Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
August-2025 Volume 56 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2025 Volume 56 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Cell migration in diabetic wound healing: Molecular mechanisms and therapeutic strategies (Review)

  • Authors:
    • Jielin Song
    • Tong Zhao
    • Chuanfu Wang
    • Xu Sun
    • Junchao Sun
    • Zhaohui Zhang
  • View Affiliations / Copyright

    Affiliations: Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China, Department of Encephalopathy, Liangping Traditional Chinese Medicine Hospital, Chongqing 405299, P.R. China, Traditional Chinese Medicine Institute of Sore and Ulcer, Tianjin University of Traditional Chinese Medicine, Tianjin 300250, P.R. China
    Copyright: © Song et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 126
    |
    Published online on: June 16, 2025
       https://doi.org/10.3892/ijmm.2025.5567
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Diabetic wounds are among the most prevalent forms of chronic wound and are a prominent clinical challenge in contemporary healthcare. Impaired cell migration represents one of the key mechanisms underlying the difficulty in diabetic wound healing, involving multiple cell types including neutrophils, macrophages, keratinocytes, endothelial cells and fibroblasts. Under the influence of pathological factors, including hyperglycemia, chronic inflammation, oxidative stress and an abnormal microenvironment, the cell migration becomes impaired, leading to delayed wound healing. Key signaling pathways including Rho GTPase, PI3K/Akt, TGF‑β/Smad and Wnt/β‑catenin are involved in the regulation of cell migration. Non‑coding RNAs exert a pivotal influence on diabetic wound healing by modulating these signaling pathways or their downstream targets. Notably, stem cells and their exosomes, growth factor therapy, drug‑loaded dressings and traditional Chinese medicine can modulate cell migration via non‑coding RNAs and associated signaling pathways, thereby establishing a therapeutic regulatory axis. This review systematically consolidates advances in this field, providing novel insight into the mechanisms of cell migration in diabetic wounds and facilitating the development of innovative therapeutic strategies.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

View References

1 

Dwivedi J, Sachan P, Wal P, Wal A and Rai AK: Current state and future perspective of diabetic wound healing treatment: Present evidence from clinical trials. Curr Diabetes Rev. 20:e2808232204052024. View Article : Google Scholar

2 

Sun H, Pulakat L and Anderson DW: Challenges and new therapeutic approaches in the management of chronic wounds. Curr Drug Targets. 21:1264–1275. 2020. View Article : Google Scholar : PubMed/NCBI

3 

Burgess JL, Wyant WA, Abujamra BA, Kirsner RS and Jozic I: Diabetic wound-healing science. Medicina (Kaunas). 57:10722021. View Article : Google Scholar : PubMed/NCBI

4 

Vijayakumar V, Samal SK, Mohanty S and Nayak SK: Recent advancements in biopolymer and metal nanoparticle-based materials in diabetic wound healing management. Int J Biol Macromol. 122:137–148. 2019. View Article : Google Scholar

5 

Armstrong DG, Tan TW, Boulton AJM and Bus SA: Diabetic foot ulcers: A review. JAMA. 330:62–75. 2023. View Article : Google Scholar : PubMed/NCBI

6 

Dasari N, Jiang A, Skochdopole A, Chung J, Reece EM, Vorstenbosch J and Winocour S: Updates in diabetic wound healing, inflammation, and scarring. Semin Plast Surg. 35:153–158. 2021. View Article : Google Scholar : PubMed/NCBI

7 

GBD 2021 Diabetes Collaborators: Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the global burden of disease study 2021. Lancet. 402:203–234. 2023. View Article : Google Scholar : PubMed/NCBI

8 

Feng J, Yao Y, Wang Q, Han X, Deng X, Cao Y, Chen X, Zhou M and Zhao C: Exosomes: Potential key players towards novel therapeutic options in diabetic wounds. Biomed Pharmacother. 166:1152972023. View Article : Google Scholar : PubMed/NCBI

9 

Peña OA and Martin P: Cellular and molecular mechanisms of skin wound healing. Nat Rev Mol Cell Biol. 25:599–616. 2024. View Article : Google Scholar : PubMed/NCBI

10 

Hanson AJ and Quinn MT: Effect of fibrin sealant composition on human neutrophil chemotaxis. J Biomed Mater Res. 61:474–481. 2002. View Article : Google Scholar : PubMed/NCBI

11 

Liu C, Lu Y, Du P, Yang F, Guo P, Tang X, Diao L and Lu G: Mesenchymal stem cells pretreated with proinflammatory cytokines accelerate skin wound healing by promoting macrophages migration and M2 polarization. Regen Ther. 21:192–200. 2022. View Article : Google Scholar : PubMed/NCBI

12 

Wang S, Wang K, Xin Y and Lv D: Maggot excretions/secretions induces human microvascular endothelial cell migration through AKT1. Mol Biol Rep. 37:2719–2725. 2010. View Article : Google Scholar

13 

Xia W, Li M, Jiang X, Huang X, Gu S, Ye J, Zhu L, Hou M and Zan T: Young fibroblast-derived exosomal microRNA-125b transfers beneficial effects on aged cutaneous wound healing. J Nanobiotechnology. 20:1442022. View Article : Google Scholar : PubMed/NCBI

14 

Fang PH, Lai YY, Chen CL, Wang HY, Chang YN, Lin YC, Yan YT, Lai CH and Cheng B: Cobalt protoporphyrin promotes human keratinocyte migration under hyperglycemic conditions. Mol Med. 28:712022. View Article : Google Scholar : PubMed/NCBI

15 

Huang SM, Wu CS, Chiu MH, Yang HJ, Chen GS and Lan CCE: High-glucose environment induced intracellular O-GlcNAc glycosylation and reduced galectin-7 expression in keratinocytes: Implications on impaired diabetic wound healing. J Dermatol Sci. 87:168–175. 2017. View Article : Google Scholar : PubMed/NCBI

16 

Song Q, An X, Li D, Sodha NR, Boodhwani M, Tian Y, Sellke FW and Li J: Hyperglycemia attenuates angiogenic capability of survivin in endothelial cells. Microvasc Res. 78:257–264. 2009. View Article : Google Scholar : PubMed/NCBI

17 

Huttenlocher A: Cell polarization mechanisms during directed cell migration. Nat Cell Biol. 7:336–337. 2005. View Article : Google Scholar : PubMed/NCBI

18 

Brothers KM, Stella NA, Hunt KM, Romanowski EG, Liu X, Klarlund JK and Shanks RMQ: Putting on the brakes: Bacterial impediment of wound healing. Sci Rep. 5:140032015. View Article : Google Scholar : PubMed/NCBI

19 

Carragher NO, Fincham VJ, Riley D and Frame MC: Cleavage of focal adhesion kinase by different proteases during SRC-regulated transformation and apoptosis. Distinct roles for calpain and caspases. J Biol Chem. 276:4270–4275. 2001. View Article : Google Scholar

20 

Zhao Y, Wang Y, Sarkar A and Wang X: Keratocytes generate high integrin tension at the trailing edge to mediate rear de-adhesion during rapid cell migration. iScience. 9:502–512. 2018. View Article : Google Scholar : PubMed/NCBI

21 

Clayton SM, Shafikhani SH and Soulika AM: Macrophage and neutrophil dysfunction in diabetic wounds. Adv Wound Care (New Rochelle). 13:463–484. 2024. View Article : Google Scholar : PubMed/NCBI

22 

Rousselle P, Braye F and Dayan G: Re-epithelialization of adult skin wounds: Cellular mechanisms and therapeutic strategies. Adv Drug Deliv Rev. 146:344–365. 2019. View Article : Google Scholar

23 

Rodrigues M, Kosaric N, Bonham CA and Gurtner GC: Wound healing: A cellular perspective. Physiol Rev. 99:665–706. 2019. View Article : Google Scholar :

24 

Su Y and Richmond A: Chemokine regulation of neutrophil infiltration of skin wounds. Adv Wound Care (New Rochelle). 4:631–640. 2015. View Article : Google Scholar : PubMed/NCBI

25 

Dahlgren C, Gabl M, Holdfeldt A, Winther M and Forsman H: Basic characteristics of the neutrophil receptors that recognize formylated peptides, a danger-associated molecular pattern generated by bacteria and mitochondria. Biochem Pharmacol. 114:22–39. 2016. View Article : Google Scholar : PubMed/NCBI

26 

Mamun AA, Shao C, Geng P, Wang S and Xiao J: Recent advances in molecular mechanisms of skin wound healing and its treatments. Front Immunol. 15:13954792024. View Article : Google Scholar : PubMed/NCBI

27 

Lämmermann T, Afonso PV, Angermann BR, Wang JM, Kastenmüller W, Parent CA and Germain RN: Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo. Nature. 498:371–375. 2013. View Article : Google Scholar : PubMed/NCBI

28 

Lee WL, Harrison RE and Grinstein S: Phagocytosis by neutrophils. Microbes Infect. 5:1299–1306. 2003. View Article : Google Scholar : PubMed/NCBI

29 

McLeish KR and Fernandes MJ: Understanding inhibitory receptor function in neutrophils through the lens of CLEC12A. Immunol Rev. 314:50–68. 2023. View Article : Google Scholar

30 

Fetz AE and Bowlin GL: Neutrophil extracellular traps: Inflammation and biomaterial preconditioning for tissue engineering. Tissue Eng Part B Rev. 28:437–450. 2022. View Article : Google Scholar

31 

Bratton DL and Henson PM: Neutrophil clearance: When the party is over, clean-up begins. Trends Immunol. 32:350–357. 2011. View Article : Google Scholar : PubMed/NCBI

32 

Guo S and DiPietro LA: Factors affecting wound healing. J Dent Res. 89:219–229. 2010. View Article : Google Scholar : PubMed/NCBI

33 

de Oliveira S, Rosowski EE and Huttenlocher A: Neutrophil migration in infection and wound repair: Going forward in reverse. Nat Rev Immunol. 16:378–391. 2016. View Article : Google Scholar : PubMed/NCBI

34 

Chen WYJ and Rogers AA: Recent insights into the causes of chronic leg ulceration in venous diseases and implications on other types of chronic wounds. Wound Repair Regen. 15:434–449. 2007. View Article : Google Scholar : PubMed/NCBI

35 

Isles HM, Herman KD, Robertson AL, Loynes CA, Prince LR, Elks PM and Renshaw SA: The CXCL12/CXCR4 signaling axis retains neutrophils at inflammatory sites in zebrafish. Front Immunol. 10:17842019. View Article : Google Scholar : PubMed/NCBI

36 

Wood W: Wound healing: Calcium flashes illuminate early events. Curr Biol. 22:R14–R16. 2012. View Article : Google Scholar : PubMed/NCBI

37 

Niethammer P, Grabher C, Look AT and Mitchison TJ: A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature. 459:996–999. 2009. View Article : Google Scholar : PubMed/NCBI

38 

Razzell W, Evans IR, Martin P and Wood W: Calcium flashes orchestrate the wound inflammatory response through DUOX activation and hydrogen peroxide release. Curr Biol. 23:424–429. 2013. View Article : Google Scholar : PubMed/NCBI

39 

Minutti CM, Knipper JA, Allen JE and Zaiss DM: Tissue-specific contribution of macrophages to wound healing. Semin Cell Dev Biol. 61:3–11. 2017. View Article : Google Scholar

40 

Dutra FF and Bozza MT: Heme on innate immunity and inflammation. Front Pharmacol. 5:1152014. View Article : Google Scholar : PubMed/NCBI

41 

Sindrilaru A and Scharffetter-Kochanek K: Disclosure of the culprits: Macrophages-versatile regulators of wound healing. Adv Wound Care (New Rochelle). 2:357–368. 2013. View Article : Google Scholar

42 

Gurtner GC, Werner S, Barrandon Y and Longaker MT: Wound repair and regeneration. Nature. 453:314–321. 2008. View Article : Google Scholar : PubMed/NCBI

43 

Zhang T, Tai Z, Miao F, Zhao Y, Wang W, Zhu Q and Chen Z: Bioinspired nanovesicles derived from macrophage accelerate wound healing by promoting angiogenesis and collagen deposition. J Mater Chem B. 12:12338–12348. 2024. View Article : Google Scholar : PubMed/NCBI

44 

Werner S, Krieg T and Smola H: Keratinocyte-fibroblast interactions in wound healing. J Invest Dermatol. 127:998–1008. 2007. View Article : Google Scholar : PubMed/NCBI

45 

Rousselle P, Montmasson M and Garnier C: Extracellular matrix contribution to skin wound re-epithelialization. Matrix Biol. 75-76:12–26. 2019. View Article : Google Scholar

46 

Rousselle P and Beck K: Laminin 332 processing impacts cellular behavior. Cell Adh Migr. 7:122–134. 2013. View Article : Google Scholar :

47 

Hamill KJ and McLean WHI: The alpha-3 polypeptide chain of laminin 5: Insight into wound healing responses from the study of genodermatoses. Clin Exp Dermatol. 30:398–404. 2005. View Article : Google Scholar : PubMed/NCBI

48 

Rousselle P, Lunstrum GP, Keene DR and Burgeson RE: Kalinin: An epithelium-specific basement membrane adhesion molecule that is a component of anchoring filaments. J Cell Biol. 114:567–576. 1991. View Article : Google Scholar : PubMed/NCBI

49 

Theveneau E and Mayor R: Collective cell migration of epithelial and mesenchymal cells. Cell Mol Life Sci. 70:3481–3492. 2013. View Article : Google Scholar : PubMed/NCBI

50 

Krawczyk WS: A pattern of epidermal cell migration during wound healing. J Cell Biol. 49:247–263. 1971. View Article : Google Scholar : PubMed/NCBI

51 

Headon D: Reversing stratification during wound healing. Nat Cell Biol. 19:595–597. 2017. View Article : Google Scholar : PubMed/NCBI

52 

Freedberg IM, Tomic-Canic M, Komine M and Blumenberg M: Keratins and the keratinocyte activation cycle. J Invest Dermatol. 116:633–640. 2001. View Article : Google Scholar : PubMed/NCBI

53 

Veith AP, Henderson K, Spencer A, Sligar AD and Baker AB: Therapeutic strategies for enhancing angiogenesis in wound healing. Adv Drug Deliv Rev. 146:97–125. 2019. View Article : Google Scholar :

54 

Velnar T and Gradisnik L: Tissue augmentation in wound healing: The role of endothelial and epithelial cells. Med Arch. 72:444–448. 2018. View Article : Google Scholar

55 

Lamalice L, Le Boeuf F and Huot J: Endothelial cell migration during angiogenesis. Circ Res. 100:782–794. 2007. View Article : Google Scholar : PubMed/NCBI

56 

Al Sadoun H: Macrophage phenotypes in normal and diabetic wound healing and therapeutic interventions. Cells. 11:24302022. View Article : Google Scholar : PubMed/NCBI

57 

Song J, Wu Y, Chen Y, Sun X and Zhang Z: Epigenetic regulatory mechanism of macrophage polarization in diabetic wound healing (Review). Mol Med Rep. 31:22025. View Article : Google Scholar

58 

Morbidelli L, Genah S and Cialdai F: Effect of microgravity on endothelial cell function, angiogenesis, and vessel remodeling during wound healing. Front Bioeng Biotechnol. 9:7200912021. View Article : Google Scholar : PubMed/NCBI

59 

Hsu S, Thakar R, Liepmann D and Li S: Effects of shear stress on endothelial cell haptotaxis on micropatterned surfaces. Biochem Biophys Res Commun. 337:401–409. 2005. View Article : Google Scholar : PubMed/NCBI

60 

Li S, Huang NF and Hsu S: Mechanotransduction in endothelial cell migration. J Cell Biochem. 96:1110–1126. 2005. View Article : Google Scholar : PubMed/NCBI

61 

Lynch MD and Watt FM: Fibroblast heterogeneity: Implications for human disease. J Clin Invest. 128:26–35. 2018. View Article : Google Scholar : PubMed/NCBI

62 

Talbott HE, Mascharak S, Griffin M, Wan DC and Longaker MT: Wound healing, fibroblast heterogeneity, and fibrosis. Cell Stem Cell. 29:1161–1180. 2022. View Article : Google Scholar : PubMed/NCBI

63 

Bussone G: Subjectivity in primary headaches: Insight the causes. Neurol Sci. 38:1–2. 2017. View Article : Google Scholar : PubMed/NCBI

64 

Younesi FS, Miller AE, Barker TH, Rossi FMV and Hinz B: Fibroblast and myofibroblast activation in normal tissue repair and fibrosis. Nat Rev Mol Cell Biol. 25:617–638. 2024. View Article : Google Scholar : PubMed/NCBI

65 

Shao DD, Suresh R, Vakil V, Gomer RH and Pilling D: Pivotal advance: Th-1 cytokines inhibit, and Th-2 cytokines promote fibrocyte differentiation. J Leukoc Biol. 83:1323–1333. 2008. View Article : Google Scholar : PubMed/NCBI

66 

Grieb G, Steffens G, Pallua N, Bernhagen J and Bucala R: Circulating fibrocytes-biology and mechanisms in wound healing and scar formation. Int Rev Cell Mol Biol. 291:1–19. 2011. View Article : Google Scholar

67 

Park JG, Lim DC, Park JH, Park S, Mok J, Kang KW and Park J: Benzbromarone induces targeted degradation of HSP47 protein and improves hypertrophic scar formation. J Invest Dermatol. 144:633–644. 2024. View Article : Google Scholar

68 

Kohlhauser M, Mayrhofer M, Kamolz LP and Smolle C: An update on molecular mechanisms of scarring-A narrative review. Int J Mol Sci. 25:115792024. View Article : Google Scholar : PubMed/NCBI

69 

Hinz B: Formation and function of the myofibroblast during tissue repair. J Invest Dermatol. 127:526–537. 2007. View Article : Google Scholar : PubMed/NCBI

70 

Luo L, An Y, Geng K, Wan S, Zhang F, Tan X, Jiang Z and Xu Y: High glucose-induced endothelial STING activation inhibits diabetic wound healing through impairment of angiogenesis. Biochem Biophys Res Commun. 668:82–89. 2023. View Article : Google Scholar : PubMed/NCBI

71 

Huang SM, Wu CS, Chiu MH, Wu CH, Chang YT, Chen GS and Lan CCE: High glucose environment induces M1 macrophage polarization that impairs keratinocyte migration via TNF-α: An important mechanism to delay the diabetic wound healing. J Dermatol Sci. 96:159–167. 2019. View Article : Google Scholar : PubMed/NCBI

72 

Lamers ML, Almeida MES, Vicente-Manzanares M, Horwitz AF and Santos MF: High glucose-mediated oxidative stress impairs cell migration. PLoS One. 6:e228652011. View Article : Google Scholar : PubMed/NCBI

73 

Brubaker AL, Rendon JL, Ramirez L, Choudhry MA and Kovacs EJ: Reduced neutrophil chemotaxis and infiltration contributes to delayed resolution of cutaneous wound infection with advanced age. J Immunol. 190:1746–1757. 2013. View Article : Google Scholar : PubMed/NCBI

74 

den Dekker A, Davis FM, Kunkel SL and Gallagher KA: Targeting epigenetic mechanisms in diabetic wound healing. Transl Res. 204:39–50. 2019. View Article : Google Scholar :

75 

Kasuya A and Tokura Y: Attempts to accelerate wound healing. J Dermatol Sci. 76:169–172. 2014. View Article : Google Scholar : PubMed/NCBI

76 

Lan CCE, Liu IH, Fang AH, Wen CH and Wu CS: Hyperglycaemic conditions decrease cultured keratinocyte mobility: Implications for impaired wound healing in patients with diabetes. Br J Dermatol. 159:1103–1115. 2008.PubMed/NCBI

77 

Zhou P, Feng H, Qin W and Li Q: KRT17 from skin cells with high glucose stimulation promotes keratinocytes proliferation and migration. Front Endocrinol (Lausanne). 14:12370482023. View Article : Google Scholar : PubMed/NCBI

78 

Worsley AL, Lui DH, Ntow-Boahene W, Song W, Good L and Tsui J: The importance of inflammation control for the treatment of chronic diabetic wounds. Int Wound J. 20:2346–2359. 2023. View Article : Google Scholar :

79 

Li M, Wang T, Tian H, Wei G, Zhao L and Shi Y: Macrophage-derived exosomes accelerate wound healing through their anti-inflammation effects in a diabetic rat model. Artif Cells Nanomed Biotechnol. 47:3793–3803. 2019. View Article : Google Scholar : PubMed/NCBI

80 

Nirenjen S, Narayanan J, Tamilanban T, Subramaniyan V, Chitra V, Fuloria NK, Wong LS, Ramachawolran G, Sekar M, Gupta G, et al: Exploring the contribution of pro-inflammatory cytokines to impaired wound healing in diabetes. Front Immunol. 14:12163212023. View Article : Google Scholar : PubMed/NCBI

81 

Goren I, Müller E, Schiefelbein D, Christen U, Pfeilschifter J, Mühl H and Frank S: Systemic anti-TNFalpha treatment restores diabetes-impaired skin repair in ob/ob mice by inactivation of macrophages. J Invest Dermatol. 127:2259–2267. 2007. View Article : Google Scholar : PubMed/NCBI

82 

Mirza RE, Fang MM, Ennis WJ and Koh TJ: Blocking interleukin-1β induces a healing-associated wound macrophage phenotype and improves healing in type 2 diabetes. Diabetes. 62:2579–2587. 2013. View Article : Google Scholar : PubMed/NCBI

83 

Xu F, Zhang C and Graves DT: Abnormal cell responses and role of TNF-α in impaired diabetic wound healing. Biomed Res Int. 2013:7548022013. View Article : Google Scholar

84 

Dai J, Shen J, Chai Y and Chen H: IL-1β impaired diabetic wound healing by regulating MMP-2 and MMP-9 through the p38 pathway. Mediators Inflamm. 2021:66457662021. View Article : Google Scholar

85 

Lan CCE, Wu CS, Huang SM, Wu IH and Chen GS: High-glucose environment enhanced oxidative stress and increased interleukin-8 secretion from keratinocytes: New insights into impaired diabetic wound healing. Diabetes. 62:2530–2538. 2013. View Article : Google Scholar : PubMed/NCBI

86 

Wang G, Yang F, Zhou W, Xiao N, Luo M and Tang Z: The initiation of oxidative stress and therapeutic strategies in wound healing. Biomed Pharmacother. 157:1140042023. View Article : Google Scholar

87 

Xu Q, Huff LP, Fujii M and Griendling KK: Redox regulation of the actin cytoskeleton and its role in the vascular system. Free Radic Biol Med. 109:84–107. 2017. View Article : Google Scholar : PubMed/NCBI

88 

Long M, de la Vega MR, Wen Q, Wen Q, Bharara M, Jiang T, Zhang R, Zhou S, Wong PK, Wondrak GT, et al: An essential role of NRF2 in diabetic wound healing. Diabetes. 65:780–793. 2016. View Article : Google Scholar : PubMed/NCBI

89 

Zhou X, Ruan Q, Ye Z, Chu Z, Xi M, Li M, Hu W, Guo X, Yao P and Xie W: Resveratrol accelerates wound healing by attenuating oxidative stress-induced impairment of cell proliferation and migration. Burns. 47:133–139. 2021. View Article : Google Scholar

90 

Gao M, Nguyen TT, Suckow MA, Wolter WR, Gooyit M, Mobashery S and Chang M: Acceleration of diabetic wound healing using a novel protease-anti-protease combination therapy. Proc Natl Acad Sci USA. 112:15226–15231. 2015. View Article : Google Scholar : PubMed/NCBI

91 

Jones JI, Nguyen TT, Peng Z and Chang M: Targeting MMP-9 in diabetic foot ulcers. Pharmaceuticals (Basel). 12:792019. View Article : Google Scholar : PubMed/NCBI

92 

Yabluchanskiy A, Ma Y, Iyer RP, Hall ME and Lindsey ML: Matrix metalloproteinase-9: Many shades of function in cardiovascular disease. Physiology (Bethesda). 28:391–403. 2013.PubMed/NCBI

93 

Ambrozova N, Ulrichova J and Galandakova A: Models for the study of skin wound healing. The role of Nrf2 and NF-κB. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 161:1–13. 2017. View Article : Google Scholar : PubMed/NCBI

94 

Zubair M and Ahmad J: Role of growth factors and cytokines in diabetic foot ulcer healing: A detailed review. Rev Endocr Metab Disord. 20:207–217. 2019. View Article : Google Scholar : PubMed/NCBI

95 

Papanas N and Maltezos E: Growth factors in the treatment of diabetic foot ulcers: New technologies, any promises? Int J Low Extrem Wounds. 6:37–53. 2007. View Article : Google Scholar : PubMed/NCBI

96 

Ong HT and Dilley RJ: Novel non-angiogenic role for mesenchymal stem cell-derived vascular endothelial growth factor on keratinocytes during wound healing. Cytokine Growth Factor Rev. 44:69–79. 2018. View Article : Google Scholar : PubMed/NCBI

97 

Ou MY, Tan PC, Xie Y, Liu K, Gao YM, Yang XS, Zhou SB and Li QF: Dedifferentiated Schwann cell-derived TGF-β3 is essential for the neural system to promote wound healing. Theranostics. 12:5470–5487. 2022. View Article : Google Scholar :

98 

R AS, Nambi N, Radhakrishnan L, Prasad MK and Ramkumar KM: Neutrophil migration is a crucial factor in wound healing and the pathogenesis of diabetic foot ulcers: Insights into pharmacological interventions. Curr Vasc Pharmacol. 30: View Article : Google Scholar : 2024.

99 

Michopoulou A, Montmasson M, Garnier C, Lambert E, Dayan G and Rousselle P: A novel mechanism in wound healing: Laminin 332 drives MMP9/14 activity by recruiting syndecan-1 and CD44. Matrix Biol. 94:1–17. 2020. View Article : Google Scholar : PubMed/NCBI

100 

Fang WC and Lan CCE: The epidermal keratinocyte as a therapeutic target for management of diabetic wounds. Int J Mol Sci. 24:42902023. View Article : Google Scholar : PubMed/NCBI

101 

Pilcher BK, Dumin JA, Sudbeck BD, Krane SM, Welgus HG and Parks WC: The activity of collagenase-1 is required for keratinocyte migration on a type I collagen matrix. J Cell Biol. 137:1445–1457. 1997. View Article : Google Scholar : PubMed/NCBI

102 

Lan CCE, Wu CS, Kuo HY, Huang SM and Chen GS: Hyperglycaemic conditions hamper keratinocyte locomotion via sequential inhibition of distinct pathways: New insights on poor wound closure in patients with diabetes. Br J Dermatol. 160:1206–1214. 2009. View Article : Google Scholar : PubMed/NCBI

103 

Zhang C, Ponugoti B, Tian C, Xu F, Tarapore R, Batres A, Alsadun S, Lim J, Dong G and Graves DT: FOXO1 differentially regulates both normal and diabetic wound healing. J Cell Biol. 209:289–303. 2015. View Article : Google Scholar : PubMed/NCBI

104 

Wang Y and Graves DT: Keratinocyte function in normal and diabetic wounds and modulation by FOXO1. J Diabetes Res. 2020:37147042020. View Article : Google Scholar : PubMed/NCBI

105 

Kaussikaa S, Prasad MK and Ramkumar KM: Nrf2 activation in keratinocytes: A central role in diabetes-associated wound healing. Exp Dermatol. 33:e151892024. View Article : Google Scholar : PubMed/NCBI

106 

da Silva L, Carvalho E and Cruz MT: Role of neuropeptides in skin inflammation and its involvement in diabetic wound healing. Expert Opin Biol Ther. 10:1427–1439. 2010. View Article : Google Scholar : PubMed/NCBI

107 

Pradhan L, Nabzdyk C, Andersen ND, LoGerfo FW and Veves A: Inflammation and neuropeptides: The connection in diabetic wound healing. Expert Rev Mol Med. 11:e22009. View Article : Google Scholar : PubMed/NCBI

108 

Grande R, Puca V and Muraro R: Antibiotic resistance and bacterial biofilm. Expert Opin Ther Pat. 30:897–900. 2020. View Article : Google Scholar : PubMed/NCBI

109 

Marano RJ, Wallace HJ, Wijeratne D, Fear MW, Wong HS and O'Handley R: Secreted biofilm factors adversely affect cellular wound healing responses in vitro. Sci Rep. 5:132962015. View Article : Google Scholar

110 

Xing H, Huang Y, Kunkemoeller BH, Dahl PJ, Muraleetharan O, Malvankar NS, Murrell MP and Kyriakides TR: Dysregulation of TSP2-Rac1-WAVE2 axis in diabetic cells leads to cytoskeletal disorganization, increased cell stiffness, and dysfunction. Sci Rep. 12:224742022. View Article : Google Scholar : PubMed/NCBI

111 

Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J, Forcato M, Bicciato S, et al: Role of YAP/TAZ in mechanotransduction. Nature. 474:179–183. 2011. View Article : Google Scholar : PubMed/NCBI

112 

Brusatin G, Panciera T, Gandin A, Citron A and Piccolo S: Biomaterials and engineered microenvironments to control YAP/TAZ-dependent cell behaviour. Nat Mater. 17:1063–1075. 2018. View Article : Google Scholar : PubMed/NCBI

113 

Lin MO, Sampath D, Bosykh DA, Wang C, Wang X, Subramaniam T, Han W, Hong W and Chakraborty S: YAP/TAZ drive agrin-matrix metalloproteinase 12-mediated diabetic skin wound healing. J Invest Dermatol. 145:155–170.e2. 2025. View Article : Google Scholar

114 

Majumdar R, Steen K, Coulombe PA and Parent CA: Non-canonical processes that shape the cell migration landscape. Curr Opin Cell Biol. 57:123–134. 2019. View Article : Google Scholar : PubMed/NCBI

115 

Xie L, Feng H, Li S, Meng G, Liu S, Tang X, Ma Y, Han Y, Xiao Y, Gu Y, et al: SIRT3 mediates the antioxidant effect of hydrogen sulfide in endothelial cells. Antioxid Redox Signal. 24:329–343. 2016. View Article : Google Scholar :

116 

Meng G, Liu J, Liu S, Song Q, Liu L, Xie L, Han Y and Ji Y: Hydrogen sulfide pretreatment improves mitochondrial function in myocardial hypertrophy via a SIRT3-dependent manner. Br J Pharmacol. 175:1126–1145. 2018. View Article : Google Scholar

117 

Yang S, Xu M, Meng G and Lu Y: SIRT3 deficiency delays diabetic skin wound healing via oxidative stress and necroptosis enhancement. J Cell Mol Med. 24:4415–4427. 2020. View Article : Google Scholar : PubMed/NCBI

118 

Johan MZ, Pyne NT, Kolesnikoff N, Poltavets V, Esmaeili Z, Woodcock JM, Lopez AF, Cowin AJ, Pitson SM and Samuel MS: Accelerated closure of diabetic wounds by efficient recruitment of fibroblasts upon inhibiting a 14-3-3/ROCK regulatory axis. J Invest Dermatol. 144:2562–2573.e4. 2024. View Article : Google Scholar : PubMed/NCBI

119 

Li Z, Zhang C, Wang L, Zhang Q, Dong Y, Sha X, Wang B, Zhu Z, Wang W, Wang Y, et al: Chitooligosaccharides promote diabetic wound healing by mediating fibroblast proliferation and migration. Sci Rep. 15:5562025. View Article : Google Scholar : PubMed/NCBI

120 

Gao Q, Pan L, Li Y and Zhang X: Astragaloside IV attenuates high glucose-induced human keratinocytes injury via TGF-β/Smad signaling pathway. J Tissue Viability. 31:678–686. 2022. View Article : Google Scholar : PubMed/NCBI

121 

Dong M, Ma X and Li F: Dedifferentiated fat cells-derived exosomes (DFATs-Exos) loaded in GelMA accelerated diabetic wound healing through Wnt/β-catenin pathway. Stem Cell Res Ther. 16:1032025. View Article : Google Scholar

122 

Ridley AJ: Rho GTPase signalling in cell migration. Curr Opin Cell Biol. 36:103–112. 2015. View Article : Google Scholar : PubMed/NCBI

123 

Wu M, Zhang S, Zhang W, Zhou Y, Guo Z, Fang Y, Yang Y, Shen Z, Lian D, Shen A and Peng J: Qingda granule ameliorates vascular remodeling and phenotypic transformation of adventitial fibroblasts via suppressing the TGF-β1/Smad2/3 pathway. J Ethnopharmacol. 313:1165352023. View Article : Google Scholar

124 

Fang H, Yang S, Luo Y, Zhang C, Rao Y, Liu R, Feng Y and Yu J: Notoginsenoside R1 inhibits vascular smooth muscle cell proliferation, migration and neointimal hyperplasia through PI3K/Akt signaling. Sci Rep. 8:75952018. View Article : Google Scholar : PubMed/NCBI

125 

Carvalho JR, Fortunato IC, Fonseca CG, Pezzarossa A, Barbacena P, Dominguez-Cejudo MA, Vasconcelos FF, Santos NC, Carvalho FA and Franco CA: Non-canonical Wnt signaling regulates junctional mechanocoupling during angiogenic collective cell migration. Elife. 8:e458532019. View Article : Google Scholar : PubMed/NCBI

126 

Van den Broeke C and Favoreel HW: Actin' up: Herpesvirus Interactions with Rho GTPase signaling. Viruses. 3:278–292. 2011. View Article : Google Scholar : PubMed/NCBI

127 

Qian W, Yamaguchi N, Lis P, Cammer M and Knaut H: Pulses of RhoA signaling stimulate actin polymerization and flow in protrusions to drive collective cell migration. Curr Biol. 34:245–259.e8. 2024. View Article : Google Scholar :

128 

Takaya K, Imbe Y, Wang Q, Okabe K, Sakai S, Aramaki-Hattori N and Kishi K: Rac1 inhibition regenerates wounds in mouse fetuses via altered actin dynamics. Sci Rep. 14:272132024. View Article : Google Scholar : PubMed/NCBI

129 

Shih PC, Tzeng IS, Chen YC and Chen ML: Gastrodin mitigates ketamine-induced inhibition of F-actin remodeling and cell migration by regulating the rho signaling pathway. Biomedicines. 13:6492025. View Article : Google Scholar : PubMed/NCBI

130 

Lawson CD and Ridley AJ: Rho GTPase signaling complexes in cell migration and invasion. J Cell Biol. 217:447–457. 2018. View Article : Google Scholar :

131 

Xue C, Li G, Lu J and Li L: Crosstalk between circRNAs and the PI3K/AKT signaling pathway in cancer progression. Signal Transduct Target Ther. 6:4002021. View Article : Google Scholar : PubMed/NCBI

132 

Teng Y, Fan Y, Ma J, Lu W, Liu N, Chen Y, Pan W and Tao X: The PI3K/Akt pathway: Emerging roles in skin homeostasis and a group of non-malignant skin disorders. Cells. 10:12192021. View Article : Google Scholar : PubMed/NCBI

133 

Zhang X, Shi L, Xing M, Li C, Ma F and Ma Y and Ma Y: Interplay between lncRNAs and the PI3K/AKT signaling pathway in the progression of digestive system neoplasms (Review). Int J Mol Med. 55:152024. View Article : Google Scholar : PubMed/NCBI

134 

Karar J and Maity A: PI3K/AKT/mTOR pathway in angiogenesis. Front Mol Neurosci. 4:512011. View Article : Google Scholar : PubMed/NCBI

135 

Wu X, Sun Q, He S, Wu Y, Du S, Gong L, Yu J and Guo H: Ropivacaine inhibits wound healing by suppressing the proliferation and migration of keratinocytes via the PI3K/AKT/mTOR pathway. BMC Anesthesiol. 22:1062022. View Article : Google Scholar : PubMed/NCBI

136 

Deng S, Leong HC, Datta A, Gopal V, Kumar AP and Yap CT: PI3K/AKT signaling tips the balance of cytoskeletal forces for cancer progression. Cancers (Basel). 14:16522022. View Article : Google Scholar : PubMed/NCBI

137 

Hsu JW, Bai M, Li K, Yang JS, Chu N, Cole PA, Eck MJ, Li J and Hsu VW: The protein kinase Akt acts as a coat adaptor in endocytic recycling. Nat Cell Biol. 22:927–933. 2020. View Article : Google Scholar : PubMed/NCBI

138 

Hannigan M, Zhan L, Li Z, Ai Y, Wu D and Huang CK: Neutrophils lacking phosphoinositide 3-kinase gamma show loss of directionality during N-formyl-Met-Leu-Phe-induced chemotaxis. Proc Natl Acad Sci USA. 99:3603–3608. 2002. View Article : Google Scholar : PubMed/NCBI

139 

Najafi M, Farhood B and Mortezaee K: Extracellular matrix (ECM) stiffness and degradation as cancer drivers. J Cell Biochem. 120:2782–2790. 2019. View Article : Google Scholar

140 

Nakerakanti S and Trojanowska M: The role of TGF-β receptors in fibrosis. Open Rheumatol J. 6:156–162. 2012. View Article : Google Scholar :

141 

Tu S, Huang W, Huang C, Luo Z and Yan X: Contextual regulation of TGF-β signaling in liver cancer. Cells. 8:12352019. View Article : Google Scholar

142 

Zhang K, Zhang H, Xiang H, Liu J, Liu Y, Zhang X, Wang J and Tang Y: TGF-β1 induces the dissolution of tight junctions in human renal proximal tubular cells: role of the RhoA/ROCK signaling pathway. Int J Mol Med. 32:464–468. 2013. View Article : Google Scholar : PubMed/NCBI

143 

Gailit J, Welch MP and Clark RA: TGF-beta 1 stimulates expression of keratinocyte integrins during re-epithelialization of cutaneous wounds. J Invest Dermatol. 103:221–227. 1994. View Article : Google Scholar : PubMed/NCBI

144 

Ponugoti B, Xu F, Zhang C, Tian C, Pacios S and Graves DT: FOXO1 promotes wound healing through the up-regulation of TGF-β1 and prevention of oxidative stress. J Cell Biol. 203:327–343. 2013. View Article : Google Scholar : PubMed/NCBI

145 

Weber CE, Li NY, Wai PY and Kuo PC: Epithelial-Mesenchymal transition, TGF-β, and osteopontin in wound healing and tissue remodeling after injury. J Burn Care Res. 33:311–318. 2012. View Article : Google Scholar : PubMed/NCBI

146 

Song P, Gao Z, Bao Y, Chen L, Huang Y, Liu Y, Dong Q and Wei X: Wnt/β-catenin signaling pathway in carcinogenesis and cancer therapy. J Hematol Oncol. 17:462024. View Article : Google Scholar

147 

Moon RT, Kohn AD, De Ferrari GV and Kaykas A: WNT and beta-catenin signalling: Diseases and therapies. Nat Rev Genet. 5:691–701. 2004. View Article : Google Scholar : PubMed/NCBI

148 

Nusse R and Clevers H: Wnt/β-Catenin signaling, disease, and emerging therapeutic modalities. Cell. 169:985–999. 2017. View Article : Google Scholar : PubMed/NCBI

149 

Schaale K, Neumann J, Schneider D, Ehlers S and Reiling N: Wnt signaling in macrophages: Augmenting and inhibiting mycobacteria-induced inflammatory responses. Eur J Cell Biol. 90:553–559. 2011. View Article : Google Scholar

150 

Sedgwick AE and D'Souza-Schorey C: Wnt signaling in cell motility and invasion: Drawing parallels between development and cancer. Cancers (Basel). 8:802016. View Article : Google Scholar : PubMed/NCBI

151 

Wu B, Crampton SP and Hughes CCW: Wnt signaling induces MMP expression and regulates T cell transmigration. Immunity. 26:227–239. 2007. View Article : Google Scholar : PubMed/NCBI

152 

Xue W, Yang L, Chen C, Ashrafizadeh M, Tian Y and Sun R: Wnt/β-catenin-driven EMT regulation in human cancers. Cell Mol Life Sci. 81:792024. View Article : Google Scholar

153 

Ono M, Masaki A, Maeda A, Kilts TM, Hara ES, Komori T, Pham H, Kuboki T and Young MF: CCN4/WISP1 controls cutaneous wound healing by modulating proliferation, migration and ECM expression in dermal fibroblasts via α5β1 and TNFα. Matrix Biol. 68-69:533–546. 2018. View Article : Google Scholar : PubMed/NCBI

154 

Repertinger SK, Campagnaro E, Fuhrman J, El-Abaseri T, Yuspa SH and Hansen LA: EGFR enhances early healing after cutaneous incisional wounding. J Invest Dermatol. 123:982–989. 2004. View Article : Google Scholar : PubMed/NCBI

155 

Wang Y, Wu Z, Tian J, Mi Y, Ren X, Kang J, Zhang W, Zhou X, Wang G and Li R: Intermedin protects HUVECs from ischemia reperfusion injury via Wnt/β-catenin signaling pathway. Ren Fail. 41:159–166. 2019. View Article : Google Scholar : PubMed/NCBI

156 

Jun EK, Zhang Q, Yoon BS, Moon JH, Lee G, Park G, Kang PJ, Lee JH, Kim A and You S: Hypoxic conditioned medium from human amniotic fluid-derived mesenchymal stem cells accelerates skin wound healing through TGF-β/SMAD2 and PI3K/Akt pathways. Int J Mol Sci. 15:605–628. 2014. View Article : Google Scholar : PubMed/NCBI

157 

Toraldo G, Bhasin S, Bakhit M, Guo W, Serra C, Safer JD, Bhawan J and Jasuja R: Topical androgen antagonism promotes cutaneous wound healing without systemic androgen deprivation by blocking β-catenin nuclear translocation and cross-talk with TGF-β signaling in keratinocytes. Wound Repair Regen. 20:61–73. 2012. View Article : Google Scholar : PubMed/NCBI

158 

Wang H, Wang X, Liu X, Zhou J, Yang Q, Chai B, Chai Y, Ma Z and Lu S: miR-199a-5p plays a pivotal role on wound healing via suppressing VEGFA and ROCK1 in diabetic ulcer foot. Oxid Med Cell Longev. 2022:47910592022. View Article : Google Scholar : PubMed/NCBI

159 

Yu J, Nam D and Park KS: Substance P enhances cellular migration and inhibits senescence in human dermal fibroblasts under hyperglycemic conditions. Biochem Biophys Res Commun. 522:917–923. 2020. View Article : Google Scholar

160 

Huang J, Deng Q, Tsang LL, Chang G, Guo J, Ruan YC, Wang CC, Li G, Chan HF, Zhang X and Jiang X: Mesenchymal stem cells from perinatal tissues promote diabetic wound healing via PI3K/AKT activation. Stem Cell Res Ther. 16:592025. View Article : Google Scholar : PubMed/NCBI

161 

Xu S, Jiang C, Yu T and Chen K: A multi-purpose dressing based on resveratrol-loaded ionic liquids/gelatin methacryloyl hydrogel for enhancing diabetic wound healing. Int J Biol Macromol. 283:1367732024. View Article : Google Scholar : PubMed/NCBI

162 

Peng Y, Wu S, Tang Q, Li S and Peng C: KGF-1 accelerates wound contraction through the TGF-β1/Smad signaling pathway in a double-paracrine manner. J Biol Chem. 294:8361–8370. 2019. View Article : Google Scholar : PubMed/NCBI

163 

Oyebode OA and Houreld NN: Photobiomodulation at 830 nm stimulates migration, survival and proliferation of fibroblast cells. Diabetes Metab Syndr Obes. 15:2885–2900. 2022. View Article : Google Scholar : PubMed/NCBI

164 

Wang L, Chen J, Song J, Xiang Y, Yang M, Xia L, Yang J, Hou X, Chen L and Wang L: Activation of the Wnt/β-catenin signalling pathway enhances exosome production by hucMSCs and improves their capability to promote diabetic wound healing. J Nanobiotechnology. 22:3732024. View Article : Google Scholar

165 

Liu Z, Yang S, Li X, Wang S, Zhang T, Huo N, Duan R, Shi Q, Zhang J and Xu J: Local transplantation of GMSC-derived exosomes to promote vascularized diabetic wound healing by regulating the Wnt/β-catenin pathways. Nanoscale Adv. 5:916–926. 2023. View Article : Google Scholar : PubMed/NCBI

166 

Lv Q, Deng J, Chen Y, Wang Y, Liu B and Liu J: Engineered human adipose stem-cell-derived exosomes loaded with miR-21-5p to promote diabetic cutaneous wound healing. Mol Pharm. 17:1723–1733. 2020. View Article : Google Scholar : PubMed/NCBI

167 

Yang Y, GuangXuan H, GenMeng W, MengHuan L, Bo C and XueJie Y: Idiopathic inflammatory myopathy and non-coding RNA. Front Immunol. 14:12279452023. View Article : Google Scholar : PubMed/NCBI

168 

Ballarino M, Morlando M, Fatica A and Bozzoni I: Non-coding RNAs in muscle differentiation and musculoskeletal disease. J Clin Invest. 126:2021–2030. 2016. View Article : Google Scholar : PubMed/NCBI

169 

Chen L, Shen S and Wang S: LncRNA SNHG16 knockdown promotes diabetic foot ulcer wound healing via sponging MiR-31-5p. Tohoku J Exp Med. 261:283–289. 2023. View Article : Google Scholar : PubMed/NCBI

170 

Peng J, Zhu H, Ruan B, Duan Z and Cao M: miR-155 promotes m6A modification of SOX2 mRNA through targeted regulation of HIF-1α and delays wound healing in diabetic foot ulcer in vitro models. J Diabetes Investig. 16:60–71. 2024. View Article : Google Scholar

171 

Tian M, Tang J, Huang R, Dong J and Jia H: Circ_072697 knockdown promotes advanced glycation end products-induced cell proliferation and migration in HaCaT cells via miR-3150a-3p/KDM2A axis. BMC Endocr Disord. 23:2002023. View Article : Google Scholar : PubMed/NCBI

172 

Wang F, Mei X, Yang Y, Zhang H, Li Z, Zhu L, Deng S and Wang Y: Non-coding RNA and its network in the pathogenesis of myasthenia gravis. Front Mol Biosci. 11:13884762024. View Article : Google Scholar : PubMed/NCBI

173 

Bhan A and Mandal SS: Long noncoding RNAs: Emerging stars in gene regulation, epigenetics and human disease. ChemMedChem. 9:1932–1956. 2014. View Article : Google Scholar : PubMed/NCBI

174 

Hong W, Xiong Z, Wang X, Liao X, Liu M, Jiang Z, Min D, Li J, Guo G and Fu Z: Long noncoding RNA XIST promotes cell proliferation and migration in diabetic foot ulcers through the miR-126-3p/EGFR axis. Diabetol Metab Syndr. 16:352024. View Article : Google Scholar : PubMed/NCBI

175 

He M, Tu L, Shu R, Meng Q, Du S, Xu Z and Wang S: Long noncoding RNA CASC2 facilitated wound healing through miRNA-155/HIF-1α in diabetic foot ulcers. Contrast Media Mol Imaging. 2022:62914972022. View Article : Google Scholar

176 

Li B, Zhou Y, Chen J, Wang T, Li Z, Fu Y, Zhai A and Bi C: Long noncoding RNA H19 acts as a miR-29b sponge to promote wound healing in diabetic foot ulcer. FASEB J. 35:e205262021.

177 

Hu M, Wu Y, Yang C, Wang X, Wang W, Zhou L, Zeng T, Zhou J, Wang C, Lao G, et al: Novel long noncoding RNA lnc-URIDS delays diabetic wound healing by targeting Plod1. Diabetes. 69:2144–2156. 2020. View Article : Google Scholar : PubMed/NCBI

178 

Gezer U, Özgür E, Cetinkaya M, Isin M and Dalay N: Long non-coding RNAs with low expression levels in cells are enriched in secreted exosomes. Cell Biol Int. 38:1076–1079. 2014. View Article : Google Scholar : PubMed/NCBI

179 

Li B, Luan S, Chen J, Zhou Y, Wang T, Li Z, Fu Y, Zhai A and Bi C: The MSC-derived exosomal lncRNA H19 promotes wound healing in diabetic foot ulcers by upregulating PTEN via MicroRNA-152-3p. Mol Ther Nucleic Acids. 19:814–826. 2020. View Article : Google Scholar : PubMed/NCBI

180 

Han ZF, Cao JH, Liu ZY, Yang Z, Qi RX and Xu HL: Exosomal lncRNA KLF3-AS1 derived from bone marrow mesenchymal stem cells stimulates angiogenesis to promote diabetic cutaneous wound healing. Diabetes Res Clin Pract. 183:1091262022. View Article : Google Scholar

181 

Fu W, Liang D, Wu X, Chen H, Hong X, Wang J, Zhu T, Zeng T, Lin W, Chen S, et al: Long noncoding RNA LINC01435 impedes diabetic wound healing by facilitating YY1-mediated HDAC8 expression. iScience. 25:1040062022. View Article : Google Scholar : PubMed/NCBI

182 

Roso-Mares A, Andújar I, Corpas TD and Sun BK: Non-coding RNAs as skin disease biomarkers, molecular signatures, and therapeutic targets. Hum Genet. 143:801–812. 2024. View Article : Google Scholar

183 

Shirley SN, Watson AE and Yusuf N: Pathogenesis of inflammation in skin disease: From molecular mechanisms to pathology. Int J Mol Sci. 25:101522024. View Article : Google Scholar : PubMed/NCBI

184 

Tsai HC, Chang GRL, Tung MC, Tu MY, Chen IC, Liu YH, Cidem A and Chen CM: MicroRNA signature in an in vitro keratinocyte model of diabetic wound healing. Int J Mol Sci. 25:101252024. View Article : Google Scholar : PubMed/NCBI

185 

Zhao X, Xu M, Tang Y, Xie D, Deng L, Chen M and Wang Y: Decreased expression of miR-204-3p in peripheral blood and wound margin tissue associated with the onset and poor wound healing of diabetic foot ulcers. Int Wound J. 20:413–429. 2023. View Article : Google Scholar

186 

Zhang HC, Wen T and Cai YZ: Overexpression of miR-146a promotes cell proliferation and migration in a model of diabetic foot ulcers by regulating the AKAP12 axis. Endocr J. 69:85–94. 2022. View Article : Google Scholar

187 

Wang W, Yang C, Wang XY, Zhou LY, Lao GJ, Liu D, Wang C, Hu MD, Zeng TT, Yan L and Ren M: MicroRNA-129 and -335 promote diabetic wound healing by inhibiting Sp1-mediated MMP-9 expression. Diabetes. 67:1627–1638. 2018. View Article : Google Scholar : PubMed/NCBI

188 

Li P, Hong G, Zhan W, Deng M, Tu C, Wei J and Lin H: Endothelial progenitor cell derived exosomes mediated miR-182-5p delivery accelerate diabetic wound healing via down-regulating PPARG. Int J Med Sci. 20:468–481. 2023. View Article : Google Scholar : PubMed/NCBI

189 

Wang KX, Zhao LL, Zheng LT, Meng LB, Jin L, Zhang LJ, Kong FL and Liang F: Accelerated wound healing in diabetic rat by miRNA-185-5p and its anti-inflammatory activity. Diabetes Metab Syndr Obes. 16:1657–1667. 2023. View Article : Google Scholar : PubMed/NCBI

190 

Wu M, Tu J, Huang J, Wen H, Zeng Y and Lu Y: Exosomal IRF1-loaded rat adipose-derived stem cell sheet contributes to wound healing in the diabetic foot ulcers. Mol Med. 29:602023. View Article : Google Scholar : PubMed/NCBI

191 

Wu Y, Zhang K, Liu R, Zhang H, Chen D, Yu S, Chen W, Wan S, Zhang Y, Jia Z, et al: MicroRNA-21-3p accelerates diabetic wound healing in mice by downregulating SPRY1. Aging (Albany NY). 12:15436–15445. 2020. View Article : Google Scholar : PubMed/NCBI

192 

Wang C, Huang L, Li J, Liu D and Wu B: MicroRNA miR-145-5p inhibits cutaneous wound healing by targeting PDGFD in diabetic foot ulcer. Biochem Genet. 62:2437–2454. 2024. View Article : Google Scholar

193 

Zhao X, Xu M, Tang Y, Xie D, Wang Y and Chen M: Changes in miroRNA-103 expression in wound margin tissue are related to wound healing of diabetes foot ulcers. Int Wound J. 20:467–483. 2022. View Article : Google Scholar : PubMed/NCBI

194 

Zhang P, Song X, Dong Q, Zhou L and Wang L: miR-27-3p inhibition restore fibroblasts viability in diabetic wound by targeting NOVA1. Aging (Albany NY). 12:12841–12849. 2020. View Article : Google Scholar : PubMed/NCBI

195 

Zheng L, Song H, Li Y, Li H, Lin G and Cai Z: Insulin-Induced gene 1-enhance secretion of BMSC exosome enriched in miR-132-3p promoting wound healing in diabetic mice. Mol Pharm. 21:4372–4385. 2024. View Article : Google Scholar : PubMed/NCBI

196 

Zuo C, Fan P, Yang Y and Hu C: MiR-488-3p facilitates wound healing through CYP1B1-mediated Wnt/β-catenin signaling pathway by targeting MeCP2. J Diabetes Investig. 15:145–158. 2024. View Article : Google Scholar

197 

Huang H, Zhu W, Huang Z, Zhao D, Cao L and Gao X: Adipose-derived stem cell exosome NFIC improves diabetic foot ulcers by regulating miR-204-3p/HIPK2. J Orthop Surg Res. 18:6872023. View Article : Google Scholar : PubMed/NCBI

198 

Qiu ZY, Xu WC and Liang ZH: Bone marrow mesenchymal stem cell-derived exosomal miR-221-3p promotes angiogenesis and wound healing in diabetes via the downregulation of forkhead box P1. Diabet Med. 41:e153862024. View Article : Google Scholar : PubMed/NCBI

199 

Zhou X, Ye C, Jiang L, Zhu X, Zhou F, Xia M and Chen Y: The bone mesenchymal stem cell-derived exosomal miR-146a-5p promotes diabetic wound healing in mice via macrophage M1/M2 polarization. Mol Cell Endocrinol. 579:1120892024. View Article : Google Scholar

200 

Guo E, Wang L, Wu J and Chen Q: Exosomes from MicroRNA-125b-modified adipose-derived stem cells promote wound healing of diabetic foot ulcers. Curr Stem Cell Res Ther. 20:409–420. 2024. View Article : Google Scholar : PubMed/NCBI

201 

Che D, Xiang X, Xie J, Chen Z, Bao Q and Cao D: exosomes derived from adipose stem cells enhance angiogenesis in diabetic wound via miR-146a-5p/JAZF1 axis. Stem Cell Rev Rep. 20:1026–1039. 2024. View Article : Google Scholar : PubMed/NCBI

202 

Ge L, Wang K, Lin H, Tao E, Xia W, Wang F, Mao C and Feng Y: Engineered exosomes derived from miR-132-overexpresssing adipose stem cells promoted diabetic wound healing and skin reconstruction. Front Bioeng Biotechnol. 11:11295382023. View Article : Google Scholar : PubMed/NCBI

203 

Sedykh S, Kuleshova A and Nevinsky G: Milk exosomes: Perspective agents for anticancer drug delivery. Int J Mol Sci. 21:66462020. View Article : Google Scholar : PubMed/NCBI

204 

Munagala R, Aqil F, Jeyabalan J and Gupta RC: Bovine milk-derived exosomes for drug delivery. Cancer Lett. 371:48–61. 2016. View Article : Google Scholar :

205 

Yan C, Chen J, Wang C, Yuan M, Kang Y, Wu Z, Li W, Zhang G, Machens HG and Rinkevich Y: Milk exosomes-mediated miR-31-5p delivery accelerates diabetic wound healing through promoting angiogenesis. Drug Deliv. 29:214–228. 2022. View Article : Google Scholar : PubMed/NCBI

206 

Liu R, Zhang L, Zhao X, Liu J, Chang W, Zhou L and Zhang K: circRNA: Regulatory factors and potential therapeutic targets in inflammatory dermatoses. J Cell Mol Med. 26:4389–4400. 2022. View Article : Google Scholar : PubMed/NCBI

207 

Beňačka R, Szabóová D, Guľašová Z and Hertelyová Z: Non-Coding RNAs in breast cancer: Diagnostic and therapeutic implications. Int J Mol Sci. 26:1272024. View Article : Google Scholar

208 

Zhang Y, Wu Y, Liu Z, Yang K, Lin H and Xiong K: Non-coding RNAs as potential targets in metformin therapy for cancer. Cancer Cell Int. 24:3332024. View Article : Google Scholar : PubMed/NCBI

209 

Fu Z, Jiang Z, Liao X, Liu M, Guo G, Wang X, Yang G, Zhou Z, Hu L and Xiong Z: Upregulation of circ_0080968 in diabetic foot ulcer inhibits wound healing via repressing the migration and promoting proliferation of keratinocytes. Gene. 883:1476692023. View Article : Google Scholar : PubMed/NCBI

210 

Han D, Liu W, Li G and Liu L: Circ_PRKDC knockdown promotes skin wound healing by enhancing keratinocyte migration via miR-31/FBN1 axis. J Mol Histol. 52:681–691. 2021. View Article : Google Scholar : PubMed/NCBI

211 

Wang A, Toma MA, Ma J, Li D, Vij M, Chu T, Wang J, Li X and Landén NX: Circular RNA hsa_circ_0084443 is upregulated in diabetic foot ulcer and modulates keratinocyte migration and proliferation. Adv Wound Care (New Rochelle). 9:145–160. 2020. View Article : Google Scholar : PubMed/NCBI

212 

Liang ZH, Pan NF, Lin SS, Qiu ZY, Liang P, Wang J, Zhang Z and Pan YC: Exosomes from mmu_circ_0001052-modified adipose-derived stem cells promote angiogenesis of DFU via miR-106a-5p and FGF4/p38MAPK pathway. Stem Cell Res Ther. 13:3362022. View Article : Google Scholar : PubMed/NCBI

213 

Huang Q, Chu Z, Wang Z, Li Q, Meng S, Lu Y, Ma K, Cui S, Hu W, Zhang W, et al: circCDK13-loaded small extracellular vesicles accelerate healing in preclinical diabetic wound models. Nat Commun. 15:39042024. View Article : Google Scholar : PubMed/NCBI

214 

Chen M, Przyborowski M and Berthiaume F: Stem cells for skin tissue engineering and wound healing. Crit Rev Biomed Eng. 37:399–421. 2009. View Article : Google Scholar : PubMed/NCBI

215 

Xu ZH, Ma MH, Li YQ, Li LL and Liu GH: Progress and expectation of stem cell therapy for diabetic wound healing. World J Clin Cases. 11:506–513. 2023. View Article : Google Scholar : PubMed/NCBI

216 

Deng Q, Pan S, Du F, Sang H, Cai Z, Xu X, Wei Q, Yu S, Zhang J and Li C: The Effect of conditioned medium from angiopoietin-1 gene-modified mesenchymal stem cells on wound healing in a diabetic mouse model. Bioengineering (Basel). 11:12442024. View Article : Google Scholar

217 

Liu Z, Wen X, Wang H, Zhou J, Zhao M, Lin Q, Wang Y, Li J, Li D, Du Z, et al: Molecular imaging of induced pluripotent stem cell immunogenicity with in vivo development in ischemic myocardium. PLoS One. 8:e663692013. View Article : Google Scholar : PubMed/NCBI

218 

He L, Cai Y, Du H, Shu M and Zhu C: Adipose stem cell-derived exosomes promote high glucose-induced wound healing by regulating the TRIM32/STING axis. Arch Dermatol Res. 316:3232024. View Article : Google Scholar

219 

Ding JY, Chen MJ, Wu LF, Shu GF, Fang SJ, Li ZY, Chu XR, Li XK, Wang ZG and Ji JS: Mesenchymal stem cell-derived extracellular vesicles in skin wound healing: Roles, opportunities and challenges. Mil Med Res. 10:362023.PubMed/NCBI

220 

Li Y, Zhu Z, Li S, Xie X, Qin L, Zhang Q, Yang Y, Wang T and Zhang Y: Exosomes: Compositions, biogenesis, and mechanisms in diabetic wound healing. J Nanobiotechnology. 22:3982024. View Article : Google Scholar : PubMed/NCBI

221 

Laiva AL, O'Brien FJ and Keogh MB: Innovations in gene and growth factor delivery systems for diabetic wound healing. J Tissue Eng Regen Med. 12:e296–e312. 2018. View Article : Google Scholar

222 

Li Z, Qiu X, Guan G, Shi K, Chen S, Tang J, Xiao M, Tang S, Yan Y, Zhou J and Xie H: The role of FGF-21 in promoting diabetic wound healing by modulating high glucose-induced inflammation. Heliyon. 10:e300222024. View Article : Google Scholar : PubMed/NCBI

223 

Tang L, Cai S, Lu X, Wu D, Zhang Y, Li X, Qin X, Guo J, Zhang X and Liu C: Platelet-Derived growth factor nanocapsules with tunable controlled release for chronic wound healing. Small. 20:e23107432024. View Article : Google Scholar : PubMed/NCBI

224 

Jeong S, Kim B, Park M, Ban E, Lee SH and Kim A: Improved diabetic wound healing by EGF encapsulation in gelatin-alginate coacervates. Pharmaceutics. 12:3342020. View Article : Google Scholar : PubMed/NCBI

225 

Wang H, Xu Z, Zhao M, Liu G and Wu J: Advances of hydrogel dressings in diabetic wounds. Biomater Sci. 9:1530–1546. 2021. View Article : Google Scholar : PubMed/NCBI

226 

Serpico L, Iacono SD, Cammarano A and De Stefano L: Recent advances in stimuli-responsive hydrogel-based wound dressing. Gels. 9:4512023. View Article : Google Scholar : PubMed/NCBI

227 

Liang Y, He J and Guo B: Functional hydrogels as wound dressing to enhance wound healing. ACS Nano. 15:12687–12722. 2021. View Article : Google Scholar : PubMed/NCBI

228 

Miguel SP, Ribeiro MP, Brancal H, Coutinho P and Correia IJ: Thermoresponsive chitosan-agarose hydrogel for skin regeneration. Carbohydr Polym. 111:366–373. 2014. View Article : Google Scholar : PubMed/NCBI

229 

Bei Z, Zhang L, Li J, Tong Q, Shi K, Chen W, Yu Y, Sun A, Xu Y, Liu J and Qian Z: A smart stimulation-deadhesion and antimicrobial hydrogel for repairing diabetic wounds infected with methicillin-resistant staphylococcus aureus. Adv Healthc Mater. 13:e23030422024. View Article : Google Scholar

230 

Li Y, Fu R, Duan Z, Zhu C and Fan D: Artificial nonenzymatic antioxidant MXene Nanosheet-anchored injectable hydrogel as a mild photothermal-controlled oxygen release platform for diabetic wound healing. ACS Nano. 16:7486–7502. 2022. View Article : Google Scholar : PubMed/NCBI

231 

Şeker Ş, Elçin AE and Elçin YM: Current trends in the design and fabrication of PRP-based scaffolds for tissue engineering and regenerative medicine. Biomed Mater. 20:202025. View Article : Google Scholar

232 

Xu K, Deng S, Zhu Y, Yang W, Chen W, Huang L, Zhang C, Li M, Ao L, Jiang Y, et al: Platelet rich plasma loaded multifunctional hydrogel accelerates diabetic wound healing via regulating the continuously abnormal microenvironments. Adv Healthc Mater. 12:e23013702023. View Article : Google Scholar : PubMed/NCBI

233 

Wei Q, Su J, Meng S, Wang Y, Ma K, Li B, Chu Z, Huang Q, Hu W, Wang Z, et al: MiR-17-5p-engineered sEVs encapsulated in GelMA hydrogel facilitated diabetic wound healing by targeting PTEN and p21. Adv Sci (Weinh). 11:e23077612024. View Article : Google Scholar : PubMed/NCBI

234 

Alberts A, Bratu AG, Niculescu AG and Grumezescu AM: New perspectives of hydrogels in chronic wound management. Molecules. 30:6862025. View Article : Google Scholar : PubMed/NCBI

235 

Negut I and Bita B: Exploring the potential of artificial intelligence for hydrogel development-a short review. Gels. 9:8452023. View Article : Google Scholar : PubMed/NCBI

236 

Tan CT, Liang K, Ngo ZH, Dube CT and Lim CY: Application of 3D bioprinting technologies to the management and treatment of diabetic foot ulcers. Biomedicines. 8:4412020. View Article : Google Scholar : PubMed/NCBI

237 

Wang M, Song Y, Bisoyi HK, Yang JF, Liu L, Yang H and Li Q: A liquid crystal elastomer-based unprecedented two-way shape-memory aerogel. Adv Sci (Weinh). 8:e21026742021. View Article : Google Scholar : PubMed/NCBI

238 

Jeong Y, Patel R and Patel M: Biopolymer-Based biomimetic aerogel for biomedical applications. Biomimetics (Basel). 9:3972024. View Article : Google Scholar : PubMed/NCBI

239 

Guo N, Xia Y, Zeng W, Chen J, Wu Q, Shi Y, Li G, Huang Z, Wang G and Liu Y: Alginate-based aerogels as wound dressings for efficient bacterial capture and enhanced antibacterial photodynamic therapy. Drug Deliv. 29:1086–1099. 2022. View Article : Google Scholar : PubMed/NCBI

240 

Wang X, Yuan Z, Shafiq M, Cai G, Lei Z, Lu Y, Guan X, Hashim R, El-Newehy M, Abdulhameed MM, et al: Composite aerogel scaffolds containing flexible silica nanofiber and tricalcium phosphate enable skin regeneration. ACS Appl Mater Interfaces. 16:25843–25855. 2024. View Article : Google Scholar : PubMed/NCBI

241 

Vaseghi A, Sadeghizadeh M, Herb M, Grumme D, Demidov Y, Remmler T and Maleki HH: 3D printing of biocompatible and antibacterial silica-silk-chitosan-based hybrid aerogel scaffolds loaded with propolis. ACS Appl Bio Mater. 7:7917–7935. 2024. View Article : Google Scholar : PubMed/NCBI

242 

Wu B, Pan W, Luo S, Luo X, Zhao Y, Xiu Q, Zhong M, Wang Z, Liao T, Li N, et al: Turmeric-Derived nanoparticles functionalized aerogel regulates multicellular networks to promote diabetic wound healing. Adv Sci (Weinh). 11:e23076302024. View Article : Google Scholar : PubMed/NCBI

243 

Ramos R, Silva JP, Rodrigues AC, Costa R, Guardão L, Schmitt F, Soares R, Vilanova M, Domingues L and Gama M: Wound healing activity of the human antimicrobial peptide LL37. Peptides. 32:1469–1476. 2011. View Article : Google Scholar : PubMed/NCBI

244 

Grönberg A, Mahlapuu M, Ståhle M, Whately-Smith C and Rollman O: Treatment with LL-37 is safe and effective in enhancing healing of hard-to-heal venous leg ulcers: A randomized, placebo-controlled clinical trial. Wound Repair Regen. 22:613–621. 2014. View Article : Google Scholar : PubMed/NCBI

245 

John JV, Sharma NS, Tang G, Luo Z, Su Y, Weihs S, Shahriar SMS, Wang G, McCarthy A, Dyke J, et al: Nanofiber aerogels with precision macrochannels and LL-37-mimic peptides synergistically promote diabetic wound healing. Adv Funct Mater. 33:22069362023. View Article : Google Scholar : PubMed/NCBI

246 

Zhao C, Wu Z, Pan B, Zhang R, Golestani A, Feng Z, Ge Y and Yang H: Functional biomacromolecules-based microneedle patch for the treatment of diabetic wound. Int J Biol Macromol. 267:1316502024. View Article : Google Scholar : PubMed/NCBI

247 

Hu F, Gao Q, Liu J, Chen W, Zheng C, Bai Q, Sun N, Zhang W, Zhang Y and Lu T: Smart microneedle patches for wound healing and management. J Mater Chem B. 11:2830–2851. 2023. View Article : Google Scholar : PubMed/NCBI

248 

Yin M, Wu J, Deng M, Wang P, Ji G, Wang M, Zhou C, Blum NT, Zhang W, Shi H, et al: Multifunctional magnesium organic framework-based microneedle patch for accelerating diabetic wound healing. ACS Nano. 15:17842–17853. 2021. View Article : Google Scholar : PubMed/NCBI

249 

Wang P, Wu J, Yang H, Liu H, Yao T, Liu C, Gong Y, Wang M, Ji G, Huang P and Wang X: Intelligent microneedle patch with prolonged local release of hydrogen and magnesium ions for diabetic wound healing. Bioact Mater. 24:463–476. 2023.PubMed/NCBI

250 

Avcil M and Çelik A: Microneedles in drug delivery: Progress and challenges. Micromachines (Basel). 12:13212021. View Article : Google Scholar : PubMed/NCBI

251 

Alsarayreh AZ, Oran SA, Shakhanbeh JM, Khleifat KM, Al Qaisi YT, Alfarrayeh II and Alkaramseh AM: Efficacy of methanolic extracts of some medicinal plants on wound healing in diabetic rats. Heliyon. 8:e100712022. View Article : Google Scholar : PubMed/NCBI

252 

Wu JR, Lu YC, Hung SJ, Lin JH, Chang KC, Chen JK, Tsai WT, Ho TJ and Chen HP: Antimicrobial and immunomodulatory activity of herb extracts used in burn wound healing: 'San Huang Powder'. Evid Based Complement Alternat Med. 2021:29000602021. View Article : Google Scholar

253 

Soheilifar MH, Dastan D, Masoudi-Khoram N, Neghab HN, Nobari S, Tabaie SM and Amini R: In vitro and in vivo evaluation of the diabetic wound healing properties of Saffron (Crocus Sativus L.) petals. Sci Rep. 14:193732024. View Article : Google Scholar : PubMed/NCBI

254 

Huang L, Cai HA, Zhang MS, Liao RY, Huang X and Hu FD: Ginsenoside Rg1 promoted the wound healing in diabetic foot ulcers via miR-489-3p/Sirt1 axis. J Pharmacol Sci. 147:271–283. 2021. View Article : Google Scholar : PubMed/NCBI

255 

Sun X, Wang X, Zhao Z, Chen J, Li C and Zhao G: Paeoniflorin accelerates foot wound healing in diabetic rats though activating the Nrf2 pathway. Acta Histochem. 122:1516492020. View Article : Google Scholar : PubMed/NCBI

256 

Zhang S, Xu Y, Junior CZ, Chen X and Zhu J: Dang-Gui-Si-Ni decoction facilitates wound healing in diabetic foot ulcers by regulating expression of AGEs/RAGE/TGF-β/Smad2/3. Arch Dermatol Res. 316:3382024. View Article : Google Scholar

257 

Gong Y, Jiang Y, Huang J, He Z and Tang Q: Moist exposed burn ointment accelerates diabetes-related wound healing by promoting re-epithelialization. Front Med (Lausanne). 9:10420152022. View Article : Google Scholar

258 

Ding R, Wang Y, Zhu JP, Lu WG, Wei GL, Gu ZC, An ZT and Huo JG: Danggui Sini decoction protects against oxaliplatin-induced peripheral neuropathy in rats. J Integr Neurosci. 19:663–671. 2020. View Article : Google Scholar : PubMed/NCBI

259 

Mabvuure NT, Brewer CF, Gervin K and Duffy S: The use of moist exposed burn ointment (MEBO) for the treatment of burn wounds: A systematic review. J Plast Surg Hand Surg. 54:337–343. 2020. View Article : Google Scholar : PubMed/NCBI

260 

Zhao D, Luo S, Xu W, Hu J, Lin S and Wang N: Efficacy and safety of hyperbaric oxygen therapy used in patients with diabetic foot: A meta-analysis of randomized clinical trials. Clin Ther. 39:2088–2094.e2. 2017. View Article : Google Scholar : PubMed/NCBI

261 

Damineni U, Divity S, Gundapaneni SRC, Burri RG and Vadde T: Clinical outcomes of hyperbaric oxygen therapy for diabetic foot ulcers: A systematic review. Cureus. 17:e786552025.PubMed/NCBI

262 

Huang X, Liang P, Jiang B, Zhang P, Yu W, Duan M, Guo L, Cui X, Huang M and Huang X: Hyperbaric oxygen potentiates diabetic wound healing by promoting fibroblast cell proliferation and endothelial cell angiogenesis. Life Sci. 259:1182462020. View Article : Google Scholar : PubMed/NCBI

263 

Borys S, Hohendorff J, Koblik T, Witek P, Ludwig-Slomczynska AH, Frankfurter C, Kiec-Wilk B and Malecki MT: Negative-pressure wound therapy for management of chronic neuropathic noninfected diabetic foot ulcerations-short-term efficacy and long-term outcomes. Endocrine. 62:611–616. 2018. View Article : Google Scholar : PubMed/NCBI

264 

Chen L, Zhang S, Da J, Wu W, Ma F, Tang C, Li G, Zhong D and Liao B: A systematic review and meta-analysis of efficacy and safety of negative pressure wound therapy in the treatment of diabetic foot ulcer. Ann Palliat Med. 10:10830–10839. 2021. View Article : Google Scholar : PubMed/NCBI

265 

Huang Y, Yu Z, Xu M, Zhao X, Tang Y, Luo L, Deng D and Chen M: Negative pressure wound therapy promotes wound healing by down-regulating miR-155 expression in granulation tissue of diabetic foot ulcers. Sci Rep. 15:67332025. View Article : Google Scholar : PubMed/NCBI

266 

Liu L, Chen R, Jia Z, Li X, Tang Y, Zhao X, Zhang S, Luo L, Fang Z, Zhang Y and Chen M: Downregulation of hsa-miR-203 in peripheral blood and wound margin tissue by negative pressure wound therapy contributes to wound healing of diabetic foot ulcers. Microvasc Res. 139:1042752022. View Article : Google Scholar

267 

Houreld NN: Shedding light on a new treatment for diabetic wound healing: A review on phototherapy. ScientificWorldJournal. 2014:3984122014. View Article : Google Scholar : PubMed/NCBI

268 

Houreld N and Abrahamse H: Low-intensity laser irradiation stimulates wound healing in diabetic wounded fibroblast cells (WS1). Diabetes Technol Ther. 12:971–978. 2010. View Article : Google Scholar : PubMed/NCBI

269 

Gupta A, Dai T and Hamblin MR: Effect of red and near-infrared wavelengths on low-level laser (light) therapy-induced healing of partial-thickness dermal abrasion in mice. Lasers Med Sci. 29:257–265. 2014. View Article : Google Scholar

270 

Cai W, Hamushan M, Zhang Y, Xu Z, Ren Z, Du J, Ju J, Cheng P, Tan M and Han P: Synergistic effects of photobiomodulation therapy with combined wavelength on diabetic wound healing in vitro and in vivo. Photobiomodul Photomed Laser Surg. 40:13–24. 2022.

271 

Frampton JE, Lee CR and Faulds D: Filgrastim. A review of its pharmacological properties and therapeutic efficacy in neutropenia. Drugs. 48:731–760. 1994. View Article : Google Scholar : PubMed/NCBI

272 

Edmonds M, Gough A, Solovera J and Standaert B: Filgrastim in the treatment of infected diabetic foot ulcers. Clin Drug Investig. 17:275–286. 1999. View Article : Google Scholar

273 

Orgill DP and Bayer LR: Negative pressure wound therapy: Past, present and future. Int Wound J. 10:15–19. 2013. View Article : Google Scholar : PubMed/NCBI

274 

Yoon D, Byun HJ, Oh SJ, Park JH and Lee DY: A case of cutaneous leukocytoclastic vasculitis associated with granulocyte colony-stimulating factor: An unusual presentation. Ann Dermatol. 32:164–167. 2020. View Article : Google Scholar

275 

Song P, Liang Q, Ge X, Zhou D, Yuan M, Chu W and Xu J: Adipose-derived stem cell exosomes promote scar-free healing of diabetic wounds via miR-204-5p/TGF-β1/Smad pathway. Stem Cells Int. 2025:63448442025. View Article : Google Scholar

276 

Van Netten JJ, Woodburn J and Bus SA: The future for diabetic foot ulcer prevention: A paradigm shift from stratified healthcare towards personalized medicine. Diabetes Metab Res Rev. 36(Suppl 1): e32342020. View Article : Google Scholar : PubMed/NCBI

277 

Ng GW, Gan KF, Liew H, Ge L, Ang G, Molina J, Sun Y, Prakash PS, Harish KB and Lo ZJ: A Systematic review and classification of factors influencing diabetic foot ulcer treatment adherence, in accordance with the WHO dimensions of adherence to long-term therapies. Int J Low Extrem Wounds. 20:153473462412339622024. View Article : Google Scholar

278 

Zhang YW, Sun L, Wang YN and Zhan SY: Role of macrophage polarization in diabetic foot ulcer healing: A bibliometric study. World J Diabetes. 16:997552025. View Article : Google Scholar : PubMed/NCBI

279 

Choudhury S, Dhoke NR, Chawla S and Das A: Bioengineered MSCCxcr2 transdifferentiated keratinocyte-like cell-derived organoid potentiates skin regeneration through ERK1/2 and STAT3 signaling in diabetic wound. Cell Mol Life Sci. 81:1722024. View Article : Google Scholar :

280 

de Souza A, Martignago CCS, Santo GDE, Sousa KDSJ, Cruz MA, Amaral GO, Parisi JR, Estadella D, Ribeiro DA, Granito RN, et al: 3D printed wound constructs for skin tissue engineering: A systematic review in experimental animal models. J Biomed Mater Res B Appl Biomater. 111:1419–1433. 2023. View Article : Google Scholar : PubMed/NCBI

281 

Yuan T, Tan M, Xu Y, Xiao Q, Wang H, Wu C, Li F and Peng L: All-in-one smart dressing for simultaneous angiogenesis and neural regeneration. J Nanobiotechnology. 21:382023. View Article : Google Scholar : PubMed/NCBI

282 

Mirani B, Hadisi Z, Pagan E, Dabiri SMH, van Rijt A, Almutairi L, Noshadi I, Armstrong DG and Akbari M: Smart dual-sensor wound dressing for monitoring cutaneous wounds. Adv Healthc Mater. 12:e22032332023. View Article : Google Scholar : PubMed/NCBI

283 

Su R, Wang L, Han F, Bian S, Meng F, Qi W, Zhai X, Li H, Wu J, Pan X, et al: A highly stretchable smart dressing for wound infection monitoring and treatment. Mater Today Bio. 26:1011072024. View Article : Google Scholar : PubMed/NCBI

284 

Lin B, Ma Y and Wu S: Multi-Omics and artificial intelligence-guided data integration in chronic liver disease: Prospects and challenges for precision medicine. OMICS. 26:415–421. 2022. View Article : Google Scholar : PubMed/NCBI

285 

Wang Z, Xu H, Xue B, Liu L, Tang Y, Wang Z and Yao K: MSC-derived exosomal circMYO9B accelerates diabetic wound healing by promoting angiogenesis through the hnRNPU/CBL/KDM1A/VEGFA axis. Commun Biol. 7:17002024. View Article : Google Scholar : PubMed/NCBI

286 

Liu J, Qu M, Wang C, Xue Y, Huang H, Chen Q, Sun W, Zhou X, Xu G and Jiang X: A dual-cross-linked hydrogel patch for promoting diabetic wound healing. Small. 18:e21061722022. View Article : Google Scholar : PubMed/NCBI

287 

Wu C, Long L, Zhang Y, Xu Y, Lu Y, Yang Z, Guo Y, Zhang J, Hu X and Wang Y: Injectable conductive and angiogenic hydrogels for chronic diabetic wound treatment. J Control Release. 344:249–260. 2022. View Article : Google Scholar : PubMed/NCBI

288 

Liu W, Zhai X, Zhao X, Cai Y, Zhang X, Xu K, Weng J, Li J and Chen X: Multifunctional double-layer and dual drug-loaded microneedle patch promotes diabetic wound healing. Adv Healthc Mater. 12:e23002972023. View Article : Google Scholar : PubMed/NCBI

289 

Xiong W, Zhang X, Zhou J, Chen J, Liu Y, Yan Y, Tan M, Huang H, Si Y and Wei Y: Astragaloside IV promotes exosome secretion of endothelial progenitor cells to regulate PI3KR2/SPRED1 signaling and inhibit pyroptosis of diabetic endothelial cells. Cytotherapy. 26:36–50. 2024. View Article : Google Scholar

290 

Lei T, Gao Y, Duan Y, Cui C, Zhang L and Si M: Panax notoginseng saponins improves healing of high glucose-induced wound through the GSK-3β/β-catenin pathway. Environ Toxicol. 37:1867–1877. 2022. View Article : Google Scholar : PubMed/NCBI

291 

Lu Y, Ding X, Qi F, Ru Y, Kuai L, Chen S, Yang Y, Li X, Li F, Li B, et al: Quyu Shengji formula facilitates diabetic wound healing via inhibiting the expression of prostaglandin transporter. Evid Based Complement Alternat Med. 2021:88499352021. View Article : Google Scholar : PubMed/NCBI

292 

Liu Y, Mo J, Liang F, Jiang S, Xiong J, Meng X and Mo Z: Pien-tze-huang promotes wound healing in streptozotocin-induced diabetes models associated with improving oxidative stress via the Nrf2/ARE pathway. Front Pharmacol. 14:10626642023. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Song J, Zhao T, Wang C, Sun X, Sun J and Zhang Z: Cell migration in diabetic wound healing: Molecular mechanisms and therapeutic strategies (Review). Int J Mol Med 56: 126, 2025.
APA
Song, J., Zhao, T., Wang, C., Sun, X., Sun, J., & Zhang, Z. (2025). Cell migration in diabetic wound healing: Molecular mechanisms and therapeutic strategies (Review). International Journal of Molecular Medicine, 56, 126. https://doi.org/10.3892/ijmm.2025.5567
MLA
Song, J., Zhao, T., Wang, C., Sun, X., Sun, J., Zhang, Z."Cell migration in diabetic wound healing: Molecular mechanisms and therapeutic strategies (Review)". International Journal of Molecular Medicine 56.2 (2025): 126.
Chicago
Song, J., Zhao, T., Wang, C., Sun, X., Sun, J., Zhang, Z."Cell migration in diabetic wound healing: Molecular mechanisms and therapeutic strategies (Review)". International Journal of Molecular Medicine 56, no. 2 (2025): 126. https://doi.org/10.3892/ijmm.2025.5567
Copy and paste a formatted citation
x
Spandidos Publications style
Song J, Zhao T, Wang C, Sun X, Sun J and Zhang Z: Cell migration in diabetic wound healing: Molecular mechanisms and therapeutic strategies (Review). Int J Mol Med 56: 126, 2025.
APA
Song, J., Zhao, T., Wang, C., Sun, X., Sun, J., & Zhang, Z. (2025). Cell migration in diabetic wound healing: Molecular mechanisms and therapeutic strategies (Review). International Journal of Molecular Medicine, 56, 126. https://doi.org/10.3892/ijmm.2025.5567
MLA
Song, J., Zhao, T., Wang, C., Sun, X., Sun, J., Zhang, Z."Cell migration in diabetic wound healing: Molecular mechanisms and therapeutic strategies (Review)". International Journal of Molecular Medicine 56.2 (2025): 126.
Chicago
Song, J., Zhao, T., Wang, C., Sun, X., Sun, J., Zhang, Z."Cell migration in diabetic wound healing: Molecular mechanisms and therapeutic strategies (Review)". International Journal of Molecular Medicine 56, no. 2 (2025): 126. https://doi.org/10.3892/ijmm.2025.5567
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team