Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
August-2025 Volume 56 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2025 Volume 56 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Understanding the impact of mitochondrial DNA mutations on aging and carcinogenesis (Review)

  • Authors:
    • Hiroshi Kobayashi
    • Shogo Imanaka
  • View Affiliations / Copyright

    Affiliations: Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, Kashihara, Nara 634‑0813, Japan
    Copyright: © Kobayashi et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 118
    |
    Published online on: June 3, 2025
       https://doi.org/10.3892/ijmm.2025.5559
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Mitochondria and mitochondrial DNA (mtDNA) are crucial for cellular energy metabolism and the adaptive response to environmental changes. mtDNA collaborates with the nuclear genome to regulate mitochondrial function. Dysfunctional mitochondria and mutations in mtDNA are implicated in a wide range of diseases, including mitochondrial disorders, neurodegenerative conditions, age‑associated pathologies and cancer. While the nuclear genome has been extensively studied for its role in driving the clonal expansion of oncogenes and other aging‑related genetic alterations, knowledge regarding mtDNA remains comparatively limited. However, advances in quantitative analysis have provided information regarding the complex patterns of mtDNA mutations. The present review offers a detailed examination of mtDNA mutations and their classifications in the contexts of aging and cancer, and elucidates the role of mtDNA mutations in these processes. Mutations in mtDNA can be detected as early as the neonatal stage, yet most transition mutations retain a normal cellular phenotype. In contrast to mutations in oncogenes and tumor suppressor genes within the nuclear genome, mtDNA exhibits conserved mutational signatures, irrespective of cancer tissue origin. To adapt to the aging process, mitochondria undergo clonal expansion of advantageous mtDNA mutations, maintaining a dynamic equilibrium among various mitochondrial clones. Over time, however, the loss of strand bias can disrupt this equilibrium, diminishing the pool of adaptive clones. This breakdown in mitochondrial homeostasis may contribute to tumorigenesis. In conclusion, the heterogeneity of mtDNA mutations and the collapse of its homeostasis are pivotal in the progression of age‑related diseases, including cancer, underscoring the importance of mtDNA mutations in health and disease.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Sun N, Youle RJ and Finkel T: The mitochondrial basis of aging. Mol Cell. 61:654–666. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Wallace DC: A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine. Annu Rev Genet. 39:359–407. 2005. View Article : Google Scholar : PubMed/NCBI

3 

Elliott HR, Samuels DC, Eden JA, Relton CL and Chinnery PF: Pathogenic mitochondrial DNA mutations are common in the general population. Am J Hum Genet. 83:254–260. 2008. View Article : Google Scholar : PubMed/NCBI

4 

Lee HC, Chang CM and Chi CW: Somatic mutations of mitochondrial DNA in aging and cancer progression. Ageing Res Rev. 9(Suppl 1): S47–S58. 2010. View Article : Google Scholar : PubMed/NCBI

5 

Stewart JB and Chinnery PF: Extreme heterogeneity of human mitochondrial DNA from organelles to populations. Nat Rev Genet. 22:106–118. 2021. View Article : Google Scholar

6 

Cote-L'Heureux A, Maithania YNK, Franco M and Khrapko K: Are some mutations more equal than others? Elife. 12:e871942023. View Article : Google Scholar : PubMed/NCBI

7 

Kowaltowski AJ: Alternative mitochondrial functions in cell physiopathology: Beyond ATP production. Braz J Med Biol Res. 33:241–250. 2000. View Article : Google Scholar : PubMed/NCBI

8 

Sanchez-Contreras M, Sweetwyne MT, Tsantilas KA, Whitson JA, Campbell MD, Kohrn BF, Kim HJ, Hipp MJ, Fredrickson J, Nguyen MM, et al: The multi-tissue landscape of somatic mtDNA mutations indicates tissue-specific accumulation and removal in aging. Elife. 12:e833952023. View Article : Google Scholar : PubMed/NCBI

9 

Lawless C, Greaves L, Reeve AK, Turnbull DM and Vincent AE: The rise and rise of mitochondrial DNA mutations. Open Biol. 10:2000612020. View Article : Google Scholar : PubMed/NCBI

10 

Pérez-Amado CJ, Bazan-Cordoba A, Hidalgo-Miranda A and Jiménez-Morales S: Mitochondrial heteroplasmy shifting as a potential biomarker of cancer progression. Int J Mol Sci. 22:73692021. View Article : Google Scholar : PubMed/NCBI

11 

Khrapko K, Coller H, André P, Li XC, Foret F, Belenky A, Karger BL and Thilly WG: Mutational spectrometry without phenotypic selection: human mitochondrial DNA. Nucleic Acids Res. 25:685–693. 1997. View Article : Google Scholar : PubMed/NCBI

12 

Shokolenko I and Alexeyev M: Mitochondrial DNA: Consensuses and controversies. DNA (Basel). 2:131–148. 2022.PubMed/NCBI

13 

Wallace DC: Mitochondrial diseases in man and mouse. Science. 283:1482–1488. 1999. View Article : Google Scholar : PubMed/NCBI

14 

Youle RJ and Narendra DP: Mechanisms of mitophagy. Nat Rev Mol Cell Biol. 12:9–14. 2011. View Article : Google Scholar

15 

Rossignol R, Faustin B, Rocher C, Malgat M, Mazat JP and Letellier T: Mitochondrial threshold effects. Biochem J. 370:751–762. 2003. View Article : Google Scholar

16 

De Giorgi C and Saccone C: Mitochondrial genome in animal cells. Structure, organization, and evolution. Cell Biophys. 14:67–78. 1989. View Article : Google Scholar : PubMed/NCBI

17 

Gorelick AN, Kim M, Chatila WK, La K, Hakimi AA, Berger MF, Taylor BS, Gammage PA and Reznik E: Respiratory complex and tissue lineage drive recurrent mutations in tumour mtDNA. Nat Metab. 3:558–570. 2021. View Article : Google Scholar : PubMed/NCBI

18 

Young MJ and Copeland WC: Human mitochondrial DNA replication machinery and disease. Curr Opin Genet Dev. 38:52–62. 2016. View Article : Google Scholar : PubMed/NCBI

19 

Kobayashi H, Matsubara S, Yoshimoto C, Shigetomi H and Imanaka S: A comprehensive review of the contribution of mitochondrial DNA mutations and dysfunction in polycystic ovary syndrome, supported by secondary database analysis. Int J Mol Sci. 26:11722025. View Article : Google Scholar : PubMed/NCBI

20 

Zaidi AA, Wilton PR, Su MSW, Paul IM, Arbeithuber B, Anthony K, Nekrutenko A, Nielsen R and Makova KD: Bottleneck and selection in the germline and maternal age influence transmission of mitochondrial DNA in human pedigrees. Proc Natl Acad Sci USA. 116:25172–25178. 2019. View Article : Google Scholar : PubMed/NCBI

21 

Kopinski PK, Singh LN, Zhang S, Lott MT and Wallace DC: Mitochondrial DNA variation and cancer. Nat Rev Cancer. 21:431–445. 2021. View Article : Google Scholar : PubMed/NCBI

22 

Khadka P, Young CKJ, Sachidanandam R, Brard L and Young MJ: Our current understanding of the biological impact of endometrial cancer mtDNA genome mutations and their potential use as a biomarker. Front Oncol. 14:13946992024. View Article : Google Scholar : PubMed/NCBI

23 

Guo X, Xu W, Zhang W, Pan C, Thalacker-Mercer AE, Zheng H and Gu Z: High-frequency and functional mitochondrial DNA mutations at the single-cell level. Proc Natl Acad Sci USA. 120:e22015181202023. View Article : Google Scholar :

24 

Schaack S, Ho EKH and Macrae F: Disentangling the intertwined roles of mutation, selection and drift in the mitochondrial genome. Philos Trans R Soc Lond B Biol Sci. 375:201901732020. View Article : Google Scholar :

25 

Medeiros DM: Assessing mitochondria biogenesis. Methods. 46:288–294. 2008. View Article : Google Scholar : PubMed/NCBI

26 

McKinney EA and Oliveira MT: Replicating animal mitochondrial DNA. Genet Mol Biol. 36:308–315. 2013. View Article : Google Scholar : PubMed/NCBI

27 

Jornayvaz FR and Shulman GI: Regulation of mitochondrial biogenesis. Essays Biochem. 47:69–84. 2010. View Article : Google Scholar : PubMed/NCBI

28 

Scarpulla RC: Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev. 88:611–638. 2008. View Article : Google Scholar : PubMed/NCBI

29 

Yin PH, Lee HC, Chau GY, Wu YT, Li SH, Lui WY, Wei YH, Liu TY and Chi CW: Alteration of the copy number and deletion of mitochondrial DNA in human hepatocellular carcinoma. Br J Cancer. 90:2390–2396. 2004. View Article : Google Scholar : PubMed/NCBI

30 

Lee HC, Huang KH, Yeh TS and Chi CW: Somatic alterations in mitochondrial DNA and mitochondrial dysfunction in gastric cancer progression. World J Gastroenterol. 20:3950–3959. 2014. View Article : Google Scholar : PubMed/NCBI

31 

Qian L, Zhu Y, Deng C, Liang Z, Chen J, Chen Y, Wang X, Liu Y, Tian Y and Yang Y: Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family in physiological and pathophysiological process and diseases. Signal Transduct Target Ther. 9:502024. View Article : Google Scholar : PubMed/NCBI

32 

El-Hattab AW, Craigen WJ and Scaglia F: Mitochondrial DNA maintenance defects. Biochim Biophys Acta Mol Basis Dis. 1863:1539–1555. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Alberghina L: The Warburg effect explained: integration of enhanced glycolysis with heterogeneous mitochondria to promote cancer cell proliferation. Int J Mol Sci. 24:157872023. View Article : Google Scholar : PubMed/NCBI

34 

Soga T: Cancer metabolism: Key players in metabolic reprogramming. Cancer Sci. 104:275–281. 2013. View Article : Google Scholar : PubMed/NCBI

35 

Brandon M, Baldi P and Wallace DC: Mitochondrial mutations in cancer. Oncogene. 25:4647–4662. 2006. View Article : Google Scholar : PubMed/NCBI

36 

Li T, Copeland C and Le A: Glutamine metabolism in cancer. Adv Exp Med Biol. 1311:17–38. 2021. View Article : Google Scholar : PubMed/NCBI

37 

Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD, Pan Y, Simon MC, Thompson CB and Gottlieb E: Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell. 7:77–85. 2005. View Article : Google Scholar : PubMed/NCBI

38 

Lu J, Sharma LK and Bai Y: Implications of mitochondrial DNA mutations and mitochondrial dysfunction in tumorigenesis. Cell Res. 19:802–815. 2009. View Article : Google Scholar : PubMed/NCBI

39 

Reinsalu L, Puurand M, Chekulayev V, Miller S, Shevchuk I, Tepp K, Rebane-Klemm E, Timohhina N, Terasmaa A and Kaambre T: Energy metabolic plasticity of colorectal cancer cells as a determinant of tumor growth and metastasis. Front Oncol. 11:6989512021. View Article : Google Scholar : PubMed/NCBI

40 

Yapa NMB, Lisnyak V, Reljic B and Ryan MT: Mitochondrial dynamics in health and disease. FEBS Lett. 595:1184–1204. 2021. View Article : Google Scholar : PubMed/NCBI

41 

Mao H, Chen W, Chen L and Li L: Potential role of mitochondria-associated endoplasmic reticulum membrane proteins in diseases. Biochem Pharmacol. 199:1150112022. View Article : Google Scholar : PubMed/NCBI

42 

St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jäger S, Handschin C, Zheng K, Lin J, Yang W, et al: Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell. 127:397–408. 2006. View Article : Google Scholar : PubMed/NCBI

43 

Butow RA and Avadhani NG: Mitochondrial signaling: The retrograde response. Mol Cell. 14:1–15. 2004. View Article : Google Scholar : PubMed/NCBI

44 

Ke R, Xu Q, Li C, Luo L and Huang D: Mechanisms of AMPK in the maintenance of ATP balance during energy metabolism. Cell Biol Int. 42:384–392. 2018. View Article : Google Scholar

45 

Morgan MJ and Liu ZG: Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 21:103–115. 2011. View Article : Google Scholar

46 

Murphy MP: How mitochondria produce reactive oxygen species. Biochem J. 417:1–13. 2009. View Article : Google Scholar

47 

Rampazzo C, Ferraro P, Pontarin G, Fabris S, Reichard P and Bianchi V: Mitochondrial deoxyribonucleotides, pool sizes, synthesis, and regulation. J Biol Chem. 279:17019–17026. 2004. View Article : Google Scholar : PubMed/NCBI

48 

Xiao M, Yang H, Xu W, Ma S, Lin H, Zhu H, Liu L, Liu Y, Yang C, Xu Y, et al: Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev. 26:1326–1338. 2012. View Article : Google Scholar : PubMed/NCBI

49 

Macián F, López-Rodríguez C and Rao A: Partners in transcription: NFAT and AP-1. Oncogene. 20:2476–2489. 2001. View Article : Google Scholar : PubMed/NCBI

50 

Vijg J, Schumacher B, Abakir A, Antonov M, Bradley C, Cagan A, Church G, Gladyshev VN, Gorbunova V, Maslov AY, et al: Mitigating age-related somatic mutation burden. Trends Mol Med. 29:530–540. 2023. View Article : Google Scholar : PubMed/NCBI

51 

Arbeithuber B, Hester J, Cremona MA, Stoler N, Zaidi A, Higgins B, Anthony K, Chiaromonte F, Diaz FJ and Makova KD: Age-related accumulation of de novo mitochondrial mutations in mammalian oocytes and somatic tissues. PLoS Biol. 18:e30007452020. View Article : Google Scholar : PubMed/NCBI

52 

Abascal F, Harvey LMR, Mitchell E, Lawson ARJ, Lensing SV, Ellis P, Russell AJC, Alcantara RE, Baez-Ortega A, Wang Y, et al: Somatic mutation landscapes at single-molecule resolution. Nature. 593:405–410. 2021. View Article : Google Scholar : PubMed/NCBI

53 

Arbeithuber B, Cremona MA, Hester J, Barrett A, Higgins B, Anthony K, Chiaromonte F, Diaz FJ and Makova KD: Advanced age increases frequencies of de novo mitochondrial mutations in macaque oocytes and somatic tissues. Proc Natl Acad Sci USA. 119:e21187401192022. View Article : Google Scholar : PubMed/NCBI

54 

Ahn EH, Hirohata K, Kohrn BF, Fox EJ, Chang CC and Loeb LA: Detection of ultra-rare mitochondrial mutations in breast stem cells by duplex sequencing. PLoS One. 10:e01362162015. View Article : Google Scholar : PubMed/NCBI

55 

Salk JJ, Schmitt MW and Loeb LA: Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations. Nat Rev Genet. 19:269–285. 2018. View Article : Google Scholar : PubMed/NCBI

56 

Kennedy SR, Salk JJ, Schmitt MW and Loeb LA: Ultra-sensitive sequencing reveals an age-related increase in somatic mitochondrial mutations that are inconsistent with oxidative damage. PLoS Genet. 9:e10037942013. View Article : Google Scholar : PubMed/NCBI

57 

Sanchez-Contreras M, Sweetwyne MT, Kohrn BF, Tsantilas KA, Hipp MJ, Schmidt EK, Fredrickson J, Whitson JA, Campbell MD, Rabinovitch PS, et al: A replication-linked mutational gradient drives somatic mutation accumulation and influences germline polymorphisms and genome composition in mitochondrial DNA. Nucleic Acids Res. 49:11103–11118. 2021. View Article : Google Scholar : PubMed/NCBI

58 

Foury F, Hu J and Vanderstraeten S: Mitochondrial DNA mutators. Cell Mol Life Sci. 61:2799–2811. 2004. View Article : Google Scholar : PubMed/NCBI

59 

Matkarimov BT and Saparbaev MK: DNA repair and mutagenesis in vertebrate mitochondria: Evidence for asymmetric DNA strand inheritance. Adv Exp Med Biol. 1241:77–100. 2020. View Article : Google Scholar : PubMed/NCBI

60 

Tanaka M and Ozawa T: Strand asymmetry in human mitochondrial DNA mutations. Genomics. 22:327–335. 1994. View Article : Google Scholar : PubMed/NCBI

61 

Garesse R: Drosophila melanogaster mitochondrial DNA: Gene organization and evolutionary considerations. Genetics. 118:649–663. 1988. View Article : Google Scholar : PubMed/NCBI

62 

Spelbrink JN, Toivonen JM, Hakkaart GA, Kurkela JM, Cooper HM, Lehtinen SK, Lecrenier N, Back JW, Speijer D, Foury F and Jacobs HT: In vivo functional analysis of the human mitochondrial DNA polymerase POLG expressed in cultured human cells. J Biol Chem. 275:24818–24828. 2000. View Article : Google Scholar : PubMed/NCBI

63 

Ju YS, Alexandrov LB, Gerstung M, Martincorena I, Nik-Zainal S, Ramakrishna M, Davies HR, Papaemmanuil E, Gundem G, Shlien A, et al: Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer. Elife. 3:e029352014. View Article : Google Scholar : PubMed/NCBI

64 

McMahon S and LaFramboise T: Mutational patterns in the breast cancer mitochondrial genome, with clinical correlates. Carcinogenesis. 35:1046–1054. 2014. View Article : Google Scholar : PubMed/NCBI

65 

Baker KT, Nachmanson D, Kumar S, Emond MJ, Ussakli C, Brentnall TA, Kennedy SR and Risques RA: Mitochondrial DNA mutations are associated with ulcerative colitis preneoplasia but tend to be negatively selected in cancer. Mol Cancer Res. 17:488–498. 2019. View Article : Google Scholar :

66 

Chen XZ, Fang Y, Shi YH, Cui JH, Li LY, Xu YC and Ling B: Deciphering the spectrum of somatic mutations in the entire mitochondrial DNA genome. Genet Mol Res. 14:4331–4337. 2015. View Article : Google Scholar : PubMed/NCBI

67 

Otten ABC and Smeets HJM: Evolutionary defined role of the mitochondrial DNA in fertility, disease and ageing. Hum Reprod Update. 21:671–689. 2015. View Article : Google Scholar : PubMed/NCBI

68 

Suen DF, Narendra DP, Tanaka A, Manfredi G and Youle RJ: Parkin overexpression selects against a deleterious mtDNA mutation in heteroplasmic cybrid cells. Proc Natl Acad Sci USA. 107:11835–11840. 2010. View Article : Google Scholar : PubMed/NCBI

69 

Ferreira T and Rodriguez S: Mitochondrial DNA: Inherent complexities relevant to genetic analyses. Genes (Basel). 15:6172024. View Article : Google Scholar : PubMed/NCBI

70 

Hong YS, Battle SL, Shi W, Puiu D, Pillalamarri V, Xie J, Pankratz N, Lake NJ, Lek M, Rotter JI, et al: Deleterious heteroplasmic mitochondrial mutations are associated with an increased risk of overall and cancer-specific mortality. Nat Commun. 14:61132023. View Article : Google Scholar : PubMed/NCBI

71 

Ye K, Lu J, Ma F, Keinan A and Gu Z: Extensive pathogenicity of mitochondrial heteroplasmy in healthy human individuals. Proc Natl Acad Sci USA. 111:10654–10659. 2014. View Article : Google Scholar : PubMed/NCBI

72 

López-Otín C, Blasco MA, Partridge L, Serrano M and Kroemer G: The hallmarks of aging. Cell. 153:1194–1217. 2013. View Article : Google Scholar : PubMed/NCBI

73 

Walker MA, Lareau CA, Ludwig LS, Karaa A, Sankaran VG, Regev A and Mootha VK: Purifying selection against pathogenic mitochondrial DNA in human T cells. N Engl J Med. 383:1556–1563. 2020. View Article : Google Scholar : PubMed/NCBI

74 

Arbeithuber B, Anthony K, Higgins B, Oppelt P, Shebl O, Tiemann-Boege I, Chiaromonte F, Ebner T and Makova KD: Mitochondrial DNA mutations in human oocytes undergo frequency-dependent selection but do not increase with age. bioRxiv [Preprint]: 2024.12.09.627454. 2024.

75 

Monnat RJ Jr, Maxwell CL and Loeb LA: Nucleotide sequence preservation of human leukemic mitochondrial DNA. Cancer Res. 45:1809–1814. 1985.PubMed/NCBI

76 

Wang CY, Wang HW, Yao YG, Kong QP and Zhang YP: Somatic mutations of mitochondrial genome in early stage breast cancer. Int J Cancer. 121:1253–1256. 2007. View Article : Google Scholar : PubMed/NCBI

77 

Chatterjee A, Dasgupta S and Sidransky D: Mitochondrial subversion in cancer. Cancer Prev Res (Phila). 4:638–654. 2011. View Article : Google Scholar : PubMed/NCBI

78 

Bandelt HJ, Salas A and Bravi CM: What is a 'novel' mtDNA mutation-and does 'novelty' really matter? J Hum Genet. 51:1073–1082. 2006. View Article : Google Scholar

79 

Hung WY, Wu CW, Yin PH, Chang CJ, Li AF, Chi CW, Wei YH and Lee HC: Somatic mutations in mitochondrial genome and their potential roles in the progression of human gastric cancer. Biochim Biophys Acta. 1800:264–270. 2010. View Article : Google Scholar

80 

Kassauei K, Habbe N, Mullendore ME, Karikari CA, Maitra A and Feldmann G: Mitochondrial DNA mutations in pancreatic cancer. Int J Gastrointest Cancer. 37:57–64. 2006. View Article : Google Scholar

81 

Hashizume O, Shimizu A, Yokota M, Sugiyama A, Nakada K, Miyoshi H, Itami M, Ohira M, Nagase H, Takenaga K and Hayashi JI: Specific mitochondrial DNA mutation in mice regulates diabetes and lymphoma development. Proc Natl Acad Sci USA. 109:10528–10533. 2012. View Article : Google Scholar : PubMed/NCBI

82 

Yin C, Li DY, Guo X, Cao HY, Chen YB, Zhou F, Ge NJ, Liu Y, Guo SS, Zhao Z, et al: NGS-based profiling reveals a critical contributing role of somatic D-loop mtDNA mutations in HBV-related hepatocarcinogenesis. Ann Oncol. 30:953–962. 2019. View Article : Google Scholar : PubMed/NCBI

83 

Kwon S, Kim SS, Nebeck HE and Ahn EH: Immortalization of different breast epithelial cell types results in distinct mitochondrial mutagenesis. Int J Mol Sci. 20:28132019. View Article : Google Scholar : PubMed/NCBI

84 

Kamalidehghan B, Houshmand M, Ismail P, Panahi MSS and Akbari MHH: Delta mtDNA4977 is more common in non-tumoral cells from gastric cancer sample. Arch Med Res. 37:730–735. 2006. View Article : Google Scholar : PubMed/NCBI

85 

Dai JG, Xiao YB, Min JX, Zhang GQ, Yao K and Zhou RJ: Mitochondrial DNA 4977 BP deletion mutations in lung carcinoma. Indian J Cancer. 43:20–25. 2006. View Article : Google Scholar : PubMed/NCBI

86 

Yuan Y, Ju YS, Kim Y, Li J, Wang Y, Yoon CJ, Yang Y, Martincorena I, Creighton CJ, Weinstein JN, et al: Comprehensive molecular characterization of mitochondrial genomes in human cancers. Nat Genet. 52:342–352. 2020. View Article : Google Scholar : PubMed/NCBI

87 

Li Y, Sundquist K, Vats S, Hong MG, Wang X, Chen Y, Hedelius A, Saal LH, Sundquist J and Memon AA: Mitochondrial heteroplasmic shifts reveal a positive selection of breast cancer. J Transl Med. 21:6962023. View Article : Google Scholar : PubMed/NCBI

88 

Bjørnetrø T, Bousquet PA, Redalen KR, Trøseid AMS, Lüders T, Stang E, Sanabria AM, Johansen C, Fuglestad AJ, Kersten C, et al: Next-generation sequencing reveals mitogenome diversity in plasma extracellular vesicles from colorectal cancer patients. BMC Cancer. 23:6502023. View Article : Google Scholar : PubMed/NCBI

89 

Zheng W, Khrapko K, Coller HA, Thilly WG and Copeland WC: Origins of human mitochondrial point mutations as DNA polymerase gamma-mediated errors. Mutat Res. 599:11–20. 2006. View Article : Google Scholar : PubMed/NCBI

90 

Itsara LS, Kennedy SR, Fox EJ, Yu S, Hewitt JJ, Sanchez-Contreras M, Cardozo-Pelaez F and Pallanck LJ: Oxidative stress is not a major contributor to somatic mitochondrial DNA mutations. PLoS Genet. 10:e10039742014. View Article : Google Scholar : PubMed/NCBI

91 

Hoekstra JG, Hipp MJ, Montine TJ and Kennedy SR: Mitochondrial DNA mutations increase in early stage Alzheimer disease and are inconsistent with oxidative damage. Ann Neurol. 80:301–306. 2016. View Article : Google Scholar : PubMed/NCBI

92 

Ameur A, Stewart JB, Freyer C, Hagström E, Ingman M, Larsson NG and Gyllensten U: Ultra-deep sequencing of mouse mitochondrial DNA: Mutational patterns and their origins. PLoS Genet. 7:e10020282011. View Article : Google Scholar : PubMed/NCBI

93 

Samstag CL, Hoekstra JG, Huang CH, Chaisson MJ, Youle RJ, Kennedy SR and Pallanck LJ: Deleterious mitochondrial DNA point mutations are overrepresented in Drosophila expressing a proofreading-defective DNA polymerase γ. PLoS Genet. 14:e10078052018. View Article : Google Scholar

94 

Andreazza S, Samstag CL, Sanchez-Martinez A, Fernandez-Vizarra E, Gomez-Duran A, Lee JJ, Tufi R, Hipp MJ, Schmidt EK, Nicholls TJ, et al: Mitochondrially-targeted APOBEC1 is a potent mtDNA mutator affecting mitochondrial function and organismal fitness in Drosophila. Nat Commun. 10:32802019. View Article : Google Scholar : PubMed/NCBI

95 

Shukla P, Mukherjee S and Patil A: Identification of variants in mitochondrial D-loop and OriL region and analysis of mitochondrial DNA copy number in women with polycystic ovary syndrome. DNA Cell Biol. 39:1458–1466. 2020. View Article : Google Scholar : PubMed/NCBI

96 

Toure S, Mbaye F, Gueye MD, Fall M, Dem A, Lamy JB and Sembene M: Somatic mitochondrial mutations in oral cavity cancers among senegalese patients. Asian Pac J Cancer Prev. 20:2203–2208. 2019. View Article : Google Scholar : PubMed/NCBI

97 

Waneka G, Svendsen JM, Havird JC and Sloan DB: Mitochondrial mutations in Caenorhabditis elegans show signatures of oxidative damage and an AT-bias. Genetics. 219:iyab1162021. View Article : Google Scholar : PubMed/NCBI

98 

Taylor RW, Barron MJ, Borthwick GM, Gospel A, Chinnery PF, Samuels DC, Taylor GA, Plusa SM, Needham SJ, Greaves LC, et al: Mitochondrial DNA mutations in human colonic crypt stem cells. J Clin Invest. 112:1351–1360. 2003. View Article : Google Scholar : PubMed/NCBI

99 

Blackwood JK, Williamson SC, Greaves LC, Wilson L, Rigas AC, Sandher R, Pickard RS, Robson CN, Turnbull DM, Taylor RW and Heer R: In situ lineage tracking of human prostatic epithelial stem cell fate reveals a common clonal origin for basal and luminal cells. J Pathol. 225:181–188. 2011. View Article : Google Scholar : PubMed/NCBI

100 

Abu-Amero KK, Alzahrani AS, Zou M and Shi Y: High frequency of somatic mitochondrial DNA mutations in human thyroid carcinomas and complex I respiratory defect in thyroid cancer cell lines. Oncogene. 24:1455–1460. 2005. View Article : Google Scholar

101 

Abu-Amero KK, Alzahrani AS, Zou M and Shi Y: Association of mitochondrial DNA transversion mutations with familial medullary thyroid carcinoma/multiple endocrine neoplasia type 2 syndrome. Oncogene. 25:677–684. 2006. View Article : Google Scholar

102 

Wang B, Qiao L, Wang Y, Zeng J, Chen D, Guo H and Zhang Y: Mitochondrial DNA D-loop lesions with the enhancement of DNA repair contribute to gastrointestinal cancer progression. Oncol Rep. 40:3694–3704. 2018.PubMed/NCBI

103 

Zeng AGX, Leung ACY and Brooks-Wilson AR: Somatic mitochondrial DNA mutations in diffuse large B-cell lymphoma. Sci Rep. 8:36232018. View Article : Google Scholar : PubMed/NCBI

104 

Vikramdeo KS, Anand S, Sudan SK, Pramanik P, Singh S, Godwin AK, Singh AP and Dasgupta S: Profiling mitochondrial DNA mutations in tumors and circulating extracellular vesicles of triple-negative breast cancer patients for potential biomarker development. FASEB Bioadv. 5:412–426. 2023. View Article : Google Scholar : PubMed/NCBI

105 

Dani MAC, Dani SU, Lima SPG, Martinez A, Rossi BM, Soares F, Zago MA and Simpson AJ: Less DeltamtDNA4977 than normal in various types of tumors suggests that cancer cells are essentially free of this mutation. Genet Mol Res. 3:395–409. 2004.PubMed/NCBI

106 

Young MJ, Sachidanandam R, Hales DB, Brard L, Robinson K, Rahman MM, Khadka P, Groesch K and Young CKJ: Identification of somatic mitochondrial DNA mutations, heteroplasmy, and increased levels of catenanes in tumor specimens obtained from three endometrial cancer patients. Life (Basel). 12:5622022.PubMed/NCBI

107 

Martínez-Reyes I, Cardona LR, Kong H, Vasan K, McElroy GS, Werner M, Kihshen H, Reczek CR, Weinberg SE, Gao P, et al: Mitochondrial ubiquinol oxidation is necessary for tumour growth. Nature. 585:288–292. 2020. View Article : Google Scholar : PubMed/NCBI

108 

Ericson NG, Kulawiec M, Vermulst M, Sheahan K, O'Sullivan J, Salk JJ and Bielas JH: Decreased mitochondrial DNA mutagenesis in human colorectal cancer. PLoS Genet. 8:e10026892012. View Article : Google Scholar : PubMed/NCBI

109 

Mithani SK, Taube JM, Zhou S, Smith IM, Koch WM, Westra WH and Califano JA: Mitochondrial mutations are a late event in the progression of head and neck squamous cell cancer. Clin Cancer Res. 13:4331–4335. 2007. View Article : Google Scholar : PubMed/NCBI

110 

Ahn EH, Lee SH, Kim JY, Chang CC and Loeb LA: Decreased mitochondrial mutagenesis during transformation of human breast stem cells into tumorigenic cells. Cancer Res. 76:4569–4578. 2016. View Article : Google Scholar : PubMed/NCBI

111 

Li D, Du X, Guo X, Zhan L, Li X, Yin C, Chen C, Li M, Li B, Yang H and Xing J: Site-specific selection reveals selective constraints and functionality of tumor somatic mtDNA mutations. J Exp Clin Cancer Res. 36:1682017. View Article : Google Scholar : PubMed/NCBI

112 

Chen J, Zheng Q, Hicks JL, Trabzonlu L, Ozbek B, Jones T, Vaghasia AM, Larman TC, Wang R, Markowski MC, et al: MYC-driven increases in mitochondrial DNA copy number occur early and persist throughout prostatic cancer progression. JCI Insight. 8:e1698682023. View Article : Google Scholar : PubMed/NCBI

113 

Chang SC, Lin PC, Yang SH, Wang HS, Liang WY and Lin JK: Mitochondrial D-loop mutation is a common event in colorectal cancers with p53 mutations. Int J Colorectal Dis. 24:623–628. 2009. View Article : Google Scholar : PubMed/NCBI

114 

Filograna R, Mennuni M, Alsina D and Larsson NG: Mitochondrial DNA copy number in human disease: the more the better? FEBS Lett. 595:976–1002. 2021. View Article : Google Scholar :

115 

Zhang Y, Qu Y, Gao K, Yang Q, Shi B, Hou P and Ji M: High copy number of mitochondrial DNA (mtDNA) predicts good prognosis in glioma patients. Am J Cancer Res. 5:1207–1216. 2015.PubMed/NCBI

116 

Hu L, Yao X and Shen Y: Altered mitochondrial DNA copy number contributes to human cancer risk: Evidence from an updated meta-analysis. Sci Rep. 6:358592016. View Article : Google Scholar : PubMed/NCBI

117 

Maslov AY and Vijg J: Genome instability, cancer and aging. Biochim Biophys Acta. 1790:963–969. 2009. View Article : Google Scholar : PubMed/NCBI

118 

Hall MWJ, Jones PH and Hall BA: Relating evolutionary selection and mutant clonal dynamics in normal epithelia. J R Soc Interface. 16:201902302019. View Article : Google Scholar : PubMed/NCBI

119 

Buscarlet M, Provost S, Zada YF, Barhdadi A, Bourgoin V, Lépine G, Mollica L, Szuber N, Dubé MP and Busque L: DNMT3A and TET2 dominate clonal hematopoiesis and demonstrate benign phenotypes and different genetic predispositions. Blood. 130:753–762. 2017. View Article : Google Scholar : PubMed/NCBI

120 

Fujino T, Goyama S, Sugiura Y, Inoue D, Asada S, Yamasaki S, Matsumoto A, Yamaguchi K, Isobe Y, Tsuchiya A, et al: Mutant ASXL1 induces age-related expansion of phenotypic hematopoietic stem cells through activation of Akt/mTOR pathway. Nat Commun. 12:18262021. View Article : Google Scholar : PubMed/NCBI

121 

Abelson S, Collord G, Ng SWK, Weissbrod O, Mendelson Cohen N, Niemeyer E, Barda N, Zuzarte PC, Heisler L, Sundaravadanam Y, et al: Prediction of acute myeloid leukaemia risk in healthy individuals. Nature. 559:400–404. 2018. View Article : Google Scholar : PubMed/NCBI

122 

Abby E, Dentro SC, Hall MWJ, Fowler JC, Ong SH, Sood R, Herms A, Piedrafita G, Abnizova I, Siebel CW, et al: Notch1 mutations drive clonal expansion in normal esophageal epithelium but impair tumor growth. Nat Genet. 55:232–245. 2023. View Article : Google Scholar : PubMed/NCBI

123 

Fowler JC, King C, Bryant C, Hall MWJ, Sood R, Ong SH, Earp E, Fernandez-Antoran D, Koeppel J, Dentro SC, et al: Selection of oncogenic mutant clones in normal human skin varies with body site. Cancer Discov. 11:340–361. 2021. View Article : Google Scholar :

124 

Testa U, Castelli G and Pelosi E: The molecular characterization of genetic abnormalities in esophageal squamous cell carcinoma may foster the development of targeted therapies. Curr Oncol. 30:610–640. 2023. View Article : Google Scholar : PubMed/NCBI

125 

Colom B, Alcolea MP, Piedrafita G, Hall MWJ, Wabik A, Dentro SC, Fowler JC, Herms A, King C, Ong SH, et al: Spatial competition shapes the dynamic mutational landscape of normal esophageal epithelium. Nat Genet. 52:604–614. 2020. View Article : Google Scholar : PubMed/NCBI

126 

Dillon LM, Williams SL, Hida A, Peacock JD, Prolla TA, Lincoln J and Moraes CT: Increased mitochondrial biogenesis in muscle improves aging phenotypes in the mtDNA mutator mouse. Hum Mol Genet. 21:2288–2297. 2012. View Article : Google Scholar : PubMed/NCBI

127 

Banik M and Adhya S: OXPHOS deficiency induces mitochondrial DNA synthesis through non-canonical AMPK-dependent mRNA compartmentalization. J Biosci. 47:672022. View Article : Google Scholar : PubMed/NCBI

128 

Vernier M and Giguère V: Aging, senescence and mitochondria: The PGC-1/ERR axis. J Mol Endocrinol. 66:R1–R14. 2021. View Article : Google Scholar

129 

LeBleu VS, O'Connell JT, Gonzalez Herrera KN, Wikman H, Pantel K, Haigis MC, de Carvalho FM, Damascena A, Domingos Chinen LT, Rocha RM, et al: PGC-1α mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat Cell Biol. 16(992-1003): 1–15. 2014.

130 

Wang Y, Peng J, Yang D, Xing Z, Jiang B, Ding X, Jiang C, Ouyang B and Su L: From metabolism to malignancy: The multifaceted role of PGC1α in cancer. Front Oncol. 14:13838092024. View Article : Google Scholar

131 

Reznick RM, Zong H, Li J, Morino K, Moore IK, Yu HJ, Liu ZX, Dong J, Mustard KJ, Hawley SA, et al: Aging-associated reductions in AMP-activated protein kinase activity and mitochondrial biogenesis. Cell Metab. 5:151–156. 2007. View Article : Google Scholar : PubMed/NCBI

132 

Jiang S, Wang Y, Luo L, Shi F, Zou J, Lin H, Ying Y, Luo Y, Zhan Z, Liu P, et al: AMP-activated protein kinase regulates cancer cell growth and metabolism via nuclear and mitochondria events. J Cell Mol Med. 23:3951–3961. 2019. View Article : Google Scholar : PubMed/NCBI

133 

Chaube B, Malvi P, Singh SV, Mohammad N, Viollet B and Bhat MK: AMPK maintains energy homeostasis and survival in cancer cells via regulating p38/PGC-1α-mediated mitochondrial biogenesis. Cell Death Discov. 1:150632015. View Article : Google Scholar

134 

Milholland B, Auton A, Suh Y and Vijg J: Age-related somatic mutations in the cancer genome. Oncotarget. 6:24627–24635. 2015. View Article : Google Scholar : PubMed/NCBI

135 

Coller HA, Khrapko K, Bodyak ND, Nekhaeva E, Herrero-Jimenez P and Thilly WG: High frequency of homoplasmic mitochondrial DNA mutations in human tumors can be explained without selection. Nat Genet. 28:147–150. 2001. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Kobayashi H and Imanaka S: Understanding the impact of mitochondrial DNA mutations on aging and carcinogenesis (Review). Int J Mol Med 56: 118, 2025.
APA
Kobayashi, H., & Imanaka, S. (2025). Understanding the impact of mitochondrial DNA mutations on aging and carcinogenesis (Review). International Journal of Molecular Medicine, 56, 118. https://doi.org/10.3892/ijmm.2025.5559
MLA
Kobayashi, H., Imanaka, S."Understanding the impact of mitochondrial DNA mutations on aging and carcinogenesis (Review)". International Journal of Molecular Medicine 56.2 (2025): 118.
Chicago
Kobayashi, H., Imanaka, S."Understanding the impact of mitochondrial DNA mutations on aging and carcinogenesis (Review)". International Journal of Molecular Medicine 56, no. 2 (2025): 118. https://doi.org/10.3892/ijmm.2025.5559
Copy and paste a formatted citation
x
Spandidos Publications style
Kobayashi H and Imanaka S: Understanding the impact of mitochondrial DNA mutations on aging and carcinogenesis (Review). Int J Mol Med 56: 118, 2025.
APA
Kobayashi, H., & Imanaka, S. (2025). Understanding the impact of mitochondrial DNA mutations on aging and carcinogenesis (Review). International Journal of Molecular Medicine, 56, 118. https://doi.org/10.3892/ijmm.2025.5559
MLA
Kobayashi, H., Imanaka, S."Understanding the impact of mitochondrial DNA mutations on aging and carcinogenesis (Review)". International Journal of Molecular Medicine 56.2 (2025): 118.
Chicago
Kobayashi, H., Imanaka, S."Understanding the impact of mitochondrial DNA mutations on aging and carcinogenesis (Review)". International Journal of Molecular Medicine 56, no. 2 (2025): 118. https://doi.org/10.3892/ijmm.2025.5559
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team