
Lactate and lactylation in the kidneys: Current advances and prospects (Review)
- Authors:
- Xu Li
- Lan Hu
- Qin Hu
- Hua Jin
-
Affiliations: First School of Clinical Medicine, Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China, Department of Nephrology, The First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China - Published online on: June 5, 2025 https://doi.org/10.3892/ijmm.2025.5562
- Article Number: 121
-
Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
Silva PHI and Mohebbi N: Kidney metabolism and acid-base control: Back to the basics. Pflugers Arch. 474:919–934. 2022. View Article : Google Scholar | |
Chen Y, Fry BC and Layton AT: Modeling glucose metabolism and lactate production in the kidney. Math Biosci. 289:116–129. 2017. View Article : Google Scholar : PubMed/NCBI | |
Reddy AJ, Lam SW, Bauer SR and Guzman JA: Lactic acidosis: Clinical implications and management strategies. Clevel Clin J Med. 82:615–624. 2015. View Article : Google Scholar | |
Azushima K, Kovalik JP, Yamaji T, Ching J, Chng TW, Guo J, Liu JJ, Nguyen M, Sakban RB, George SE, et al: Abnormal lactate metabolism is linked to albuminuria and kidney injury in diabetic nephropathy. Kidney Int. 104:1135–1149. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Chen J, Lin R, Huang Y, Wang Z, Xu S, Wang L, Chen F, Zhang J, Pan K and Yin Z: Lactate drives epithelial-mesenchymal transition in diabetic kidney disease via the H3K14la/KLF5 pathway. Redox Biol. 75:1032462024. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Li H, Jiang S, Fu D, Lu X, Lu M, Li Y, Luo D, Wu K, Xu Y, et al: The glycolytic enzyme PFKFB3 drives kidney fibrosis through promoting histone lactylation-mediated NF-κB family activation. Kidney Int. 106:226–240. 2024. View Article : Google Scholar : PubMed/NCBI | |
Verissimo T, Faivre A, Rinaldi A, Lindenmeyer M, Delitsikou V, Veyrat-Durebex C, Heckenmeyer C, Fernandez M, Berchtold L, Dalga D, et al: Decreased renal gluconeogenesis is a hallmark of chronic kidney disease. J Am Soc Nephrol. 33:810–827. 2022. View Article : Google Scholar : PubMed/NCBI | |
Rabinowitz JD and Enerbäck S: Lactate: The ugly duckling of energy metabolism. Nat Metab. 2:566–571. 2020. View Article : Google Scholar : PubMed/NCBI | |
Merkuri F, Rothstein M and Simoes-Costa M: Histone lactylation couples cellular metabolism with developmental gene regulatory networks. Nat Commun. 15:902024. View Article : Google Scholar : PubMed/NCBI | |
Li J, Hou W, Zhao Q, Han W, Cui H, Xiao S, Zhu L, Qu J, Liu X, Cong W, et al: Lactate regulates major zygotic genome activation by H3K18 lactylation in mammals. Natl Sci Rev. 11:nwad2952024. View Article : Google Scholar : PubMed/NCBI | |
Dai W, Wu G, Liu K, Chen Q, Tao J, Liu H and Shen M: Lactate promotes myogenesis via activating H3K9 lactylation-dependent up-regulation of Neu2 expression. J Cachexia Sarcopenia Muscle. 14:2851–2865. 2023. View Article : Google Scholar : PubMed/NCBI | |
Fan W, Zeng S, Wang X, Wang G, Liao D, Li R, He S, Li W, Huang J, Li X, et al: A feedback loop driven by H3K9 lactylation and HDAC2 in endothelial cells regulates VEGF-induced angiogenesis. Genome Biol. 25:1652024. View Article : Google Scholar : PubMed/NCBI | |
Minami E, Sasa K, Yamada A, Kawai R, Yoshida H, Nakano H, Maki K and Kamijo R: Lactate-induced histone lactylation by p300 promotes osteoblast differentiation. PLoS One. 18:e02936762023. View Article : Google Scholar : PubMed/NCBI | |
Trujillo MN, Jennings EQ, Hoffman EA, Zhang H, Phoebe AM, Mastin GE, Kitamura N, Reisz JA, Megill E, Kantner D, et al: Lactoylglutathione promotes inflammatory signaling in macrophages through histone lactoylation. Mol Metab. 81:1018882024. View Article : Google Scholar : PubMed/NCBI | |
Kierans SJ and Taylor CT: Glycolysis: A multifaceted metabolic pathway and signaling hub. J Biol Chem. 300:1079062024. View Article : Google Scholar | |
Luengo A, Li Z, Gui DY, Sullivan LB, Zagorulya M, Do BT, Ferreira R, Naamati A, Ali A, Lewis CA, et al: Increased demand for NAD+ relative to ATP drives aerobic glycolysis. Mol Cell. 81:691–707.e6. 2021. View Article : Google Scholar : | |
Wang L, Pavlou S, Du X, Bhuckory M, Xu H and Chen M: Glucose transporter 1 critically controls microglial activation through facilitating glycolysis. Mol Neurodegener. 14:22019. View Article : Google Scholar : PubMed/NCBI | |
Yin X, Choudhury M, Kang JH, Schaefbauer KJ, Jung MY, Andrianifahanana M, Hernandez DM and Leof EB: Hexokinase 2 couples glycolysis with the profibrotic actions of TGF-β. Sci Signal. 12:eaax40672019. View Article : Google Scholar | |
Nishioku T, Anzai R, Hiramatsu S, Terazono A, Nakao M and Moriyama M: Lactate dehydrogenase A inhibition prevents RANKL-induced osteoclastogenesis by reducing enhanced glycolysis. J Pharmacol Sci. 153:197–207. 2023. View Article : Google Scholar : PubMed/NCBI | |
Kim E, Hwang Y, Kim H, Kim GU, Ryu YC, Yoon M and Choi KY: Pyruvate Kinase M2 accelerates cutaneous wound healing via glycolysis and Wnt/β-catenin signaling. Pharmaceutics. 15:20282023. View Article : Google Scholar | |
Li J, Ma P, Liu Z and Xie J: L- and D-lactate: Unveiling their hidden functions in disease and health. Cell Commun Signal. 23:1342025. View Article : Google Scholar : PubMed/NCBI | |
Heim CE, Bosch ME, Yamada KJ, Aldrich AL, Chaudhari SS, Klinkebiel D, Gries CM, Alqarzaee AA, Li Y, Thomas VC, et al: Lactate production by Staphylococcus aureus biofilm inhibits HDAC11 to reprogram the host immune response during persistent infection. Nat Microbiol. 5:1271–1284. 2020. View Article : Google Scholar : PubMed/NCBI | |
Monroe GR, van Eerde AM, Tessadori F, Duran KJ, Savelberg SMC, van Alfen JC, Terhal PA, van der Crabben SN, Lichtenbelt KD, Fuchs SA, et al: Identification of human D lactate dehydrogenase deficiency. Nat Commun. 10:14772019. View Article : Google Scholar : PubMed/NCBI | |
Vernon C and LeTourneau JL: Lactic acidosis: Recognition, kinetics, and associated prognosis. Critical Care Clinics. 26:255–283. 2010. View Article : Google Scholar : PubMed/NCBI | |
Emhoff CAW and Messonnier LA: Concepts of lactate metabolic clearance rate and lactate clamp for metabolic inquiry: A Mini-review. Nutrients. 15:32132023. View Article : Google Scholar : PubMed/NCBI | |
Huang T, Liang Z, Wang K, Miao X and Zheng L: Novel insights into athlete physical recovery concerning lactate metabolism, lactate clearance and fatigue monitoring: A comprehensive review. Front Physiol. 16:14597172025. View Article : Google Scholar : PubMed/NCBI | |
Lin Y, Wang Y and Li P: Mutual regulation of lactate dehydrogenase and redox robustness. Front Physiol. 13:10384212022. View Article : Google Scholar : PubMed/NCBI | |
Adeva M, González-Lucán M, Seco M and Donapetry C: Enzymes involved in l-lactate metabolism in humans. Mitochondrion. 13:615–629. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wei T, Guo Y, Huang C, Sun M, Zhou B, Gao J and Shen W: Fibroblast-to-cardiomyocyte lactate shuttle modulates hypertensive cardiac remodelling. Cell Biosci. 13:1512023. View Article : Google Scholar : PubMed/NCBI | |
Brooks GA, Curl CC, Leija RG, Osmond AD, Duong JJ and Arevalo JA: Tracing the lactate shuttle to the mitochondrial reticulum. Exp Mol Med. 54:1332–1347. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Xin C, Wang S, Zhuo S, Zhu J, Li Z, Liu Y, Yang L and Chen Y: Lactate transported by MCT1 plays an active role in promoting mitochondrial biogenesis and enhancing TCA flux in skeletal muscle. Sci Adv. 10:eadn45082024. View Article : Google Scholar : PubMed/NCBI | |
Contreras-Baeza Y, Sandoval PY, Alarcón R, Galaz A, Cortés-Molina F, Alegría K, Baeza-Lehnert F, Arce-Molina R, Guequén A, Flores CA, et al: Monocarboxylate transporter 4 (MCT4) is a high affinity transporter capable of exporting lactate in high-lactate microenvironments. J Biol Chem. 294:20135–20147. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kobayashi M, Narumi K, Furugen A and Iseki K: Transport function, regulation, and biology of human monocarboxylate transporter 1 (hMCT1) and 4 (hMCT4). Pharmacol Ther. 226:1078622021. View Article : Google Scholar : PubMed/NCBI | |
Yanase H, Takebe K, Nio-Kobayashi J, Takahashi-Iwanaga H and Iwanaga T: Cellular expression of a sodium-dependent monocarboxylate transporter (Slc5a8) and the MCT family in the mouse kidney. Histochem Cell Biol. 130:957–966. 2008. View Article : Google Scholar : PubMed/NCBI | |
Becker HM, Mohebbi N, Perna A, Ganapathy V, Capasso G and Wagner CA: Localization of members of MCT monocarboxylate transporter family Slc16 in the kidney and regulation during metabolic acidosis. Am J Physiol Renal Physiol. 299:F141–F154. 2010. View Article : Google Scholar : PubMed/NCBI | |
Osis G, Traylor AM, Black LM, Spangler D, George JF, Zarjou A, Verlander JW and Agarwal A: Expression of lactate dehydrogenase A and B isoforms in the mouse kidney. Am J Physiol Renal Physiol. 320:F706–F718. 2021. View Article : Google Scholar : PubMed/NCBI | |
Feng Y, Sun Z, Fu J, Zhong F, Zhang W, Wei C, Chen A, Liu BC, He JC and Lee K: Podocyte-derived soluble RARRES1 drives kidney disease progression through direct podocyte and proximal tubular injury. Kidney Int. 106:50–66. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Fan S, Zhu H, Zhao Q, Fang Z, Xu D, Lin W, Lin L, Hu X, Wu G, et al: Podocyte OTUD5 alleviates diabetic kidney disease through deubiquitinating TAK1 and reducing podocyte inflammation and injury. Nat Commun. 15:54412024. View Article : Google Scholar : PubMed/NCBI | |
Szrejder M, Typiak M, Pikul P, Audzeyenka I, Rachubik P, Rogacka D, Narajczyk M and Piwkowska A: Role of L-lactate as an energy substrate in primary rat podocytes under physiological and glucose deprivation conditions. Eur J Cell Biol. 102:1512982023. View Article : Google Scholar : PubMed/NCBI | |
Audzeyenka I, Szrejder M, Rachubik P, Grochowalska K, Kulesza T, Rogacka D, Narajczyk M and Piwkowska A: Lactate regulates respiratory efficiency and mitochondrial dynamics in primary rat podocytes. Free Radic Biol Med. 220:312–323. 2024. View Article : Google Scholar : PubMed/NCBI | |
Dalga D, Verissimo T and de Seigneux S: Gluconeogenesis in the kidney: In health and in chronic kidney disease. Clin Kidney J. 16:1249–1257. 2023. View Article : Google Scholar : PubMed/NCBI | |
Nakamura M, Satoh N, Horita S and Nangaku M: Insulin-induced mTOR signaling and gluconeogenesis in renal proximal tubules: A mini-review of current evidence and therapeutic potential. Front Pharmacol. 13:10152042022. View Article : Google Scholar : PubMed/NCBI | |
Hatano R, Lee E, Sato H, Kiuchi M, Hirahara K, Nakagawa Y, Shimano H, Nakayama T, Tanaka T and Miki T: Hepatic ketone body regulation of renal gluconeogenesis. Mol Metab. 84:1019342024. View Article : Google Scholar : PubMed/NCBI | |
Zanza C, Facelli V, Romenskaya T, Bottinelli M, Caputo G, Piccioni A, Franceschi F, Saviano A, Ojetti V, Savioli G and Longhitano Y: Lactic acidosis related to pharmacotherapy and human diseases. Pharmaceuticals (Basel). 15:14962022. View Article : Google Scholar : PubMed/NCBI | |
Zhang D, Tang Z, Huang H, Zhou G, Cui C, Weng Y, Liu W, Kim S, Lee S, Perez-Neut M, et al: Metabolic regulation of gene expression by histone lactylation. Nature. 574:575–580. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Yan J, Huang H, Liu L, Ren L, Hu J, Jiang X, Zheng Y, Xu L, Zhong F and Li X: The m6A reader IGF2BP2 regulates glycolytic metabolism and mediates histone lactylation to enhance hepatic stellate cell activation and liver fibrosis. Cell Death Dis. 15:1892024. View Article : Google Scholar : | |
Wan N, Wang N, Yu S, Zhang H, Tang S, Wang D, Lu W, Li H, Delafield DG, Kong Y, et al: Cyclic immonium ion of lactyllysine reveals widespread lactylation in the human proteome. Nat Methods. 19:854–864. 2022. View Article : Google Scholar : PubMed/NCBI | |
An S, Yao Y, Hu H, Wu J, Li J, Li L, Wu J, Sun M, Deng Z, Zhang Y, et al: PDHA1 hyperacetylation-mediated lactate overproduction promotes sepsis-induced acute kidney injury via Fis1 lactylation. Cell Death Dis. 14:4572023. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Feng Q, Qiao Y, Pan S, Liang L, Liu Y, Zhang X, Liu D and Liu Z and Liu Z: ACSF2 and lysine lactylation contribute to renal tubule injury in diabetes. Diabetologia. 67:1429–1443. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wang P, Xie D, Xiao T, Cheng C, Wang D, Sun J, Wu M, Yang Y, Zhang A and Liu Q: H3K18 lactylation promotes the progression of arsenite-related idiopathic pulmonary fibrosis via YTHDF1/m6A/NREP. J Hazard Mater. 461:1325822024. View Article : Google Scholar | |
Zhang Y, Huang Z, Han W, Wu J, Li S, Qin T, Zhang C, Shi M, Han S, Gao B, et al: Glutamine suppresses senescence and promotes autophagy through glycolysis inhibition-mediated AMPKα lactylation in intervertebral disc degeneration. Commun Biol. 7:3252024. View Article : Google Scholar | |
Sun W, Jia M, Feng Y and Cheng X: Lactate is a bridge linking glycolysis and autophagy through lactylation. Autophagy. 19:3240–3241. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wei Y, Guo H, Chen S and Tang XX: Regulation of macrophage activation by lactylation in lung disease. Front Immunol. 15:14277392024. View Article : Google Scholar : PubMed/NCBI | |
Moreno-Yruela C, Zhang D, Wei W, Bæk M, Liu W, Gao J, Danková D, Nielsen AL, Bolding JE, Yang L, et al: Class I histone deacetylases (HDAC1-3) are histone lysine delactylases. Sci Adv. 8:eabi66962022. View Article : Google Scholar : PubMed/NCBI | |
Kikuchi M, Morita S, Wakamori M, Sato S, Uchikubo-Kamo T, Suzuki T, Dohmae N, Shirouzu M and Umehara T: Epigenetic mechanisms to propagate histone acetylation by p300/CBP. Nat Commun. 14:41032023. View Article : Google Scholar : PubMed/NCBI | |
Dong M, Zhang Y, Chen M, Tan Y, Min J, He X, Liu F, Gu J, Jiang H, Zheng L, et al: ASF1A-dependent P300-mediated histone H3 lysine 18 lactylation promotes atherosclerosis by regulating EndMT. Acta Pharm Sin B. 14:3027–3048. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wu X and Tao WA: Uncovering ubiquitous protein lactylation. Nat Methods. 19:793–794. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li J, Shi X, Xu J, Wang K, Hou F, Luan X and Chen L: Aldehyde dehydrogenase 2 lactylation aggravates mitochondrial dysfunction by disrupting PHB2 mediated mitophagy in acute kidney injury. Adv Sci (Weinh). 12:e24119432024. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Zhang J, Xu F, Gao H, Wang L, Zhao Y and Li K: AST-120 alleviates renal ischemia-reperfusion injury by inhibiting HK2-mediated glycolysis. Mol Med. 30:1332024. View Article : Google Scholar : PubMed/NCBI | |
Qiao J, Tan Y, Liu H, Yang B, Zhang Q, Liu Q, Sun W, Li Z, Wang Q, Feng W, et al: Histone H3K18 and ezrin lactylation promote renal dysfunction in Sepsis-associated acute kidney injury. Adv Sci (Weinh). 11:e23072162024. View Article : Google Scholar : PubMed/NCBI | |
Kumar B, Navarro C, Yung PYK, Lyu J, Salazar Mantero A, Katsori AM, Schwämmle H, Martin M and Elsässer SJ: Multiplexed chromatin immunoprecipitation sequencing for quantitative study of histone modifications and chromatin factors. Nat Protoc. 20:779–809. 2025. View Article : Google Scholar | |
Zhang L, Xue G, Liu J, Li Q and Wang Y: Revealing transcription factor and histone modification co-localization and dynamics across cell lines by integrating ChIP-seq and RNA-seq data. BMC Genomics. 19:9142018. View Article : Google Scholar | |
Miguel V, Shaw IW and Kramann R: Metabolism at the crossroads of inflammation and fibrosis in chronic kidney disease. Nat Rev Nephrol. 21:39–56. 2025. View Article : Google Scholar | |
Li Y, Min X, Zhang X, Cao X, Kong Q, Mao Q, Cheng H, Gou L, Li Y, Li C, et al: HSPA12A promotes c-Myc lactylation-mediated proliferation of tubular epithelial cells to facilitate renal functional recovery from kidney ischemia/reperfusion injury. Cell Mol Life Sci. 81:4042024. View Article : Google Scholar : PubMed/NCBI | |
Xiang T, Wang X, Huang S, Zhou K, Fei S, Zhou B, Yue K, Li Q, Xue S, Dai Y, et al: Inhibition of PKM2 by shikonin impedes TGF-β1 expression by repressing histone lactylation to alleviate renal fibrosis. Phytomedicine. 136:1563242025. View Article : Google Scholar | |
Zheng T, Gu YP, Wang JM, Huang TT, Gou LS and Liu YW: Lactate-triggered histone lactylation contributes to podocyte epithelial-mesenchymal transition in diabetic nephropathy in mice. Chem Biol Interact. 408:1114182025. View Article : Google Scholar : PubMed/NCBI | |
Jia L, Sheng X, Zamperetti A, Xie Y, Corradi V, Chandel S, De Cal M, Montin DP, Caprara C and Ronco C: Combination of biomarker with clinical risk factors for prediction of severe acute kidney injury in critically ill patients. BMC Nephrol. 21:5402020. View Article : Google Scholar : PubMed/NCBI | |
Legouis D, Ricksten S-E, Faivre A, Verissimo T, Gariani K, Verney C, Galichon P, Berchtold L, Feraille E, Fernandez M, et al: Altered proximal tubular cell glucose metabolism during acute kidney injury is associated with mortality. Nat Metab. 2:732–743. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sklienka P, Maca J, Neiser J, Bursa F, Sevcik P, Frelich M, Petejova N, Svagera Z, Tomaskova H and Zahorec R: Physiologic risk factors for early acute kidney injury in severely injured patients. Bratisl Lek Listy. 121:779–785. 2020.PubMed/NCBI | |
Nasu T, Ueda K, Kawashima S, Okishio Y, Kunitatsu K, Iwasaki Y and Kato S: Prediction of early acute kidney injury after trauma using prehospital systolic blood pressure and lactate levels: A prospective validation study. Injury. 53:81–85. 2022. View Article : Google Scholar | |
Gong C, Jiang Y, Tang Y, Liu F, Shi Y, Zhou H and Xie K: Elevated serum lactic acid level is an independent risk factor for the incidence and mortality of sepsis-associated acute kidney injury. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 34:714–720. 2022.In Chinese. PubMed/NCBI | |
Flores-Salinas HE, Zambada-Gamboa AJ, Garcia-Garduño TC, Rodríguez-Zavala G, Valle Y, Chávez-Herrera JC, Martinez-Gutierrez PE, Godinez-Flores A, Jiménez-Limón S and Padilla-Gutiérrez JR: Association of postoperative serum lactate levels with acute kidney injury in mexican patients undergoing cardiac surgery. Clin Pract. 14:1100–1109. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Xu J, Kang Y, Liu L, Zhang L and Wang D: Early dynamic behavior of lactate in predicting continuous renal replacement therapy after surgery for acute type A aortic dissection. Front Cardiovasc Med. 9:9486722022. View Article : Google Scholar : PubMed/NCBI | |
Kahyaoglu M, Karaduman A, Geçmen Ç, Candan Ö, Güner A, Cakmak EO, Bayam E, Yılmaz Y, Çelik M, Izgi IA and Kirma C: Serum lactate level may predict the development of acute kidney injury in acute decompensated heart failure. Turk Kardiyol Dern Ars. 48:683–689. 2020.PubMed/NCBI | |
Zhou X, He Y, Hu L, Zhu Q, Lin Q, Hong X, Huang W, Shan P and Liang D: Lactate level and lactate clearance for acute kidney injury prediction among patients admitted with ST-segment elevation myocardial infarction: A retrospective cohort study. Front Cardiovasc Med. 9:9302022022. View Article : Google Scholar : PubMed/NCBI | |
Wang R, Wang S, Zhang J, He M and Xu J: Serum lactate level in early stage is associated with acute kidney injury in traumatic brain injury patients. Front Surg. 8:7611662021. View Article : Google Scholar | |
Xu J, Ma X, Yu K, Wang R, Wang S, Liu R, Liu H, Gao H, Yu K and Wang C: Lactate up-regulates the expression of PD-L1 in kidney and causes immunosuppression in septic Acute Renal Injury. J Microbiol Immunol Infect. 54:404–410. 2021. View Article : Google Scholar | |
Tan C, Gu J, Li T, Chen H, Liu K, Liu M, Zhang H and Xiao X: Inhibition of aerobic glycolysis alleviates sepsis-induced acute kidney injury by promoting lactate/Sirtuin 3/AMPK-regulated autophagy. Int J Mol Med. 47:192021. View Article : Google Scholar : | |
Shen Y, Jiang L, Wen P, Ye Y, Zhang Y, Ding H, Luo J, Xu L, Zen K, Zhou Y and Yang J: Tubule-derived lactate is required for fibroblast activation in acute kidney injury. Am J Physiol Renal Physiol. 318:F689–F701. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chu X, Di C, Chang P, Li L, Feng Z, Xiao S, Yan X, Xu X, Li H, Qi R, et al: Lactylated histone H3K18 as a potential biomarker for the diagnosis and predicting the severity of septic shock. Front Immunol. 12:7866662021. View Article : Google Scholar | |
Guo W, Song Y, Sun Y, Du H, Cai Y, You Q, Fu H and Shao L: Systemic immune-inflammation index is associated with diabetic kidney disease in type 2 diabetes mellitus patients: Evidence from NHANES 2011-2018. Front Endocrinol (Lausanne). 13:10714652022. View Article : Google Scholar : PubMed/NCBI | |
Roointan A, Gheisari Y, Hudkins KL and Gholaminejad A: Non-invasive metabolic biomarkers for early diagnosis of diabetic nephropathy: Meta-analysis of profiling metabolomics studies. Nutr Metab Cardiovasc Dis. 31:2253–2272. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jiang C, Ma X, Chen J, Zeng Y, Guo M, Tan X, Wang Y, Wang P, Yan P, Lei Y, et al: Development of serum lactate Level-based nomograms for predicting diabetic kidney disease in type 2 diabetes mellitus patients. Diabetes Metab Syndr Obes. 17:1051–1068. 2024. View Article : Google Scholar : PubMed/NCBI | |
Tang L, Yang Q, Ma R, Zhou P, Peng C, Xie C, Liang Q, Wu T, Gao W, Yu H, et al: Association between lactate dehydrogenase and the risk of diabetic kidney disease in patients with type 2 diabetes. Front Endocrinol (Lausanne). 15:13699682024. View Article : Google Scholar : PubMed/NCBI | |
Muiru AN, Hsu JY, Zhang X, Appel LJ, Chen J, Cohen DL, Drawz PE, Freedman BI, Go AS, He J, et al: Risk for chronic kidney disease progression after acute kidney injury: Findings from the chronic renal insufficiency cohort study. Ann Intern Med. 176:961–968. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chesnaye NC, Ortiz A, Zoccali C, Stel VS and Jager KJ: The impact of population ageing on the burden of chronic kidney disease. Nat Rev Nephrol. 20:569–585. 2024. View Article : Google Scholar : PubMed/NCBI | |
Tanemoto M: Gap acidosis except lactic acidosis develops and progresses during chronic kidney disease stage G5. Clin Exp Nephrol. 23:1045–1049. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhao B, Xu Y, Chen Y, Cai Y, Gong Z, Li D, Kuang H, Liu X, Zhou H, Liu G and Yin Y: Activation of TRPV4 by lactate as a critical mediator of renal fibrosis in spontaneously hypertensive rats after moderate- and high-intensity exercise. Front Physiol. 13:9270782022. View Article : Google Scholar : PubMed/NCBI | |
Nagy A, Pethő D, Gáll T, Zavaczki E, Nyitrai M, Posta J, Zarjou A, Agarwal A, Balla G and Balla J: Zinc Inhibits HIF-Prolyl Hydroxylase Inhibitor-Aggravated VSMC calcification induced by high phosphate. Front Physiol. 10:15842020. View Article : Google Scholar : PubMed/NCBI | |
Huang Z, Liao Y, Zheng Y, Ye S, Zhang Q, Yu X, Liu X and Li N: Zinc deficiency causes glomerulosclerosis and renal interstitial fibrosis through oxidative stress and increased lactate metabolism in rats. Biol Trace Elem Res. 203:2084–2098. 2025. View Article : Google Scholar : | |
Li M, Jia F, Zhou H, Di J and Yang M: Elevated aerobic glycolysis in renal tubular epithelial cells influences the proliferation and differentiation of podocytes and promotes renal interstitial fibrosis. Eur Rev Med Pharmacol Sci. 22:5082–5090. 2018.PubMed/NCBI | |
Jiang A, Liu J, Wang Y and Zhang C: cGAS-STING signaling pathway promotes hypoxia-induced renal fibrosis by regulating PFKFB3-mediated glycolysis. Free Radic Biol Mede. 208:516–529. 2023. View Article : Google Scholar | |
Ding H, Jiang L, Xu J, Bai F, Zhou Y, Yuan Q, Luo J, Zen K and Yang J: Inhibiting aerobic glycolysis suppresses renal interstitial fibroblast activation and renal fibrosis. Am J Physiol Renal Physiol. 313:F561–F575. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li X, Ma TK, Wang M, Zhang XD, Liu TY, Liu Y, Huang ZH, Zhu YH, Zhang S, Yin L, et al: YY1-induced upregulation of LncRNA-ARAP1-AS2 and ARAP1 promotes diabetic kidney fibrosis via aberrant glycolysis associated with EGFR/PKM2/HIF-1α pathway. Front Pharmacol. 14:10693482023. View Article : Google Scholar | |
Wei Q, Su J, Dong G, Zhang M, Huo Y and Dong Z: Glycolysis inhibitors suppress renal interstitial fibrosis via divergent effects on fibroblasts and tubular cells. Am J Physiol Renal Physiol. 316:F1162–F1172. 2019. View Article : Google Scholar : PubMed/NCBI | |
Md Shakhih MF, Rosslan AS, Noor AM, Ramanathan S, Lazim AM and Wahab AA: Review-enzymatic and Non-enzymatic electrochemical sensor for lactate detection in human biofluids. J Electrochem Soc. 168:0675022021. View Article : Google Scholar | |
Henry H, Marmy Conus N, Steenhout P, Béguin A and Boulat O: Sensitive determination of D-lactic acid and L-lactic acid in urine by high-performance liquid chromatography-tandem mass spectrometry. Biomed Chromatogr. 26:425–428. 2012. View Article : Google Scholar | |
Bollella P, Sharma S, Cass AEG and Antiochia R: Microneedle-based biosensor for minimally-invasive lactate detection. Biosens Bioelectron. 123:152–159. 2019. View Article : Google Scholar | |
Xie Y, Li K, Liu J, Zhou Y, Zhang C, Yu Y, Wang J, Su L and Zhang X: A smart lab on a wearable microneedle patch with convolutional neural network-enhanced colorimetry for early warning of syndrome of inappropriate antidiuretic hormone secretion. Aggregate. 6:e6712025. View Article : Google Scholar | |
Yao S, Chai H, Tao T, Zhang L, Yang X, Li X, Yi Z, Wang Y, An J, Wen G, et al: Role of lactate and lactate metabolism in liver diseases (Review). Int J Mol Med. 54:592024. View Article : Google Scholar : PubMed/NCBI | |
Sun J, Dai W, Guo Q, Gao Y, Chen J, Chen JL, Mao G, Sun H and Peng YK: Self-powered wearable electrochemical sensor based on composite conductive hydrogel medium for detection of lactate in human sweat. Biosens Bioelectron. 277:1173032025. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Zhu Z, Liang W, Luo Z, Hu J, Feng J, Zhang Z, Luo Q, Yang H and Ding G: Reduction of anaerobic glycolysis contributes to angiotensin II-induced podocyte injury with foot process effacement. Kidney Int. 103:735–748. 2023. View Article : Google Scholar : PubMed/NCBI | |
Jiajun W, Kaifeng G and Jing Z: Urinary PKM2, a marker predicating acute kidney injury in patients with sepsis. Int Urol Nephrol. 56:3039–3045. 2024. View Article : Google Scholar : PubMed/NCBI | |
Bertelsen LB, Hansen ESS, Sadowski T, Ruf S and Laustsen C: Hyperpolarized pyruvate to measure the influence of PKM2 activation on glucose metabolism in the healthy kidney. NMR Biomed. 34:e45832021. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Takagaki Y, Kumagai A, Kanasaki K and Koya D: The PKM2 activator TEPP-46 suppresses kidney fibrosis via inhibition of the EMT program and aberrant glycolysis associated with suppression of HIF-1α accumulation. J Diabetes Investig. 12:697–709. 2021. View Article : Google Scholar | |
Chen Y, Bai X, Chen J, Huang M, Hong Q, Ouyang Q, Sun X, Zhang Y, Liu J, Wang X, et al: Pyruvate kinase M2 regulates kidney fibrosis through pericyte glycolysis during the progression from acute kidney injury to chronic kidney disease. Cell Prolif. 57:e135482024. View Article : Google Scholar : | |
Wang J, Ren Y, Zheng X, Kang J, Huang Z, Xu L and Wang Y: Anti-fibrotic effects of low toxic Microcystin-RR on Bleomycin-induced pulmonary fibrosis: A comparison with Microcystin-LR. Front Pharmacol. 12:6759072021. View Article : Google Scholar : PubMed/NCBI | |
Ren Y, Wang J, Guo W, Chen J, Wu X, Gu S, Xu L, Wu Z and Wang Y: Renoprotection of Microcystin-RR in unilateral ureteral Obstruction-induced renal fibrosis: Targeting the PKM2-HIF-1α pathway. Front Pharmacol. 13:8303122022. View Article : Google Scholar | |
Gong M, Guo Y, Dong H, Wu F, He Q, Gong J and Lu F: Modified Hu-lu-ba-wan protects diabetic glomerular podocytes via promoting PKM2-mediated mitochondrial dynamic homeostasis. Phytomedicine. 123:1552472024. View Article : Google Scholar | |
Qian L, Ren S, Xu Z, Zheng Y, Wu L, Yang Y, Wang Y, Li J, Yan S and Fang Z: Qian yang yu yin granule improves renal injury of hypertension by regulating metabolic reprogramming mediated by HIF-1α/PKM2 positive feedback loop. Front Pharmacol. 12:6674332021. View Article : Google Scholar | |
Wang M, Zeng F, Ning F, Wang Y, Zhou S, He J, Li C, Wang C, Sun X, Zhang D, et al: Ceria nanoparticles ameliorate renal fibrosis by modulating the balance between oxidative phosphorylation and aerobic glycolysis. J Nanobiotechnology. 20:32022. View Article : Google Scholar : PubMed/NCBI | |
Fu X, Zhang J, Huang X, Mo Z, Sang Z, Duan W and Huang W: Curcumin antagonizes glucose fluctuation-induced renal injury by inhibiting aerobic glycolysis via the miR-489/LDHA pathway. Mediators Inflamm. 2021:61045292021. View Article : Google Scholar : PubMed/NCBI | |
Yu H, Zhu J, Chang L, Liang C, Li X and Wang W: 3-Bromopyruvate decreased kidney fibrosis and fibroblast activation by suppressing aerobic glycolysis in unilateral ureteral obstruction mice model. Life Sci. 272:1192062021. View Article : Google Scholar : PubMed/NCBI | |
Han W, Wang C, Yang Z, Mu L, Wu M, Chen N, Du C, Duan H and Shi Y: SRT1720 retards renal fibrosis via inhibition of HIF1A/GLUT1 in diabetic nephropathy. J Endocrinol. 241:85–98. 2019. View Article : Google Scholar : PubMed/NCBI | |
Venkatesan A, Roy A, Kulandaivel S, Natesan V and Kim SJ: p-Coumaric acid nanoparticles ameliorate diabetic nephropathy via regulating mRNA expression of KIM-1 and GLUT-2 in Streptozotocin-induced diabetic rats. Metabolites. 12:11662022. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Wang H, Jiang M, Zhao J, Fan C, Wang Y and Peng W: Huangqi (astragalus) decoction ameliorates diabetic nephropathy via IRS1-PI3K-GLUT signaling pathway. Am J Transl Res. 10:2491–2501. 2018.PubMed/NCBI | |
Ritu, Xiong Y, Sharma HP, Goyal RK, Narwal S, Berwal A, Jain S, Priya M, Singh M, Agarwal G, et al: Bioflavonoid combination attenuates diabetes-induced nephropathy in rats via modulation of MMP-9/TIMP-1, TGF-β, and GLUT-4-associated pathways. Heliyon. 10:e332172024. View Article : Google Scholar | |
Zhang J, Ding T, Zhang X, Tang D and Wang J: Dapagliflozin relieves renal injury in a diabetic nephropathy model by inducing autophagy through regulation of miR-30e-5p/AKT/mTOR pathway. Trop J Pharm Res. 21:2115–2123. 2022. View Article : Google Scholar | |
Fatouros IG, Douroudos I, Panagoutsos S, Pasadakis P, Nikolaidis MG, Chatzinikolaou A, Sovatzidis A, Michailidis Y, Jamurtas AZ, Mandalidis D, et al: Effects of L-carnitine on oxidative stress responses in patients with renal disease. Med Sci Sports Exerc. 42:1809–1818. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sharma B and Yadav DK: L-Carnitine and chronic kidney disease: A comprehensive review on nutrition and health perspectives. J Pers Med. 13:2982023. View Article : Google Scholar : PubMed/NCBI | |
Wen YK: Impact of acute kidney injury on metformin-associated lactic acidosis. Int Urol Nephrol. 41:967–972. 2009. View Article : Google Scholar : PubMed/NCBI |