parcellier A, Schmitt E, Solary E, Kroemer G, Martin F, Chauffert B and Zitvogel L: Tumor cells convert immature myeloid dendritic cells into TGF-beta-secreting cells inducing CD4+CD25+ regulatory T cell proliferation. J Exp Med. 202:919–929. 2005. View Article : Google Scholar : PubMed/NCBI | |
Morello S, Pinto A, Blandizzi C and Antonioli L: Myeloid cells in the tumor microenvironment: Role of adenosine. Oncoimmunology. 5:e11085152016. View Article : Google Scholar : PubMed/NCBI | |
Aristin Revilla S, Kranenburg O and Coffer PJ: Colorectal cancer-infiltrating regulatory T cells: Functional heterogeneity, metabolic adaptation, and therapeutic targeting. Front Immunol. 13:9035642022. View Article : Google Scholar : PubMed/NCBI | |
Hong J, Chen X, Chen L, Wang Y, Huang B and Fang H: Clinical value of combined detection of serum sTim-3 and CEA or CA19-9 for postoperative recurrence of colorectal cancer diagnosis. Cancer Manag Res. 15:563–572. 2023. View Article : Google Scholar : PubMed/NCBI | |
He X and Xu C: Immune checkpoint signaling and cancer immunotherapy. Cell Res. 30:660–669. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ganesh K, Stadler ZK, Cercek A, Mendelsohn RB, Shia J, Segal NH and Diaz LA Jr: Immunotherapy in colorectal cancer: rationale, challenges and potential. Nat Rev Gastroenterol Hepatol. 16:361–375. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dong H, Li M, Yang C, Wei W, He X, Cheng G and Wang S: Combination therapy with oncolytic viruses and immune checkpoint inhibitors in head and neck squamous cell carcinomas: An approach of complementary advantages. Cancer Cell Int. 23:12023. View Article : Google Scholar : PubMed/NCBI | |
Song D, Hou S, Ma N, Yan B and Gao J: Efficacy and safety of PD-1/PD-L1 and CTLA-4 immune checkpoint inhibitors in the treatment of advanced colorectal cancer: A systematic review and meta-analysis. Front Immunol. 15:14853032024. View Article : Google Scholar : PubMed/NCBI | |
Chen EX, Jonker DJ, Loree JM, Kennecke HF, Berry SR, Couture F, Ahmad CE, Goffin JR, Kavan P, Harb M, et al: Effect of combined immune checkpoint inhibition vs best supportive care alone in patients with advanced colorectal cancer: The Canadian cancer trials group CO.26 study. JAMA Oncol. 6:831–838. 2020. View Article : Google Scholar : PubMed/NCBI | |
Overman MJ, Lonardi S, Wong KYM, Lenz HJ, Gelsomino F, Aglietta M, Morse MA, Van Cutsem E, McDermott R, Hill A, et al: Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J Clin Oncol. 36:773–779. 2018. View Article : Google Scholar : PubMed/NCBI | |
Thibaudin M, Fumet JD, Chibaudel B, Bennouna J, Borg C, Martin-Babau J, Cohen R, Fonck M, Taieb J, Limagne E, et al: First-line durvalumab and tremelimumab with chemotherapy in RAS-mutated metastatic colorectal cancer: a phase 1b/2 trial. Nat Med. 29:2087–2098. 2023. View Article : Google Scholar : PubMed/NCBI | |
Shi T, Song X, Wang Y, Liu F and Wei J: Combining oncolytic viruses with cancer immunotherapy: Establishing a new generation of cancer treatment. Front Immunol. 11:6832020. View Article : Google Scholar : PubMed/NCBI | |
Xu H, Russell SN, Steiner K, O'Neill E and Jones KI: Targeting PI3K-gamma in myeloid driven tumour immune suppression: A systematic review and meta-analysis of the preclinical literature. Cancer Immunol Immunother. 73:2042024. View Article : Google Scholar : PubMed/NCBI | |
Arai H, Battaglin F, Wang J, Lo JH, Soni S, Zhang W and Lenz HJ: Molecular insight of regorafenib treatment for colorectal cancer. Cancer Treat Rev. 81:1019122019. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Ji Q and Li Q: Resistance to anti-EGFR therapies in metastatic colorectal cancer: Underlying mechanisms and reversal strategies. J Exp Clin Cancer Res. 40:3282021. View Article : Google Scholar : PubMed/NCBI | |
Leiphrakpam PD and Are C: PI3K/Akt/mTOR signaling pathway as a target for colorectal cancer treatment. Int J Mol Sci. 25:31782024. View Article : Google Scholar : PubMed/NCBI | |
Stefani C, Miricescu D, Stanescu-Spinu II, Nica RI, Greabu M, Totan AR and Jinga M: Growth factors, PI3K/AKT/mTOR and MAPK signaling pathways in colorectal cancer pathogenesis: Where are we now? Int J Mol Sci. 22:102602021. View Article : Google Scholar : PubMed/NCBI | |
Diaz LA Jr, Shiu KK, Kim TW, Jensen BV, Jensen LH, Punt C, Smith D, Garcia-Carbonero R, Benavides M, Gibbs P, et al: Pembrolizumab versus chemotherapy for microsatellite instability-high or mismatch repair-deficient metastatic colorectal cancer (KEYNOTE-177): Final analysis of a randomised, open-label, phase 3 study. Lancet Oncol. 23:659–670. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kalyan A, Kircher S, Shah H, Mulcahy M and Benson A: Updates on immunotherapy for colorectal cancer. J Gastrointest Oncol. 9:160–169. 2018. View Article : Google Scholar : PubMed/NCBI | |
Huo G, Liu W, Zhang S and Chen P: Efficacy of PD-1/PD-L1 plus CTLA-4 inhibitors in solid tumors based on clinical characteristics: a meta-analysis. Immunotherapy. 15:189–207. 2023. View Article : Google Scholar : PubMed/NCBI | |
Shi Y, Wang X, Meng Y, Ma J, Zhang Q, Shao G, Wang L, Cheng X, Hong X, Wang Y, et al: A novel mechanism of endoplasmic reticulum stress- and c-Myc-degradation-mediated therapeutic benefits of antineurokinin-1 receptor drugs in colorectal cancer. Adv Sci (Weinh). 8:e21019362021. View Article : Google Scholar : PubMed/NCBI | |
Benboubker V, Ramzy GM, Jacobs S and Nowak-Sliwinska P: Challenges in validation of combination treatment strategies for CRC using patient-derived organoids. J Exp Clin Cancer Res. 43:2592024. View Article : Google Scholar : PubMed/NCBI | |
Sillo TO, Beggs AD, Morton DG and Middleton G: Mechanisms of immunogenicity in colorectal cancer. Br J Surg. 106:1283–1297. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hu Z, Li Y, Yang J, Liu J, Zhou H, Sun C, Tian C, Zhu C, Shao M, Wang S, et al: Improved antitumor effectiveness of oncolytic HSV-1 viruses engineered with IL-15/IL-15Rα complex combined with oncolytic HSV-1-aPD1 targets colon cancer. Sci Rep. 14:236712024. View Article : Google Scholar | |
Bommareddy PK, Shettigar M and Kaufman HL: Integrating oncolytic viruses in combination cancer immunotherapy. Nat Rev Immunol. 18:498–513. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Ravindranathan R, Kalinski P, Guo ZS and Bartlett DL: Rational combination of oncolytic vaccinia virus and PD-L1 blockade works synergistically to enhance therapeutic efficacy. Nat Commun. 8:147542017. View Article : Google Scholar : PubMed/NCBI | |
Xie X, Lv J, Zhu W, Tian C, Li J, Liu J, Zhou H, Sun C, Hu Z and Li X: The combination therapy of oncolytic HSV-1 armed with anti-PD-1 antibody and IL-12 enhances anti-tumor efficacy. Transl Oncol. 15:1012872022. View Article : Google Scholar | |
Jung I, Shin S, Baek MC and Yea K: Modification of immune cell-derived exosomes for enhanced cancer immunotherapy: Current advances and therapeutic applications. Exp Mol Med. 56:19–31. 2024. View Article : Google Scholar : PubMed/NCBI | |
Fan T, Zhang M, Yang J, Zhu Z, Cao W and Dong C: Therapeutic cancer vaccines: Advancements, challenges, and prospects. Signal Transduct Target Ther. 8:4502023. View Article : Google Scholar : PubMed/NCBI | |
Senzer NN, Kaufman H, Amatruda T, Nemunaitis M, Daniels GA, Glaspy J, Goldsweig H, Coffin RS and Nemunaitis J: Phase II clinical trial with a second generation, GM-CSF encoding, oncolytic herpesvirus in unresectable metastatic melanoma. J Clin Oncol. 27(15 Suppl): S90352009. View Article : Google Scholar | |
Ott PA and Hodi FS: Talimogene laherparepvec for the treatment of advanced melanoma. Clin Cancer Res. 22:3127–3131. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ylösmäki E, Ylösmäki L, Fusciello M, Martins B, Ahokas P, Cojoc H, Uoti A, Feola S, Kreutzman A, Ranki T, et al: Characterization of a novel OX40 ligand and CD40 ligand-expressing oncolytic adenovirus used in the PeptiCRAd cancer vaccine platform. Mol Ther Oncolytics. 20:459–469. 2021. View Article : Google Scholar : PubMed/NCBI | |
Huang Q, Cai WQ, Han ZW, Wang MY, Zhou Y, Cheng JT, Zhang Y, Wang YY, Xin Q, Wang XW, et al: Bispecific T cell engagers and their synergistic tumor immunotherapy with oncolytic viruses. Am J Cancer Res. 11:2430–2455. 2021.PubMed/NCBI | |
Guo ZS, Lotze MT, Zhu Z, Storkus WJ and Song XT: Bi- and tri-specific T cell engager-armed oncolytic viruses: Next-generation cancer immunotherapy. Biomedicines. 8:2042020. View Article : Google Scholar : PubMed/NCBI | |
Jiang J, Li J, Zhou X, Zhao X, Huang B and Qin Y: Exosomes regulate the epithelial-mesenchymal transition in cancer. Front Oncol. 12:8649802022. View Article : Google Scholar : PubMed/NCBI | |
Xiang Z, Hua M, Hao Z, Biao H, Zhu C, Zhai G and Wu J: The roles of mesenchymal stem cells in gastrointestinal cancers. Front Immunol. 13:8440012022. View Article : Google Scholar : PubMed/NCBI | |
Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, Phan GQ, Citrin DE, Restifo NP, Robbins PF, Wunderlich JR, et al: Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res. 17:4550–4557. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nguyen HM, Bommareddy PK, Silk AW and Saha D: Optimal timing of PD-1 blockade in combination with oncolytic virus therapy. Semin Cancer Biol. 86:971–980. 2022. View Article : Google Scholar | |
Pol J, Kroemer G and Galluzzi L: First oncolytic virus approved for melanoma immunotherapy. Oncoimmunology. 5:e11156412015. View Article : Google Scholar | |
Overman MJ, Ernstoff MS and Morse MA: Where we stand with immunotherapy in colorectal cancer: deficient mismatch repair, proficient mismatch repair, and toxicity management. Am Soc Clin Oncol Educ Book. 38:239–247. 2018. View Article : Google Scholar : PubMed/NCBI | |
Creasy JM, Sadot E, Koerkamp BG, Chou JF, Gonen M, Kemeny NE, Balachandran VP, Kingham TP, DeMatteo RP, Allen PJ, et al: Actual 10-year survival after hepatic resection of colorectal liver metastases: What factors preclude cure? Surgery. 163:1238–1244. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yu J, Green MD, Li S, Sun Y, Journey SN, Choi JE, Rizvi SM, Qin A, Waninger JJ, Lang X, et al: Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination. Nat Med. 27:152–164. 2021. View Article : Google Scholar : PubMed/NCBI | |
Garg P, Pareek S, Kulkarni P, Horne D, Salgia R and Singhal SS: Next-generation immunotherapy: Advancing clinical applications in cancer treatment. J Clin Med. 13:65372024. View Article : Google Scholar : PubMed/NCBI | |
Jin KT, Du WL, Liu YY, Lan HR, Si JX and Mou XZ: Oncolytic virotherapy in solid tumors: The challenges and achievements. Cancers (Basel). 13:5882021. View Article : Google Scholar : PubMed/NCBI | |
Chen Q, Zhang H, Wu M, Wang Q, Luo L, Ma H, Zhang X and He S: Discovery of a potent hedgehog pathway inhibitor capable of activating caspase8-dependent apoptosis. J Pharmacol Sci. 137:256–264. 2018. View Article : Google Scholar : PubMed/NCBI | |
Albring KF, Weidemüller J, Mittag S, Weiske J, Friedrich K, Geroni MC, Lombardi P and Huber O: Berberine acts as a natural inhibitor of Wnt/β-catenin signaling-identification of more active 13-arylalkyl derivatives. Biofactors. 39:652–662. 2013. View Article : Google Scholar : PubMed/NCBI | |
García-Foncillas J, Sunakawa Y, Aderka D, Wainberg Z, Ronga P, Witzler P and Stintzing S: Distinguishing features of cetuximab and panitumumab in colorectal cancer and other solid tumors. Front Oncol. 9:8492019. View Article : Google Scholar : PubMed/NCBI | |
Xie YH, Chen YX and Fang JY: Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther. 5:222020. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Zhang H, Xiang T and Wang G: Clinical application of adaptive immune therapy in MSS colorectal cancer patients. Front Immunol. 12:7623412021. View Article : Google Scholar : PubMed/NCBI | |
Fukuoka S, Hara H, Takahashi N, Kojima T, Kawazoe A, Asayama M, Yoshii T, Kotani D, Tamura H, Mikamoto Y, et al: Regorafenib plus nivolumab in patients with advanced gastric or colorectal cancer: An open-label, dose-escalation, and dose-expansion phase Ib trial (REGONIVO, EPOC1603). J Clin Oncol. 38:2053–2061. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A, Griffing S, Holmgren E, et al: Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 350:2335–2342. 2004. View Article : Google Scholar : PubMed/NCBI | |
Qin Y, Ma FY, Zhang Z, Zhao CH and Huang B: Vascular endothelial growth factor pathway's influence on bevacizumab efficacy in metastatic colorectal cancer treatment. World J Gastrointest Oncol. 16:4514–4517. 2024. View Article : Google Scholar : PubMed/NCBI | |
Tilgase A, Olmane E, Nazarovs J, Brokāne L, Erdmanis R, Rasa A and Alberts P: Multimodality treatment of a colorectal cancer stage IV patient with FOLFOX-4, bevacizumab, rigvir oncolytic virus, and surgery. Case Rep Gastroenterol. 12:457–465. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wu Z, Ichinose T, Naoe Y, Matsumura S, Villalobos IB, Eissa IR, Yamada S, Miyajima N, Morimoto D, Mukoyama N, et al: Combination of cetuximab and oncolytic virus canerpaturev synergistically inhibits human colorectal cancer growth. Mol Ther Oncolytics. 13:107–115. 2019. View Article : Google Scholar : PubMed/NCBI | |
Van Cutsem E, Tabernero J, Lakomy R, Prenen H, Prausová J, Macarulla T, Ruff P, van Hazel GA, Moiseyenko V, Ferry D, et al: Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen. J Clin Oncol. 30:3499–3506. 2012. View Article : Google Scholar : PubMed/NCBI | |
Holch JW, Ricard I, Stintzing S, Modest DP and Heinemann V: The relevance of primary tumour location in patients with metastatic colorectal cancer: A meta-analysis of first-line clinical trials. Eur J Cancer. 70:87–98. 2017. View Article : Google Scholar | |
Schmoll HJ, Tabernero J, Maroun J, de Braud F, Price T, Van Cutsem E, Hill M, Hoersch S, Rittweger K and Haller DG: Capecitabine plus oxaliplatin compared with fluorouracil/folinic acid as adjuvant therapy for stage iii colon cancer: Final results of the NO16968 randomized controlled phase III trial. J Clin Oncol. 33:3733–3740. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lenz HJ, Ou FS, Venook AP, Hochster HS, Niedzwiecki D, Goldberg RM, Mayer RJ, Bertagnolli MM, Blanke CD, Zemla T, et al: Impact of consensus molecular subtype on survival in patients with metastatic colorectal cancer: Results from CALGB/SWOG 80405 (alliance). J Clin Oncol. 37:1876–1885. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dienstmann R, Vermeulen L, Guinney J, Kopetz S, Tejpar S and Tabernero J: Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nat Rev Cancer. 17:79–92. 2017. View Article : Google Scholar : PubMed/NCBI | |
Westphalen CB, Martins-Branco D, Beal JR, Cardone C, Coleman N, Schram AM, Halabi S, Michiels S, Yap C, André F, et al: The ESMO tumour-agnostic classifier and screener (ETAC-S): A tool for assessing tumour-agnostic potential of molecularly guided therapies and for steering drug development. Ann Oncol. 35:936–953. 2024. View Article : Google Scholar : PubMed/NCBI | |
McKean WB, Moser JC, Rimm D and Hu-Lieskovan S: Biomarkers in precision cancer immunotherapy: Promise and challenges. Am Soc Clin Oncol Educ Book. 40:e275–e291. 2020. View Article : Google Scholar : PubMed/NCBI | |
Steuerwald NM, Morris S, Nguyen DG and Patel JN: Understanding the biology and testing techniques for pharmacogenomics in oncology: A practical guide for the clinician. JCO Oncol Pract. 20:1441–1451. 2024. View Article : Google Scholar : PubMed/NCBI | |
Lișcu HD, Verga N, Atasiei DI, Badiu DC, Dumitru AV, Ultimescu F, Pavel C, Stefan RE, Manole DC and Ionescu AI: Biomarkers in colorectal cancer: Actual and future perspectives. Int J Mol Sci. 25:115352024. View Article : Google Scholar : | |
Marcus L, Fashoyin-Aje LA, Donoghue M, Yuan M, Rodriguez L, Gallagher PS, Philip R, Ghosh S, Theoret MR, Beaver JA, et al: FDA approval summary: Pembrolizumab for the treatment of tumor mutational burden-high solid tumors. Clin Cancer Res. 27:4685–4689. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yarchoan M, Hopkins A and Jaffee EM: Tumor mutational burden and response rate to PD-1 inhibition. N Engl J Med. 377:2500–2501. 2017. View Article : Google Scholar : PubMed/NCBI | |
Puccini A, Seeber A and Berger MD: Biomarkers in metastatic colorectal cancer: Status quo and future perspective. Cancers (Basel). 14:48282022. View Article : Google Scholar : PubMed/NCBI | |
Sunshine J and Taube JM: PD-1/PD-L1 inhibitors. Curr Opin Pharmacol. 23:32–38. 2015. View Article : Google Scholar : PubMed/NCBI | |
Matsuhashi N, Yamada T, Nagasaka T, Kataoka K, Sakamoto K, Koda K, Hiramatsu K, Matsuoka H, Kuramochi H, Ishida H, et al: Impact of RAS and BRAF heterogeneity on the efficacy of EGFR blockade in patients with metastatic colorectal cancer. J Clin Oncol. 43(4 Suppl): S2552025. View Article : Google Scholar | |
Ogunwobi OO, Mahmood F and Akingboye A: Biomarkers in colorectal cancer: Current research and future prospects. Int J Mol Sci. 21:53112020. View Article : Google Scholar : PubMed/NCBI | |
De Mattia E, Polesel J, Mezzalira S, Palazzari E, Pollesel S, Toffoli G and Cecchin E: Predictive and prognostic value of oncogene mutations and microsatellite instability in locally-advanced rectal cancer treated with neoadjuvant radiation-based therapy: A systematic review and meta-analysis. Cancers (Basel). 15:14692023. View Article : Google Scholar : PubMed/NCBI | |
Santollani L, Maiorino L, Zhang YJ, Palmeri JR, Stinson JA, Duhamel LR, Qureshi K, Suggs JR, Porth OT, Pinney W III, et al: Local delivery of cell surface-targeted immunocytokines programs systemic antitumor immunity. Nat Immunol. 25:1820–1829. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Shi X, Shen Y, Dong X, He R, Chen G, Zhang Y, Tan H and Zhang K: Nanoengineering-armed oncolytic viruses drive antitumor response: Progress and challenges. MedComm. 5:e7552024. View Article : Google Scholar : PubMed/NCBI | |
Hwang SR, Chakraborty K, An JM, Mondal J, Yoon HY and Lee Y: Pharmaceutical aspects of nanocarriers for smart anticancer therapy. Pharmaceutics. 13:18752021. View Article : Google Scholar : PubMed/NCBI | |
Choi JW, Nam JP, Nam K, Lee YS, Yun CO and Kim SW: Oncolytic adenovirus coated with multidegradable bioreducible core-cross-linked polyethylenimine for cancer gene therapy. Biomacromolecules. 16:2132–2143. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Liu Q, Wang M, Li L, Yu Y, Pan M, Hu D, Chu B, Qu Y and Qian Z: Genetically programmable cell membrane-camouflaged nanoparticles for targeted combination therapy of colorectal cancer. Signal Transduct Target Ther. 9:1582024. View Article : Google Scholar : PubMed/NCBI | |
Fang C, Xiao G, Wang T, Song L, Peng B, Xu B and Zhang K: Emerging nano-/biotechnology drives oncolytic virus-activated and combined cancer immunotherapy. Research (Wash D C). 6:01082023.PubMed/NCBI | |
Zhou F, Zhu H and Fu C: Editorial: Clinical therapeutic development against cancers resistant to targeted therapies. Front Pharmacol. 12:8168962022. View Article : Google Scholar : PubMed/NCBI | |
Kaufman HL, Kohlhapp FJ and Zloza A: Erratum: Oncolytic viruses: A new class of immunotherapy drugs. Nat Rev Drug Discov. 15:6602016. View Article : Google Scholar | |
Lichty BD, Breitbach CJ, Stojdl DF and Bell JC: Going viral with cancer immunotherapy. Nat Rev Cancer. 14:559–567. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lawler SE, Speranza MC, Cho CF and Chiocca EA: Oncolytic viruses in cancer treatment: A review. JAMA Oncol. 3:841–849. 2017. View Article : Google Scholar | |
Li X and Cheng Z: Oncolytic viruses in cancer immunotherapy. Adv Ther. 7:23004452024. View Article : Google Scholar | |
Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, Kadel EE III, Koeppen H, Astarita JL, Cubas R, et al: TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 554:544–548. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lv D, Fei Y, Chen H, Wang J, Han W, Cui B, Feng Y, Zhang P and Chen J: Crosstalk between T lymphocyte and extracellular matrix in tumor microenvironment. Front Immunol. 15:13407022024. View Article : Google Scholar : PubMed/NCBI | |
Fox CR and Parks GD: Histone deacetylase inhibitors enhance cell killing and block interferon-beta synthesis elicited by infection with an oncolytic parainfluenza virus. Viruses. 11:4312019. View Article : Google Scholar : PubMed/NCBI | |
Jennings VA, Scott GB, Rose AMS, Scott KJ, Migneco G, Keller B, Reilly K, Donnelly O, Peach H, Dewar D, et al: Potentiating oncolytic virus-induced immune-mediated tumor cell killing using histone deacetylase inhibition. Mol Ther. 27:1139–1152. 2019. View Article : Google Scholar : PubMed/NCBI | |
Roulstone V, Pedersen M, Kyula J, Mansfield D, Khan AA, McEntee G, Wilkinson M, Karapanagiotou E, Coffey M, Marais R, et al: BRAF- and MEK-targeted small molecule inhibitors exert enhanced antimelanoma effects in combination with oncolytic reovirus through ER stress. Mol Ther. 23:931–942. 2015. View Article : Google Scholar : PubMed/NCBI | |
De Henau O, Rausch M, Winkler D, Campesato LF, Liu C, Cymerman DH, Budhu S, Ghosh A, Pink M, Tchaicha J, et al: Overcoming resistance to checkpoint blockade therapy by targeting PI3Kγ in myeloid cells. Nature. 539:443–447. 2016. View Article : Google Scholar : PubMed/NCBI | |
Choi HJ, Chung TW, Kang SK, Lee YC, Ko JH, Kim JG and Kim CH: Ganglioside GM3 modulates tumor suppressor PTEN-mediated cell cycle progression-transcriptional induction of p21(WAF1) and p27(kip1) by inhibition of PI-3K/AKT pathway. Glycobiology. 16:573–583. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kazanets A, Shorstova T, Hilmi K, Marques M and Witcher M: Epigenetic silencing of tumor suppressor genes: Paradigms, puzzles, and potential. Biochim Biophys Acta. 1865:275–288. 2016.PubMed/NCBI | |
Wallace BD, Wang H, Lane KT, Scott JE, Orans J, Koo JS, Venkatesh M, Jobin C, Yeh LA, Mani S and Redinbo MR: Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science. 330:831–835. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jung G, Hernández-Illán E, Moreira L, Balaguer F and Goel A: Epigenetics of colorectal cancer: Biomarker and therapeutic potential. Nat Rev Gastroenterol Hepatol. 17:111–130. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kaur M, Frahm F, Lu Y, Ascha MS, Guadamuz JS, Dotan E, Gottesman AS, Leybovich BC, Sondhi A, Zhao Y, et al: Broadening eligibility criteria and diversity among patients for cancer clinical trials. NEJM Evid. 3:EVIDoa23002362024. View Article : Google Scholar : PubMed/NCBI | |
Veen T, Kanani A, Lea D and Søreide K: Clinical trials of neoadjuvant immune checkpoint inhibitors for early-stage operable colon and rectal cancer. Cancer Immunol Immunother. 72:3135–3147. 2023. View Article : Google Scholar : PubMed/NCBI | |
Li C, Ferro A, Mhatre SK, Lu D, Lawrance M, Li X, Li S, Allen S, Desai J, Fakih M, et al: Hybrid-control arm construction using historical trial data for an early-phase, randomized controlled trial in metastatic colorectal cancer. Commun Med (Lond). 2:902022. View Article : Google Scholar : PubMed/NCBI | |
Qi Z, Gu J, Qu L, Shi X, He Z, Sun J, Tan L and Sun M: Advancements of engineered live oncolytic biotherapeutics (microbe/virus/cells): Preclinical research and clinical progress. J Control Release. 375:209–235. 2024. View Article : Google Scholar : PubMed/NCBI | |
Xu Z, Li W, Dong X, Chen Y, Zhang D, Wang J, Zhou L and He G: Precision medicine in colorectal cancer: Leveraging multi-omics, spatial omics, and artificial intelligence. Clin Chim Acta. 559:1196862024. View Article : Google Scholar : PubMed/NCBI | |
Cornish AJ, Gruber AJ, Kinnersley B, Chubb D, Frangou A, Caravagna G, Noyvert B, Lakatos E, Wood HM, Thorn S, et al: The genomic landscape of 2,023 colorectal cancers. Nature. 633:127–136. 2024. View Article : Google Scholar : PubMed/NCBI | |
Gujar S, Pol JG, Kim Y, Lee PW and Kroemer G: Antitumor benefits of antiviral immunity: An underappreciated aspect of oncolytic virotherapies. Trends Immunol. 39:209–221. 2018. View Article : Google Scholar | |
Su Y, Su C and Qin L: Current landscape and perspective of oncolytic viruses and their combination therapies. Transl Oncol. 25:1015302022. View Article : Google Scholar : PubMed/NCBI | |
Bi Y, Sun L, Gao D, Ding C, Li Z, Li Y, Cun W and Li Q: High-efficiency targeted editing of large viral genomes by RNA-guided nucleases. PLoS Pathog. 10:e10040902014. View Article : Google Scholar : PubMed/NCBI | |
Hsu PD, Lander ES and Zhang F: Development and applications of CRISPR-Cas9 for genome engineering. Cell. 157:1262–1278. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cornall AM, Phillips S, Cummins E, Garland SM and Tabrizi SN: In vitro assessment of the effect of vaccine-targeted human papillomavirus (HPV) depletion on detection of non-vaccine HPV types: Implications for post-vaccine surveillance studies. J Virol Methods. 214:10–14. 2015. View Article : Google Scholar | |
Monge C, Xie C, Myojin Y, Coffman K, Hrones DM, Wang S, Hernandez JM, Wood BJ, Levy EB, Juburi I, et al: Phase I/II study of PexaVec in combination with immune checkpoint inhibition in refractory metastatic colorectal cancer. J Immunother Cancer. 11:e0056402023. View Article : Google Scholar : PubMed/NCBI | |
Zhang B, Huang J, Tang J, Hu S, Luo S, Luo Z, Zhou F, Tan S, Ying J, Chang Q, et al: Intratumoral OH2, an oncolytic herpes simplex virus 2, in patients with advanced solid tumors: A multicenter, phase I/II clinical trial. J Immunother Cancer. 9:e0022242021. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Pakmehr SA, Shahhosseini R, Hariri M, Fakhrioliaei A, Karkon Shayan F, Xiang W and Karkon Shayan S: Oncolytic viruses improve cancer immunotherapy by reprogramming solid tumor microenvironment. Med Oncol. 41:82023. View Article : Google Scholar : PubMed/NCBI | |
Fakih M, Raghav KPS, Chang DZ, Larson T, Cohn AL, Huyck TK, Cosgrove D, Fiorillo JA, Tam R, D'Adamo D, et al: Regorafenib plus nivolumab in patients with mismatch repair-proficient/microsatellite stable metastatic colorectal cancer: A single-arm, open-label, multicentre phase 2 study. EClinicalMedicine. 58:1019172023. View Article : Google Scholar : PubMed/NCBI | |
Wang N, Wang J, Zhang Z, Cao H, Yan W, Chu Y, Chard Dunmall LS and Wang Y: A novel vaccinia virus enhances anti-tumor efficacy and promotes a long-term anti-tumor response in a murine model of colorectal cancer. Mol Ther Oncolytics. 20:71–81. 2020. View Article : Google Scholar | |
Chen L, Chen H, Ye J, Ge Y, Wang H, Dai E, Ren J, Liu W, Ma C, Ju S, et al: Intratumoral expression of interleukin 23 variants using oncolytic vaccinia virus elicit potent antitumor effects on multiple tumor models via tumor microenvironment modulation. Theranostics. 11:6668–6681. 2021. View Article : Google Scholar : PubMed/NCBI | |
Deng L, Yang X, Fan J, Ding Y, Peng Y, Xu D, Huang B and Hu Z: IL-24-Armed oncolytic vaccinia virus exerts potent antitumor effects via multiple pathways in colorectal cancer. Oncol Res. 28:579–590. 2021. View Article : Google Scholar : | |
Li J, O'Malley M, Sampath P, Kalinski P, Bartlett DL and Thorne SH: Expression of CCL19 from oncolytic vaccinia enhances immunotherapeutic potential while maintaining oncolytic activity. Neoplasia. 14:1115–1121. 2012. View Article : Google Scholar | |
Flanagan K, Glover RT, Hörig H, Yang W and Kaufman HL: Local delivery of recombinant vaccinia virus expressing secondary lymphoid chemokine (SLC) results in a CD4 T-cell dependent antitumor response. Vaccine. 22:2894–2903. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bereta M, Bereta J, Park J, Medina F, Kwak H and Kaufman HL: Immune properties of recombinant vaccinia virus encoding CD154 (CD40L) are determined by expression of virally encoded CD40L and the presence of CD40L protein in viral particles. Cancer Gene Ther. 11:808–818. 2004. View Article : Google Scholar : PubMed/NCBI | |
Warner SG, Kim SI, Chaurasiya S, O'Leary MP, Lu J, Sivanandam V, Woo Y, Chen NG and Fong Y: A novel chimeric poxvirus encoding hNIS Is tumor-tropic, imageable, and synergistic with radioiodine to sustain colon cancer regression. Mol Ther Oncolytics. 13:82–92. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xing M, Wang X, Chi Y and Zhou D: Gene therapy for colorectal cancer using adenovirus-mediated full-length antibody, cetuximab. Oncotarget. 7:28262–28272. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rong Y, Ning Y, Zhu J, Feng P, Zhu W, Zhao X, Xiong Z, Ruan C, Jin J, Wang H, et al: Oncolytic adenovirus encoding decorin and CD40 ligand inhibits tumor growth and liver metastasis via immune activation in murine colorectal tumor model. Mol Biomed. 5:392024. View Article : Google Scholar : PubMed/NCBI | |
Nie ZL, Pan YQ, He BS, Gu L, Chen LP, Li R, Xu YQ, Gao TY, Song GQ, Hoffman AR, et al: Gene therapy for colorectal cancer by an oncolytic adenovirus that targets loss of the insulin-like growth factor 2 imprinting system. Mol Cancer. 11:862012. View Article : Google Scholar : PubMed/NCBI | |
Hecht JR, Raman SS, Chan A, Kalinsky K, Baurain JF, Jimenez MM, Garcia MM, Berger MD, Lauer UM, Khattak A, et al: Phase Ib study of talimogene laherparepvec in combination with atezolizumab in patients with triple negative breast cancer and colorectal cancer with liver metastases. ESMO Open. 8:1008842023. View Article : Google Scholar : PubMed/NCBI | |
Tian L, Liu T, Jiang S, Cao Y, Kang K, Su H, Ren G, Wang Z, Xiao W and Li D: Oncolytic Newcastle disease virus expressing the co-stimulator OX40L as immunopotentiator for colorectal cancer therapy. Gene Ther. 30:64–74. 2023. View Article : Google Scholar | |
Vigil A, Park MS, Martinez O, Chua MA, Xiao S, Cros JF, Martínez-Sobrido L, Woo SL and García-Sastre A: Use of reverse genetics to enhance the oncolytic properties of Newcastle disease virus. Cancer Res. 67:8285–8292. 2007. View Article : Google Scholar : PubMed/NCBI | |
Li X, Wang Z, Zhang S, Yao Q, Chen W and Liu F: Ruxolitinib induces apoptosis of human colorectal cancer cells by downregulating the JAK1/2-STAT1-Mcl-1 axis. Oncol Lett. 21:3522021. View Article : Google Scholar : PubMed/NCBI | |
Ghonime MG and Cassady KA: Combination therapy using ruxolitinib and oncolytic HSV renders resistant MPNSTs susceptible to virotherapy. Cancer Immunol Res. 6:1499–1510. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hong YS, Hong SW, Kim SM, Jin DH, Shin JS, Yoon DH, Kim KP, Lee JL, Heo DS, Lee JS and Kim TW: Bortezomib induces G2-M arrest in human colon cancer cells through ROS-inducible phosphorylation of ATM-CHK1. Int J Oncol. 41:76–82. 2012.PubMed/NCBI | |
Kim Y, Lee J, Lee D and Othmer HG: Synergistic effects of bortezomib-OV therapy and anti-invasive strategies in glioblastoma: A mathematical model. Cancers (Basel). 11:2152019. View Article : Google Scholar : PubMed/NCBI | |
Li X, Hu W, Shen J, Li M and Gong W: Targeting proteasome enhances anticancer activity of oncolytic HSV-1 in colorectal cancer. Virology. 578:13–21. 2023. View Article : Google Scholar | |
Dinu IM, Mihăilă M, Diculescu MM, Croitoru VM, Turcu-Stiolica A, Bogdan D, Miron MI, Lungulescu CV, Alexandrescu ST, Dumitrașcu T, et al: Bevacizumab treatment for metastatic colorectal cancer in real-world clinical practice. Medicina (Kaunas). 59:3502023. View Article : Google Scholar : PubMed/NCBI | |
Saoudi González N, Ros J, Baraibar I, Salvà F, Rodríguez-Castells M, Alcaraz A, García A, Tabernero J and Élez E: Cetuximab as a key partner in personalized targeted therapy for metastatic colorectal cancer. Cancers (Basel). 16:4122024. View Article : Google Scholar : PubMed/NCBI | |
Yang S, Li X, Guan W, Qian M, Yao Z, Yin X and Zhao H: NVP-BKM120 inhibits colon cancer growth via FoxO3a-dependent PUMA induction. Oncotarget. 8:83052–83062. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Ning J, Wakimoto H, Wu S, Wu CL, Humphrey MR, Rabkin SD and Martuza RL: Oncolytic herpes simplex virus and PI3K inhibitor BKM120 synergize to promote killing of prostate cancer stem-like cells. Mol Ther Oncolytics. 13:58–66. 2019. View Article : Google Scholar : PubMed/NCBI | |
Soltantoyeh T, Akbari B, Shahosseini Z, Mirzaei HR and Hadjati J: Simultaneous targeting of Tim3 and A2a receptors modulates MSLN-CAR T cell antitumor function in a human cervical tumor xenograft model. Front Immunol. 15:13629042024. View Article : Google Scholar : PubMed/NCBI | |
Chin K, Chand VK and Nuyten DSA: Avelumab: Clinical trial innovation and collaboration to advance anti-PD-L1 immunotherapy. Ann Oncol. 28:1658–1666. 2017. View Article : Google Scholar : PubMed/NCBI | |
Redman JM, O'Sullivan Coyne G, Reed CT, Madan RA, Strauss J, Steinberg SJ, Marté J, Cordes L, Heery C and Gulley JL: Avelumab in patients with metastatic colorectal cancer. Oncologist. 28:823–e804. 2023. View Article : Google Scholar : PubMed/NCBI | |
Español-Rego M, Fernández-Martos C, Elez E, Foguet C, Pedrosa L, Rodríguez N, Ruiz-Casado A, Pineda E, Cid J, Cabezón R, et al: A phase I-II multicenter trial with Avelumab plus autologous dendritic cell vaccine in pre-treated mismatch repair-proficient (MSS) metastatic colorectal cancer patients; GEMCAD 1602 study. Cancer Immunol Immunother. 72:827–840. 2023. View Article : Google Scholar : | |
Zhu WM and Middleton MR: Combination therapies for the optimisation of bispecific T-cell engagers in cancer treatment. Immunother Adv. 3:ltad0132023. View Article : Google Scholar : PubMed/NCBI | |
Heidbuechel JPW and Engeland CE: Oncolytic viruses encoding bispecific T cell engagers: A blueprint for emerging immunovirotherapies. J Hematol Oncol. 14:632021. View Article : Google Scholar : PubMed/NCBI | |
Puca E, Schmitt-Koopmann C, Furter M, Murer P, Probst P, Dihr M, Bajic D and Neri D: The targeted delivery of interleukin-12 to the carcinoembryonic antigen increases the intratumoral density of NK and CD8+ T cell in an immunocompetent mouse model of colorectal cancer. J Gastrointest Oncol. 11:803–811. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Oduro PK, Guo R, Li R, Leng L, Kong X, Wang Q and Yang L: Oncolytic viruses: Immunotherapy drugs for gastrointestinal malignant tumors. Front Cell Infect Microbiol. 12:9215342022. View Article : Google Scholar : PubMed/NCBI | |
Sumransub N, Vantanasiri K, Prakash A and Lou E: Advances and new frontiers for immunotherapy in colorectal cancer: Setting the stage for neoadjuvant success? Mol Ther Oncolytics. 22:1–12. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yoo SY, Bang SY, Jeong SN, Kang DH and Heo J: A cancer-favoring oncolytic vaccinia virus shows enhanced suppression of stem-cell like colon cancer. Oncotarget. 7:16479–16489. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shebbo S, Binothman N, Darwaish M, Niaz HA, Abdulal RH, Borjac J, Hashem AM and Mahmoud AB: Redefining the battle against colorectal cancer: A comprehensive review of emerging immunotherapies and their clinical efficacy. Front Immunol. 15:13502082024. View Article : Google Scholar : PubMed/NCBI |