Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
August-2025 Volume 56 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2025 Volume 56 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Lactate and lactylation in the kidneys: Current advances and prospects (Review)

  • Authors:
    • Xu Li
    • Lan Hu
    • Qin Hu
    • Hua Jin
  • View Affiliations / Copyright

    Affiliations: First School of Clinical Medicine, Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China, Department of Nephrology, The First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
    Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 121
    |
    Published online on: June 5, 2025
       https://doi.org/10.3892/ijmm.2025.5562
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Lactate, traditionally overlooked as a glycolytic byproduct, has recently been recognized for its significant biological roles. The normal kidney plays an essential role in maintaining systemic glucose and lactate homeostasis. Lactylation, as a new epigenetic modification, influences the initiation and progression of kidney diseases through the regulation of gene transcription and cellular metabolism. The present review summarizes current perspectives on the physiological functions of lactate and its renal metabolism, analyzes the roles of lactate and lactylation in acute kidney injury, diabetic nephropathy and chronic kidney disease, and proposes that targeted modulation of lactate metabolism may represent a promising therapeutic strategy for kidney disorders, thereby providing a foundation for future investigations.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Silva PHI and Mohebbi N: Kidney metabolism and acid-base control: Back to the basics. Pflugers Arch. 474:919–934. 2022. View Article : Google Scholar

2 

Chen Y, Fry BC and Layton AT: Modeling glucose metabolism and lactate production in the kidney. Math Biosci. 289:116–129. 2017. View Article : Google Scholar : PubMed/NCBI

3 

Reddy AJ, Lam SW, Bauer SR and Guzman JA: Lactic acidosis: Clinical implications and management strategies. Clevel Clin J Med. 82:615–624. 2015. View Article : Google Scholar

4 

Azushima K, Kovalik JP, Yamaji T, Ching J, Chng TW, Guo J, Liu JJ, Nguyen M, Sakban RB, George SE, et al: Abnormal lactate metabolism is linked to albuminuria and kidney injury in diabetic nephropathy. Kidney Int. 104:1135–1149. 2023. View Article : Google Scholar : PubMed/NCBI

5 

Zhang X, Chen J, Lin R, Huang Y, Wang Z, Xu S, Wang L, Chen F, Zhang J, Pan K and Yin Z: Lactate drives epithelial-mesenchymal transition in diabetic kidney disease via the H3K14la/KLF5 pathway. Redox Biol. 75:1032462024. View Article : Google Scholar : PubMed/NCBI

6 

Wang Y, Li H, Jiang S, Fu D, Lu X, Lu M, Li Y, Luo D, Wu K, Xu Y, et al: The glycolytic enzyme PFKFB3 drives kidney fibrosis through promoting histone lactylation-mediated NF-κB family activation. Kidney Int. 106:226–240. 2024. View Article : Google Scholar : PubMed/NCBI

7 

Verissimo T, Faivre A, Rinaldi A, Lindenmeyer M, Delitsikou V, Veyrat-Durebex C, Heckenmeyer C, Fernandez M, Berchtold L, Dalga D, et al: Decreased renal gluconeogenesis is a hallmark of chronic kidney disease. J Am Soc Nephrol. 33:810–827. 2022. View Article : Google Scholar : PubMed/NCBI

8 

Rabinowitz JD and Enerbäck S: Lactate: The ugly duckling of energy metabolism. Nat Metab. 2:566–571. 2020. View Article : Google Scholar : PubMed/NCBI

9 

Merkuri F, Rothstein M and Simoes-Costa M: Histone lactylation couples cellular metabolism with developmental gene regulatory networks. Nat Commun. 15:902024. View Article : Google Scholar : PubMed/NCBI

10 

Li J, Hou W, Zhao Q, Han W, Cui H, Xiao S, Zhu L, Qu J, Liu X, Cong W, et al: Lactate regulates major zygotic genome activation by H3K18 lactylation in mammals. Natl Sci Rev. 11:nwad2952024. View Article : Google Scholar : PubMed/NCBI

11 

Dai W, Wu G, Liu K, Chen Q, Tao J, Liu H and Shen M: Lactate promotes myogenesis via activating H3K9 lactylation-dependent up-regulation of Neu2 expression. J Cachexia Sarcopenia Muscle. 14:2851–2865. 2023. View Article : Google Scholar : PubMed/NCBI

12 

Fan W, Zeng S, Wang X, Wang G, Liao D, Li R, He S, Li W, Huang J, Li X, et al: A feedback loop driven by H3K9 lactylation and HDAC2 in endothelial cells regulates VEGF-induced angiogenesis. Genome Biol. 25:1652024. View Article : Google Scholar : PubMed/NCBI

13 

Minami E, Sasa K, Yamada A, Kawai R, Yoshida H, Nakano H, Maki K and Kamijo R: Lactate-induced histone lactylation by p300 promotes osteoblast differentiation. PLoS One. 18:e02936762023. View Article : Google Scholar : PubMed/NCBI

14 

Trujillo MN, Jennings EQ, Hoffman EA, Zhang H, Phoebe AM, Mastin GE, Kitamura N, Reisz JA, Megill E, Kantner D, et al: Lactoylglutathione promotes inflammatory signaling in macrophages through histone lactoylation. Mol Metab. 81:1018882024. View Article : Google Scholar : PubMed/NCBI

15 

Kierans SJ and Taylor CT: Glycolysis: A multifaceted metabolic pathway and signaling hub. J Biol Chem. 300:1079062024. View Article : Google Scholar

16 

Luengo A, Li Z, Gui DY, Sullivan LB, Zagorulya M, Do BT, Ferreira R, Naamati A, Ali A, Lewis CA, et al: Increased demand for NAD+ relative to ATP drives aerobic glycolysis. Mol Cell. 81:691–707.e6. 2021. View Article : Google Scholar :

17 

Wang L, Pavlou S, Du X, Bhuckory M, Xu H and Chen M: Glucose transporter 1 critically controls microglial activation through facilitating glycolysis. Mol Neurodegener. 14:22019. View Article : Google Scholar : PubMed/NCBI

18 

Yin X, Choudhury M, Kang JH, Schaefbauer KJ, Jung MY, Andrianifahanana M, Hernandez DM and Leof EB: Hexokinase 2 couples glycolysis with the profibrotic actions of TGF-β. Sci Signal. 12:eaax40672019. View Article : Google Scholar

19 

Nishioku T, Anzai R, Hiramatsu S, Terazono A, Nakao M and Moriyama M: Lactate dehydrogenase A inhibition prevents RANKL-induced osteoclastogenesis by reducing enhanced glycolysis. J Pharmacol Sci. 153:197–207. 2023. View Article : Google Scholar : PubMed/NCBI

20 

Kim E, Hwang Y, Kim H, Kim GU, Ryu YC, Yoon M and Choi KY: Pyruvate Kinase M2 accelerates cutaneous wound healing via glycolysis and Wnt/β-catenin signaling. Pharmaceutics. 15:20282023. View Article : Google Scholar

21 

Li J, Ma P, Liu Z and Xie J: L- and D-lactate: Unveiling their hidden functions in disease and health. Cell Commun Signal. 23:1342025. View Article : Google Scholar : PubMed/NCBI

22 

Heim CE, Bosch ME, Yamada KJ, Aldrich AL, Chaudhari SS, Klinkebiel D, Gries CM, Alqarzaee AA, Li Y, Thomas VC, et al: Lactate production by Staphylococcus aureus biofilm inhibits HDAC11 to reprogram the host immune response during persistent infection. Nat Microbiol. 5:1271–1284. 2020. View Article : Google Scholar : PubMed/NCBI

23 

Monroe GR, van Eerde AM, Tessadori F, Duran KJ, Savelberg SMC, van Alfen JC, Terhal PA, van der Crabben SN, Lichtenbelt KD, Fuchs SA, et al: Identification of human D lactate dehydrogenase deficiency. Nat Commun. 10:14772019. View Article : Google Scholar : PubMed/NCBI

24 

Vernon C and LeTourneau JL: Lactic acidosis: Recognition, kinetics, and associated prognosis. Critical Care Clinics. 26:255–283. 2010. View Article : Google Scholar : PubMed/NCBI

25 

Emhoff CAW and Messonnier LA: Concepts of lactate metabolic clearance rate and lactate clamp for metabolic inquiry: A Mini-review. Nutrients. 15:32132023. View Article : Google Scholar : PubMed/NCBI

26 

Huang T, Liang Z, Wang K, Miao X and Zheng L: Novel insights into athlete physical recovery concerning lactate metabolism, lactate clearance and fatigue monitoring: A comprehensive review. Front Physiol. 16:14597172025. View Article : Google Scholar : PubMed/NCBI

27 

Lin Y, Wang Y and Li P: Mutual regulation of lactate dehydrogenase and redox robustness. Front Physiol. 13:10384212022. View Article : Google Scholar : PubMed/NCBI

28 

Adeva M, González-Lucán M, Seco M and Donapetry C: Enzymes involved in l-lactate metabolism in humans. Mitochondrion. 13:615–629. 2013. View Article : Google Scholar : PubMed/NCBI

29 

Wei T, Guo Y, Huang C, Sun M, Zhou B, Gao J and Shen W: Fibroblast-to-cardiomyocyte lactate shuttle modulates hypertensive cardiac remodelling. Cell Biosci. 13:1512023. View Article : Google Scholar : PubMed/NCBI

30 

Brooks GA, Curl CC, Leija RG, Osmond AD, Duong JJ and Arevalo JA: Tracing the lactate shuttle to the mitochondrial reticulum. Exp Mol Med. 54:1332–1347. 2022. View Article : Google Scholar : PubMed/NCBI

31 

Zhang L, Xin C, Wang S, Zhuo S, Zhu J, Li Z, Liu Y, Yang L and Chen Y: Lactate transported by MCT1 plays an active role in promoting mitochondrial biogenesis and enhancing TCA flux in skeletal muscle. Sci Adv. 10:eadn45082024. View Article : Google Scholar : PubMed/NCBI

32 

Contreras-Baeza Y, Sandoval PY, Alarcón R, Galaz A, Cortés-Molina F, Alegría K, Baeza-Lehnert F, Arce-Molina R, Guequén A, Flores CA, et al: Monocarboxylate transporter 4 (MCT4) is a high affinity transporter capable of exporting lactate in high-lactate microenvironments. J Biol Chem. 294:20135–20147. 2019. View Article : Google Scholar : PubMed/NCBI

33 

Kobayashi M, Narumi K, Furugen A and Iseki K: Transport function, regulation, and biology of human monocarboxylate transporter 1 (hMCT1) and 4 (hMCT4). Pharmacol Ther. 226:1078622021. View Article : Google Scholar : PubMed/NCBI

34 

Yanase H, Takebe K, Nio-Kobayashi J, Takahashi-Iwanaga H and Iwanaga T: Cellular expression of a sodium-dependent monocarboxylate transporter (Slc5a8) and the MCT family in the mouse kidney. Histochem Cell Biol. 130:957–966. 2008. View Article : Google Scholar : PubMed/NCBI

35 

Becker HM, Mohebbi N, Perna A, Ganapathy V, Capasso G and Wagner CA: Localization of members of MCT monocarboxylate transporter family Slc16 in the kidney and regulation during metabolic acidosis. Am J Physiol Renal Physiol. 299:F141–F154. 2010. View Article : Google Scholar : PubMed/NCBI

36 

Osis G, Traylor AM, Black LM, Spangler D, George JF, Zarjou A, Verlander JW and Agarwal A: Expression of lactate dehydrogenase A and B isoforms in the mouse kidney. Am J Physiol Renal Physiol. 320:F706–F718. 2021. View Article : Google Scholar : PubMed/NCBI

37 

Feng Y, Sun Z, Fu J, Zhong F, Zhang W, Wei C, Chen A, Liu BC, He JC and Lee K: Podocyte-derived soluble RARRES1 drives kidney disease progression through direct podocyte and proximal tubular injury. Kidney Int. 106:50–66. 2024. View Article : Google Scholar : PubMed/NCBI

38 

Zhao Y, Fan S, Zhu H, Zhao Q, Fang Z, Xu D, Lin W, Lin L, Hu X, Wu G, et al: Podocyte OTUD5 alleviates diabetic kidney disease through deubiquitinating TAK1 and reducing podocyte inflammation and injury. Nat Commun. 15:54412024. View Article : Google Scholar : PubMed/NCBI

39 

Szrejder M, Typiak M, Pikul P, Audzeyenka I, Rachubik P, Rogacka D, Narajczyk M and Piwkowska A: Role of L-lactate as an energy substrate in primary rat podocytes under physiological and glucose deprivation conditions. Eur J Cell Biol. 102:1512982023. View Article : Google Scholar : PubMed/NCBI

40 

Audzeyenka I, Szrejder M, Rachubik P, Grochowalska K, Kulesza T, Rogacka D, Narajczyk M and Piwkowska A: Lactate regulates respiratory efficiency and mitochondrial dynamics in primary rat podocytes. Free Radic Biol Med. 220:312–323. 2024. View Article : Google Scholar : PubMed/NCBI

41 

Dalga D, Verissimo T and de Seigneux S: Gluconeogenesis in the kidney: In health and in chronic kidney disease. Clin Kidney J. 16:1249–1257. 2023. View Article : Google Scholar : PubMed/NCBI

42 

Nakamura M, Satoh N, Horita S and Nangaku M: Insulin-induced mTOR signaling and gluconeogenesis in renal proximal tubules: A mini-review of current evidence and therapeutic potential. Front Pharmacol. 13:10152042022. View Article : Google Scholar : PubMed/NCBI

43 

Hatano R, Lee E, Sato H, Kiuchi M, Hirahara K, Nakagawa Y, Shimano H, Nakayama T, Tanaka T and Miki T: Hepatic ketone body regulation of renal gluconeogenesis. Mol Metab. 84:1019342024. View Article : Google Scholar : PubMed/NCBI

44 

Zanza C, Facelli V, Romenskaya T, Bottinelli M, Caputo G, Piccioni A, Franceschi F, Saviano A, Ojetti V, Savioli G and Longhitano Y: Lactic acidosis related to pharmacotherapy and human diseases. Pharmaceuticals (Basel). 15:14962022. View Article : Google Scholar : PubMed/NCBI

45 

Zhang D, Tang Z, Huang H, Zhou G, Cui C, Weng Y, Liu W, Kim S, Lee S, Perez-Neut M, et al: Metabolic regulation of gene expression by histone lactylation. Nature. 574:575–580. 2019. View Article : Google Scholar : PubMed/NCBI

46 

Zhou Y, Yan J, Huang H, Liu L, Ren L, Hu J, Jiang X, Zheng Y, Xu L, Zhong F and Li X: The m6A reader IGF2BP2 regulates glycolytic metabolism and mediates histone lactylation to enhance hepatic stellate cell activation and liver fibrosis. Cell Death Dis. 15:1892024. View Article : Google Scholar :

47 

Wan N, Wang N, Yu S, Zhang H, Tang S, Wang D, Lu W, Li H, Delafield DG, Kong Y, et al: Cyclic immonium ion of lactyllysine reveals widespread lactylation in the human proteome. Nat Methods. 19:854–864. 2022. View Article : Google Scholar : PubMed/NCBI

48 

An S, Yao Y, Hu H, Wu J, Li J, Li L, Wu J, Sun M, Deng Z, Zhang Y, et al: PDHA1 hyperacetylation-mediated lactate overproduction promotes sepsis-induced acute kidney injury via Fis1 lactylation. Cell Death Dis. 14:4572023. View Article : Google Scholar : PubMed/NCBI

49 

Chen J, Feng Q, Qiao Y, Pan S, Liang L, Liu Y, Zhang X, Liu D and Liu Z and Liu Z: ACSF2 and lysine lactylation contribute to renal tubule injury in diabetes. Diabetologia. 67:1429–1443. 2024. View Article : Google Scholar : PubMed/NCBI

50 

Wang P, Xie D, Xiao T, Cheng C, Wang D, Sun J, Wu M, Yang Y, Zhang A and Liu Q: H3K18 lactylation promotes the progression of arsenite-related idiopathic pulmonary fibrosis via YTHDF1/m6A/NREP. J Hazard Mater. 461:1325822024. View Article : Google Scholar

51 

Zhang Y, Huang Z, Han W, Wu J, Li S, Qin T, Zhang C, Shi M, Han S, Gao B, et al: Glutamine suppresses senescence and promotes autophagy through glycolysis inhibition-mediated AMPKα lactylation in intervertebral disc degeneration. Commun Biol. 7:3252024. View Article : Google Scholar

52 

Sun W, Jia M, Feng Y and Cheng X: Lactate is a bridge linking glycolysis and autophagy through lactylation. Autophagy. 19:3240–3241. 2023. View Article : Google Scholar : PubMed/NCBI

53 

Wei Y, Guo H, Chen S and Tang XX: Regulation of macrophage activation by lactylation in lung disease. Front Immunol. 15:14277392024. View Article : Google Scholar : PubMed/NCBI

54 

Moreno-Yruela C, Zhang D, Wei W, Bæk M, Liu W, Gao J, Danková D, Nielsen AL, Bolding JE, Yang L, et al: Class I histone deacetylases (HDAC1-3) are histone lysine delactylases. Sci Adv. 8:eabi66962022. View Article : Google Scholar : PubMed/NCBI

55 

Kikuchi M, Morita S, Wakamori M, Sato S, Uchikubo-Kamo T, Suzuki T, Dohmae N, Shirouzu M and Umehara T: Epigenetic mechanisms to propagate histone acetylation by p300/CBP. Nat Commun. 14:41032023. View Article : Google Scholar : PubMed/NCBI

56 

Dong M, Zhang Y, Chen M, Tan Y, Min J, He X, Liu F, Gu J, Jiang H, Zheng L, et al: ASF1A-dependent P300-mediated histone H3 lysine 18 lactylation promotes atherosclerosis by regulating EndMT. Acta Pharm Sin B. 14:3027–3048. 2024. View Article : Google Scholar : PubMed/NCBI

57 

Wu X and Tao WA: Uncovering ubiquitous protein lactylation. Nat Methods. 19:793–794. 2022. View Article : Google Scholar : PubMed/NCBI

58 

Li J, Shi X, Xu J, Wang K, Hou F, Luan X and Chen L: Aldehyde dehydrogenase 2 lactylation aggravates mitochondrial dysfunction by disrupting PHB2 mediated mitophagy in acute kidney injury. Adv Sci (Weinh). 12:e24119432024. View Article : Google Scholar : PubMed/NCBI

59 

Zhou J, Zhang J, Xu F, Gao H, Wang L, Zhao Y and Li K: AST-120 alleviates renal ischemia-reperfusion injury by inhibiting HK2-mediated glycolysis. Mol Med. 30:1332024. View Article : Google Scholar : PubMed/NCBI

60 

Qiao J, Tan Y, Liu H, Yang B, Zhang Q, Liu Q, Sun W, Li Z, Wang Q, Feng W, et al: Histone H3K18 and ezrin lactylation promote renal dysfunction in Sepsis-associated acute kidney injury. Adv Sci (Weinh). 11:e23072162024. View Article : Google Scholar : PubMed/NCBI

61 

Kumar B, Navarro C, Yung PYK, Lyu J, Salazar Mantero A, Katsori AM, Schwämmle H, Martin M and Elsässer SJ: Multiplexed chromatin immunoprecipitation sequencing for quantitative study of histone modifications and chromatin factors. Nat Protoc. 20:779–809. 2025. View Article : Google Scholar

62 

Zhang L, Xue G, Liu J, Li Q and Wang Y: Revealing transcription factor and histone modification co-localization and dynamics across cell lines by integrating ChIP-seq and RNA-seq data. BMC Genomics. 19:9142018. View Article : Google Scholar

63 

Miguel V, Shaw IW and Kramann R: Metabolism at the crossroads of inflammation and fibrosis in chronic kidney disease. Nat Rev Nephrol. 21:39–56. 2025. View Article : Google Scholar

64 

Li Y, Min X, Zhang X, Cao X, Kong Q, Mao Q, Cheng H, Gou L, Li Y, Li C, et al: HSPA12A promotes c-Myc lactylation-mediated proliferation of tubular epithelial cells to facilitate renal functional recovery from kidney ischemia/reperfusion injury. Cell Mol Life Sci. 81:4042024. View Article : Google Scholar : PubMed/NCBI

65 

Xiang T, Wang X, Huang S, Zhou K, Fei S, Zhou B, Yue K, Li Q, Xue S, Dai Y, et al: Inhibition of PKM2 by shikonin impedes TGF-β1 expression by repressing histone lactylation to alleviate renal fibrosis. Phytomedicine. 136:1563242025. View Article : Google Scholar

66 

Zheng T, Gu YP, Wang JM, Huang TT, Gou LS and Liu YW: Lactate-triggered histone lactylation contributes to podocyte epithelial-mesenchymal transition in diabetic nephropathy in mice. Chem Biol Interact. 408:1114182025. View Article : Google Scholar : PubMed/NCBI

67 

Jia L, Sheng X, Zamperetti A, Xie Y, Corradi V, Chandel S, De Cal M, Montin DP, Caprara C and Ronco C: Combination of biomarker with clinical risk factors for prediction of severe acute kidney injury in critically ill patients. BMC Nephrol. 21:5402020. View Article : Google Scholar : PubMed/NCBI

68 

Legouis D, Ricksten S-E, Faivre A, Verissimo T, Gariani K, Verney C, Galichon P, Berchtold L, Feraille E, Fernandez M, et al: Altered proximal tubular cell glucose metabolism during acute kidney injury is associated with mortality. Nat Metab. 2:732–743. 2020. View Article : Google Scholar : PubMed/NCBI

69 

Sklienka P, Maca J, Neiser J, Bursa F, Sevcik P, Frelich M, Petejova N, Svagera Z, Tomaskova H and Zahorec R: Physiologic risk factors for early acute kidney injury in severely injured patients. Bratisl Lek Listy. 121:779–785. 2020.PubMed/NCBI

70 

Nasu T, Ueda K, Kawashima S, Okishio Y, Kunitatsu K, Iwasaki Y and Kato S: Prediction of early acute kidney injury after trauma using prehospital systolic blood pressure and lactate levels: A prospective validation study. Injury. 53:81–85. 2022. View Article : Google Scholar

71 

Gong C, Jiang Y, Tang Y, Liu F, Shi Y, Zhou H and Xie K: Elevated serum lactic acid level is an independent risk factor for the incidence and mortality of sepsis-associated acute kidney injury. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 34:714–720. 2022.In Chinese. PubMed/NCBI

72 

Flores-Salinas HE, Zambada-Gamboa AJ, Garcia-Garduño TC, Rodríguez-Zavala G, Valle Y, Chávez-Herrera JC, Martinez-Gutierrez PE, Godinez-Flores A, Jiménez-Limón S and Padilla-Gutiérrez JR: Association of postoperative serum lactate levels with acute kidney injury in mexican patients undergoing cardiac surgery. Clin Pract. 14:1100–1109. 2024. View Article : Google Scholar : PubMed/NCBI

73 

Wang Z, Xu J, Kang Y, Liu L, Zhang L and Wang D: Early dynamic behavior of lactate in predicting continuous renal replacement therapy after surgery for acute type A aortic dissection. Front Cardiovasc Med. 9:9486722022. View Article : Google Scholar : PubMed/NCBI

74 

Kahyaoglu M, Karaduman A, Geçmen Ç, Candan Ö, Güner A, Cakmak EO, Bayam E, Yılmaz Y, Çelik M, Izgi IA and Kirma C: Serum lactate level may predict the development of acute kidney injury in acute decompensated heart failure. Turk Kardiyol Dern Ars. 48:683–689. 2020.PubMed/NCBI

75 

Zhou X, He Y, Hu L, Zhu Q, Lin Q, Hong X, Huang W, Shan P and Liang D: Lactate level and lactate clearance for acute kidney injury prediction among patients admitted with ST-segment elevation myocardial infarction: A retrospective cohort study. Front Cardiovasc Med. 9:9302022022. View Article : Google Scholar : PubMed/NCBI

76 

Wang R, Wang S, Zhang J, He M and Xu J: Serum lactate level in early stage is associated with acute kidney injury in traumatic brain injury patients. Front Surg. 8:7611662021. View Article : Google Scholar

77 

Xu J, Ma X, Yu K, Wang R, Wang S, Liu R, Liu H, Gao H, Yu K and Wang C: Lactate up-regulates the expression of PD-L1 in kidney and causes immunosuppression in septic Acute Renal Injury. J Microbiol Immunol Infect. 54:404–410. 2021. View Article : Google Scholar

78 

Tan C, Gu J, Li T, Chen H, Liu K, Liu M, Zhang H and Xiao X: Inhibition of aerobic glycolysis alleviates sepsis-induced acute kidney injury by promoting lactate/Sirtuin 3/AMPK-regulated autophagy. Int J Mol Med. 47:192021. View Article : Google Scholar :

79 

Shen Y, Jiang L, Wen P, Ye Y, Zhang Y, Ding H, Luo J, Xu L, Zen K, Zhou Y and Yang J: Tubule-derived lactate is required for fibroblast activation in acute kidney injury. Am J Physiol Renal Physiol. 318:F689–F701. 2020. View Article : Google Scholar : PubMed/NCBI

80 

Chu X, Di C, Chang P, Li L, Feng Z, Xiao S, Yan X, Xu X, Li H, Qi R, et al: Lactylated histone H3K18 as a potential biomarker for the diagnosis and predicting the severity of septic shock. Front Immunol. 12:7866662021. View Article : Google Scholar

81 

Guo W, Song Y, Sun Y, Du H, Cai Y, You Q, Fu H and Shao L: Systemic immune-inflammation index is associated with diabetic kidney disease in type 2 diabetes mellitus patients: Evidence from NHANES 2011-2018. Front Endocrinol (Lausanne). 13:10714652022. View Article : Google Scholar : PubMed/NCBI

82 

Roointan A, Gheisari Y, Hudkins KL and Gholaminejad A: Non-invasive metabolic biomarkers for early diagnosis of diabetic nephropathy: Meta-analysis of profiling metabolomics studies. Nutr Metab Cardiovasc Dis. 31:2253–2272. 2021. View Article : Google Scholar : PubMed/NCBI

83 

Jiang C, Ma X, Chen J, Zeng Y, Guo M, Tan X, Wang Y, Wang P, Yan P, Lei Y, et al: Development of serum lactate Level-based nomograms for predicting diabetic kidney disease in type 2 diabetes mellitus patients. Diabetes Metab Syndr Obes. 17:1051–1068. 2024. View Article : Google Scholar : PubMed/NCBI

84 

Tang L, Yang Q, Ma R, Zhou P, Peng C, Xie C, Liang Q, Wu T, Gao W, Yu H, et al: Association between lactate dehydrogenase and the risk of diabetic kidney disease in patients with type 2 diabetes. Front Endocrinol (Lausanne). 15:13699682024. View Article : Google Scholar : PubMed/NCBI

85 

Muiru AN, Hsu JY, Zhang X, Appel LJ, Chen J, Cohen DL, Drawz PE, Freedman BI, Go AS, He J, et al: Risk for chronic kidney disease progression after acute kidney injury: Findings from the chronic renal insufficiency cohort study. Ann Intern Med. 176:961–968. 2023. View Article : Google Scholar : PubMed/NCBI

86 

Chesnaye NC, Ortiz A, Zoccali C, Stel VS and Jager KJ: The impact of population ageing on the burden of chronic kidney disease. Nat Rev Nephrol. 20:569–585. 2024. View Article : Google Scholar : PubMed/NCBI

87 

Tanemoto M: Gap acidosis except lactic acidosis develops and progresses during chronic kidney disease stage G5. Clin Exp Nephrol. 23:1045–1049. 2019. View Article : Google Scholar : PubMed/NCBI

88 

Zhao B, Xu Y, Chen Y, Cai Y, Gong Z, Li D, Kuang H, Liu X, Zhou H, Liu G and Yin Y: Activation of TRPV4 by lactate as a critical mediator of renal fibrosis in spontaneously hypertensive rats after moderate- and high-intensity exercise. Front Physiol. 13:9270782022. View Article : Google Scholar : PubMed/NCBI

89 

Nagy A, Pethő D, Gáll T, Zavaczki E, Nyitrai M, Posta J, Zarjou A, Agarwal A, Balla G and Balla J: Zinc Inhibits HIF-Prolyl Hydroxylase Inhibitor-Aggravated VSMC calcification induced by high phosphate. Front Physiol. 10:15842020. View Article : Google Scholar : PubMed/NCBI

90 

Huang Z, Liao Y, Zheng Y, Ye S, Zhang Q, Yu X, Liu X and Li N: Zinc deficiency causes glomerulosclerosis and renal interstitial fibrosis through oxidative stress and increased lactate metabolism in rats. Biol Trace Elem Res. 203:2084–2098. 2025. View Article : Google Scholar :

91 

Li M, Jia F, Zhou H, Di J and Yang M: Elevated aerobic glycolysis in renal tubular epithelial cells influences the proliferation and differentiation of podocytes and promotes renal interstitial fibrosis. Eur Rev Med Pharmacol Sci. 22:5082–5090. 2018.PubMed/NCBI

92 

Jiang A, Liu J, Wang Y and Zhang C: cGAS-STING signaling pathway promotes hypoxia-induced renal fibrosis by regulating PFKFB3-mediated glycolysis. Free Radic Biol Mede. 208:516–529. 2023. View Article : Google Scholar

93 

Ding H, Jiang L, Xu J, Bai F, Zhou Y, Yuan Q, Luo J, Zen K and Yang J: Inhibiting aerobic glycolysis suppresses renal interstitial fibroblast activation and renal fibrosis. Am J Physiol Renal Physiol. 313:F561–F575. 2017. View Article : Google Scholar : PubMed/NCBI

94 

Li X, Ma TK, Wang M, Zhang XD, Liu TY, Liu Y, Huang ZH, Zhu YH, Zhang S, Yin L, et al: YY1-induced upregulation of LncRNA-ARAP1-AS2 and ARAP1 promotes diabetic kidney fibrosis via aberrant glycolysis associated with EGFR/PKM2/HIF-1α pathway. Front Pharmacol. 14:10693482023. View Article : Google Scholar

95 

Wei Q, Su J, Dong G, Zhang M, Huo Y and Dong Z: Glycolysis inhibitors suppress renal interstitial fibrosis via divergent effects on fibroblasts and tubular cells. Am J Physiol Renal Physiol. 316:F1162–F1172. 2019. View Article : Google Scholar : PubMed/NCBI

96 

Md Shakhih MF, Rosslan AS, Noor AM, Ramanathan S, Lazim AM and Wahab AA: Review-enzymatic and Non-enzymatic electrochemical sensor for lactate detection in human biofluids. J Electrochem Soc. 168:0675022021. View Article : Google Scholar

97 

Henry H, Marmy Conus N, Steenhout P, Béguin A and Boulat O: Sensitive determination of D-lactic acid and L-lactic acid in urine by high-performance liquid chromatography-tandem mass spectrometry. Biomed Chromatogr. 26:425–428. 2012. View Article : Google Scholar

98 

Bollella P, Sharma S, Cass AEG and Antiochia R: Microneedle-based biosensor for minimally-invasive lactate detection. Biosens Bioelectron. 123:152–159. 2019. View Article : Google Scholar

99 

Xie Y, Li K, Liu J, Zhou Y, Zhang C, Yu Y, Wang J, Su L and Zhang X: A smart lab on a wearable microneedle patch with convolutional neural network-enhanced colorimetry for early warning of syndrome of inappropriate antidiuretic hormone secretion. Aggregate. 6:e6712025. View Article : Google Scholar

100 

Yao S, Chai H, Tao T, Zhang L, Yang X, Li X, Yi Z, Wang Y, An J, Wen G, et al: Role of lactate and lactate metabolism in liver diseases (Review). Int J Mol Med. 54:592024. View Article : Google Scholar : PubMed/NCBI

101 

Sun J, Dai W, Guo Q, Gao Y, Chen J, Chen JL, Mao G, Sun H and Peng YK: Self-powered wearable electrochemical sensor based on composite conductive hydrogel medium for detection of lactate in human sweat. Biosens Bioelectron. 277:1173032025. View Article : Google Scholar : PubMed/NCBI

102 

Chen Z, Zhu Z, Liang W, Luo Z, Hu J, Feng J, Zhang Z, Luo Q, Yang H and Ding G: Reduction of anaerobic glycolysis contributes to angiotensin II-induced podocyte injury with foot process effacement. Kidney Int. 103:735–748. 2023. View Article : Google Scholar : PubMed/NCBI

103 

Jiajun W, Kaifeng G and Jing Z: Urinary PKM2, a marker predicating acute kidney injury in patients with sepsis. Int Urol Nephrol. 56:3039–3045. 2024. View Article : Google Scholar : PubMed/NCBI

104 

Bertelsen LB, Hansen ESS, Sadowski T, Ruf S and Laustsen C: Hyperpolarized pyruvate to measure the influence of PKM2 activation on glucose metabolism in the healthy kidney. NMR Biomed. 34:e45832021. View Article : Google Scholar : PubMed/NCBI

105 

Liu H, Takagaki Y, Kumagai A, Kanasaki K and Koya D: The PKM2 activator TEPP-46 suppresses kidney fibrosis via inhibition of the EMT program and aberrant glycolysis associated with suppression of HIF-1α accumulation. J Diabetes Investig. 12:697–709. 2021. View Article : Google Scholar

106 

Chen Y, Bai X, Chen J, Huang M, Hong Q, Ouyang Q, Sun X, Zhang Y, Liu J, Wang X, et al: Pyruvate kinase M2 regulates kidney fibrosis through pericyte glycolysis during the progression from acute kidney injury to chronic kidney disease. Cell Prolif. 57:e135482024. View Article : Google Scholar :

107 

Wang J, Ren Y, Zheng X, Kang J, Huang Z, Xu L and Wang Y: Anti-fibrotic effects of low toxic Microcystin-RR on Bleomycin-induced pulmonary fibrosis: A comparison with Microcystin-LR. Front Pharmacol. 12:6759072021. View Article : Google Scholar : PubMed/NCBI

108 

Ren Y, Wang J, Guo W, Chen J, Wu X, Gu S, Xu L, Wu Z and Wang Y: Renoprotection of Microcystin-RR in unilateral ureteral Obstruction-induced renal fibrosis: Targeting the PKM2-HIF-1α pathway. Front Pharmacol. 13:8303122022. View Article : Google Scholar

109 

Gong M, Guo Y, Dong H, Wu F, He Q, Gong J and Lu F: Modified Hu-lu-ba-wan protects diabetic glomerular podocytes via promoting PKM2-mediated mitochondrial dynamic homeostasis. Phytomedicine. 123:1552472024. View Article : Google Scholar

110 

Qian L, Ren S, Xu Z, Zheng Y, Wu L, Yang Y, Wang Y, Li J, Yan S and Fang Z: Qian yang yu yin granule improves renal injury of hypertension by regulating metabolic reprogramming mediated by HIF-1α/PKM2 positive feedback loop. Front Pharmacol. 12:6674332021. View Article : Google Scholar

111 

Wang M, Zeng F, Ning F, Wang Y, Zhou S, He J, Li C, Wang C, Sun X, Zhang D, et al: Ceria nanoparticles ameliorate renal fibrosis by modulating the balance between oxidative phosphorylation and aerobic glycolysis. J Nanobiotechnology. 20:32022. View Article : Google Scholar : PubMed/NCBI

112 

Fu X, Zhang J, Huang X, Mo Z, Sang Z, Duan W and Huang W: Curcumin antagonizes glucose fluctuation-induced renal injury by inhibiting aerobic glycolysis via the miR-489/LDHA pathway. Mediators Inflamm. 2021:61045292021. View Article : Google Scholar : PubMed/NCBI

113 

Yu H, Zhu J, Chang L, Liang C, Li X and Wang W: 3-Bromopyruvate decreased kidney fibrosis and fibroblast activation by suppressing aerobic glycolysis in unilateral ureteral obstruction mice model. Life Sci. 272:1192062021. View Article : Google Scholar : PubMed/NCBI

114 

Han W, Wang C, Yang Z, Mu L, Wu M, Chen N, Du C, Duan H and Shi Y: SRT1720 retards renal fibrosis via inhibition of HIF1A/GLUT1 in diabetic nephropathy. J Endocrinol. 241:85–98. 2019. View Article : Google Scholar : PubMed/NCBI

115 

Venkatesan A, Roy A, Kulandaivel S, Natesan V and Kim SJ: p-Coumaric acid nanoparticles ameliorate diabetic nephropathy via regulating mRNA expression of KIM-1 and GLUT-2 in Streptozotocin-induced diabetic rats. Metabolites. 12:11662022. View Article : Google Scholar : PubMed/NCBI

116 

Chen X, Wang H, Jiang M, Zhao J, Fan C, Wang Y and Peng W: Huangqi (astragalus) decoction ameliorates diabetic nephropathy via IRS1-PI3K-GLUT signaling pathway. Am J Transl Res. 10:2491–2501. 2018.PubMed/NCBI

117 

Ritu, Xiong Y, Sharma HP, Goyal RK, Narwal S, Berwal A, Jain S, Priya M, Singh M, Agarwal G, et al: Bioflavonoid combination attenuates diabetes-induced nephropathy in rats via modulation of MMP-9/TIMP-1, TGF-β, and GLUT-4-associated pathways. Heliyon. 10:e332172024. View Article : Google Scholar

118 

Zhang J, Ding T, Zhang X, Tang D and Wang J: Dapagliflozin relieves renal injury in a diabetic nephropathy model by inducing autophagy through regulation of miR-30e-5p/AKT/mTOR pathway. Trop J Pharm Res. 21:2115–2123. 2022. View Article : Google Scholar

119 

Fatouros IG, Douroudos I, Panagoutsos S, Pasadakis P, Nikolaidis MG, Chatzinikolaou A, Sovatzidis A, Michailidis Y, Jamurtas AZ, Mandalidis D, et al: Effects of L-carnitine on oxidative stress responses in patients with renal disease. Med Sci Sports Exerc. 42:1809–1818. 2010. View Article : Google Scholar : PubMed/NCBI

120 

Sharma B and Yadav DK: L-Carnitine and chronic kidney disease: A comprehensive review on nutrition and health perspectives. J Pers Med. 13:2982023. View Article : Google Scholar : PubMed/NCBI

121 

Wen YK: Impact of acute kidney injury on metformin-associated lactic acidosis. Int Urol Nephrol. 41:967–972. 2009. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li X, Hu L, Hu Q and Jin H: Lactate and lactylation in the kidneys: Current advances and prospects (Review). Int J Mol Med 56: 121, 2025.
APA
Li, X., Hu, L., Hu, Q., & Jin, H. (2025). Lactate and lactylation in the kidneys: Current advances and prospects (Review). International Journal of Molecular Medicine, 56, 121. https://doi.org/10.3892/ijmm.2025.5562
MLA
Li, X., Hu, L., Hu, Q., Jin, H."Lactate and lactylation in the kidneys: Current advances and prospects (Review)". International Journal of Molecular Medicine 56.2 (2025): 121.
Chicago
Li, X., Hu, L., Hu, Q., Jin, H."Lactate and lactylation in the kidneys: Current advances and prospects (Review)". International Journal of Molecular Medicine 56, no. 2 (2025): 121. https://doi.org/10.3892/ijmm.2025.5562
Copy and paste a formatted citation
x
Spandidos Publications style
Li X, Hu L, Hu Q and Jin H: Lactate and lactylation in the kidneys: Current advances and prospects (Review). Int J Mol Med 56: 121, 2025.
APA
Li, X., Hu, L., Hu, Q., & Jin, H. (2025). Lactate and lactylation in the kidneys: Current advances and prospects (Review). International Journal of Molecular Medicine, 56, 121. https://doi.org/10.3892/ijmm.2025.5562
MLA
Li, X., Hu, L., Hu, Q., Jin, H."Lactate and lactylation in the kidneys: Current advances and prospects (Review)". International Journal of Molecular Medicine 56.2 (2025): 121.
Chicago
Li, X., Hu, L., Hu, Q., Jin, H."Lactate and lactylation in the kidneys: Current advances and prospects (Review)". International Journal of Molecular Medicine 56, no. 2 (2025): 121. https://doi.org/10.3892/ijmm.2025.5562
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team