
Epigenetic roles of chromatin remodeling complexes in bone biology and the pathogenesis of bone‑related disease (Review)
- Authors:
- Wenxiao Wu
- Yinxing Cui
- Yuqi Wu
- Yan Ni
- Chunling Zhao
- Weichao Sun
- Qian Yi
-
Affiliations: Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China, Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China, Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, P.R. China - Published online on: May 28, 2025 https://doi.org/10.3892/ijmm.2025.5556
- Article Number: 115
-
Copyright: © Wu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Florencio-Silva R, Sasso GR, Sasso-Cerri E, Simões MJ and Cerri PS: Biology of bone tissue: Structure, function, and factors that influence bone cells. Biomed Res Int. 2015:4217462015. View Article : Google Scholar : PubMed/NCBI | |
Lee HR, Yang SJ, Choi HK, Kim JA and Oh IH: The chromatin remodeling complex CHD1 regulates the primitive state of mesenchymal stromal cells to control their stem cell supporting activity. Stem Cells Dev. 30:363–373. 2021. View Article : Google Scholar : PubMed/NCBI | |
Schini M, Vilaca T, Gossiel F, Salam S and Eastell R: Bone turnover markers: Basic biology to clinical applications. Endocr Rev. 44:417–473. 2023. View Article : Google Scholar : | |
Hadjidakis DJ and Androulakis II: Bone remodeling. Ann N Y Acad Sci. 1092:385–396. 2006. View Article : Google Scholar | |
Liang J, Yi Q, Liu Y, Li J, Yang Z and Sun W and Sun W: Recent advances of m6A methylation in skeletal system disease. J Transl Med. 22:1532024. View Article : Google Scholar : PubMed/NCBI | |
Lane NE: Epidemiology, etiology, and diagnosis of osteoporosis. Am J Obstet Gynecol. 194(2 Suppl): S3–S11. 2006. View Article : Google Scholar : PubMed/NCBI | |
Stark Z and Savarirayan R: Osteopetrosis. Orphanet J Rare Dis. 4:52009. View Article : Google Scholar : PubMed/NCBI | |
Zheng J, Yao Z, Xue L, Wang D and Tan Z: The role of immune cells in modulating chronic inflammation and osteonecrosis. Front Immunol. 13:10642452022. View Article : Google Scholar : PubMed/NCBI | |
Glyn-Jones S, Palmer AJ, Agricola R, Price AJ, Vincent TL, Weinans H and Carr AJ: Osteoarthritis. Lancet. 386:376–387. 2015. View Article : Google Scholar : PubMed/NCBI | |
Choi JH and Ro JY: The 2020 WHO classification of tumors of bone: An updated review. Adv Anat Pathol. 28:119–138. 2021. View Article : Google Scholar : PubMed/NCBI | |
Park-Min KH: Epigenetic regulation of bone cells. Connect Tissue Res. 58:76–89. 2017. View Article : Google Scholar : | |
Zhang Y, Wang Q, Xue H, Guo Y, Wei S, Li F, Gong L, Pan W and Jiang P: Epigenetic regulation of autophagy in bone metabolism. Function (Oxf). 5:zqae0042024. View Article : Google Scholar : PubMed/NCBI | |
Sikora M, Marycz K and Smieszek A: Small and Long Non-coding RNAs as functional regulators of bone homeostasis, acting alone or cooperatively. Mol Ther Nucleic Acids. 21:792–803. 2020. View Article : Google Scholar : PubMed/NCBI | |
Du J, Liu Y, Wu X, Sun J, Shi J, Zhang H, Zheng A, Zhou M and Jiang X: BRD9-mediated chromatin remodeling suppresses osteoclastogenesis through negative feedback mechanism. Nat Commun. 14:14132023. View Article : Google Scholar : PubMed/NCBI | |
Busby T, Chen Y, Godfrey TC, Rehan M, Wildman BJ, Smith CM and Hassan Q: Baf45a mediated chromatin remodeling promotes transcriptional activation for osteogenesis and odontogenesis. Front Endocrinol (Lausanne). 12:7633922022. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Sun H, Huang F, Chen Y, Ding X, Zhou C, Wu Y, Zhang Q, Ma X, Wang J, et al: The chromatin remodeling factor Arid1a cooperates with Jun/Fos to promote osteoclastogenesis by epigenetically upregulating Siglec15 expression. J Bone Miner Res. 39:775–790. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wei W, Tang X, Jiang N, Ni C, He H, Sun S, Yu M, Yu C, Qiu M, Yan D, et al: Chromatin remodeler Znhit1 controls bone morphogenetic protein signaling in embryonic lung tissue branching. J Biol Chem. 298:1024902022. View Article : Google Scholar : PubMed/NCBI | |
Xue Y, Morris JL, Yang K, Fu Z, Zhu X, Johnson F, Meehan B, Witkowski L, Yasmeen A, Golenar T, et al: SMARCA4/2 loss inhibits chemotherapy-induced apoptosis by restricting IP3R3-mediated Ca(2+) flux to mitochondria. Nat Commun. 12:54042021. View Article : Google Scholar : PubMed/NCBI | |
Bosch PJ, Fuller LC and Weiner JA: A critical role for the nuclear protein Akirin2 in the formation of mammalian muscle in vivo. Genesis. 57:e232862019. View Article : Google Scholar : PubMed/NCBI | |
Gamarra N and Narlikar GJ; Collaboration through chromatin: motors of transcription and chromatin structure. J Mol Biol. 433:1668762021. View Article : Google Scholar | |
El Hadidy N and Uversky VN: Intrinsic disorder of the BAF complex: Roles in chromatin remodeling and disease development. Int J Mol Sci. 20:52602019. View Article : Google Scholar : PubMed/NCBI | |
Clapier CR and Cairns BR: The biology of chromatin remodeling complexes. Annu Rev Biochem. 78:273–304. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fröb F and Wegner M: The role of chromatin remodeling complexes in Schwann cell development. Glia. 68:1596–1603. 2020. View Article : Google Scholar | |
Han Y, Reyes AA, Malik S and He Y: Cryo-EM structure of SWI/SNF complex bound to a nucleosome. Nature. 579:452–455. 2020. View Article : Google Scholar : PubMed/NCBI | |
Vary JC Jr, Gangaraju VK, Qin J, Landel CC, Kooperberg C, Bartholomew B and Tsukiyama T: Yeast Isw1p forms two separable complexes in vivo. Mol Cell Biol. 23:80–91. 2003. View Article : Google Scholar | |
Reyes AA, Marcum RD and He Y: Structure and function of chromatin remodelers. J Mol Biol. 433:1669292021. View Article : Google Scholar : PubMed/NCBI | |
Nacev BA, Jones KB, Intlekofer AM, Yu JSE, Allis CD, Tap WD, Ladanyi M and Nielsen TO: The epigenomics of sarcoma. Nat Rev Cancer. 20:608–623. 2020. View Article : Google Scholar : PubMed/NCBI | |
Du W, Guo D and Du W: ATP-Dependent chromatin remodeling complex in the lineage specification of mesenchymal stem cells. Stem Cells Int. 2020:88397032020. View Article : Google Scholar : PubMed/NCBI | |
Wojcik J and Cooper K: Epigenetic alterations in bone and soft tissue tumors. Adv Anat Pathol. 24:362–371. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chakraborty S, Sinha S and Sengupta A: Emerging trends in chromatin remodeler plasticity in mesenchymal stromal cell function. FASEB J. 35:e212342021. View Article : Google Scholar | |
Kouzarides T: Chromatin modifications and their function. Cell. 128:693–705. 2007. View Article : Google Scholar : PubMed/NCBI | |
Clapier CR, Iwasa J, Cairns BR and Peterson CL: Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nat Rev Mol Cell Biol. 18:407–422. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tyagi M, Imam N, Verma K and Patel AK: Chromatin remodelers: We are the drivers! Nucleus. 7:388–404. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Gong H, Wang P, Zhu Y, Peng H, Cui Y, Li H, Liu J and Wang Z: The emerging role of ISWI chromatin remodeling complexes in cancer. J Exp Clin Cancer Res. 40:3462021. View Article : Google Scholar : PubMed/NCBI | |
Centore RC, Sandoval GJ, Soares LMM, Kadoch C and Chan HM: Mammalian SWI/SNF chromatin remodeling complexes: Emerging mechanisms and therapeutic strategies. Trends Genet. 36:936–950. 2020. View Article : Google Scholar : PubMed/NCBI | |
Willhoft O and Wigley DB: INO80 and SWR1 complexes: The non-identical twins of chromatin remodelling. Curr Opin Struct Biol. 61:50–58. 2020. View Article : Google Scholar : | |
Pulice JL and Kadoch C: Composition and function of mammalian SWI/SNF chromatin remodeling complexes in human disease. Cold Spring Harb Symp Quant Biol. 81:53–60. 2016. View Article : Google Scholar | |
Judd J, Duarte FM and Lis JT: Pioneer-like factor GAF cooperates with PBAP (SWI/SNF) and NURF (ISWI) to regulate transcription. Genes Dev. 35:147–156. 2021. View Article : Google Scholar : | |
Poli J, Gasser SM and Papamichos-Chronakis M: The INO80 remodeller in transcription, replication and repair. Philos Trans R Soc Lond B Biol Sci. 372:201602902017. View Article : Google Scholar : PubMed/NCBI | |
Trujillo JT, Long J, Aboelnour E, Ogas J and Wisecaver JH: CHD Chromatin Remodeling Protein Diversification Yields Novel Clades and Domains Absent in Classic Model Organisms. Genome Biol Evol. 14:evac0662022. View Article : Google Scholar : PubMed/NCBI | |
Iyer J, Gentry LK, Bergwell M, Smith A, Guagliardo S, Kropp PA, Sankaralingam P, Liu Y, Spooner E, Bowerman B and O'Connell KF: The chromatin remodeling protein CHD-1 and the EFL-1/DPL-1 transcription factor cooperatively down regulate CDK-2 to control SAS-6 levels and centriole number. PLoS Genet. 18:e10097992022. View Article : Google Scholar : PubMed/NCBI | |
Ebbert R, Birkmann A and Schüller HJ: The product of the SNF2/SWI2 paralogue INO80 of Saccharomyces cerevisiae required for efficient expression of various yeast structural genes is part of a high-molecular-weight protein complex. Mol Microbiol. 32:741–751. 1999. View Article : Google Scholar : PubMed/NCBI | |
van Attikum H, Fritsch O and Gasser SM: Distinct roles for SWR1 and INO80 chromatin remodeling complexes at chromosomal double-strand breaks. EMBO J. 26:4113–4125. 2007. View Article : Google Scholar : PubMed/NCBI | |
Conaway RC and Conaway JW: The INO80 chromatin remodeling complex in transcription, replication and repair. Trends Biochem Sci. 34:71–77. 2009. View Article : Google Scholar | |
Saha A, Wittmeyer J and Cairns BR: Mechanisms for nucleosome movement by ATP-dependent chromatin remodeling complexes. Results Probl Cell Differ. 41:127–148. 2006. View Article : Google Scholar : PubMed/NCBI | |
Barisic D, Stadler MB, Iurlaro M and Schübeler D: Mammalian ISWI and SWI/SNF selectively mediate binding of distinct transcription factors. Nature. 569:136–140. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, He L, Du Y, Zhu P, Huang G, Luo J, Yan X, Ye B, Li C, Xia P, et al: The long noncoding RNA lncTCF7 promotes self-renewal of human liver cancer stem cells through activation of Wnt signaling. Cell Stem Cell. 16:413–425. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tang Y, Wang J, Lian Y, Fan C, Zhang P, Wu Y, Li X, Xiong F, Li X, Li G, et al: Linking long non-coding RNAs and SWI/SNF complexes to chromatin remodeling in cancer. Mol Cancer. 16:422017. View Article : Google Scholar : PubMed/NCBI | |
Patty BJ and Hainer SJ: Non-Coding RNAs and nucleosome remodeling complexes: An intricate regulatory relationship. Biology (Basel). 9:2132020.PubMed/NCBI | |
Han P, Li W, Lin CH, Yang J, Shang C, Nuernberg ST, Jin KK, Xu W, Lin CY, Lin CJ, et al: A long noncoding RNA protects the heart from pathological hypertrophy. Nature. 514:102–106. 2014. View Article : Google Scholar : PubMed/NCBI | |
Atala A: Re: The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. J Urol. 192:6132014. View Article : Google Scholar : PubMed/NCBI | |
Yang Z, Mameri A, Cattoglio C, Lachance C, Florez Ariza AJ, Luo J, Humbert J, Sudarshan D, Banerjea A, Galloy M, et al: Structural insights into the human NuA4/TIP60 acetyltransferase and chromatin remodeling complex. Science. 385:eadl58162024. View Article : Google Scholar : PubMed/NCBI | |
Tallant C, Valentini E, Fedorov O, Overvoorde L, Ferguson FM, Filippakopoulos P, Svergun DI, Knapp S and Ciulli A: Molecular basis of histone tail recognition by human TIP5 PHD finger and bromodomain of the chromatin remodeling complex NoRC. Structure. 23:80–92. 2015. View Article : Google Scholar : | |
Charles GM, Chen C, Shih SC, Collins SR, Beltrao P, Zhang X, Sharma T, Tan S, Burlingame AL, Krogan NJ, et al: Site-specific acetylation mark on an essential chromatin-remodeling complex promotes resistance to replication stress. Proc Natl Acad Sci USA. 108:10620–10625. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sala A, La Rocca G, Burgio G, Kotova E, Di Gesù D, Collesano M, Ingrassia AM, Tulin AV and Corona DF: The nucleosome-remodeling ATPase ISWI is regulated by poly-ADP-ribosylation. PLoS Biol. 6:e2522008. View Article : Google Scholar : PubMed/NCBI | |
Bure IV and Nemtsova MV: Mutual regulation of ncRNAs and chromatin remodeling complexes in normal and pathological conditions. Int J Mol Sci. 24:78482023. View Article : Google Scholar : PubMed/NCBI | |
Young DW, Pratap J, Javed A, Weiner B, Ohkawa Y, van Wijnen A, Montecino M, Stein GS, Stein JL, Imbalzano AN and Lian JB: SWI/SNF chromatin remodeling complex is obligatory for BMP2-induced, Runx2-dependent skeletal gene expression that controls osteoblast differentiation. J Cell Biochem. 94:720–730. 2005. View Article : Google Scholar | |
Kuhn NZ and Tuan RS: Regulation of stemness and stem cell niche of mesenchymal stem cells: Implications in tumorigenesis and metastasis. J Cell Physiol. 222:268–277. 2010. View Article : Google Scholar | |
Im GI and Shin KJ: Epigenetic approaches to regeneration of bone and cartilage from stem cells. Expert Opin Biol Ther. 15:181–193. 2015. View Article : Google Scholar | |
Flowers S, Nagl NG Jr, Beck GR Jr and Moran E: Antagonistic roles for BRM and BRG1 SWI/SNF complexes in differentiation. J Biol Chem. 284:10067–10075. 2009. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Zhang J and Chen X: The activity of p53 is differentially regulated by Brm- and Brg1-containing SWI/SNF chromatin remodeling complexes. J Biol Chem. 282:37429–37435. 2007. View Article : Google Scholar : PubMed/NCBI | |
Moran A, Hoyt A, Sedani A, Granger C, Saigh S, Blonska M, Zhao-Ju L, Conway SA, Pretell J, Brown J and Galoian K: Proline-rich polypeptide-1 decreases cancer stem cell population by targeting BAFF chromatin-remodeling complexes in human chondrosarcoma JJ012 cells. Oncol Rep. 44:393–403. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kidder BL, Palmer S and Knott JG: SWI/SNF-Brg1 regulates self-renewal and occupies core pluripotency-related genes in embryonic stem cells. Stem Cells. 27:317–328. 2009. View Article : Google Scholar | |
Nguyen KH, Xu F, Flowers S, Williams EA, Fritton JC and Moran E: SWI/SNF-mediated lineage determination in mesenchymal stem cells confers resistance to osteoporosis. Stem Cells. 33:3028–3038. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kitagawa T, Kobayashi D, Baron B, Okita H, Miyamoto T, Takai R, Paudel D, Ohta T, Asaoka Y, Tokunaga M, et al: AT-hook DNA-binding motif-containing protein one knockdown downregulates EWS-FLI1 transcriptional activity in Ewing's sarcoma cells. PLoS One. 17:e02690772022. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Lee RS, Alver BH, Haswell JR, Wang S, Mieczkowski J, Drier Y, Gillespie SM, Archer TC, Wu JN, et al: SMARCB1-mediated SWI/SNF complex function is essential for enhancer regulation. Nat Genet. 49:289–295. 2017. View Article : Google Scholar : | |
Nakayama RT, Pulice JL, Valencia AM, McBride MJ, McKenzie ZM, Gillespie MA, Ku WL, Teng M, Cui K, Williams RT, et al: SMARCB1 is required for widespread BAF complex-mediated activation of enhancers and bivalent promoters. Nat Genet. 49:1613–1623. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Wang X, Li J, Shi R and Ye Y: BAF Complex in embryonic stem cells and early embryonic development. Stem Cells Int. 2021:66688662021. View Article : Google Scholar : PubMed/NCBI | |
Antonelli M, Raso A, Mascelli S, Gessi M, Nozza P, Coli A, Gardiman MP, Arcella A, Massimino M, Buttarelli FR and Giangaspero F: SMARCB1/INI1 involvement in pediatric chordoma: A mutational and immunohistochemical analysis. Am J Surg Pathol. 41:56–61. 2017. View Article : Google Scholar | |
Zhang X, Li B, Li W, Ma L, Zheng D, Li L, Yang W, Chu M, Chen W, Mailman RB, et al: Transcriptional repression by the BRG1-SWI/SNF complex affects the pluripotency of human embryonic stem cells. Stem Cell Reports. 3:460–474. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gatchalian J, Malik S, Ho J, Lee DS, Kelso TWR, Shokhirev MN, Dixon JR and Hargreaves DC: A non-canonical BRD9-containing BAF chromatin remodeling complex regulates naive pluripotency in mouse embryonic stem cells. Nat Commun. 9:51392018. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Song C, Ye Y, Gu Y, Li X, Chen P, Leng D, Xiao J, Wu H, Xie S, et al: BRD9-mediated control of the TGF-β/Activin/Nodal pathway regulates self-renewal and differentiation of human embryonic stem cells and progression of cancer cells. Nucleic Acids Res. 51:11634–11651. 2023. View Article : Google Scholar : PubMed/NCBI | |
Sevinç K, Sevinç GG, Cavga AD, Philpott M, Kelekçi S, Can H, Cribbs AP, Yıldız AB, Yılmaz A, Ayar ES, et al: BRD9-containing non-canonical BAF complex maintains somatic cell transcriptome and acts as a barrier to human reprogramming. Stem Cell Reports. 17:2629–2642. 2022. View Article : Google Scholar : PubMed/NCBI | |
Gaspar-Maia A, Alajem A, Polesso F, Sridharan R, Mason MJ, Heidersbach A, Ramalho-Santos J, McManus MT, Plath K, Meshorer E and Ramalho-Santos M: Chd1 regulates open chromatin and pluripotency of embryonic stem cells. Nature. 460:863–868. 2009. View Article : Google Scholar : PubMed/NCBI | |
Baumgart SJ, Najafova Z, Hossan T, Xie W, Nagarajan S, Kari V, Ditzel N, Kassem M and Johnsen SA: CHD1 regulates cell fate determination by activation of differentiation-induced genes. Nucleic Acids Res. 45:7722–7735. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bulut-Karslioglu A, Jin H, Kim YK, Cho B, Guzman-Ayala M, Williamson AJK, Hejna M, Stötzel M, Whetton AD, Song JS and Ramalho-Santos M: Chd1 protects genome integrity at promoters to sustain hypertranscription in embryonic stem cells. Nat Commun. 12:48592021. View Article : Google Scholar : PubMed/NCBI | |
Caplan AI: Mesenchymal stem cells. J Orthop Res. 9:641–650. 1991. View Article : Google Scholar : PubMed/NCBI | |
Benayahu D, Shacham N and Shur I: Insights on the functional role of chromatin remodelers in osteogenic cells. Crit Rev Eukaryot Gene Expr. 17:103–113. 2007. View Article : Google Scholar : PubMed/NCBI | |
Suzuki S, Nozawa Y, Tsukamoto S, Kaneko T, Manabe I, Imai H and Minami N: CHD1 acts via the Hmgpi pathway to regulate mouse early embryogenesis. Development. 142:2375–2384. 2015.PubMed/NCBI | |
Liu C, Kang N, Guo Y and Gong P: Advances in chromodomain helicase DNA-binding (CHD) proteins regulating stem cell differentiation and human diseases. Front Cell Dev Biol. 9:7102032021. View Article : Google Scholar : PubMed/NCBI | |
Wan M, Liang J, Xiong Y, Shi F, Zhang Y, Lu W, He Q, Yang D, Chen R, Liu D, et al: The trithorax group protein Ash2l is essential for pluripotency and maintaining open chromatin in embryonic stem cells. J Biol Chem. 288:5039–5048. 2013. View Article : Google Scholar : | |
Yang P, Oldfield A, Kim T, Yang A, Yang JYH and Ho JWK: Integrative analysis identifies co-dependent gene expression regulation of BRG1 and CHD7 at distal regulatory sites in embryonic stem cells. Bioinformatics. 33:1916–1920. 2017. View Article : Google Scholar : PubMed/NCBI | |
Malla S, Martinez-Gamero C, Kumari K, Achour C, Mermelekas G, Martinez-Delgado D, Coego A, Guallar D, Roman AC and Aguilo F: Cooperative role of LSD1 and CHD7 in regulating differentiation of mouse embryonic stem cells. Sci Rep. 14:284952024. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Wang M, Chen D, Wang J and Kang N: Chromatin remodeling enzyme CHD7 is necessary for osteogenesis of human mesenchymal stem cells. Biochem Biophys Res Commun. 478:1588–1593. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yoo H, La H, Lee EJ, Choi HJ, Oh J, Thang NX and Hong K: ATP-dependent chromatin remodeler CHD9 controls the proliferation of embryonic stem cells in a cell culture condition-dependent manner. Biology (Basel). 9:4282020.PubMed/NCBI | |
Salomon-Kent R, Marom R, John S, Dundr M, Schiltz LR, Gutierrez J, Workman J, Benayahu D and Hager GL: New face for chromatin-related mesenchymal modulator: n-CHD9 localizes to nucleoli and interacts with ribosomal genes. J Cell Physiol. 230:2270–2280. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Du Y, Ward JM, Shimbo T, Lackford B, Zheng X, Miao YL, Zhou B, Han L, Fargo DC, et al: INO80 facilitates pluripotency gene activation in embryonic stem cell self-renewal, reprogramming, and blastocyst development. Cell Stem Cell. 14:575–591. 2014. View Article : Google Scholar : PubMed/NCBI | |
Furumatsu T and Ozaki T: Epigenetic regulation in chondrogenesis. Acta Med Okayama. 64:155–161. 2010.PubMed/NCBI | |
Berendsen AD and Olsen BR: Bone development. Bone. 80:14–18. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mashtalir N, D'Avino AR, Michel BC, Luo J, Pan J, Otto JE, Zullow HJ, McKenzie ZM, Kubiak RL, St Pierre R, et al: Modular organization and assembly of SWI/SNF family chromatin remodeling complexes. Cell. 175:1272–1288.e20. 2018. View Article : Google Scholar : PubMed/NCBI | |
You S, Zhang Y, Xu J, Qian H, Wu S, Wu B, Lu S, Sun Y and Zhang N: The role of BRG1 in antioxidant and redox signaling. Oxid Med Cell Longev. 2020:60956732020. View Article : Google Scholar : PubMed/NCBI | |
Sun F, Chen Q, Yang S, Pan Q, Ma J, Wan Y, Chang CH and Hong A: Remodeling of chromatin structure within the promoter is important for bmp-2-induced fgfr3 expression. Nucleic Acids Res. 37:3897–3911. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sacitharan PK, Lwin S, Gharios GB and Edwards JR: Spermidine restores dysregulated autophagy and polyamine synthesis in aged and osteoarthritic chondrocytes via EP300. Exp Mol Med. 50:1–10. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Lin CX, Song B, Li CC, Qiu JX, Li SX, Lin SP, Luo WQ, Fu Y, Fang GB, et al: Spermidine activates RIP1 deubiquitination to inhibit TNF-α-induced NF-κB/p65 signaling pathway in osteoarthritis. Cell Death Dis. 11:5032020. View Article : Google Scholar | |
Guo X, Feng X, Yang Y, Zhang H and Bai L: Spermidine attenuates chondrocyte inflammation and cellular pyroptosis through the AhR/NF-κB axis and the NLRP3/caspase-1/GSDMD pathway. Front Immunol. 15:14627772024. View Article : Google Scholar | |
Mao X, Yan B, Chen H, Lai P and Ma J: BRG1 mediates protective ability of spermidine to ameliorate osteoarthritic cartilage by Nrf2/KEAP1 and STAT3 signaling pathway. Int Immunopharmacol. 122:1105932023. View Article : Google Scholar : PubMed/NCBI | |
Wei S, Pei J, von Mehren M, Abraham JA, Patchefsky AS and Cooper HS: SMARCA2-NR4A3 is a novel fusion gene of extraskeletal myxoid chondrosarcoma identified by RNA next-generation sequencing. Genes Chromosomes Cancer. 60:709–712. 2021. View Article : Google Scholar : PubMed/NCBI | |
Schaefer IM and Hornick JL: SWI/SNF complex-deficient soft tissue neoplasms: An update. Semin Diagn Pathol. 38:222–231. 2021. View Article : Google Scholar : | |
Rekhi B and Vogel U: Utility of characteristic 'Weak to Absent' INI1/SMARCB1/BAF47 expression in diagnosis of synovial sarcomas. Apmis. 123:618–628. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fanburg-Smith JC, Auerbach A, Marwaha JS, Wang Z, Santi M, Judkins AR and Rushing EJ: Immunoprofile of mesenchymal chondrosarcoma: Aberrant desmin and EMA expression, retention of INI1, and negative estrogen receptor in 22 female-predominant central nervous system and musculoskeletal cases. Ann Diagn Pathol. 14:8–14. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kohashi K, Oda Y, Yamamoto H, Tamiya S, Matono H, Iwamoto Y, Taguchi T and Tsuneyoshi M: Reduced expression of SMARCB1/INI1 protein in synovial sarcoma. Mod Pathol. 23:981–990. 2010. View Article : Google Scholar : PubMed/NCBI | |
Shain AH and Pollack JR: The spectrum of SWI/SNF mutations, ubiquitous in human cancers. PLoS One. 8:e551192013. View Article : Google Scholar : PubMed/NCBI | |
Kadoch C, Williams RT, Calarco JP, Miller EL, Weber CM, Braun SM, Pulice JL, Chory EJ and Crabtree GR: Dynamics of BAF-Polycomb complex opposition on heterochromatin in normal and oncogenic states. Nat Genet. 49:213–222. 2017. View Article : Google Scholar | |
Cheng Y, Shen Z, Gao Y, Chen F, Xu H, Mo Q, Chu X, Peng CL, McKenzie TT, Palacios BE, et al: Phase transition and remodeling complex assembly are important for SS18-SSX oncogenic activity in synovial sarcomas. Nat Commun. 13:27242022. View Article : Google Scholar : PubMed/NCBI | |
McBride MJ, Pulice JL, Beird HC, Ingram DR, D'Avino AR, Shern JF, Charville GW, Hornick JL, Nakayama RT, Garcia-Rivera EM, et al: The SS18-SSX fusion oncoprotein hijacks BAF complex targeting and function to drive synovial sarcoma. Cancer Cell. 33:1128–1141.e7. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang N, Zhang Y, Chen Y, Qian H, Wu B, Lu S, You S, Xu W, Zou Y, Huang X, et al: BAF155 promotes cardiac hypertrophy and fibrosis through inhibition of WWP2-mediated PARP1 ubiquitination. Cell Discov. 9:462023. View Article : Google Scholar : PubMed/NCBI | |
Jeon S and Seong RH: Anteroposterior limb skeletal patterning requires the bifunctional action of SWI/SNF chromatin remodeling complex in hedgehog pathway. PLoS Genet. 12:e10059152016. View Article : Google Scholar : PubMed/NCBI | |
Ju C, Liu R, Zhang YW, Zhang Y, Zhou R, Sun J, Lv XB and Zhang Z: Mesenchymal stem cell-associated lncRNA in osteogenic differentiation. Biomed Pharmacother. 115:1089122019. View Article : Google Scholar : PubMed/NCBI | |
Peng Y, Jiang H and Zuo HD: Factors affecting osteogenesis and chondrogenic differentiation of mesenchymal stem cells in osteoarthritis. World J Stem Cells. 15:548–560. 2023. View Article : Google Scholar : PubMed/NCBI | |
Toosi S and Behravan J: Osteogenesis and bone remodeling: A focus on growth factors and bioactive peptides. Biofactors. 46:326–340. 2020. View Article : Google Scholar | |
Gou Y, Huang Y, Luo W, Li Y, Zhao P, Zhong J, Dong X, Guo M, Li A, Hao A, et al: Adipose-derived mesenchymal stem cells (MSCs) are a superior cell source for bone tissue engineering. Bioact Mater. 34:51–63. 2023. | |
Sinha S, Biswas M, Chatterjee SS, Kumar S and Sengupta A: Pbrm1 steers mesenchymal stromal cell osteolineage differentiation by integrating PBAF-dependent chromatin remodeling and BMP/TGF-β signaling. Cell Rep. 31:1075702020. View Article : Google Scholar | |
Mardinian K, Adashek JJ, Botta GP, Kato S and Kurzrock R: SMARCA4: Implications of an altered chromatin-remodeling gene for cancer development and therapy. Mol Cancer Ther. 20:2341–2351. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hojo H, Saito T, He X, Guo Q, Onodera S, Azuma T, Koebis M, Nakao K, Aiba A, Seki M, et al: Runx2 regulates chromatin accessibility to direct the osteoblast program at neonatal stages. Cell Rep. 40:1113152022. View Article : Google Scholar : PubMed/NCBI | |
Nagl NG Jr, Patsialou A, Haines DS, Dallas PB, Beck GR Jr and Moran E: The p270 (ARID1A/SMARCF1) subunit of mammalian SWI/SNF-related complexes is essential for normal cell cycle arrest. Cancer Res. 65:9236–9244. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bailey S, Karsenty G, Gundberg C and Vashishth D: Osteocalcin and osteopontin influence bone morphology and mechanical properties. Ann N Y Acad Sci. 1409:79–84. 2017. View Article : Google Scholar : PubMed/NCBI | |
Komori T: Functions of osteocalcin in bone, pancreas, testis, and muscle. Int J Mol Sci. 21:75132020. View Article : Google Scholar : PubMed/NCBI | |
Villagra A, Cruzat F, Carvallo L, Paredes R, Olate J, van Wijnen AJ, Stein GS, Lian JB, Stein JL, Imbalzano AN and Montecino M: Chromatin remodeling and transcriptional activity of the bone-specific osteocalcin gene require CCAAT/enhancer-binding protein beta-dependent recruitment of SWI/SNF activity. J Biol Chem. 281:22695–22706. 2006. View Article : Google Scholar : PubMed/NCBI | |
Flowers S, Patel PJ, Gleicher S, Amer K, Himelman E, Goel S and Moran E: p107-Dependent recruitment of SWI/SNF to the alkaline phosphatase promoter during osteoblast differentiation. Bone. 69:47–54. 2014. View Article : Google Scholar : PubMed/NCBI | |
Reyes JC, Barra J, Muchardt C, Camus A, Babinet C and Yaniv M: Altered control of cellular proliferation in the absence of mammalian brahma (SNF2alpha). EMBO J. 17:6979–6991. 1998. View Article : Google Scholar : PubMed/NCBI | |
Middeljans E, Wan X, Jansen PW, Sharma V, Stunnenberg HG and Logie C: SS18 together with animal-specific factors defines human BAF-type SWI/SNF complexes. PLoS One. 7:e338342012. View Article : Google Scholar : PubMed/NCBI | |
Godfrey TC, Wildman BJ, Javed A, Lengner CJ and Hassan MQ: Epigenetic remodeling and modification to preserve skeletogenesis in vivo. Connect Tissue Res. 59(supp1): S52–S54. 2018. View Article : Google Scholar | |
Hasenfratz M, Mellert K, Marienfeld R, von Baer A, Schultheiss M, Roitman PD, Aponte-Tinao LA, Lehner B, Möller P, Mechtersheimer G and Barth TFE: Profiling of three H3F3A-mutated and denosumab-treated giant cell tumors of bone points to diverging pathways during progression and malignant transformation. Sci Rep. 11:57092021. View Article : Google Scholar : PubMed/NCBI | |
Xu F, Flowers S and Moran E: Essential role of ARID2 protein-containing SWI/SNF complex in tissue-specific gene expression. J Biol Chem. 287:5033–5041. 2012. View Article : Google Scholar : | |
Wilsker D, Patsialou A, Dallas PB and Moran E: ARID proteins: A diverse family of DNA binding proteins implicated in the control of cell growth, differentiation, and development. Cell Growth Differ. 13:95–106. 2002.PubMed/NCBI | |
Hu K, Liao D, Wu W, Han AJ, Shi HJ, Wang F, Wang X, Zhong L, Duan T, Wu Y, et al: Targeting the anaphase-promoting complex/cyclosome (APC/C)-bromodomain containing 7 (BRD7) pathway for human osteosarcoma. Oncotarget. 5:3088–3100. 2014. View Article : Google Scholar : | |
Liu C, Xiong Q, Li Q, Lin W, Jiang S, Zhang D, Wang Y, Duan X, Gong P and Kang N: CHD7 regulates bone-fat balance by suppressing PPAR-γ signaling. Nat Commun. 13:19892022. View Article : Google Scholar | |
Takada I, Yogiashi Y and Kato S: Signaling crosstalk between PPARγ and BMP2 in mesenchymal stem cells. PPAR Res. 2012:6071412012. View Article : Google Scholar | |
Schnetz MP, Bartels CF, Shastri K, Balasubramanian D, Zentner GE, Balaji R, Zhang X, Song L, Wang Z, Laframboise T, et al: Genomic distribution of CHD7 on chromatin tracks H3K4 methylation patterns. Genome Res. 19:590–601. 2009. View Article : Google Scholar : PubMed/NCBI | |
Newton AH and Pask AJ: CHD9 upregulates RUNX2 and has a potential role in skeletal evolution. BMC Mol Cell Biol. 21:272020. View Article : Google Scholar : PubMed/NCBI | |
Zhou C, Zou J, Zou S and Li X: INO80 is required for osteogenic differentiation of human mesenchymal stem cells. Sci Rep. 6:359242016. View Article : Google Scholar : PubMed/NCBI | |
Anwar A, Sapra L, Gupta N, Ojha RP, Verma B and Srivastava RK: Fine-tuning osteoclastogenesis: An insight into the cellular and molecular regulation of osteoclastogenesis. J Cell Physiol. 238:1431–1464. 2023. View Article : Google Scholar : PubMed/NCBI | |
Du J, Liu Y, Sun J, Yao E, Xu J, Wu X, Xu L, Zhou M, Yang G and Jiang X: ARID1A safeguards the canalization of the cell fate decision during osteoclastogenesis. Nat Commun. 15:59942024. View Article : Google Scholar : PubMed/NCBI | |
Urban W, Krzystańska D, Piekarz M, Nazar J and Jankowska A: Osteosarcoma's genetic landscape painted by genes' mutations. Acta Biochim Pol. 70:671–678. 2023.PubMed/NCBI | |
Gaeta R, Morelli M, Lessi F, Mazzanti CM, Menicagli M, Capanna R, Andreani L, Coccoli L, Aretini P and Franchi A: Identification of new potential prognostic and predictive markers in high-grade osteosarcoma using whole exome sequencing. Int J Mol Sci. 24:100862023. View Article : Google Scholar : PubMed/NCBI | |
Tuckermann J and Adams RH: The endothelium-bone axis in development, homeostasis and bone and joint disease. Nat Rev Rheumatol. 17:608–620. 2021. View Article : Google Scholar : PubMed/NCBI | |
Bixel MG, Sivaraj KK, Timmen M, Mohanakrishnan V, Aravamudhan A, Adams S, Koh BI, Jeong HW, Kruse K, Stange R and Adams RH: Angiogenesis is uncoupled from osteogenesis during calvarial bone regeneration. Nat Commun. 15:45752024. View Article : Google Scholar : PubMed/NCBI | |
Duan X, Murata Y, Liu Y, Nicolae C, Olsen BR and Berendsen AD: Vegfa regulates perichondrial vascularity and osteoblast differentiation in bone development. Development. 142:1984–1991. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sena JA, Wang L and Hu CJ: BRG1 and BRM chromatin-remodeling complexes regulate the hypoxia response by acting as coactivators for a subset of hypoxia-inducible transcription factor target genes. Mol Cell Biol. 33:3849–3863. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang F, Zhang R, Beischlag TV, Muchardt C, Yaniv M and Hankinson O: Roles of Brahma and Brahma/SWI2-related gene 1 in hypoxic induction of the erythropoietin gene. J Biol Chem. 279:46733–46741. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Chen Y, Bao L, Zhang B, Wang JE, Kumar A, Xing C, Wang Y and Luo W: CHD4 promotes breast cancer progression as a coactivator of hypoxia-inducible factors. Cancer Res. 80:3880–3891. 2020. View Article : Google Scholar : PubMed/NCBI | |
Collins JM, Lang A, Parisi C, Moharrer Y, Nijsure MP, Thomas Kim JH, Ahmed S, Szeto GL, Qin L, Gottardi R, et al: YAP and TAZ couple osteoblast precursor mobilization to angiogenesis and mechanoregulation in murine bone development. Dev Cell. 59:211–227.e5. 2024. View Article : Google Scholar : | |
Griffin CT, Brennan J and Magnuson T: The chromatin-remodeling enzyme BRG1 plays an essential role in primitive erythropoiesis and vascular development. Development. 135:493–500. 2008. View Article : Google Scholar | |
Davis RB, Curtis CD and Griffin CT: BRG1 promotes COUP-TFII expression and venous specification during embryonic vascular development. Development. 140:1272–1281. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ingram KG, Curtis CD, Silasi-Mansat R, Lupu F and Griffin CT: The NuRD chromatin-remodeling enzyme CHD4 promotes embryonic vascular integrity by transcriptionally regulating extracellular matrix proteolysis. PLoS Genet. 9:e10040312013. View Article : Google Scholar : PubMed/NCBI | |
Forriol F and Shapiro F: Bone development: interaction of molecular components and biophysical forces. Clin Orthop Relat Res. 432:14–33. 2005. View Article : Google Scholar | |
Komori T: Cell death in chondrocytes, osteoblasts, and osteocytes. Int J Mol Sci. 17:20452016. View Article : Google Scholar : PubMed/NCBI | |
Grandy R, Sepulveda H, Aguilar R, Pihan P, Henriquez B, Olate J and Montecino M: The Ric-8B gene is highly expressed in proliferating preosteoblastic cells and downregulated during osteoblast differentiation in a SWI/SNF- and C/EBPbeta-mediated manner. Mol Cell Biol. 31:2997–3008. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Guo T, Pei F, Feng J, Jing J, Xu J, Yamada T, Ho TV, Du J, Sehgal P and Chai Y: ARID1B maintains mesenchymal stem cell quiescence via inhibition of BCL11B-mediated non-canonical activin signaling. Nat Commun. 15:46142024. View Article : Google Scholar : PubMed/NCBI | |
Ho L, Ronan JL, Wu J, Staahl BT, Chen L, Kuo A, Lessard J, Nesvizhskii AI, Ranish J and Crabtree GR: An embryonic stem cell chromatin remodeling complex, esBAF, is essential for embryonic stem cell self-renewal and pluripotency. Proc Natl Acad Sci USA. 106:5181–5186. 2009. View Article : Google Scholar : PubMed/NCBI | |
Schaniel C, Ang YS, Ratnakumar K, Cormier C, James T, Bernstein E, Lemischka IR and Paddison PJ: Smarcc1/Baf155 couples self-renewal gene repression with changes in chromatin structure in mouse embryonic stem cells. Stem Cells. 27:2979–2991. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yan Z, Wang Z, Sharova L, Sharov AA, Ling C, Piao Y, Aiba K, Matoba R, Wang W and Ko MS: BAF250B-associated SWI/SNF chromatin-remodeling complex is required to maintain undifferentiated mouse embryonic stem cells. Stem Cells. 26:1155–1165. 2008. View Article : Google Scholar : PubMed/NCBI | |
Eleuteri B, Aranda S and Ernfors P: NoRC Recruitment by H2A.X deposition at rRNA gene promoter limits embryonic stem cell proliferation. Cell Rep. 23:1853–1866. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li B, Lyu P, Tang J, Li J, Ouchi T, Fan Y, Zhao Z and Li L: The potential role and therapeutic relevance of cellular senescence in skeletal pathophysiology. J Gerontol A Biol Sci Med Sci. 79:glae0372024. View Article : Google Scholar : PubMed/NCBI | |
Napolitano MA, Cipollaro M, Cascino A, Melone MA, Giordano A and Galderisi U: Brg1 chromatin remodeling factor is involved in cell growth arrest, apoptosis and senescence of rat mesenchymal stem cells. J Cell Sci. 120(Pt 16): 2904–2911. 2007. View Article : Google Scholar : PubMed/NCBI | |
Alessio N, Squillaro T, Cipollaro M, Bagella L, Giordano A and Galderisi U: The BRG1 ATPase of chromatin remodeling complexes is involved in modulation of mesenchymal stem cell senescence through RB-P53 pathways. Oncogene. 29:5452–5463. 2010. View Article : Google Scholar : PubMed/NCBI | |
Squillaro T, Severino V, Alessio N, Farina A, Di Bernardo G, Cipollaro M, Peluso G, Chambery A and Galderisi U: De-regulated expression of the BRG1 chromatin remodeling factor in bone marrow mesenchymal stromal cells induces senescence associated with the silencing of NANOG and changes in the levels of chromatin proteins. Cell Cycle. 14:1315–1326. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yuan J and Ofengeim D: A guide to cell death pathways. Nat Rev Mol Cell Biol. 25:379–395. 2024. View Article : Google Scholar | |
Klochendler-Yeivin A, Fiette L, Barra J, Muchardt C, Babinet C and Yaniv M: The murine SNF5/INI1 chromatin remodeling factor is essential for embryonic development and tumor suppression. EMBO Rep. 1:500–506. 2000. View Article : Google Scholar | |
Li S, Huang Z, Zhu Y, Yan J, Li J, Chen J, Zhou J, Zhang Y, Chen W, Xu K and Ye W: Bromodomain-containing protein 7 regulates matrix metabolism and apoptosis in human nucleus pulposus cells through the BRD7-PI3K-YAP1 signaling axis. Exp Cell Res. 405:1126582021. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Cheng W, Gao K, Liang S, Ke L, Wang M, Fan J, Li D, Zhang P, Xu Z and Li N: Pyroptosis: A spoiler of peaceful coexistence between cells in degenerative bone and joint diseases. J Adv Res. 71:227–262. 2024. View Article : Google Scholar : PubMed/NCBI | |
Chai S, Yang Y, Wei L, Cao Y, Ma J, Zheng X, Teng J and Qin N: Luteolin rescues postmenopausal osteoporosis elicited by OVX through alleviating osteoblast pyroptosis via activating PI3K-AKT signaling. Phytomedicine. 128:1555162024. View Article : Google Scholar : PubMed/NCBI | |
Ruan H, Zhang H, Feng J, Luo H, Fu F, Yao S, Zhou C, Zhang Z, Bian Y, Jin H, et al: Inhibition of Caspase-1-mediated pyroptosis promotes osteogenic differentiation, offering a therapeutic target for osteoporosis. Int Immunopharmacol. 124(Pt B): 1109012023. View Article : Google Scholar : PubMed/NCBI | |
Deng Z, Zhang Y, Zhu Y, Zhu J, Li S, Huang Z, Qin T, Wu J, Zhang C, Chen W, et al: BRD9 inhibition attenuates matrix degradation and pyroptosis in nucleus pulposus by modulating the NOX1/ROS/NF-κB axis. Inflammation. 46:1002–1021. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Zhang Y, Cao J, Wang Y, Anwar N, Zhang Z, Zhang D, Ma Y, Xiao Y, Xiao L and Wang X: The role of autophagy in bone metabolism and clinical significance. Autophagy. 19:2409–2427. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ren X, Xu J, Xue Q, Tong Y, Xu T, Wang J, Yang T, Chen Y, Shi D and Li X: BRG1 enhances porcine iPSC pluripotency through WNT/β-catenin and autophagy pathways. Theriogenology. 215:10–23. 2024. View Article : Google Scholar | |
Yang C, Tian Y, Zhao F, Chen Z, Su P, Li Y and Qian A: Bone microenvironment and osteosarcoma metastasis. Int J Mol Sci. 21:69852020. View Article : Google Scholar : PubMed/NCBI | |
Urlić I, Jovičić MŠ, Ostojić K and Ivković A: Cellular and genetic background of osteosarcoma. Curr Issues Mol Biol. 45:4344–4358. 2023. View Article : Google Scholar | |
Hang JF and Chen PC: Parosteal osteosarcoma. Arch Pathol Lab Med. 138:694–699. 2014. View Article : Google Scholar : PubMed/NCBI | |
Qiu YQ and Chen YL: Primary meningeal osteoblastic osteosarcoma containing fibroblast osteosarcoma: Clinicopathological analysis and literature review. Osteoporos Int. 32:1007–1012. 2021. View Article : Google Scholar | |
Guan Y, Zhang W, Mao Y and Li S: Nanoparticles and bone microenvironment: A comprehensive review for malignant bone tumor diagnosis and treatment. Mol Cancer. 23:2462024. View Article : Google Scholar : PubMed/NCBI | |
Basu Mallick A and Chawla SP: Giant cell tumor of bone: An update. Curr Oncol Rep. 23:512021. View Article : Google Scholar : PubMed/NCBI | |
Corre I, Verrecchia F, Crenn V, Redini F and Trichet V: The osteosarcoma microenvironment: A complex but targetable ecosystem. Cells. 9:9762020. View Article : Google Scholar : PubMed/NCBI | |
Grünewald TGP, Cidre-Aranaz F, Surdez D, Tomazou EM, de Álava E, Kovar H, Sorensen PH, Delattre O and Dirksen U: Ewing sarcoma. Nat Rev Dis Primers. 4:52018. View Article : Google Scholar : PubMed/NCBI | |
Weber K, Damron TA, Frassica FJ and Sim FH: Malignant bone tumors. Instr Course Lect. 57:673–688. 2008.PubMed/NCBI | |
Graca Marques J, Pavlovic B, Ngo QA, Pedot G, Roemmele M, Volken L, Kisele S, Perbet R, Wachtel M and Schäfer BW: The chromatin remodeler CHD4 sustains ewing sarcoma cell survival by controlling global chromatin architecture. Cancer Res. 84:241–257. 2024. View Article : Google Scholar | |
Sohn EJ and Libich DS: Hijacking the BAF complex: The mechanistic interplay of ARID1A and EWS::FLI1 in Ewing sarcoma. Mol Oncol. 19:961–964. 2025. View Article : Google Scholar : | |
Selvanathan SP, Graham GT, Grego AR, Baker TM, Hogg JR, Simpson M, Batish M, Crompton B, Stegmaier K, Tomazou EM, et al: EWS-FLI1 modulated alternative splicing of ARID1A reveals novel oncogenic function through the BAF complex. Nucleic Acids Res. 47:9619–9636. 2019.PubMed/NCBI | |
Boulay G, Sandoval GJ, Riggi N, Iyer S, Buisson R, Naigles B, Awad ME, Rengarajan S, Volorio A, McBride MJ, et al: Cancer-specific retargeting of BAF complexes by a prion-like domain. Cell. 171:163–178.e19. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jayabal P, Zhou F, Lei X, Ma X, Blackman B, Weintraub ST, Houghton PJ and Shiio Y: NELL2-cdc42 signaling regulates BAF complexes and Ewing sarcoma cell growth. Cell Rep. 36:1092542021. View Article : Google Scholar : PubMed/NCBI | |
Cyra M, Schulte M, Berthold R, Heinst L, Jansen EP, Grünewald I, Elges S, Larsson O, Schliemann C, Steinestel K, et al: SS18-SSX drives CREB activation in synovial sarcoma. Cell Oncol (Dordr). 45:399–413. 2022. View Article : Google Scholar : PubMed/NCBI | |
Michel BC, D'Avino AR, Cassel SH, Mashtalir N, McKenzie ZM, McBride MJ, Valencia AM, Zhou Q, Bocker M, Soares LMM, et al: A non-canonical SWI/SNF complex is a synthetic lethal target in cancers driven by BAF complex perturbation. Nat Cell Biol. 20:1410–1420. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shih AR, Cote GM, Chebib I, Choy E, DeLaney T, Deshpande V, Hornicek FJ, Miao R, Schwab JH, Nielsen GP and Chen YL: Clinicopathologic characteristics of poorly differentiated chordoma. Mod Pathol. 31:1237–1245. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sergi CM: Commentary on: SMARCB1 as a novel diagnostic and prognostic biomarker for osteosarcoma. Biosci Rep. 42:BSR202200402022. View Article : Google Scholar : PubMed/NCBI | |
Mobley BC, McKenney JK, Bangs CD, Callahan K, Yeom KW, Schneppenheim R, Hayden MG, Cherry AM, Gokden M, Edwards MS, et al: Loss of SMARCB1/INI1 expression in poorly differentiated chordomas. Acta Neuropathol. 120:745–753. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ding J, Yu C, Sui Y, Wang L, Yang Y, Wang F, Yao H, Xing F, Liu H, Li Y, et al: The chromatin remodeling protein INO80 contributes to the removal of H2A.Z at the p53-binding site of the p21 gene in response to doxorubicin. FEBS J. 285:3270–3285. 2018. View Article : Google Scholar : PubMed/NCBI | |
Flowers S, Beck GR Jr and Moran E: Transcriptional activation by pRB and its coordination with SWI/SNF recruitment. Cancer Res. 70:8282–8287. 2010. View Article : Google Scholar : PubMed/NCBI | |
Meisenberg C, Pinder SI, Hopkins SR, Wooller SK, Benstead-Hume G, Pearl FMG, Jeggo PA and Downs JA: Repression of transcription at DNA breaks requires cohesin throughout interphase and prevents genome instability. Mol Cell. 73:212–223.e7. 2019. View Article : Google Scholar : | |
Ivanov AV, Peng H, Yurchenko V, Yap KL, Negorev DG, Schultz DC, Psulkowski E, Fredericks WJ, White DE, Maul GG, et al: PHD domain-mediated E3 ligase activity directs intramolecular sumoylation of an adjacent bromodomain required for gene silencing. Mol Cell. 28:823–837. 2007. View Article : Google Scholar : PubMed/NCBI | |
Walhart TA, Vacca B, Hepperla AJ, Hamad SH, Petrongelli J, Wang Y, McKean EL, Moksa M, Cao Q, Yip S, et al: SMARCB1 loss in poorly differentiated chordomas drives tumor progression. Am J Pathol. 193:456–473. 2023. View Article : Google Scholar : PubMed/NCBI | |
Passeri T, Gutman T, Hamza A, Adle-Biassette H, Girard E, Beaurepere R, Tariq Z, Mariani O, Dahmani A, Bourneix C, et al: The mutational landscape of skull base and spinal chordomas and the identification of potential prognostic and theranostic biomarkers. J Neurosurg. 139:1270–1280. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Lin X, Chen Y, Kong W, Xu J and Yu Z: Response of metastatic chordoma to the immune checkpoint inhibitor pembrolizumab: A case report. Front Oncol. 10:5659452020. View Article : Google Scholar | |
Wang L, Zehir A, Nafa K, Zhou N, Berger MF, Casanova J, Sadowska J, Lu C, Allis CD, Gounder M, et al: Genomic aberrations frequently alter chromatin regulatory genes in chordoma. Genes Chromosomes Cancer. 55:591–600. 2016. View Article : Google Scholar : PubMed/NCBI | |
Harlow ML, Chasse MH, Boguslawski EA, Sorensen KM, Gedminas JM, Kitchen-Goosen SM, Rothbart SB, Taslim C, Lessnick SL, Peck AS, et al: Trabectedin inhibits EWS-FLI1 and evicts SWI/SNF from chromatin in a schedule-dependent manner. Clin Cancer Res. 25:3417–3429. 2019. View Article : Google Scholar : PubMed/NCBI | |
Livingston JA, Blay JY, Trent J, Valverde C, Agulnik M, Gounder M, Le Cesne A, McKean M, Wagner MJ, Stacchiotti S, et al: A phase I study of FHD-609, a heterobifunctional degrader of bromodomain-containing protein 9, in patients with advanced synovial sarcoma or SMARCB1-deficient tumors. Clin Cancer Res. 31:628–638. 2025. View Article : Google Scholar | |
Dreier MR, Walia J and de la Serna IL: Targeting SWI/SNF complexes in cancer: Pharmacological approaches and implications. Epigenomes. 8:72024. View Article : Google Scholar : PubMed/NCBI | |
Gatchalian J, Liao J, Maxwell MB and Hargreaves DC: Control of stimulus-dependent responses in macrophages by SWI/SNF chromatin remodeling complexes. Trends Immunol. 41:126–140. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li X, Ding D, Yao J, Zhou B, Shen T, Qi Y, Ni T and Wei G: Chromatin remodeling factor BAZ1A regulates cellular senescence in both cancer and normal cells. Life Sci. 229:225–232. 2019. View Article : Google Scholar : PubMed/NCBI | |
Martel-Pelletier J, Barr AJ, Cicuttini FM, Conaghan PG, Cooper C, Goldring MB, Goldring SR, Jones G, Teichtahl AJ, Pelletier JP, et al: Osteoarthritis. Nat Rev Dis Primers. 2:160722016. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Zhang Y, Zhang L, He D, Zhao L, Miao Z, Cheng W, Zhu C, Zhu L, Zhang W, et al: IRF1 governs the expression of SMARCC1 via the GCN5-SETD2 axis and actively engages in the advancement of osteoarthritis. J Orthop Translat. 45:211–225. 2024. View Article : Google Scholar : PubMed/NCBI | |
Qiu Y, Yao J, Li L, Xiao M, Meng J, Huang X, Cai Y, Wen Z, Huang J, Zhu M, et al: Machine learning identifies ferroptosis-related genes as potential diagnostic biomarkers for osteoarthritis. Front Endocrinol (Lausanne). 14:11987632023. View Article : Google Scholar : PubMed/NCBI | |
Devlin MJ and Rosen CJ: The bone-fat interface: Basic and clinical implications of marrow adiposity. Lancet Diabetes Endocrinol. 3:141–147. 2015. View Article : Google Scholar | |
Kuznia AL, Hernandez AK and Lee LU: Adolescent idiopathic scoliosis: Common questions and answers. Am Fam Physician. 101:19–23. 2020.PubMed/NCBI | |
Cheng JC, Castelein RM, Chu WC, Danielsson AJ, Dobbs MB, Grivas TB, Gurnett CA, Luk KD, Moreau A, Newton PO, et al: Adolescent idiopathic scoliosis. Nat Rev Dis Primers. 1:150302015. View Article : Google Scholar : PubMed/NCBI | |
Wu Z, Dai Z, Yuwen W, Liu Z, Qiu Y, Cheng JC, Zhu Z and Xu L: Genetic variants of CHD7 are associated with adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 46:E618–E624. 2021. View Article : Google Scholar | |
Borysiak K, Janusz P, Andrusiewicz M, Chmielewska M, Kozinoga M, Kotwicki T and Kotwicka M: CHD7 gene polymorphisms in female patients with idiopathic scoliosis. BMC Musculoskelet Disord. 21:182020. View Article : Google Scholar : PubMed/NCBI | |
Kulkarni S, Nagarajan P, Wall J, Donovan DJ, Donell RL, Ligon AH, Venkatachalam S and Quade BJ: Disruption of chromodomain helicase DNA binding protein 2 (CHD2) causes scoliosis. Am J Med Genet A. 146A:1117–1127. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bonyadi M, Waldman SD, Liu D, Aubin JE, Grynpas MD and Stanford WL: Mesenchymal progenitor self-renewal deficiency leads to age-dependent osteoporosis in Sca-1/Ly-6A null mice. Proc Natl Acad Sci USA. 100:5840–5845. 2003. View Article : Google Scholar : PubMed/NCBI | |
Yu W, Wang HL, Zhang J and Yin C: The effects of epigenetic modifications on bone remodeling in age-related osteoporosis. Connect Tissue Res. 64:105–116. 2023. View Article : Google Scholar | |
Li C, Pan H, Liu W, Jin G, Liu W, Liang C and Jiang X: Discovery of novel serum biomarkers for diagnosing and predicting postmenopausal osteoporosis patients by 4D-label free protein omics. J Orthop Res. 41:2713–2720. 2023. View Article : Google Scholar : PubMed/NCBI | |
Pico MJ, Hashemi S, Xu F, Nguyen KH, Donnelly R, Moran E and Flowers S: Glucocorticoid receptor-mediated cis-repression of osteogenic genes requires BRM-SWI/SNF. Bone Rep. 5:222–227. 2016. View Article : Google Scholar | |
Chi SN, Yi JS, Williams PM, Roy-Chowdhuri S, Patton DR, Coffey BD, Reid JM, Piao J, Saguilig L, Alonzo TA, et al: Tazemetostat for tumors harboring SMARCB1/SMARCA4 or EZH2 alterations: Results from NCI-COG pediatric MATCH APEC1621C. J Natl Cancer Inst. 115:1355–1363. 2023. View Article : Google Scholar : PubMed/NCBI | |
Martin LJ, Koegl M, Bader G, Cockcroft XL, Fedorov O, Fiegen D, Gerstberger T, Hofmann MH, Hohmann AF, Kessler D, et al: Structure-based design of an in vivo active selective BRD9 inhibitor. J Med Chem. 59:4462–4475. 2016. View Article : Google Scholar : PubMed/NCBI |