Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
July-2025 Volume 56 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2025 Volume 56 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Farnesoid X receptor‑driven metabolic plasticity: Bridging physiological adaptation and malignant transformation in lipid handling (Review)

  • Authors:
    • Yanning Sun
    • Kai Sun
    • Hongju Ling
    • Qinghua Xia
  • View Affiliations / Copyright

    Affiliations: Urology Department, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
    Copyright: © Sun et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 110
    |
    Published online on: May 12, 2025
       https://doi.org/10.3892/ijmm.2025.5551
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Metabolic reprogramming represents a hallmark of malignant tumors, manifested through progressive alterations in nutrient utilization patterns during oncogenesis. As fundamental constituents of biological membranes, essential components of signaling pathways, and critical energy substrates, lipids undergo comprehensive metabolic restructuring in neoplastic cells. This lipid remodeling confers enhanced adaptability to sustain uncontrolled proliferation while promoting aggressive migratory phenotypes. Farnesoid X receptor (FXR), a ligand‑activated nuclear receptor responsive to bile acid (BA) derivatives and cholesterol metabolites, orchestrates key aspects of lipid homeostasis. Its regulatory network encompasses cholesterol/BA metabolism, fatty acid (FA) metabolism and plasma lipoprotein trafficking pathways. Emerging evidence positions FXR as a pleiotropic modulator in oncogenesis, with dysregulated expression patterns documented across multiple tumor lineages and premalignant lesions. This mechanistic understanding has propelled FXR‑targeted therapeutics into the forefront of precision oncology development. The present review critically examines the FXR‑lipid axis in lipid‑enriched malignancies, with particular emphasis on its regulatory circuitry governing BA flux and FA turnover.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schütz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P and Evans RM: The nuclear receptor superfamily: The second decade. Cell. 83:835–839. 1995. View Article : Google Scholar : PubMed/NCBI

2 

Forman BM, Goode E, Chen J, Oro AE, Bradley DJ, Perlmann T, Noonan DJ, Burka LT, McMorris T, Lamph WW, et al: Identification of a nuclear receptor that is activated by farnesol metabolites. Cell. 81:687–693. 1995. View Article : Google Scholar : PubMed/NCBI

3 

Parks DJ, Blanchard SG, Bledsoe RK, Chandra G, Consler TG, Kliewer SA, Stimmel JB, Willson TM, Zavacki AM, Moore DD and Lehmann JM: Bile acids: Natural ligands for an orphan nuclear receptor. Science. 284:1365–1368. 1999. View Article : Google Scholar : PubMed/NCBI

4 

Wang H, Chen J, Hollister K, Sowers LC and Forman BM: Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell. 3:543–553. 1999. View Article : Google Scholar : PubMed/NCBI

5 

Chávez-Talavera O, Tailleux A, Lefebvre P and Staels B: Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Gastroenterology. 152:1679–1694.e3. 2017. View Article : Google Scholar : PubMed/NCBI

6 

Mencarelli A and Fiorucci S: FXR an emerging therapeutic target for the treatment of atherosclerosis. J Cell Mol Med. 14:79–92. 2010. View Article : Google Scholar : PubMed/NCBI

7 

Wu Q, Sun L, Hu X, Wang X, Xu F, Chen B, Liang X, Xia J, Wang P, Aibara D, et al: Suppressing the intestinal farnesoid X receptor/sphingomyelin phosphodiesterase 3 axis decreases atherosclerosis. J Clin Invest. 131:e1428652021. View Article : Google Scholar : PubMed/NCBI

8 

Glass CK: Differential recognition of target genes by nuclear receptor monomers, dimers, and heterodimers. Endocr Rev. 15:391–407. 1994.PubMed/NCBI

9 

Downes M, Verdecia MA, Roecker AJ, Hughes R, Hogenesch JB, Kast-Woelbern HR, Bowman ME, Ferrer JL, Anisfeld AM, Edwards PA, et al: A chemical, genetic, and structural analysis of the nuclear bile acid receptor FXR. Mol Cell. 11:1079–1092. 2003. View Article : Google Scholar : PubMed/NCBI

10 

Mi LZ, Devarakonda S, Harp JM, Han Q, Pellicciari R, Willson TM, Khorasanizadeh S and Rastinejad F: Structural basis for bile acid binding and activation of the nuclear receptor FXR. Mol Cell. 11:1093–1100. 2003. View Article : Google Scholar : PubMed/NCBI

11 

Jiang L, Zhang H, Xiao D, Wei H and Chen Y: Farnesoid X receptor (FXR): Structures and ligands. Comput Struct Biotechnol J. 19:2148–2159. 2021. View Article : Google Scholar : PubMed/NCBI

12 

Tian SY, Chen SM, Pan CX and Li Y: FXR: Structures, biology, and drug development for NASH and fibrosis diseases. Acta Pharmacol Sin. 43:1120–1132. 2022. View Article : Google Scholar : PubMed/NCBI

13 

Otte K, Kranz H, Kober I, Thompson P, Hoefer M, Haubold B, Remmel B, Voss H, Kaiser C, Albers M, et al: Identification of farnesoid X receptor beta as a novel mammalian nuclear receptor sensing lanosterol. Mol Cell Biol. 23:864–872. 2003. View Article : Google Scholar : PubMed/NCBI

14 

Huber RM, Murphy K, Miao B, Link JR, Cunningham MR, Rupar MJ, Gunyuzlu PL, Haws TF, Kassam A, Powell F, et al: Generation of multiple farnesoid-X-receptor isoforms through the use of alternative promoters. Gene. 290:35–43. 2002. View Article : Google Scholar : PubMed/NCBI

15 

Zhang Y, Kast-Woelbern HR and Edwards PA: Natural structural variants of the nuclear receptor farnesoid X receptor affect transcriptional activation. J Biol Chem. 278:104–110. 2003. View Article : Google Scholar

16 

Vaquero J, Monte MJ, Dominguez M, Muntané J and Marin JJ: Differential activation of the human farnesoid X receptor depends on the pattern of expressed isoforms and the bile acid pool composition. Biochem Pharmacol. 86:926–939. 2013. View Article : Google Scholar : PubMed/NCBI

17 

Chen Y, Song X, Valanejad L, Vasilenko A, More V, Qiu X, Chen W, Lai Y, Slitt A, Stoner M, et al: Bile salt export pump is dysregulated with altered farnesoid X receptor isoform expression in patients with hepatocellular carcinoma. Hepatology. 57:1530–1541. 2013. View Article : Google Scholar

18 

Correia JC, Massart J, de Boer JF, Porsmyr-Palmertz M, Martínez-Redondo V, Agudelo LZ, Sinha I, Meierhofer D, Ribeiro V, Björnholm M, et al: Bioenergetic cues shift FXR splicing towards FXRα2 to modulate hepatic lipolysis and fatty acid metabolism. Mol Metab. 4:891–902. 2015. View Article : Google Scholar

19 

Massafra V and van Mil SWC: Farnesoid X receptor: A 'homeostat' for hepatic nutrient metabolism. Biochim Biophys Acta Mol Basis Dis. 1864:45–59. 2018. View Article : Google Scholar

20 

Marzolini C, Tirona RG, Gervasini G, Poonkuzhali B, Assem M, Lee W, Leake BF, Schuetz JD, Schuetz EG and Kim RB: A common polymorphism in the bile acid receptor farnesoid X receptor is associated with decreased hepatic target gene expression. Mol Endocrinol. 21:1769–1780. 2007. View Article : Google Scholar : PubMed/NCBI

21 

Ruscica M, Busnelli M, Runfola E, Corsini A and Sirtori CR: Impact of PPAR-Alpha polymorphisms-the case of metabolic disorders and atherosclerosis. Int J Mol Sci. 20:43782019. View Article : Google Scholar : PubMed/NCBI

22 

Meirhaeghe A and Amouyel P: Impact of genetic variation of PPARgamma in humans. Mol Genet Metab. 83:93–102. 2004. View Article : Google Scholar : PubMed/NCBI

23 

Valdivielso JM and Fernandez E: Vitamin D receptor polymorphisms and diseases. Clin Chim Acta. 371:1–12. 2006. View Article : Google Scholar : PubMed/NCBI

24 

Dahlman I, Nilsson M, Jiao H, Hoffstedt J, Lindgren CM, Humphreys K, Kere J, Gustafsson JA, Arner P and Dahlman-Wright K: Liver X receptor gene polymorphisms and adipose tissue expression levels in obesity. Pharmacogenet Genomics. 16:881–889. 2006. View Article : Google Scholar : PubMed/NCBI

25 

Nishigori H, Tomura H, Tonooka N, Kanamori M, Yamada S, Sho K, Inoue I, Kikuchi N, Onigata K, Kojima I, et al: Mutations in the small heterodimer partner gene are associated with mild obesity in Japanese subjects. Proc Natl Acad Sci USA. 98:575–580. 2001. View Article : Google Scholar : PubMed/NCBI

26 

Vaxillaire M, Rouard M, Yamagata K, Oda N, Kaisaki PJ, Boriraj VV, Chevre JC, Boccio V, Cox RD, Lathrop GM, et al: Identification of nine novel mutations in the hepatocyte nuclear factor 1 alpha gene associated with maturity-onset diabetes of the young (MODY3). Hum Mol Genet. 6:583–586. 1997. View Article : Google Scholar : PubMed/NCBI

27 

Yamagata K, Furuta H, Oda N, Kaisaki PJ, Menzel S, Cox NJ, Fajans SS, Signorini S, Stoffel M and Bell GI: Mutations in the hepatocyte nuclear factor-4alpha gene in maturity-onset diabetes of the young (MODY1). Nature. 384:458–460. 1996. View Article : Google Scholar : PubMed/NCBI

28 

van Mil SW, Milona A, Dixon PH, Mullenbach R, Geenes VL, Chambers J, Shevchuk V, Moore GE, Lammert F, Glantz AG, et al: Functional variants of the central bile acid sensor FXR identified in intrahepatic cholestasis of pregnancy. Gastroenterology. 133:507–516. 2007. View Article : Google Scholar : PubMed/NCBI

29 

Edwards PA, Kast HR and Anisfeld AM: BAREing it all: The adoption of LXR and FXR and their roles in lipid homeostasis. J Lipid Res. 43:2–12. 2002. View Article : Google Scholar : PubMed/NCBI

30 

Laffitte BA, Kast HR, Nguyen CM, Zavacki AM, Moore DD and Edwards PA: Identification of the DNA binding specificity and potential target genes for the farnesoid X-activated receptor. J Biol Chem. 275:10638–10647. 2000. View Article : Google Scholar : PubMed/NCBI

31 

Chen WD, Wang YD, Zhang L, Shiah S, Wang M, Yang F, Yu D, Forman BM and Huang W: Farnesoid X receptor alleviates age-related proliferation defects in regenerating mouse livers by activating forkhead box m1b transcription. Hepatology. 51:953–962. 2010. View Article : Google Scholar

32 

Gautier T, de Haan W, Grober J, Ye D, Bahr MJ, Claudel T, Nijstad N, Van Berkel TJC, Havekes LM, Manns MP, et al: Farnesoid X receptor activation increases cholesteryl ester transfer protein expression in humans and transgenic mice. J Lipid Res. 54:2195–2205. 2013. View Article : Google Scholar : PubMed/NCBI

33 

Anisfeld AM, Kast-Woelbern HR, Meyer ME, Jones SA, Zhang Y, Williams KJ, Willson T and Edwards PA: Syndecan-1 expression is regulated in an isoform-specific manner by the farnesoid-X receptor. J Biol Chem. 278:20420–20428. 2003. View Article : Google Scholar : PubMed/NCBI

34 

Thomas AM, Hart SN, Kong B, Fang J, Zhong XB and Guo GL: Genome-wide tissue-specific farnesoid X receptor binding in mouse liver and intestine. Hepatology. 51:1410–1419. 2010. View Article : Google Scholar : PubMed/NCBI

35 

Panzitt K and Wagner M: FXR in liver physiology: Multiple faces to regulate liver metabolism. Biochim Biophys Acta Mol Basis Dis. 1867:1661332021. View Article : Google Scholar : PubMed/NCBI

36 

Anisfeld AM, Kast-Woelbern HR, Lee H, Zhang Y, Lee FY and Edwards PA: Activation of the nuclear receptor FXR induces fibrinogen expression: A new role for bile acid signaling. J Lipid Res. 46:458–468. 2005. View Article : Google Scholar

37 

Zhao A, Lew JL, Huang L, Yu J, Zhang T, Hrywna Y, Thompson JR, de Pedro N, Blevins RA, Peláez F, et al: Human kininogen gene is transactivated by the farnesoid X receptor. J Biol Chem. 278:28765–28770. 2003. View Article : Google Scholar : PubMed/NCBI

38 

Zhang X, Huang S, Gao M, Liu J, Jia X, Han Q, Zheng S, Miao Y, Li S, Weng H, et al: Farnesoid X receptor (FXR) gene deficiency impairs urine concentration in mice. Proc Natl Acad Sci USA. 111:2277–2282. 2014. View Article : Google Scholar : PubMed/NCBI

39 

Jiang T, Wang XX, Scherzer P, Wilson P, Tallman J, Takahashi H, Li J, Iwahashi M, Sutherland E, Arend L and Levi M: Farnesoid X receptor modulates renal lipid metabolism, fibrosis, and diabetic nephropathy. Diabetes. 56:2485–2493. 2007. View Article : Google Scholar : PubMed/NCBI

40 

Glatz JFC and Luiken J: Dynamic role of the transmembrane glycoprotein CD36 (SR-B2) in cellular fatty acid uptake and utilization. J Lipid Res. 59:1084–1093. 2018. View Article : Google Scholar : PubMed/NCBI

41 

Wilson CG, Tran JL, Erion DM, Vera NB, Febbraio M and Weiss EJ: Hepatocyte-specific disruption of CD36 attenuates fatty liver and improves insulin sensitivity in HFD-fed mice. Endocrinology. 157:570–585. 2016. View Article : Google Scholar :

42 

Zhou J, Febbraio M, Wada T, Zhai Y, Kuruba R, He J, Lee JH, Khadem S, Ren S, Li S, et al: Hepatic fatty acid transporter Cd36 is a common target of LXR, PXR, and PPARgamma in promoting steatosis. Gastroenterology. 134:556–567. 2008. View Article : Google Scholar : PubMed/NCBI

43 

Ma Y, Huang Y, Yan L, Gao M and Liu D: Synthetic FXR agonist GW4064 prevents diet-induced hepatic steatosis and insulin resistance. Pharm Res. 30:1447–1457. 2013. View Article : Google Scholar : PubMed/NCBI

44 

Chen S, Sun S, Feng Y, Li X, Yin G, Liang P, Yu W, Meng D, Zhang X, Liu H and Zhang F: Diosgenin attenuates nonalcoholic hepatic steatosis through the hepatic FXR-SHP-SREBP1C/PPARα/CD36 pathway. Eur J Pharmacol. 952:1758082023. View Article : Google Scholar

45 

Mastrodonato M, Calamita G, Rossi R, Mentino D, Bonfrate L, Portincasa P, Ferri D and Liquori GE: Altered distribution of caveolin-1 in early liver steatosis. Eur J Clin Invest. 41:642–651. 2011. View Article : Google Scholar : PubMed/NCBI

46 

Fernández-Rojo MA, Restall C, Ferguson C, Martel N, Martin S, Bosch M, Kassan A, Leong GM, Martin SD, McGee SL, et al: Caveolin-1 orchestrates the balance between glucose and lipid-dependent energy metabolism: Implications for liver regeneration. Hepatology. 55:1574–1584. 2012. View Article : Google Scholar

47 

Fernández-Rojo MA, Gongora M, Fitzsimmons RL, Martel N, Martin SD, Nixon SJ, Brooks AJ, Ikonomopoulou MP, Martin S, Lo HP, et al: Caveolin-1 is necessary for hepatic oxidative lipid metabolism: Evidence for crosstalk between caveolin-1 and bile acid signaling. Cell Rep. 4:238–247. 2013. View Article : Google Scholar : PubMed/NCBI

48 

Motojima K, Passilly P, Peters JM, Gonzalez FJ and Latruffe N: Expression of putative fatty acid transporter genes are regulated by peroxisome proliferator-activated receptor alpha and gamma activators in a tissue- and inducer-specific manner. J Biol Chem. 273:16710–16744. 1998. View Article : Google Scholar : PubMed/NCBI

49 

Acharya R, Shetty SS and Kumari NS: Fatty acid transport proteins (FATPs) in cancer. Chem Phys Lipids. 250:1052692023. View Article : Google Scholar

50 

Hirsch D, Stahl A and Lodish HF: A family of fatty acid transporters conserved from mycobacterium to man. Proc Natl Acad Sci USA. 95:8625–8629. 1998. View Article : Google Scholar : PubMed/NCBI

51 

Falcon A, Doege H, Fluitt A, Tsang B, Watson N, Kay MA and Stahl A: FATP2 is a hepatic fatty acid transporter and peroxisomal very long-chain acyl-CoA synthetase. Am J Physiol Endocrinol Metab. 299:E384–E393. 2010. View Article : Google Scholar : PubMed/NCBI

52 

Lee Y, Kim BR, Kang GH, Lee GJ, Park YJ, Kim H, Jang HC and Choi SH: The effects of PPAR agonists on atherosclerosis and nonalcoholic fatty liver disease in ApoE-/-FXR-/- mice. Endocrinol Metab (Seoul). 36:1243–1253. 2021. View Article : Google Scholar

53 

Savage DB, Choi CS, Samuel VT, Liu ZX, Zhang D, Wang A, Zhang XM, Cline GW, Yu XX, Geisler JG, et al: Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2. J Clin Invest. 116:817–824. 2006. View Article : Google Scholar : PubMed/NCBI

54 

Dentin R, Benhamed F, Hainault I, Fauveau V, Foufelle F, Dyck JR, Girard J and Postic C: Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice. Diabetes. 55:2159–2170. 2006. View Article : Google Scholar : PubMed/NCBI

55 

Yahagi N, Shimano H, Hasty AH, Matsuzaka T, Ide T, Yoshikawa T, Amemiya-Kudo M, Tomita S, Okazaki H, Tamura Y, et al: Absence of sterol regulatory element-binding protein-1 (SREBP-1) ameliorates fatty livers but not obesity or insulin resistance in Lep(ob)/Lep(ob) mice. J Biol Chem. 277:19353–19357. 2002. View Article : Google Scholar : PubMed/NCBI

56 

Ma K, Saha PK, Chan L and Moore DD: Farnesoid X receptor is essential for normal glucose homeostasis. J Clin Invest. 116:1102–1109. 2006. View Article : Google Scholar : PubMed/NCBI

57 

Watanabe M, Houten SM, Wang L, Moschetta A, Mangelsdorf DJ, Heyman RA, Moore DD and Auwerx J: Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J Clin Invest. 113:1408–1418. 2004. View Article : Google Scholar : PubMed/NCBI

58 

Iizuka K, Takao K and Yabe D: ChREBP-mediated regulation of lipid metabolism: Involvement of the gut microbiota, liver, and adipose tissue. Front Endocrinol (Lausanne). 11:5871892020. View Article : Google Scholar : PubMed/NCBI

59 

Caron S, Huaman Samanez C, Dehondt H, Ploton M, Briand O, Lien F, Dorchies E, Dumont J, Postic C, Cariou B, et al: Farnesoid X receptor inhibits the transcriptional activity of carbohydrate response element binding protein in human hepatocytes. Mol Cell Biol. 33:2202–2211. 2013. View Article : Google Scholar : PubMed/NCBI

60 

Kliewer SA and Mangelsdorf DJ: Bile acids as hormones: The FXR-FGF15/19 pathway. Dig Dis. 33:327–331. 2015. View Article : Google Scholar : PubMed/NCBI

61 

Beenken A and Mohammadi M: The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov. 8:235–253. 2009. View Article : Google Scholar : PubMed/NCBI

62 

Montagner A, Polizzi A, Fouché E, Ducheix S, Lippi Y, Lasserre F, Barquissau V, Régnier M, Lukowicz C, Benhamed F, et al: Liver PPARα is crucial for whole-body fatty acid homeostasis and is protective against NAFLD. Gut. 65:1202–1214. 2016. View Article : Google Scholar : PubMed/NCBI

63 

Prawitt J, Abdelkarim M, Stroeve JH, Popescu I, Duez H, Velagapudi VR, Dumont J, Bouchaert E, van Dijk TH, Lucas A, et al: Farnesoid X receptor deficiency improves glucose homeostasis in mouse models of obesity. Diabetes. 60:1861–1871. 2011. View Article : Google Scholar : PubMed/NCBI

64 

Pineda Torra I, Claudel T, Duval C, Kosykh V, Fruchart JC and Staels B: Bile acids induce the expression of the human peroxisome proliferator-activated receptor alpha gene via activation of the farnesoid X receptor. Mol Endocrinol. 17:259–272. 2003. View Article : Google Scholar : PubMed/NCBI

65 

Xu J, Li Y, Chen WD, Xu Y, Yin L, Ge X, Jadhav K, Adorini L and Zhang Y: Hepatic carboxylesterase 1 is essential for both normal and farnesoid X receptor-controlled lipid homeostasis. Hepatology. 59:1761–1771. 2014. View Article : Google Scholar

66 

Liu Y, Song A, Yang X, Zhen Y, Chen W, Yang L, Wang C and Ma H: Farnesoid X receptor agonist decreases lipid accumulation by promoting hepatic fatty acid oxidation in db/db mice. Int J Mol Med. 42:1723–1731. 2018.PubMed/NCBI

67 

Fernandez-Marcos PJ and Auwerx J: Regulation of PGC-1alpha, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr. 93:884s–890s. 2011. View Article : Google Scholar : PubMed/NCBI

68 

Zhang C, Deng J, Liu D, Tuo X, Xiao L, Lai B, Yao Q, Liu J, Yang H and Wang N: Nuciferine ameliorates hepatic steatosis in high-fat diet/streptozocin-induced diabetic mice through a PPARα/PPARγ coactivator-1α pathway. Br J Pharmacol. 175:4218–4228. 2018. View Article : Google Scholar : PubMed/NCBI

69 

Zhang Y, Castellani LW, Sinal CJ, Gonzalez FJ and Edwards PA: Peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC-1alpha) regulates triglyceride metabolism by activation of the nuclear receptor FXR. Genes Dev. 18:157–169. 2004. View Article : Google Scholar : PubMed/NCBI

70 

Rizzolo D, Kong B, Taylor RE, Brinker A, Goedken M, Buckley B and Guo GL: Bile acid homeostasis in female mice deficient in Cyp7a1 and Cyp27a1. Acta Pharm Sin B. 11:3847–3856. 2021. View Article : Google Scholar

71 

Goodwin B, Jones SA, Price RR, Watson MA, McKee DD, Moore LB, Galardi C, Wilson JG, Lewis MC, Roth ME, et al: A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol Cell. 6:517–526. 2000. View Article : Google Scholar : PubMed/NCBI

72 

Chiang JY: Bile acid regulation of gene expression: Roles of nuclear hormone receptors. Endocr Rev. 23:443–463. 2002. View Article : Google Scholar : PubMed/NCBI

73 

Kong B, Wang L, Chiang JY, Zhang Y, Klaassen CD and Guo GL: Mechanism of tissue-specific farnesoid X receptor in suppressing the expression of genes in bile-acid synthesis in mice. Hepatology. 56:1034–1043. 2012. View Article : Google Scholar : PubMed/NCBI

74 

Lee FY, Lee H, Hubbert ML, Edwards PA and Zhang Y: FXR, a multipurpose nuclear receptor. Trends Biochem Sci. 31:572–580. 2006. View Article : Google Scholar : PubMed/NCBI

75 

Cai SY and Boyer JL: FXR: A target for cholestatic syndromes? Expert Opin Ther Targets. 10:409–421. 2006. View Article : Google Scholar : PubMed/NCBI

76 

Kast HR, Goodwin B, Tarr PT, Jones SA, Anisfeld AM, Stoltz CM, Tontonoz P, Kliewer S, Willson TM and Edwards PA: Regulation of multidrug resistance-associated protein 2 (ABCC2) by the nuclear receptors pregnane X receptor farnesoid X-activated receptor and constitutive androstane receptor. J Biol Chem. 277:2908–2915. 2002. View Article : Google Scholar

77 

Huang L, Zhao A, Lew JL, Zhang T, Hrywna Y, Thompson JR, de Pedro N, Royo I, Blevins RA, Peláez F, et al: Farnesoid X receptor activates transcription of the phospholipid pump MDR3. J Biol Chem. 278:51085–51090. 2003. View Article : Google Scholar : PubMed/NCBI

78 

Sinal CJ, Tohkin M, Miyata M, Ward JM, Lambert G and Gonzalez FJ: Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell. 102:731–744. 2000. View Article : Google Scholar : PubMed/NCBI

79 

Denke MA and Grundy SM: Hypertriglyceridemia: A relative contraindication to the use of bile acid-binding resins? Hepatology. 8:974–975. 1988. View Article : Google Scholar : PubMed/NCBI

80 

Hirokane H, Nakahara M, Tachibana S, Shimizu M and Sato R: Bile acid reduces the secretion of very low density lipoprotein by repressing microsomal triglyceride transfer protein gene expression mediated by hepatocyte nuclear factor-4. J Biol Chem. 279:45685–45692. 2004. View Article : Google Scholar : PubMed/NCBI

81 

Liu Q, Yang M, Fu X, Liu R, Sun C, Pan H, Wong CW and Guan M: Activation of farnesoid X receptor promotes triglycerides lowering by suppressing phospholipase A2 G12B expression. Mol Cell Endocrinol. 436:93–101. 2016. View Article : Google Scholar : PubMed/NCBI

82 

Giammanco A, Spina R, Cefalù AB and Averna M: APOC-III: A gatekeeper in controlling triglyceride metabolism. Curr Atheroscler Rep. 25:67–76. 2023. View Article : Google Scholar : PubMed/NCBI

83 

Claudel T, Inoue Y, Barbier O, Duran-Sandoval D, Kosykh V, Fruchart J, Fruchart JC, Gonzalez FJ and Staels B: Farnesoid X receptor agonists suppress hepatic apolipoprotein CIII expression. Gastroenterology. 125:544–555. 2003. View Article : Google Scholar : PubMed/NCBI

84 

Kast HR, Nguyen CM, Sinal CJ, Jones SA, Laffitte BA, Reue K, Gonzalez FJ, Willson TM and Edwards PA: Farnesoid X-activated receptor induces apolipoprotein C-II transcription: A molecular mechanism linking plasma triglyceride levels to bile acids. Mol Endocrinol. 15:1720–1728. 2001. View Article : Google Scholar : PubMed/NCBI

85 

Mak PA, Kast-Woelbern HR, Anisfeld AM and Edwards PA: Identification of PLTP as an LXR target gene and apoE as an FXR target gene reveals overlapping targets for the two nuclear receptors. J Lipid Res. 43:2037–2041. 2002. View Article : Google Scholar : PubMed/NCBI

86 

Urizar NL, Dowhan DH and Moore DD: The farnesoid X-activated receptor mediates bile acid activation of phospholipid transfer protein gene expression. J Biol Chem. 275:39313–39317. 2000. View Article : Google Scholar : PubMed/NCBI

87 

Kim I, Morimura K, Shah Y, Yang Q, Ward JM and Gonzalez FJ: Spontaneous hepatocarcinogenesis in farnesoid X receptor-null mice. Carcinogenesis. 28:940–946. 2007. View Article : Google Scholar

88 

Yang F, Huang X, Yi T, Yen Y, Moore DD and Huang W: Spontaneous development of liver tumors in the absence of the bile acid receptor farnesoid X receptor. Cancer Res. 67:863–867. 2007. View Article : Google Scholar : PubMed/NCBI

89 

Su H, Ma C, Liu J, Li N, Gao M, Huang A, Wang X, Huang W and Huang X: Downregulation of nuclear receptor FXR is associated with multiple malignant clinicopathological characteristics in human hepatocellular carcinoma. Am J Physiol Gastrointest Liver Physiol. 303:G1245–G1253. 2012. View Article : Google Scholar : PubMed/NCBI

90 

Takahashi S, Tanaka N, Fukami T, Xie C, Yagai T, Kim D, Velenosi TJ, Yan T, Krausz KW, Levi M and Gonzalez FJ: Role of Farnesoid X Receptor and Bile Acids in Hepatic Tumor Development. Hepatol Commun. 2:1567–1582. 2018. View Article : Google Scholar : PubMed/NCBI

91 

Kong B, Zhu Y, Li G, Williams JA, Buckley K, Tawfik O, Luyendyk JP and Guo GL: Mice with hepatocyte-specific FXR deficiency are resistant to spontaneous but susceptible to cholic acid-induced hepatocarcinogenesis. Am J Physiol Gastrointest Liver Physiol. 310:G295–G302. 2016. View Article : Google Scholar : PubMed/NCBI

92 

Degirolamo C, Modica S, Vacca M, Di Tullio G, Morgano A, D'Orazio A, Kannisto K, Parini P and Moschetta A: Prevention of spontaneous hepatocarcinogenesis in farnesoid X receptor-null mice by intestinal-specific farnesoid X receptor reactivation. Hepatology. 61:161–170. 2015. View Article : Google Scholar

93 

Li G, Kong B, Zhu Y, Zhan L, Williams JA, Tawfik O, Kassel KM, Luyendyk JP, Wang L and Guo GL: Small heterodimer partner overexpression partially protects against liver tumor development in farnesoid X receptor knockout mice. Toxicol Appl Pharmacol. 272:299–305. 2013. View Article : Google Scholar : PubMed/NCBI

94 

Režen T, Rozman D, Kovács T, Kovács P, Sipos A, Bai P and Mikó E: The role of bile acids in carcinogenesis. Cell Mol Life Sci. 79:2432022. View Article : Google Scholar

95 

Ooi GJ, Meikle PJ, Huynh K, Earnest A, Roberts SK, Kemp W, Parker BL, Brown W, Burton P and Watt MJ: Hepatic lipidomic remodeling in severe obesity manifests with steatosis and does not evolve with non-alcoholic steatohepatitis. J Hepatol. 75:524–535. 2021. View Article : Google Scholar : PubMed/NCBI

96 

Nobili V, Alisi A, Mosca A, Della Corte C, Veraldi S, De Vito R, De Stefanis C, D'Oria V, Jahnel J, Zohrer E, et al: Hepatic farnesoid X receptor protein level and circulating fibroblast growth factor 19 concentration in children with NAFLD. Liver Int. 38:342–349. 2018. View Article : Google Scholar

97 

Aguilar-Olivos NE, Carrillo-Córdova D, Oria-Hernández J, Sánchez-Valle V, Ponciano-Rodríguez G, Ramírez-Jaramillo M, Chablé-Montero F, Chávez-Tapia NC, Uribe M and Méndez-Sánchez N: The nuclear receptor FXR, but not LXR, up-regulates bile acid transporter expression in non-alcoholic fatty liver disease. Ann Hepatol. 14:487–493. 2015. View Article : Google Scholar : PubMed/NCBI

98 

Neuschwander-Tetri BA, Loomba R, Sanyal AJ, Lavine JE, Van Natta ML, Abdelmalek MF, Chalasani N, Dasarathy S, Diehl AM and Hameed B, et al: Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): A multicentre, randomised, placebo-controlled trial. Lancet. 385:956–965. 2015. View Article : Google Scholar :

99 

Tully DC, Rucker PV, Chianelli D, Williams J, Vidal A, Alper PB, Mutnick D, Bursulaya B, Schmeits J, Wu X, et al: Discovery of tropifexor (LJN452), a highly potent non-bile acid FXR agonist for the treatment of cholestatic liver diseases and nonalcoholic steatohepatitis (NASH). J Med Chem. 60:9960–9973. 2017. View Article : Google Scholar : PubMed/NCBI

100 

Zhang S, Wang J, Liu Q and Harnish DC: Farnesoid X receptor agonist WAY-362450 attenuates liver inflammation and fibrosis in murine model of non-alcoholic steatohepatitis. J Hepatol. 51:380–388. 2009. View Article : Google Scholar : PubMed/NCBI

101 

Wang J, Yang N and Xu Y: Natural products in the modulation of farnesoid X receptor against nonalcoholic fatty liver disease. Am J Chin Med. 52:291–314. 2024. View Article : Google Scholar : PubMed/NCBI

102 

Huang W, Cao Z, Wang W, Yang Z, Jiao S, Chen Y, Chen S, Zhang L and Li Z: Discovery of LH10, a novel fexaramine-based FXR agonist for the treatment of liver disease. Bioorg Chem. 143:1070712024. View Article : Google Scholar : PubMed/NCBI

103 

Qin X, Tan Y, Ren W, Zhou W, Niu R, Liang L, Li J, Cao K, Wei G, Zhu X and Huang M: Elevated expression of LCN13 through FXR activation ameliorates hepatocellular lipid accumulation and inflammation. Int Immunopharmacol. 131:1118122024. View Article : Google Scholar : PubMed/NCBI

104 

Huang XF, Zhao WY and Huang WD: FXR and liver carcinogenesis. Acta Pharmacol Sin. 36:37–43. 2015. View Article : Google Scholar :

105 

Sayin SI, Wahlström A, Felin J, Jäntti S, Marschall HU, Bamberg K, Angelin B, Hyötyläinen T, Orešič M and Bäckhed F: Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 17:225–235. 2013. View Article : Google Scholar : PubMed/NCBI

106 

Ma Y, Zhang Y, Qu R, Zhou X, Sun L, Wang K, Jiang C, Zhang Z and Fu W: Promotion of Deoxycholic acid effect on colonic cancer cell lines in vitro by altering the mucosal microbiota. Microorganisms. 10:24862022. View Article : Google Scholar : PubMed/NCBI

107 

Bailey AM, Zhan L, Maru D, Shureiqi I, Pickering CR, Kiriakova G, Izzo J, He N, Wei C, Baladandayuthapani V, et al: FXR silencing in human colon cancer by DNA methylation and KRAS signaling. Am J Physiol Gastrointest Liver Physiol. 306:G48–G58. 2014. View Article : Google Scholar :

108 

Guo S, Peng Y, Lou Y, Cao L, Liu J, Lin N, Cai S, Kang Y, Zeng S and Yu L: Downregulation of the farnesoid X receptor promotes colorectal tumorigenesis by facilitating enterotoxigenic Bacteroides fragilis colonization. Pharmacol Res. 177:1061012022. View Article : Google Scholar : PubMed/NCBI

109 

Chung L, Thiele Orberg E, Geis AL, Chan JL, Fu K, DeStefano Shields CE, Dejea CM, Fathi P, Chen J, Finard BB, et al: Bacteroides fragilis toxin coordinates a pro-carcinogenic inflammatory cascade via targeting of colonic epithelial cells. Cell Host Microbe. 23:203–214.e5. 2018. View Article : Google Scholar : PubMed/NCBI

110 

Wu S, Rhee KJ, Albesiano E, Rabizadeh S, Wu X, Yen HR, Huso DL, Brancati FL, Wick E, McAllister F, et al: A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med. 15:1016–1022. 2009. View Article : Google Scholar : PubMed/NCBI

111 

Dong X, Qi M, Cai C, Zhu Y, Li Y, Coulter S, Sun F, Liddle C, Uboha NV, Halberg R, et al: Farnesoid X receptor mediates macrophage-intrinsic responses to suppress colitis-induced colon cancer progression. JCI Insight. 9:e1704282024. View Article : Google Scholar : PubMed/NCBI

112 

Gadaleta RM, van Erpecum KJ, Oldenburg B, Willemsen EC, Renooij W, Murzilli S, Klomp LW, Siersema PD, Schipper ME, Danese S, et al: Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease. Gut. 60:463–472. 2011. View Article : Google Scholar : PubMed/NCBI

113 

Absil L, Journé F, Larsimont D, Body JJ, Tafforeau L and Nonclercq D: Farnesoid X receptor as marker of osteotropism of breast cancers through its role in the osteomimetism of tumor cells. BMC Cancer. 20:6402020. View Article : Google Scholar : PubMed/NCBI

114 

Silva J, Dasgupta S, Wang G, Krishnamurthy K, Ritter E and Bieberich E: Lipids isolated from bone induce the migration of human breast cancer cells. J Lipid Res. 47:724–733. 2006. View Article : Google Scholar : PubMed/NCBI

115 

Krishnamurthy K, Wang G, Rokhfeld D and Bieberich E: Deoxycholate promotes survival of breast cancer cells by reducing the level of pro-apoptotic ceramide. Breast Cancer Res. 10:R1062008. View Article : Google Scholar : PubMed/NCBI

116 

Swales KE, Korbonits M, Carpenter R, Walsh DT, Warner TD and Bishop-Bailey D: The farnesoid X receptor is expressed in breast cancer and regulates apoptosis and aromatase expression. Cancer Res. 66:10120–10126. 2006. View Article : Google Scholar : PubMed/NCBI

117 

Alasmael N, Mohan R, Meira LB, Swales KE and Plant NJ: Activation of the Farnesoid X-receptor in breast cancer cell lines results in cytotoxicity but not increased migration potential. Cancer Lett. 370:250–259. 2016. View Article : Google Scholar

118 

Giordano C, Catalano S, Panza S, Vizza D, Barone I, Bonofiglio D, Gelsomino L, Rizza P, Fuqua SA and Andò S: Farnesoid X receptor inhibits tamoxifen-resistant MCF-7 breast cancer cell growth through downregulation of HER2 expression. Oncogene. 30:4129–4140. 2011. View Article : Google Scholar : PubMed/NCBI

119 

Giordano C, Barone I, Vircillo V, Panza S, Malivindi R, Gelsomino L, Pellegrino M, Rago V, Mauro L, Lanzino M, et al: Activated FXR inhibits leptin signaling and counteracts tumor-promoting activities of cancer-associated fibroblasts in breast malignancy. Sci Rep. 6:217822016. View Article : Google Scholar : PubMed/NCBI

120 

Strauss P, Rivedal M, Scherer A, Eikrem Ø, Nakken S, Beisland C, Bostad L, Flatberg A, Skandalou E, Beisvåg V, et al: A multiomics disease progression signature of low-risk ccRCC. Sci Rep. 12:135032022. View Article : Google Scholar : PubMed/NCBI

121 

Fujino T, Sakamaki R, Ito H, Furusato Y, Sakamoto N, Oshima T and Hayakawa M: Farnesoid X receptor regulates the growth of renal adenocarcinoma cells without affecting that of a normal renal cell-derived cell line. J Toxicol Sci. 42:259–265. 2017. View Article : Google Scholar : PubMed/NCBI

122 

Huang S, Hou Y, Hu M, Hu J and Liu X: Clinical significance and oncogenic function of NR1H4 in clear cell renal cell carcinoma. BMC Cancer. 22:9952022. View Article : Google Scholar : PubMed/NCBI

123 

Tan SK, Hougen HY, Merchan JR, Gonzalgo ML and Welford SM: Fatty acid metabolism reprogramming in ccRCC: Mechanisms and potential targets. Nat Rev Urol. 20:48–60. 2023. View Article : Google Scholar

124 

Zhang CJ, Zhu N, Wang YX, Liu LP, Zhao TJ, Wu HT, Liao DF and Qin L: Celastrol attenuates lipid accumulation and stemness of clear cell renal cell carcinoma via CAV-1/LOX-1 pathway. Front Pharmacol. 12:6580922021. View Article : Google Scholar : PubMed/NCBI

125 

Xu GH, Lou N, Shi HC, Xu YC, Ruan HL, Xiao W, Liu L, Li X, Xiao HB, Qiu B, et al: Up-regulation of SR-BI promotes progression and serves as a prognostic biomarker in clear cell renal cell carcinoma. BMC Cancer. 18:882018. View Article : Google Scholar : PubMed/NCBI

126 

Riscal R, Bull CJ, Mesaros C, Finan JM, Carens M, Ho ES, Xu JP, Godfrey J, Brennan P, Johansson M, et al: Cholesterol auxotrophy as a targetable vulnerability in clear cell renal cell carcinoma. Cancer Discov. 11:3106–3125. 2021. View Article : Google Scholar : PubMed/NCBI

127 

Chao F, Gong W, Zheng Y, Li Y, Huang G, Gao M, Li J, Kuruba R, Gao X, Li S and He F: Upregulation of scavenger receptor class B type I expression by activation of FXR in hepatocyte. Atherosclerosis. 213:443–448. 2010. View Article : Google Scholar : PubMed/NCBI

128 

Cariello M, Ducheix S, Maqdasy S, Baron S, Moschetta A and Lobaccaro JA: LXRs, SHP, and FXR in prostate cancer: Enemies or ménage à quatre with AR? Nucl Recept Signal. 15:15507629188010702018. View Article : Google Scholar

129 

Liu J, Tong SJ, Wang X and Qu LX: Farnesoid X receptor inhibits LNcaP cell proliferation via the upregulation of PTEN. Exp Ther Med. 8:1209–1212. 2014. View Article : Google Scholar : PubMed/NCBI

130 

Liu N, Zhao J, Wang J, Teng H, Fu Y and Yuan H: Farnesoid X receptor ligand CDCA suppresses human prostate cancer cells growth by inhibiting lipid metabolism via targeting sterol response element binding protein 1. Am J Transl Res. 8:5118–5124. 2016.PubMed/NCBI

131 

Urizar NL, Liverman AB, Dodds DT, Silva FV, Ordentlich P, Yan Y, Gonzalez FJ, Heyman RA, Mangelsdorf DJ and Moore DD: A natural product that lowers cholesterol as an antagonist ligand for FXR. Science. 296:1703–1706. 2002. View Article : Google Scholar : PubMed/NCBI

132 

Burris TP, Montrose C, Houck KA, Osborne HE, Bocchinfuso WP, Yaden BC, Cheng CC, Zink RW, Barr RJ, Hepler CD, et al: The hypolipidemic natural product guggulsterone is a promiscuous steroid receptor ligand. Mol Pharmacol. 67:948–954. 2005. View Article : Google Scholar

133 

Bijsmans IT, Guercini C, Ramos Pittol JM, Omta W, Milona A, Lelieveld D, Egan DA, Pellicciari R, Gioiello A and van Mil SW: The glucocorticoid mometasone furoate is a novel FXR ligand that decreases inflammatory but not metabolic gene expression. Sci Rep. 5:140862015. View Article : Google Scholar : PubMed/NCBI

134 

Dussault I, Beard R, Lin M, Hollister K, Chen J, Xiao JH, Chandraratna R and Forman BM: Identification of gene-selective modulators of the bile acid receptor FXR. J Biol Chem. 278:7027–7033. 2003. View Article : Google Scholar

135 

Chang Y, Lin TY, Lu CW, Huang SK, Wang YC and Wang SJ: Xanthohumol-induced presynaptic reduction of glutamate release in the rat hippocampus. Food Funct. 7:212–226. 2016. View Article : Google Scholar

136 

Liu W and Wong C: Oleanolic acid is a selective farnesoid X receptor modulator. Phytother Res. 24:369–373. 2010. View Article : Google Scholar

137 

Fang S, Suh JM, Reilly SM, Yu E, Osborn O, Lackey D, Yoshihara E, Perino A, Jacinto S, Lukasheva Y, et al: Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat Med. 21:159–165. 2015. View Article : Google Scholar : PubMed/NCBI

138 

Pellicciari R, Passeri D, De Franco F, Mostarda S, Filipponi P, Colliva C, Gadaleta RM, Franco P, Carotti A, Macchiarulo A, et al: Discovery of 3α,7α,11β-Trihydroxy-6α-ethyl-5β-cholan-2 4-oic Acid (TC-100), a novel bile acid as potent and highly selective FXR agonist for enterohepatic disorders. J Med Chem. 59:9201–9214. 2016. View Article : Google Scholar : PubMed/NCBI

139 

Jin L, Wang R, Zhu Y, Zheng W, Han Y, Guo F, Ye FB and Li Y: Selective targeting of nuclear receptor FXR by avermectin analogues with therapeutic effects on nonalcoholic fatty liver disease. Sci Rep. 5:172882015. View Article : Google Scholar : PubMed/NCBI

140 

Li G, Lin W, Araya JJ, Chen T, Timmermann BN and Guo GL: A tea catechin, epigallocatechin-3-gallate, is a unique modulator of the farnesoid X receptor. Toxicol Appl Pharmacol. 258:268–274. 2012. View Article : Google Scholar :

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Sun Y, Sun K, Ling H and Xia Q: Farnesoid X receptor‑driven metabolic plasticity: Bridging physiological adaptation and malignant transformation in lipid handling (Review). Int J Mol Med 56: 110, 2025.
APA
Sun, Y., Sun, K., Ling, H., & Xia, Q. (2025). Farnesoid X receptor‑driven metabolic plasticity: Bridging physiological adaptation and malignant transformation in lipid handling (Review). International Journal of Molecular Medicine, 56, 110. https://doi.org/10.3892/ijmm.2025.5551
MLA
Sun, Y., Sun, K., Ling, H., Xia, Q."Farnesoid X receptor‑driven metabolic plasticity: Bridging physiological adaptation and malignant transformation in lipid handling (Review)". International Journal of Molecular Medicine 56.1 (2025): 110.
Chicago
Sun, Y., Sun, K., Ling, H., Xia, Q."Farnesoid X receptor‑driven metabolic plasticity: Bridging physiological adaptation and malignant transformation in lipid handling (Review)". International Journal of Molecular Medicine 56, no. 1 (2025): 110. https://doi.org/10.3892/ijmm.2025.5551
Copy and paste a formatted citation
x
Spandidos Publications style
Sun Y, Sun K, Ling H and Xia Q: Farnesoid X receptor‑driven metabolic plasticity: Bridging physiological adaptation and malignant transformation in lipid handling (Review). Int J Mol Med 56: 110, 2025.
APA
Sun, Y., Sun, K., Ling, H., & Xia, Q. (2025). Farnesoid X receptor‑driven metabolic plasticity: Bridging physiological adaptation and malignant transformation in lipid handling (Review). International Journal of Molecular Medicine, 56, 110. https://doi.org/10.3892/ijmm.2025.5551
MLA
Sun, Y., Sun, K., Ling, H., Xia, Q."Farnesoid X receptor‑driven metabolic plasticity: Bridging physiological adaptation and malignant transformation in lipid handling (Review)". International Journal of Molecular Medicine 56.1 (2025): 110.
Chicago
Sun, Y., Sun, K., Ling, H., Xia, Q."Farnesoid X receptor‑driven metabolic plasticity: Bridging physiological adaptation and malignant transformation in lipid handling (Review)". International Journal of Molecular Medicine 56, no. 1 (2025): 110. https://doi.org/10.3892/ijmm.2025.5551
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team