Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
August-2025 Volume 56 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2025 Volume 56 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Review Open Access

Epigenetic roles of chromatin remodeling complexes in bone biology and the pathogenesis of bone‑related disease (Review)

  • Authors:
    • Wenxiao Wu
    • Yinxing Cui
    • Yuqi Wu
    • Yan Ni
    • Chunling Zhao
    • Weichao Sun
    • Qian Yi
  • View Affiliations / Copyright

    Affiliations: Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China, Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China, Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, P.R. China
    Copyright: © Wu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 115
    |
    Published online on: May 28, 2025
       https://doi.org/10.3892/ijmm.2025.5556
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Chromatin remodeling complexes are essential regulators of chromatin architecture, facilitating critical processes such as nucleosome sliding, eviction, histone exchange and post‑translational modifications. By providing an additional layer of epigenetic regulation beyond the canonical genetic code, these complexes significantly influence bone biology and health. Epigenetic regulation through chromatin remodeling complexes is crucial in modulating gene expression and cellular behavior in bone cells. However, alterations in the activity of chromatin remodeling complexes can also contribute to the progression of various bone diseases. Emerging evidence suggests that specific chromatin remodeling factors may serve as potential biomarkers for diagnosing bone‑related conditions and as therapeutic targets for intervention. The present review aims to elucidate the intricate relationship between chromatin remodeling complexes and bone‑related diseases, including osteoporosis, osteoarthritis and osteosarcoma. The present review discusses the diverse subunits of these complexes and their multifaceted roles in regulating key cellular processes such as stemness, differentiation, proliferation, senescence and apoptosis in bone cells. Notably, the present review provides a comprehensive overview of the roles of various chromatin remodeling subunits, such as BRG1, BAF47 and chromodomain‑helicase‑DNA binding 7 (CHD7), in bone metabolism, highlighting their disease‑specific mechanisms, including bromodomain‑containing protein (BRD)9‑mediated pyroptosis in intervertebral disc degeneration and CHD7‑driven bone‑fat imbalance. Furthermore, the present review highlights the therapeutic potential of targeting dysfunctional subunits (such as BRD7 in osteosarcoma and SS18 in synovial sarcoma) and propose AI‑driven structural biology approaches to design chemical modulators. The understudied impact of aging on chromatin remodeling activity in bone homeostasis is also underscored, advocating for longitudinal studies to address this gap. Finally, the distinct functions of each chromatin remodeling complex and its specific subunits in the context of bone‑related diseases were also explored, providing a comprehensive understanding of their contributions to both normal bone physiology and pathological conditions.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Florencio-Silva R, Sasso GR, Sasso-Cerri E, Simões MJ and Cerri PS: Biology of bone tissue: Structure, function, and factors that influence bone cells. Biomed Res Int. 2015:4217462015. View Article : Google Scholar : PubMed/NCBI

2 

Lee HR, Yang SJ, Choi HK, Kim JA and Oh IH: The chromatin remodeling complex CHD1 regulates the primitive state of mesenchymal stromal cells to control their stem cell supporting activity. Stem Cells Dev. 30:363–373. 2021. View Article : Google Scholar : PubMed/NCBI

3 

Schini M, Vilaca T, Gossiel F, Salam S and Eastell R: Bone turnover markers: Basic biology to clinical applications. Endocr Rev. 44:417–473. 2023. View Article : Google Scholar :

4 

Hadjidakis DJ and Androulakis II: Bone remodeling. Ann N Y Acad Sci. 1092:385–396. 2006. View Article : Google Scholar

5 

Liang J, Yi Q, Liu Y, Li J, Yang Z and Sun W and Sun W: Recent advances of m6A methylation in skeletal system disease. J Transl Med. 22:1532024. View Article : Google Scholar : PubMed/NCBI

6 

Lane NE: Epidemiology, etiology, and diagnosis of osteoporosis. Am J Obstet Gynecol. 194(2 Suppl): S3–S11. 2006. View Article : Google Scholar : PubMed/NCBI

7 

Stark Z and Savarirayan R: Osteopetrosis. Orphanet J Rare Dis. 4:52009. View Article : Google Scholar : PubMed/NCBI

8 

Zheng J, Yao Z, Xue L, Wang D and Tan Z: The role of immune cells in modulating chronic inflammation and osteonecrosis. Front Immunol. 13:10642452022. View Article : Google Scholar : PubMed/NCBI

9 

Glyn-Jones S, Palmer AJ, Agricola R, Price AJ, Vincent TL, Weinans H and Carr AJ: Osteoarthritis. Lancet. 386:376–387. 2015. View Article : Google Scholar : PubMed/NCBI

10 

Choi JH and Ro JY: The 2020 WHO classification of tumors of bone: An updated review. Adv Anat Pathol. 28:119–138. 2021. View Article : Google Scholar : PubMed/NCBI

11 

Park-Min KH: Epigenetic regulation of bone cells. Connect Tissue Res. 58:76–89. 2017. View Article : Google Scholar :

12 

Zhang Y, Wang Q, Xue H, Guo Y, Wei S, Li F, Gong L, Pan W and Jiang P: Epigenetic regulation of autophagy in bone metabolism. Function (Oxf). 5:zqae0042024. View Article : Google Scholar : PubMed/NCBI

13 

Sikora M, Marycz K and Smieszek A: Small and Long Non-coding RNAs as functional regulators of bone homeostasis, acting alone or cooperatively. Mol Ther Nucleic Acids. 21:792–803. 2020. View Article : Google Scholar : PubMed/NCBI

14 

Du J, Liu Y, Wu X, Sun J, Shi J, Zhang H, Zheng A, Zhou M and Jiang X: BRD9-mediated chromatin remodeling suppresses osteoclastogenesis through negative feedback mechanism. Nat Commun. 14:14132023. View Article : Google Scholar : PubMed/NCBI

15 

Busby T, Chen Y, Godfrey TC, Rehan M, Wildman BJ, Smith CM and Hassan Q: Baf45a mediated chromatin remodeling promotes transcriptional activation for osteogenesis and odontogenesis. Front Endocrinol (Lausanne). 12:7633922022. View Article : Google Scholar : PubMed/NCBI

16 

Zhang Y, Sun H, Huang F, Chen Y, Ding X, Zhou C, Wu Y, Zhang Q, Ma X, Wang J, et al: The chromatin remodeling factor Arid1a cooperates with Jun/Fos to promote osteoclastogenesis by epigenetically upregulating Siglec15 expression. J Bone Miner Res. 39:775–790. 2024. View Article : Google Scholar : PubMed/NCBI

17 

Wei W, Tang X, Jiang N, Ni C, He H, Sun S, Yu M, Yu C, Qiu M, Yan D, et al: Chromatin remodeler Znhit1 controls bone morphogenetic protein signaling in embryonic lung tissue branching. J Biol Chem. 298:1024902022. View Article : Google Scholar : PubMed/NCBI

18 

Xue Y, Morris JL, Yang K, Fu Z, Zhu X, Johnson F, Meehan B, Witkowski L, Yasmeen A, Golenar T, et al: SMARCA4/2 loss inhibits chemotherapy-induced apoptosis by restricting IP3R3-mediated Ca(2+) flux to mitochondria. Nat Commun. 12:54042021. View Article : Google Scholar : PubMed/NCBI

19 

Bosch PJ, Fuller LC and Weiner JA: A critical role for the nuclear protein Akirin2 in the formation of mammalian muscle in vivo. Genesis. 57:e232862019. View Article : Google Scholar : PubMed/NCBI

20 

Gamarra N and Narlikar GJ; Collaboration through chromatin: motors of transcription and chromatin structure. J Mol Biol. 433:1668762021. View Article : Google Scholar

21 

El Hadidy N and Uversky VN: Intrinsic disorder of the BAF complex: Roles in chromatin remodeling and disease development. Int J Mol Sci. 20:52602019. View Article : Google Scholar : PubMed/NCBI

22 

Clapier CR and Cairns BR: The biology of chromatin remodeling complexes. Annu Rev Biochem. 78:273–304. 2009. View Article : Google Scholar : PubMed/NCBI

23 

Fröb F and Wegner M: The role of chromatin remodeling complexes in Schwann cell development. Glia. 68:1596–1603. 2020. View Article : Google Scholar

24 

Han Y, Reyes AA, Malik S and He Y: Cryo-EM structure of SWI/SNF complex bound to a nucleosome. Nature. 579:452–455. 2020. View Article : Google Scholar : PubMed/NCBI

25 

Vary JC Jr, Gangaraju VK, Qin J, Landel CC, Kooperberg C, Bartholomew B and Tsukiyama T: Yeast Isw1p forms two separable complexes in vivo. Mol Cell Biol. 23:80–91. 2003. View Article : Google Scholar

26 

Reyes AA, Marcum RD and He Y: Structure and function of chromatin remodelers. J Mol Biol. 433:1669292021. View Article : Google Scholar : PubMed/NCBI

27 

Nacev BA, Jones KB, Intlekofer AM, Yu JSE, Allis CD, Tap WD, Ladanyi M and Nielsen TO: The epigenomics of sarcoma. Nat Rev Cancer. 20:608–623. 2020. View Article : Google Scholar : PubMed/NCBI

28 

Du W, Guo D and Du W: ATP-Dependent chromatin remodeling complex in the lineage specification of mesenchymal stem cells. Stem Cells Int. 2020:88397032020. View Article : Google Scholar : PubMed/NCBI

29 

Wojcik J and Cooper K: Epigenetic alterations in bone and soft tissue tumors. Adv Anat Pathol. 24:362–371. 2017. View Article : Google Scholar : PubMed/NCBI

30 

Chakraborty S, Sinha S and Sengupta A: Emerging trends in chromatin remodeler plasticity in mesenchymal stromal cell function. FASEB J. 35:e212342021. View Article : Google Scholar

31 

Kouzarides T: Chromatin modifications and their function. Cell. 128:693–705. 2007. View Article : Google Scholar : PubMed/NCBI

32 

Clapier CR, Iwasa J, Cairns BR and Peterson CL: Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nat Rev Mol Cell Biol. 18:407–422. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Tyagi M, Imam N, Verma K and Patel AK: Chromatin remodelers: We are the drivers! Nucleus. 7:388–404. 2016. View Article : Google Scholar : PubMed/NCBI

34 

Li Y, Gong H, Wang P, Zhu Y, Peng H, Cui Y, Li H, Liu J and Wang Z: The emerging role of ISWI chromatin remodeling complexes in cancer. J Exp Clin Cancer Res. 40:3462021. View Article : Google Scholar : PubMed/NCBI

35 

Centore RC, Sandoval GJ, Soares LMM, Kadoch C and Chan HM: Mammalian SWI/SNF chromatin remodeling complexes: Emerging mechanisms and therapeutic strategies. Trends Genet. 36:936–950. 2020. View Article : Google Scholar : PubMed/NCBI

36 

Willhoft O and Wigley DB: INO80 and SWR1 complexes: The non-identical twins of chromatin remodelling. Curr Opin Struct Biol. 61:50–58. 2020. View Article : Google Scholar :

37 

Pulice JL and Kadoch C: Composition and function of mammalian SWI/SNF chromatin remodeling complexes in human disease. Cold Spring Harb Symp Quant Biol. 81:53–60. 2016. View Article : Google Scholar

38 

Judd J, Duarte FM and Lis JT: Pioneer-like factor GAF cooperates with PBAP (SWI/SNF) and NURF (ISWI) to regulate transcription. Genes Dev. 35:147–156. 2021. View Article : Google Scholar :

39 

Poli J, Gasser SM and Papamichos-Chronakis M: The INO80 remodeller in transcription, replication and repair. Philos Trans R Soc Lond B Biol Sci. 372:201602902017. View Article : Google Scholar : PubMed/NCBI

40 

Trujillo JT, Long J, Aboelnour E, Ogas J and Wisecaver JH: CHD Chromatin Remodeling Protein Diversification Yields Novel Clades and Domains Absent in Classic Model Organisms. Genome Biol Evol. 14:evac0662022. View Article : Google Scholar : PubMed/NCBI

41 

Iyer J, Gentry LK, Bergwell M, Smith A, Guagliardo S, Kropp PA, Sankaralingam P, Liu Y, Spooner E, Bowerman B and O'Connell KF: The chromatin remodeling protein CHD-1 and the EFL-1/DPL-1 transcription factor cooperatively down regulate CDK-2 to control SAS-6 levels and centriole number. PLoS Genet. 18:e10097992022. View Article : Google Scholar : PubMed/NCBI

42 

Ebbert R, Birkmann A and Schüller HJ: The product of the SNF2/SWI2 paralogue INO80 of Saccharomyces cerevisiae required for efficient expression of various yeast structural genes is part of a high-molecular-weight protein complex. Mol Microbiol. 32:741–751. 1999. View Article : Google Scholar : PubMed/NCBI

43 

van Attikum H, Fritsch O and Gasser SM: Distinct roles for SWR1 and INO80 chromatin remodeling complexes at chromosomal double-strand breaks. EMBO J. 26:4113–4125. 2007. View Article : Google Scholar : PubMed/NCBI

44 

Conaway RC and Conaway JW: The INO80 chromatin remodeling complex in transcription, replication and repair. Trends Biochem Sci. 34:71–77. 2009. View Article : Google Scholar

45 

Saha A, Wittmeyer J and Cairns BR: Mechanisms for nucleosome movement by ATP-dependent chromatin remodeling complexes. Results Probl Cell Differ. 41:127–148. 2006. View Article : Google Scholar : PubMed/NCBI

46 

Barisic D, Stadler MB, Iurlaro M and Schübeler D: Mammalian ISWI and SWI/SNF selectively mediate binding of distinct transcription factors. Nature. 569:136–140. 2019. View Article : Google Scholar : PubMed/NCBI

47 

Wang Y, He L, Du Y, Zhu P, Huang G, Luo J, Yan X, Ye B, Li C, Xia P, et al: The long noncoding RNA lncTCF7 promotes self-renewal of human liver cancer stem cells through activation of Wnt signaling. Cell Stem Cell. 16:413–425. 2015. View Article : Google Scholar : PubMed/NCBI

48 

Tang Y, Wang J, Lian Y, Fan C, Zhang P, Wu Y, Li X, Xiong F, Li X, Li G, et al: Linking long non-coding RNAs and SWI/SNF complexes to chromatin remodeling in cancer. Mol Cancer. 16:422017. View Article : Google Scholar : PubMed/NCBI

49 

Patty BJ and Hainer SJ: Non-Coding RNAs and nucleosome remodeling complexes: An intricate regulatory relationship. Biology (Basel). 9:2132020.PubMed/NCBI

50 

Han P, Li W, Lin CH, Yang J, Shang C, Nuernberg ST, Jin KK, Xu W, Lin CY, Lin CJ, et al: A long noncoding RNA protects the heart from pathological hypertrophy. Nature. 514:102–106. 2014. View Article : Google Scholar : PubMed/NCBI

51 

Atala A: Re: The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. J Urol. 192:6132014. View Article : Google Scholar : PubMed/NCBI

52 

Yang Z, Mameri A, Cattoglio C, Lachance C, Florez Ariza AJ, Luo J, Humbert J, Sudarshan D, Banerjea A, Galloy M, et al: Structural insights into the human NuA4/TIP60 acetyltransferase and chromatin remodeling complex. Science. 385:eadl58162024. View Article : Google Scholar : PubMed/NCBI

53 

Tallant C, Valentini E, Fedorov O, Overvoorde L, Ferguson FM, Filippakopoulos P, Svergun DI, Knapp S and Ciulli A: Molecular basis of histone tail recognition by human TIP5 PHD finger and bromodomain of the chromatin remodeling complex NoRC. Structure. 23:80–92. 2015. View Article : Google Scholar :

54 

Charles GM, Chen C, Shih SC, Collins SR, Beltrao P, Zhang X, Sharma T, Tan S, Burlingame AL, Krogan NJ, et al: Site-specific acetylation mark on an essential chromatin-remodeling complex promotes resistance to replication stress. Proc Natl Acad Sci USA. 108:10620–10625. 2011. View Article : Google Scholar : PubMed/NCBI

55 

Sala A, La Rocca G, Burgio G, Kotova E, Di Gesù D, Collesano M, Ingrassia AM, Tulin AV and Corona DF: The nucleosome-remodeling ATPase ISWI is regulated by poly-ADP-ribosylation. PLoS Biol. 6:e2522008. View Article : Google Scholar : PubMed/NCBI

56 

Bure IV and Nemtsova MV: Mutual regulation of ncRNAs and chromatin remodeling complexes in normal and pathological conditions. Int J Mol Sci. 24:78482023. View Article : Google Scholar : PubMed/NCBI

57 

Young DW, Pratap J, Javed A, Weiner B, Ohkawa Y, van Wijnen A, Montecino M, Stein GS, Stein JL, Imbalzano AN and Lian JB: SWI/SNF chromatin remodeling complex is obligatory for BMP2-induced, Runx2-dependent skeletal gene expression that controls osteoblast differentiation. J Cell Biochem. 94:720–730. 2005. View Article : Google Scholar

58 

Kuhn NZ and Tuan RS: Regulation of stemness and stem cell niche of mesenchymal stem cells: Implications in tumorigenesis and metastasis. J Cell Physiol. 222:268–277. 2010. View Article : Google Scholar

59 

Im GI and Shin KJ: Epigenetic approaches to regeneration of bone and cartilage from stem cells. Expert Opin Biol Ther. 15:181–193. 2015. View Article : Google Scholar

60 

Flowers S, Nagl NG Jr, Beck GR Jr and Moran E: Antagonistic roles for BRM and BRG1 SWI/SNF complexes in differentiation. J Biol Chem. 284:10067–10075. 2009. View Article : Google Scholar : PubMed/NCBI

61 

Xu Y, Zhang J and Chen X: The activity of p53 is differentially regulated by Brm- and Brg1-containing SWI/SNF chromatin remodeling complexes. J Biol Chem. 282:37429–37435. 2007. View Article : Google Scholar : PubMed/NCBI

62 

Moran A, Hoyt A, Sedani A, Granger C, Saigh S, Blonska M, Zhao-Ju L, Conway SA, Pretell J, Brown J and Galoian K: Proline-rich polypeptide-1 decreases cancer stem cell population by targeting BAFF chromatin-remodeling complexes in human chondrosarcoma JJ012 cells. Oncol Rep. 44:393–403. 2020. View Article : Google Scholar : PubMed/NCBI

63 

Kidder BL, Palmer S and Knott JG: SWI/SNF-Brg1 regulates self-renewal and occupies core pluripotency-related genes in embryonic stem cells. Stem Cells. 27:317–328. 2009. View Article : Google Scholar

64 

Nguyen KH, Xu F, Flowers S, Williams EA, Fritton JC and Moran E: SWI/SNF-mediated lineage determination in mesenchymal stem cells confers resistance to osteoporosis. Stem Cells. 33:3028–3038. 2015. View Article : Google Scholar : PubMed/NCBI

65 

Kitagawa T, Kobayashi D, Baron B, Okita H, Miyamoto T, Takai R, Paudel D, Ohta T, Asaoka Y, Tokunaga M, et al: AT-hook DNA-binding motif-containing protein one knockdown downregulates EWS-FLI1 transcriptional activity in Ewing's sarcoma cells. PLoS One. 17:e02690772022. View Article : Google Scholar : PubMed/NCBI

66 

Wang X, Lee RS, Alver BH, Haswell JR, Wang S, Mieczkowski J, Drier Y, Gillespie SM, Archer TC, Wu JN, et al: SMARCB1-mediated SWI/SNF complex function is essential for enhancer regulation. Nat Genet. 49:289–295. 2017. View Article : Google Scholar :

67 

Nakayama RT, Pulice JL, Valencia AM, McBride MJ, McKenzie ZM, Gillespie MA, Ku WL, Teng M, Cui K, Williams RT, et al: SMARCB1 is required for widespread BAF complex-mediated activation of enhancers and bivalent promoters. Nat Genet. 49:1613–1623. 2017. View Article : Google Scholar : PubMed/NCBI

68 

Zhang H, Wang X, Li J, Shi R and Ye Y: BAF Complex in embryonic stem cells and early embryonic development. Stem Cells Int. 2021:66688662021. View Article : Google Scholar : PubMed/NCBI

69 

Antonelli M, Raso A, Mascelli S, Gessi M, Nozza P, Coli A, Gardiman MP, Arcella A, Massimino M, Buttarelli FR and Giangaspero F: SMARCB1/INI1 involvement in pediatric chordoma: A mutational and immunohistochemical analysis. Am J Surg Pathol. 41:56–61. 2017. View Article : Google Scholar

70 

Zhang X, Li B, Li W, Ma L, Zheng D, Li L, Yang W, Chu M, Chen W, Mailman RB, et al: Transcriptional repression by the BRG1-SWI/SNF complex affects the pluripotency of human embryonic stem cells. Stem Cell Reports. 3:460–474. 2014. View Article : Google Scholar : PubMed/NCBI

71 

Gatchalian J, Malik S, Ho J, Lee DS, Kelso TWR, Shokhirev MN, Dixon JR and Hargreaves DC: A non-canonical BRD9-containing BAF chromatin remodeling complex regulates naive pluripotency in mouse embryonic stem cells. Nat Commun. 9:51392018. View Article : Google Scholar : PubMed/NCBI

72 

Wang X, Song C, Ye Y, Gu Y, Li X, Chen P, Leng D, Xiao J, Wu H, Xie S, et al: BRD9-mediated control of the TGF-β/Activin/Nodal pathway regulates self-renewal and differentiation of human embryonic stem cells and progression of cancer cells. Nucleic Acids Res. 51:11634–11651. 2023. View Article : Google Scholar : PubMed/NCBI

73 

Sevinç K, Sevinç GG, Cavga AD, Philpott M, Kelekçi S, Can H, Cribbs AP, Yıldız AB, Yılmaz A, Ayar ES, et al: BRD9-containing non-canonical BAF complex maintains somatic cell transcriptome and acts as a barrier to human reprogramming. Stem Cell Reports. 17:2629–2642. 2022. View Article : Google Scholar : PubMed/NCBI

74 

Gaspar-Maia A, Alajem A, Polesso F, Sridharan R, Mason MJ, Heidersbach A, Ramalho-Santos J, McManus MT, Plath K, Meshorer E and Ramalho-Santos M: Chd1 regulates open chromatin and pluripotency of embryonic stem cells. Nature. 460:863–868. 2009. View Article : Google Scholar : PubMed/NCBI

75 

Baumgart SJ, Najafova Z, Hossan T, Xie W, Nagarajan S, Kari V, Ditzel N, Kassem M and Johnsen SA: CHD1 regulates cell fate determination by activation of differentiation-induced genes. Nucleic Acids Res. 45:7722–7735. 2017. View Article : Google Scholar : PubMed/NCBI

76 

Bulut-Karslioglu A, Jin H, Kim YK, Cho B, Guzman-Ayala M, Williamson AJK, Hejna M, Stötzel M, Whetton AD, Song JS and Ramalho-Santos M: Chd1 protects genome integrity at promoters to sustain hypertranscription in embryonic stem cells. Nat Commun. 12:48592021. View Article : Google Scholar : PubMed/NCBI

77 

Caplan AI: Mesenchymal stem cells. J Orthop Res. 9:641–650. 1991. View Article : Google Scholar : PubMed/NCBI

78 

Benayahu D, Shacham N and Shur I: Insights on the functional role of chromatin remodelers in osteogenic cells. Crit Rev Eukaryot Gene Expr. 17:103–113. 2007. View Article : Google Scholar : PubMed/NCBI

79 

Suzuki S, Nozawa Y, Tsukamoto S, Kaneko T, Manabe I, Imai H and Minami N: CHD1 acts via the Hmgpi pathway to regulate mouse early embryogenesis. Development. 142:2375–2384. 2015.PubMed/NCBI

80 

Liu C, Kang N, Guo Y and Gong P: Advances in chromodomain helicase DNA-binding (CHD) proteins regulating stem cell differentiation and human diseases. Front Cell Dev Biol. 9:7102032021. View Article : Google Scholar : PubMed/NCBI

81 

Wan M, Liang J, Xiong Y, Shi F, Zhang Y, Lu W, He Q, Yang D, Chen R, Liu D, et al: The trithorax group protein Ash2l is essential for pluripotency and maintaining open chromatin in embryonic stem cells. J Biol Chem. 288:5039–5048. 2013. View Article : Google Scholar :

82 

Yang P, Oldfield A, Kim T, Yang A, Yang JYH and Ho JWK: Integrative analysis identifies co-dependent gene expression regulation of BRG1 and CHD7 at distal regulatory sites in embryonic stem cells. Bioinformatics. 33:1916–1920. 2017. View Article : Google Scholar : PubMed/NCBI

83 

Malla S, Martinez-Gamero C, Kumari K, Achour C, Mermelekas G, Martinez-Delgado D, Coego A, Guallar D, Roman AC and Aguilo F: Cooperative role of LSD1 and CHD7 in regulating differentiation of mouse embryonic stem cells. Sci Rep. 14:284952024. View Article : Google Scholar : PubMed/NCBI

84 

Chen Y, Wang M, Chen D, Wang J and Kang N: Chromatin remodeling enzyme CHD7 is necessary for osteogenesis of human mesenchymal stem cells. Biochem Biophys Res Commun. 478:1588–1593. 2016. View Article : Google Scholar : PubMed/NCBI

85 

Yoo H, La H, Lee EJ, Choi HJ, Oh J, Thang NX and Hong K: ATP-dependent chromatin remodeler CHD9 controls the proliferation of embryonic stem cells in a cell culture condition-dependent manner. Biology (Basel). 9:4282020.PubMed/NCBI

86 

Salomon-Kent R, Marom R, John S, Dundr M, Schiltz LR, Gutierrez J, Workman J, Benayahu D and Hager GL: New face for chromatin-related mesenchymal modulator: n-CHD9 localizes to nucleoli and interacts with ribosomal genes. J Cell Physiol. 230:2270–2280. 2015. View Article : Google Scholar : PubMed/NCBI

87 

Wang L, Du Y, Ward JM, Shimbo T, Lackford B, Zheng X, Miao YL, Zhou B, Han L, Fargo DC, et al: INO80 facilitates pluripotency gene activation in embryonic stem cell self-renewal, reprogramming, and blastocyst development. Cell Stem Cell. 14:575–591. 2014. View Article : Google Scholar : PubMed/NCBI

88 

Furumatsu T and Ozaki T: Epigenetic regulation in chondrogenesis. Acta Med Okayama. 64:155–161. 2010.PubMed/NCBI

89 

Berendsen AD and Olsen BR: Bone development. Bone. 80:14–18. 2015. View Article : Google Scholar : PubMed/NCBI

90 

Mashtalir N, D'Avino AR, Michel BC, Luo J, Pan J, Otto JE, Zullow HJ, McKenzie ZM, Kubiak RL, St Pierre R, et al: Modular organization and assembly of SWI/SNF family chromatin remodeling complexes. Cell. 175:1272–1288.e20. 2018. View Article : Google Scholar : PubMed/NCBI

91 

You S, Zhang Y, Xu J, Qian H, Wu S, Wu B, Lu S, Sun Y and Zhang N: The role of BRG1 in antioxidant and redox signaling. Oxid Med Cell Longev. 2020:60956732020. View Article : Google Scholar : PubMed/NCBI

92 

Sun F, Chen Q, Yang S, Pan Q, Ma J, Wan Y, Chang CH and Hong A: Remodeling of chromatin structure within the promoter is important for bmp-2-induced fgfr3 expression. Nucleic Acids Res. 37:3897–3911. 2009. View Article : Google Scholar : PubMed/NCBI

93 

Sacitharan PK, Lwin S, Gharios GB and Edwards JR: Spermidine restores dysregulated autophagy and polyamine synthesis in aged and osteoarthritic chondrocytes via EP300. Exp Mol Med. 50:1–10. 2018. View Article : Google Scholar : PubMed/NCBI

94 

Chen Z, Lin CX, Song B, Li CC, Qiu JX, Li SX, Lin SP, Luo WQ, Fu Y, Fang GB, et al: Spermidine activates RIP1 deubiquitination to inhibit TNF-α-induced NF-κB/p65 signaling pathway in osteoarthritis. Cell Death Dis. 11:5032020. View Article : Google Scholar

95 

Guo X, Feng X, Yang Y, Zhang H and Bai L: Spermidine attenuates chondrocyte inflammation and cellular pyroptosis through the AhR/NF-κB axis and the NLRP3/caspase-1/GSDMD pathway. Front Immunol. 15:14627772024. View Article : Google Scholar

96 

Mao X, Yan B, Chen H, Lai P and Ma J: BRG1 mediates protective ability of spermidine to ameliorate osteoarthritic cartilage by Nrf2/KEAP1 and STAT3 signaling pathway. Int Immunopharmacol. 122:1105932023. View Article : Google Scholar : PubMed/NCBI

97 

Wei S, Pei J, von Mehren M, Abraham JA, Patchefsky AS and Cooper HS: SMARCA2-NR4A3 is a novel fusion gene of extraskeletal myxoid chondrosarcoma identified by RNA next-generation sequencing. Genes Chromosomes Cancer. 60:709–712. 2021. View Article : Google Scholar : PubMed/NCBI

98 

Schaefer IM and Hornick JL: SWI/SNF complex-deficient soft tissue neoplasms: An update. Semin Diagn Pathol. 38:222–231. 2021. View Article : Google Scholar :

99 

Rekhi B and Vogel U: Utility of characteristic 'Weak to Absent' INI1/SMARCB1/BAF47 expression in diagnosis of synovial sarcomas. Apmis. 123:618–628. 2015. View Article : Google Scholar : PubMed/NCBI

100 

Fanburg-Smith JC, Auerbach A, Marwaha JS, Wang Z, Santi M, Judkins AR and Rushing EJ: Immunoprofile of mesenchymal chondrosarcoma: Aberrant desmin and EMA expression, retention of INI1, and negative estrogen receptor in 22 female-predominant central nervous system and musculoskeletal cases. Ann Diagn Pathol. 14:8–14. 2010. View Article : Google Scholar : PubMed/NCBI

101 

Kohashi K, Oda Y, Yamamoto H, Tamiya S, Matono H, Iwamoto Y, Taguchi T and Tsuneyoshi M: Reduced expression of SMARCB1/INI1 protein in synovial sarcoma. Mod Pathol. 23:981–990. 2010. View Article : Google Scholar : PubMed/NCBI

102 

Shain AH and Pollack JR: The spectrum of SWI/SNF mutations, ubiquitous in human cancers. PLoS One. 8:e551192013. View Article : Google Scholar : PubMed/NCBI

103 

Kadoch C, Williams RT, Calarco JP, Miller EL, Weber CM, Braun SM, Pulice JL, Chory EJ and Crabtree GR: Dynamics of BAF-Polycomb complex opposition on heterochromatin in normal and oncogenic states. Nat Genet. 49:213–222. 2017. View Article : Google Scholar

104 

Cheng Y, Shen Z, Gao Y, Chen F, Xu H, Mo Q, Chu X, Peng CL, McKenzie TT, Palacios BE, et al: Phase transition and remodeling complex assembly are important for SS18-SSX oncogenic activity in synovial sarcomas. Nat Commun. 13:27242022. View Article : Google Scholar : PubMed/NCBI

105 

McBride MJ, Pulice JL, Beird HC, Ingram DR, D'Avino AR, Shern JF, Charville GW, Hornick JL, Nakayama RT, Garcia-Rivera EM, et al: The SS18-SSX fusion oncoprotein hijacks BAF complex targeting and function to drive synovial sarcoma. Cancer Cell. 33:1128–1141.e7. 2018. View Article : Google Scholar : PubMed/NCBI

106 

Zhang N, Zhang Y, Chen Y, Qian H, Wu B, Lu S, You S, Xu W, Zou Y, Huang X, et al: BAF155 promotes cardiac hypertrophy and fibrosis through inhibition of WWP2-mediated PARP1 ubiquitination. Cell Discov. 9:462023. View Article : Google Scholar : PubMed/NCBI

107 

Jeon S and Seong RH: Anteroposterior limb skeletal patterning requires the bifunctional action of SWI/SNF chromatin remodeling complex in hedgehog pathway. PLoS Genet. 12:e10059152016. View Article : Google Scholar : PubMed/NCBI

108 

Ju C, Liu R, Zhang YW, Zhang Y, Zhou R, Sun J, Lv XB and Zhang Z: Mesenchymal stem cell-associated lncRNA in osteogenic differentiation. Biomed Pharmacother. 115:1089122019. View Article : Google Scholar : PubMed/NCBI

109 

Peng Y, Jiang H and Zuo HD: Factors affecting osteogenesis and chondrogenic differentiation of mesenchymal stem cells in osteoarthritis. World J Stem Cells. 15:548–560. 2023. View Article : Google Scholar : PubMed/NCBI

110 

Toosi S and Behravan J: Osteogenesis and bone remodeling: A focus on growth factors and bioactive peptides. Biofactors. 46:326–340. 2020. View Article : Google Scholar

111 

Gou Y, Huang Y, Luo W, Li Y, Zhao P, Zhong J, Dong X, Guo M, Li A, Hao A, et al: Adipose-derived mesenchymal stem cells (MSCs) are a superior cell source for bone tissue engineering. Bioact Mater. 34:51–63. 2023.

112 

Sinha S, Biswas M, Chatterjee SS, Kumar S and Sengupta A: Pbrm1 steers mesenchymal stromal cell osteolineage differentiation by integrating PBAF-dependent chromatin remodeling and BMP/TGF-β signaling. Cell Rep. 31:1075702020. View Article : Google Scholar

113 

Mardinian K, Adashek JJ, Botta GP, Kato S and Kurzrock R: SMARCA4: Implications of an altered chromatin-remodeling gene for cancer development and therapy. Mol Cancer Ther. 20:2341–2351. 2021. View Article : Google Scholar : PubMed/NCBI

114 

Hojo H, Saito T, He X, Guo Q, Onodera S, Azuma T, Koebis M, Nakao K, Aiba A, Seki M, et al: Runx2 regulates chromatin accessibility to direct the osteoblast program at neonatal stages. Cell Rep. 40:1113152022. View Article : Google Scholar : PubMed/NCBI

115 

Nagl NG Jr, Patsialou A, Haines DS, Dallas PB, Beck GR Jr and Moran E: The p270 (ARID1A/SMARCF1) subunit of mammalian SWI/SNF-related complexes is essential for normal cell cycle arrest. Cancer Res. 65:9236–9244. 2005. View Article : Google Scholar : PubMed/NCBI

116 

Bailey S, Karsenty G, Gundberg C and Vashishth D: Osteocalcin and osteopontin influence bone morphology and mechanical properties. Ann N Y Acad Sci. 1409:79–84. 2017. View Article : Google Scholar : PubMed/NCBI

117 

Komori T: Functions of osteocalcin in bone, pancreas, testis, and muscle. Int J Mol Sci. 21:75132020. View Article : Google Scholar : PubMed/NCBI

118 

Villagra A, Cruzat F, Carvallo L, Paredes R, Olate J, van Wijnen AJ, Stein GS, Lian JB, Stein JL, Imbalzano AN and Montecino M: Chromatin remodeling and transcriptional activity of the bone-specific osteocalcin gene require CCAAT/enhancer-binding protein beta-dependent recruitment of SWI/SNF activity. J Biol Chem. 281:22695–22706. 2006. View Article : Google Scholar : PubMed/NCBI

119 

Flowers S, Patel PJ, Gleicher S, Amer K, Himelman E, Goel S and Moran E: p107-Dependent recruitment of SWI/SNF to the alkaline phosphatase promoter during osteoblast differentiation. Bone. 69:47–54. 2014. View Article : Google Scholar : PubMed/NCBI

120 

Reyes JC, Barra J, Muchardt C, Camus A, Babinet C and Yaniv M: Altered control of cellular proliferation in the absence of mammalian brahma (SNF2alpha). EMBO J. 17:6979–6991. 1998. View Article : Google Scholar : PubMed/NCBI

121 

Middeljans E, Wan X, Jansen PW, Sharma V, Stunnenberg HG and Logie C: SS18 together with animal-specific factors defines human BAF-type SWI/SNF complexes. PLoS One. 7:e338342012. View Article : Google Scholar : PubMed/NCBI

122 

Godfrey TC, Wildman BJ, Javed A, Lengner CJ and Hassan MQ: Epigenetic remodeling and modification to preserve skeletogenesis in vivo. Connect Tissue Res. 59(supp1): S52–S54. 2018. View Article : Google Scholar

123 

Hasenfratz M, Mellert K, Marienfeld R, von Baer A, Schultheiss M, Roitman PD, Aponte-Tinao LA, Lehner B, Möller P, Mechtersheimer G and Barth TFE: Profiling of three H3F3A-mutated and denosumab-treated giant cell tumors of bone points to diverging pathways during progression and malignant transformation. Sci Rep. 11:57092021. View Article : Google Scholar : PubMed/NCBI

124 

Xu F, Flowers S and Moran E: Essential role of ARID2 protein-containing SWI/SNF complex in tissue-specific gene expression. J Biol Chem. 287:5033–5041. 2012. View Article : Google Scholar :

125 

Wilsker D, Patsialou A, Dallas PB and Moran E: ARID proteins: A diverse family of DNA binding proteins implicated in the control of cell growth, differentiation, and development. Cell Growth Differ. 13:95–106. 2002.PubMed/NCBI

126 

Hu K, Liao D, Wu W, Han AJ, Shi HJ, Wang F, Wang X, Zhong L, Duan T, Wu Y, et al: Targeting the anaphase-promoting complex/cyclosome (APC/C)-bromodomain containing 7 (BRD7) pathway for human osteosarcoma. Oncotarget. 5:3088–3100. 2014. View Article : Google Scholar :

127 

Liu C, Xiong Q, Li Q, Lin W, Jiang S, Zhang D, Wang Y, Duan X, Gong P and Kang N: CHD7 regulates bone-fat balance by suppressing PPAR-γ signaling. Nat Commun. 13:19892022. View Article : Google Scholar

128 

Takada I, Yogiashi Y and Kato S: Signaling crosstalk between PPARγ and BMP2 in mesenchymal stem cells. PPAR Res. 2012:6071412012. View Article : Google Scholar

129 

Schnetz MP, Bartels CF, Shastri K, Balasubramanian D, Zentner GE, Balaji R, Zhang X, Song L, Wang Z, Laframboise T, et al: Genomic distribution of CHD7 on chromatin tracks H3K4 methylation patterns. Genome Res. 19:590–601. 2009. View Article : Google Scholar : PubMed/NCBI

130 

Newton AH and Pask AJ: CHD9 upregulates RUNX2 and has a potential role in skeletal evolution. BMC Mol Cell Biol. 21:272020. View Article : Google Scholar : PubMed/NCBI

131 

Zhou C, Zou J, Zou S and Li X: INO80 is required for osteogenic differentiation of human mesenchymal stem cells. Sci Rep. 6:359242016. View Article : Google Scholar : PubMed/NCBI

132 

Anwar A, Sapra L, Gupta N, Ojha RP, Verma B and Srivastava RK: Fine-tuning osteoclastogenesis: An insight into the cellular and molecular regulation of osteoclastogenesis. J Cell Physiol. 238:1431–1464. 2023. View Article : Google Scholar : PubMed/NCBI

133 

Du J, Liu Y, Sun J, Yao E, Xu J, Wu X, Xu L, Zhou M, Yang G and Jiang X: ARID1A safeguards the canalization of the cell fate decision during osteoclastogenesis. Nat Commun. 15:59942024. View Article : Google Scholar : PubMed/NCBI

134 

Urban W, Krzystańska D, Piekarz M, Nazar J and Jankowska A: Osteosarcoma's genetic landscape painted by genes' mutations. Acta Biochim Pol. 70:671–678. 2023.PubMed/NCBI

135 

Gaeta R, Morelli M, Lessi F, Mazzanti CM, Menicagli M, Capanna R, Andreani L, Coccoli L, Aretini P and Franchi A: Identification of new potential prognostic and predictive markers in high-grade osteosarcoma using whole exome sequencing. Int J Mol Sci. 24:100862023. View Article : Google Scholar : PubMed/NCBI

136 

Tuckermann J and Adams RH: The endothelium-bone axis in development, homeostasis and bone and joint disease. Nat Rev Rheumatol. 17:608–620. 2021. View Article : Google Scholar : PubMed/NCBI

137 

Bixel MG, Sivaraj KK, Timmen M, Mohanakrishnan V, Aravamudhan A, Adams S, Koh BI, Jeong HW, Kruse K, Stange R and Adams RH: Angiogenesis is uncoupled from osteogenesis during calvarial bone regeneration. Nat Commun. 15:45752024. View Article : Google Scholar : PubMed/NCBI

138 

Duan X, Murata Y, Liu Y, Nicolae C, Olsen BR and Berendsen AD: Vegfa regulates perichondrial vascularity and osteoblast differentiation in bone development. Development. 142:1984–1991. 2015. View Article : Google Scholar : PubMed/NCBI

139 

Sena JA, Wang L and Hu CJ: BRG1 and BRM chromatin-remodeling complexes regulate the hypoxia response by acting as coactivators for a subset of hypoxia-inducible transcription factor target genes. Mol Cell Biol. 33:3849–3863. 2013. View Article : Google Scholar : PubMed/NCBI

140 

Wang F, Zhang R, Beischlag TV, Muchardt C, Yaniv M and Hankinson O: Roles of Brahma and Brahma/SWI2-related gene 1 in hypoxic induction of the erythropoietin gene. J Biol Chem. 279:46733–46741. 2004. View Article : Google Scholar : PubMed/NCBI

141 

Wang Y, Chen Y, Bao L, Zhang B, Wang JE, Kumar A, Xing C, Wang Y and Luo W: CHD4 promotes breast cancer progression as a coactivator of hypoxia-inducible factors. Cancer Res. 80:3880–3891. 2020. View Article : Google Scholar : PubMed/NCBI

142 

Collins JM, Lang A, Parisi C, Moharrer Y, Nijsure MP, Thomas Kim JH, Ahmed S, Szeto GL, Qin L, Gottardi R, et al: YAP and TAZ couple osteoblast precursor mobilization to angiogenesis and mechanoregulation in murine bone development. Dev Cell. 59:211–227.e5. 2024. View Article : Google Scholar :

143 

Griffin CT, Brennan J and Magnuson T: The chromatin-remodeling enzyme BRG1 plays an essential role in primitive erythropoiesis and vascular development. Development. 135:493–500. 2008. View Article : Google Scholar

144 

Davis RB, Curtis CD and Griffin CT: BRG1 promotes COUP-TFII expression and venous specification during embryonic vascular development. Development. 140:1272–1281. 2013. View Article : Google Scholar : PubMed/NCBI

145 

Ingram KG, Curtis CD, Silasi-Mansat R, Lupu F and Griffin CT: The NuRD chromatin-remodeling enzyme CHD4 promotes embryonic vascular integrity by transcriptionally regulating extracellular matrix proteolysis. PLoS Genet. 9:e10040312013. View Article : Google Scholar : PubMed/NCBI

146 

Forriol F and Shapiro F: Bone development: interaction of molecular components and biophysical forces. Clin Orthop Relat Res. 432:14–33. 2005. View Article : Google Scholar

147 

Komori T: Cell death in chondrocytes, osteoblasts, and osteocytes. Int J Mol Sci. 17:20452016. View Article : Google Scholar : PubMed/NCBI

148 

Grandy R, Sepulveda H, Aguilar R, Pihan P, Henriquez B, Olate J and Montecino M: The Ric-8B gene is highly expressed in proliferating preosteoblastic cells and downregulated during osteoblast differentiation in a SWI/SNF- and C/EBPbeta-mediated manner. Mol Cell Biol. 31:2997–3008. 2011. View Article : Google Scholar : PubMed/NCBI

149 

Zhang M, Guo T, Pei F, Feng J, Jing J, Xu J, Yamada T, Ho TV, Du J, Sehgal P and Chai Y: ARID1B maintains mesenchymal stem cell quiescence via inhibition of BCL11B-mediated non-canonical activin signaling. Nat Commun. 15:46142024. View Article : Google Scholar : PubMed/NCBI

150 

Ho L, Ronan JL, Wu J, Staahl BT, Chen L, Kuo A, Lessard J, Nesvizhskii AI, Ranish J and Crabtree GR: An embryonic stem cell chromatin remodeling complex, esBAF, is essential for embryonic stem cell self-renewal and pluripotency. Proc Natl Acad Sci USA. 106:5181–5186. 2009. View Article : Google Scholar : PubMed/NCBI

151 

Schaniel C, Ang YS, Ratnakumar K, Cormier C, James T, Bernstein E, Lemischka IR and Paddison PJ: Smarcc1/Baf155 couples self-renewal gene repression with changes in chromatin structure in mouse embryonic stem cells. Stem Cells. 27:2979–2991. 2009. View Article : Google Scholar : PubMed/NCBI

152 

Yan Z, Wang Z, Sharova L, Sharov AA, Ling C, Piao Y, Aiba K, Matoba R, Wang W and Ko MS: BAF250B-associated SWI/SNF chromatin-remodeling complex is required to maintain undifferentiated mouse embryonic stem cells. Stem Cells. 26:1155–1165. 2008. View Article : Google Scholar : PubMed/NCBI

153 

Eleuteri B, Aranda S and Ernfors P: NoRC Recruitment by H2A.X deposition at rRNA gene promoter limits embryonic stem cell proliferation. Cell Rep. 23:1853–1866. 2018. View Article : Google Scholar : PubMed/NCBI

154 

Li B, Lyu P, Tang J, Li J, Ouchi T, Fan Y, Zhao Z and Li L: The potential role and therapeutic relevance of cellular senescence in skeletal pathophysiology. J Gerontol A Biol Sci Med Sci. 79:glae0372024. View Article : Google Scholar : PubMed/NCBI

155 

Napolitano MA, Cipollaro M, Cascino A, Melone MA, Giordano A and Galderisi U: Brg1 chromatin remodeling factor is involved in cell growth arrest, apoptosis and senescence of rat mesenchymal stem cells. J Cell Sci. 120(Pt 16): 2904–2911. 2007. View Article : Google Scholar : PubMed/NCBI

156 

Alessio N, Squillaro T, Cipollaro M, Bagella L, Giordano A and Galderisi U: The BRG1 ATPase of chromatin remodeling complexes is involved in modulation of mesenchymal stem cell senescence through RB-P53 pathways. Oncogene. 29:5452–5463. 2010. View Article : Google Scholar : PubMed/NCBI

157 

Squillaro T, Severino V, Alessio N, Farina A, Di Bernardo G, Cipollaro M, Peluso G, Chambery A and Galderisi U: De-regulated expression of the BRG1 chromatin remodeling factor in bone marrow mesenchymal stromal cells induces senescence associated with the silencing of NANOG and changes in the levels of chromatin proteins. Cell Cycle. 14:1315–1326. 2015. View Article : Google Scholar : PubMed/NCBI

158 

Yuan J and Ofengeim D: A guide to cell death pathways. Nat Rev Mol Cell Biol. 25:379–395. 2024. View Article : Google Scholar

159 

Klochendler-Yeivin A, Fiette L, Barra J, Muchardt C, Babinet C and Yaniv M: The murine SNF5/INI1 chromatin remodeling factor is essential for embryonic development and tumor suppression. EMBO Rep. 1:500–506. 2000. View Article : Google Scholar

160 

Li S, Huang Z, Zhu Y, Yan J, Li J, Chen J, Zhou J, Zhang Y, Chen W, Xu K and Ye W: Bromodomain-containing protein 7 regulates matrix metabolism and apoptosis in human nucleus pulposus cells through the BRD7-PI3K-YAP1 signaling axis. Exp Cell Res. 405:1126582021. View Article : Google Scholar : PubMed/NCBI

161 

Li Z, Cheng W, Gao K, Liang S, Ke L, Wang M, Fan J, Li D, Zhang P, Xu Z and Li N: Pyroptosis: A spoiler of peaceful coexistence between cells in degenerative bone and joint diseases. J Adv Res. 71:227–262. 2024. View Article : Google Scholar : PubMed/NCBI

162 

Chai S, Yang Y, Wei L, Cao Y, Ma J, Zheng X, Teng J and Qin N: Luteolin rescues postmenopausal osteoporosis elicited by OVX through alleviating osteoblast pyroptosis via activating PI3K-AKT signaling. Phytomedicine. 128:1555162024. View Article : Google Scholar : PubMed/NCBI

163 

Ruan H, Zhang H, Feng J, Luo H, Fu F, Yao S, Zhou C, Zhang Z, Bian Y, Jin H, et al: Inhibition of Caspase-1-mediated pyroptosis promotes osteogenic differentiation, offering a therapeutic target for osteoporosis. Int Immunopharmacol. 124(Pt B): 1109012023. View Article : Google Scholar : PubMed/NCBI

164 

Deng Z, Zhang Y, Zhu Y, Zhu J, Li S, Huang Z, Qin T, Wu J, Zhang C, Chen W, et al: BRD9 inhibition attenuates matrix degradation and pyroptosis in nucleus pulposus by modulating the NOX1/ROS/NF-κB axis. Inflammation. 46:1002–1021. 2023. View Article : Google Scholar : PubMed/NCBI

165 

Wang J, Zhang Y, Cao J, Wang Y, Anwar N, Zhang Z, Zhang D, Ma Y, Xiao Y, Xiao L and Wang X: The role of autophagy in bone metabolism and clinical significance. Autophagy. 19:2409–2427. 2023. View Article : Google Scholar : PubMed/NCBI

166 

Ren X, Xu J, Xue Q, Tong Y, Xu T, Wang J, Yang T, Chen Y, Shi D and Li X: BRG1 enhances porcine iPSC pluripotency through WNT/β-catenin and autophagy pathways. Theriogenology. 215:10–23. 2024. View Article : Google Scholar

167 

Yang C, Tian Y, Zhao F, Chen Z, Su P, Li Y and Qian A: Bone microenvironment and osteosarcoma metastasis. Int J Mol Sci. 21:69852020. View Article : Google Scholar : PubMed/NCBI

168 

Urlić I, Jovičić MŠ, Ostojić K and Ivković A: Cellular and genetic background of osteosarcoma. Curr Issues Mol Biol. 45:4344–4358. 2023. View Article : Google Scholar

169 

Hang JF and Chen PC: Parosteal osteosarcoma. Arch Pathol Lab Med. 138:694–699. 2014. View Article : Google Scholar : PubMed/NCBI

170 

Qiu YQ and Chen YL: Primary meningeal osteoblastic osteosarcoma containing fibroblast osteosarcoma: Clinicopathological analysis and literature review. Osteoporos Int. 32:1007–1012. 2021. View Article : Google Scholar

171 

Guan Y, Zhang W, Mao Y and Li S: Nanoparticles and bone microenvironment: A comprehensive review for malignant bone tumor diagnosis and treatment. Mol Cancer. 23:2462024. View Article : Google Scholar : PubMed/NCBI

172 

Basu Mallick A and Chawla SP: Giant cell tumor of bone: An update. Curr Oncol Rep. 23:512021. View Article : Google Scholar : PubMed/NCBI

173 

Corre I, Verrecchia F, Crenn V, Redini F and Trichet V: The osteosarcoma microenvironment: A complex but targetable ecosystem. Cells. 9:9762020. View Article : Google Scholar : PubMed/NCBI

174 

Grünewald TGP, Cidre-Aranaz F, Surdez D, Tomazou EM, de Álava E, Kovar H, Sorensen PH, Delattre O and Dirksen U: Ewing sarcoma. Nat Rev Dis Primers. 4:52018. View Article : Google Scholar : PubMed/NCBI

175 

Weber K, Damron TA, Frassica FJ and Sim FH: Malignant bone tumors. Instr Course Lect. 57:673–688. 2008.PubMed/NCBI

176 

Graca Marques J, Pavlovic B, Ngo QA, Pedot G, Roemmele M, Volken L, Kisele S, Perbet R, Wachtel M and Schäfer BW: The chromatin remodeler CHD4 sustains ewing sarcoma cell survival by controlling global chromatin architecture. Cancer Res. 84:241–257. 2024. View Article : Google Scholar

177 

Sohn EJ and Libich DS: Hijacking the BAF complex: The mechanistic interplay of ARID1A and EWS::FLI1 in Ewing sarcoma. Mol Oncol. 19:961–964. 2025. View Article : Google Scholar :

178 

Selvanathan SP, Graham GT, Grego AR, Baker TM, Hogg JR, Simpson M, Batish M, Crompton B, Stegmaier K, Tomazou EM, et al: EWS-FLI1 modulated alternative splicing of ARID1A reveals novel oncogenic function through the BAF complex. Nucleic Acids Res. 47:9619–9636. 2019.PubMed/NCBI

179 

Boulay G, Sandoval GJ, Riggi N, Iyer S, Buisson R, Naigles B, Awad ME, Rengarajan S, Volorio A, McBride MJ, et al: Cancer-specific retargeting of BAF complexes by a prion-like domain. Cell. 171:163–178.e19. 2017. View Article : Google Scholar : PubMed/NCBI

180 

Jayabal P, Zhou F, Lei X, Ma X, Blackman B, Weintraub ST, Houghton PJ and Shiio Y: NELL2-cdc42 signaling regulates BAF complexes and Ewing sarcoma cell growth. Cell Rep. 36:1092542021. View Article : Google Scholar : PubMed/NCBI

181 

Cyra M, Schulte M, Berthold R, Heinst L, Jansen EP, Grünewald I, Elges S, Larsson O, Schliemann C, Steinestel K, et al: SS18-SSX drives CREB activation in synovial sarcoma. Cell Oncol (Dordr). 45:399–413. 2022. View Article : Google Scholar : PubMed/NCBI

182 

Michel BC, D'Avino AR, Cassel SH, Mashtalir N, McKenzie ZM, McBride MJ, Valencia AM, Zhou Q, Bocker M, Soares LMM, et al: A non-canonical SWI/SNF complex is a synthetic lethal target in cancers driven by BAF complex perturbation. Nat Cell Biol. 20:1410–1420. 2018. View Article : Google Scholar : PubMed/NCBI

183 

Shih AR, Cote GM, Chebib I, Choy E, DeLaney T, Deshpande V, Hornicek FJ, Miao R, Schwab JH, Nielsen GP and Chen YL: Clinicopathologic characteristics of poorly differentiated chordoma. Mod Pathol. 31:1237–1245. 2018. View Article : Google Scholar : PubMed/NCBI

184 

Sergi CM: Commentary on: SMARCB1 as a novel diagnostic and prognostic biomarker for osteosarcoma. Biosci Rep. 42:BSR202200402022. View Article : Google Scholar : PubMed/NCBI

185 

Mobley BC, McKenney JK, Bangs CD, Callahan K, Yeom KW, Schneppenheim R, Hayden MG, Cherry AM, Gokden M, Edwards MS, et al: Loss of SMARCB1/INI1 expression in poorly differentiated chordomas. Acta Neuropathol. 120:745–753. 2010. View Article : Google Scholar : PubMed/NCBI

186 

Ding J, Yu C, Sui Y, Wang L, Yang Y, Wang F, Yao H, Xing F, Liu H, Li Y, et al: The chromatin remodeling protein INO80 contributes to the removal of H2A.Z at the p53-binding site of the p21 gene in response to doxorubicin. FEBS J. 285:3270–3285. 2018. View Article : Google Scholar : PubMed/NCBI

187 

Flowers S, Beck GR Jr and Moran E: Transcriptional activation by pRB and its coordination with SWI/SNF recruitment. Cancer Res. 70:8282–8287. 2010. View Article : Google Scholar : PubMed/NCBI

188 

Meisenberg C, Pinder SI, Hopkins SR, Wooller SK, Benstead-Hume G, Pearl FMG, Jeggo PA and Downs JA: Repression of transcription at DNA breaks requires cohesin throughout interphase and prevents genome instability. Mol Cell. 73:212–223.e7. 2019. View Article : Google Scholar :

189 

Ivanov AV, Peng H, Yurchenko V, Yap KL, Negorev DG, Schultz DC, Psulkowski E, Fredericks WJ, White DE, Maul GG, et al: PHD domain-mediated E3 ligase activity directs intramolecular sumoylation of an adjacent bromodomain required for gene silencing. Mol Cell. 28:823–837. 2007. View Article : Google Scholar : PubMed/NCBI

190 

Walhart TA, Vacca B, Hepperla AJ, Hamad SH, Petrongelli J, Wang Y, McKean EL, Moksa M, Cao Q, Yip S, et al: SMARCB1 loss in poorly differentiated chordomas drives tumor progression. Am J Pathol. 193:456–473. 2023. View Article : Google Scholar : PubMed/NCBI

191 

Passeri T, Gutman T, Hamza A, Adle-Biassette H, Girard E, Beaurepere R, Tariq Z, Mariani O, Dahmani A, Bourneix C, et al: The mutational landscape of skull base and spinal chordomas and the identification of potential prognostic and theranostic biomarkers. J Neurosurg. 139:1270–1280. 2023. View Article : Google Scholar : PubMed/NCBI

192 

Wu X, Lin X, Chen Y, Kong W, Xu J and Yu Z: Response of metastatic chordoma to the immune checkpoint inhibitor pembrolizumab: A case report. Front Oncol. 10:5659452020. View Article : Google Scholar

193 

Wang L, Zehir A, Nafa K, Zhou N, Berger MF, Casanova J, Sadowska J, Lu C, Allis CD, Gounder M, et al: Genomic aberrations frequently alter chromatin regulatory genes in chordoma. Genes Chromosomes Cancer. 55:591–600. 2016. View Article : Google Scholar : PubMed/NCBI

194 

Harlow ML, Chasse MH, Boguslawski EA, Sorensen KM, Gedminas JM, Kitchen-Goosen SM, Rothbart SB, Taslim C, Lessnick SL, Peck AS, et al: Trabectedin inhibits EWS-FLI1 and evicts SWI/SNF from chromatin in a schedule-dependent manner. Clin Cancer Res. 25:3417–3429. 2019. View Article : Google Scholar : PubMed/NCBI

195 

Livingston JA, Blay JY, Trent J, Valverde C, Agulnik M, Gounder M, Le Cesne A, McKean M, Wagner MJ, Stacchiotti S, et al: A phase I study of FHD-609, a heterobifunctional degrader of bromodomain-containing protein 9, in patients with advanced synovial sarcoma or SMARCB1-deficient tumors. Clin Cancer Res. 31:628–638. 2025. View Article : Google Scholar

196 

Dreier MR, Walia J and de la Serna IL: Targeting SWI/SNF complexes in cancer: Pharmacological approaches and implications. Epigenomes. 8:72024. View Article : Google Scholar : PubMed/NCBI

197 

Gatchalian J, Liao J, Maxwell MB and Hargreaves DC: Control of stimulus-dependent responses in macrophages by SWI/SNF chromatin remodeling complexes. Trends Immunol. 41:126–140. 2020. View Article : Google Scholar : PubMed/NCBI

198 

Li X, Ding D, Yao J, Zhou B, Shen T, Qi Y, Ni T and Wei G: Chromatin remodeling factor BAZ1A regulates cellular senescence in both cancer and normal cells. Life Sci. 229:225–232. 2019. View Article : Google Scholar : PubMed/NCBI

199 

Martel-Pelletier J, Barr AJ, Cicuttini FM, Conaghan PG, Cooper C, Goldring MB, Goldring SR, Jones G, Teichtahl AJ, Pelletier JP, et al: Osteoarthritis. Nat Rev Dis Primers. 2:160722016. View Article : Google Scholar : PubMed/NCBI

200 

Wang D, Zhang Y, Zhang L, He D, Zhao L, Miao Z, Cheng W, Zhu C, Zhu L, Zhang W, et al: IRF1 governs the expression of SMARCC1 via the GCN5-SETD2 axis and actively engages in the advancement of osteoarthritis. J Orthop Translat. 45:211–225. 2024. View Article : Google Scholar : PubMed/NCBI

201 

Qiu Y, Yao J, Li L, Xiao M, Meng J, Huang X, Cai Y, Wen Z, Huang J, Zhu M, et al: Machine learning identifies ferroptosis-related genes as potential diagnostic biomarkers for osteoarthritis. Front Endocrinol (Lausanne). 14:11987632023. View Article : Google Scholar : PubMed/NCBI

202 

Devlin MJ and Rosen CJ: The bone-fat interface: Basic and clinical implications of marrow adiposity. Lancet Diabetes Endocrinol. 3:141–147. 2015. View Article : Google Scholar

203 

Kuznia AL, Hernandez AK and Lee LU: Adolescent idiopathic scoliosis: Common questions and answers. Am Fam Physician. 101:19–23. 2020.PubMed/NCBI

204 

Cheng JC, Castelein RM, Chu WC, Danielsson AJ, Dobbs MB, Grivas TB, Gurnett CA, Luk KD, Moreau A, Newton PO, et al: Adolescent idiopathic scoliosis. Nat Rev Dis Primers. 1:150302015. View Article : Google Scholar : PubMed/NCBI

205 

Wu Z, Dai Z, Yuwen W, Liu Z, Qiu Y, Cheng JC, Zhu Z and Xu L: Genetic variants of CHD7 are associated with adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 46:E618–E624. 2021. View Article : Google Scholar

206 

Borysiak K, Janusz P, Andrusiewicz M, Chmielewska M, Kozinoga M, Kotwicki T and Kotwicka M: CHD7 gene polymorphisms in female patients with idiopathic scoliosis. BMC Musculoskelet Disord. 21:182020. View Article : Google Scholar : PubMed/NCBI

207 

Kulkarni S, Nagarajan P, Wall J, Donovan DJ, Donell RL, Ligon AH, Venkatachalam S and Quade BJ: Disruption of chromodomain helicase DNA binding protein 2 (CHD2) causes scoliosis. Am J Med Genet A. 146A:1117–1127. 2008. View Article : Google Scholar : PubMed/NCBI

208 

Bonyadi M, Waldman SD, Liu D, Aubin JE, Grynpas MD and Stanford WL: Mesenchymal progenitor self-renewal deficiency leads to age-dependent osteoporosis in Sca-1/Ly-6A null mice. Proc Natl Acad Sci USA. 100:5840–5845. 2003. View Article : Google Scholar : PubMed/NCBI

209 

Yu W, Wang HL, Zhang J and Yin C: The effects of epigenetic modifications on bone remodeling in age-related osteoporosis. Connect Tissue Res. 64:105–116. 2023. View Article : Google Scholar

210 

Li C, Pan H, Liu W, Jin G, Liu W, Liang C and Jiang X: Discovery of novel serum biomarkers for diagnosing and predicting postmenopausal osteoporosis patients by 4D-label free protein omics. J Orthop Res. 41:2713–2720. 2023. View Article : Google Scholar : PubMed/NCBI

211 

Pico MJ, Hashemi S, Xu F, Nguyen KH, Donnelly R, Moran E and Flowers S: Glucocorticoid receptor-mediated cis-repression of osteogenic genes requires BRM-SWI/SNF. Bone Rep. 5:222–227. 2016. View Article : Google Scholar

212 

Chi SN, Yi JS, Williams PM, Roy-Chowdhuri S, Patton DR, Coffey BD, Reid JM, Piao J, Saguilig L, Alonzo TA, et al: Tazemetostat for tumors harboring SMARCB1/SMARCA4 or EZH2 alterations: Results from NCI-COG pediatric MATCH APEC1621C. J Natl Cancer Inst. 115:1355–1363. 2023. View Article : Google Scholar : PubMed/NCBI

213 

Martin LJ, Koegl M, Bader G, Cockcroft XL, Fedorov O, Fiegen D, Gerstberger T, Hofmann MH, Hohmann AF, Kessler D, et al: Structure-based design of an in vivo active selective BRD9 inhibitor. J Med Chem. 59:4462–4475. 2016. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wu W, Cui Y, Wu Y, Ni Y, Zhao C, Sun W and Yi Q: Epigenetic roles of chromatin remodeling complexes in bone biology and the pathogenesis of bone‑related disease (Review). Int J Mol Med 56: 115, 2025.
APA
Wu, W., Cui, Y., Wu, Y., Ni, Y., Zhao, C., Sun, W., & Yi, Q. (2025). Epigenetic roles of chromatin remodeling complexes in bone biology and the pathogenesis of bone‑related disease (Review). International Journal of Molecular Medicine, 56, 115. https://doi.org/10.3892/ijmm.2025.5556
MLA
Wu, W., Cui, Y., Wu, Y., Ni, Y., Zhao, C., Sun, W., Yi, Q."Epigenetic roles of chromatin remodeling complexes in bone biology and the pathogenesis of bone‑related disease (Review)". International Journal of Molecular Medicine 56.2 (2025): 115.
Chicago
Wu, W., Cui, Y., Wu, Y., Ni, Y., Zhao, C., Sun, W., Yi, Q."Epigenetic roles of chromatin remodeling complexes in bone biology and the pathogenesis of bone‑related disease (Review)". International Journal of Molecular Medicine 56, no. 2 (2025): 115. https://doi.org/10.3892/ijmm.2025.5556
Copy and paste a formatted citation
x
Spandidos Publications style
Wu W, Cui Y, Wu Y, Ni Y, Zhao C, Sun W and Yi Q: Epigenetic roles of chromatin remodeling complexes in bone biology and the pathogenesis of bone‑related disease (Review). Int J Mol Med 56: 115, 2025.
APA
Wu, W., Cui, Y., Wu, Y., Ni, Y., Zhao, C., Sun, W., & Yi, Q. (2025). Epigenetic roles of chromatin remodeling complexes in bone biology and the pathogenesis of bone‑related disease (Review). International Journal of Molecular Medicine, 56, 115. https://doi.org/10.3892/ijmm.2025.5556
MLA
Wu, W., Cui, Y., Wu, Y., Ni, Y., Zhao, C., Sun, W., Yi, Q."Epigenetic roles of chromatin remodeling complexes in bone biology and the pathogenesis of bone‑related disease (Review)". International Journal of Molecular Medicine 56.2 (2025): 115.
Chicago
Wu, W., Cui, Y., Wu, Y., Ni, Y., Zhao, C., Sun, W., Yi, Q."Epigenetic roles of chromatin remodeling complexes in bone biology and the pathogenesis of bone‑related disease (Review)". International Journal of Molecular Medicine 56, no. 2 (2025): 115. https://doi.org/10.3892/ijmm.2025.5556
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team