|
1
|
Lund HG, Reider BD, Whiting AB and
Prichard JR: Sleep patterns and predictors of disturbed sleep in a
large population of college students. J Adolesc Health. 46:124–132.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Bishir M, Bhat A, Essa MM, Ekpo O, Ihunwo
AO, Veeraraghavan VP, Mohan SK, Mahalakshmi AM, Ray B, Tuladhar S,
et al: Sleep deprivation and neurological disorders. Biomed Res
Int. 2020:57640172020. View Article : Google Scholar :
|
|
3
|
Palagini L, Hertenstein E, Riemann D and
Nissen C: Sleep, insomnia and mental health. J Sleep Res.
31:e136282022. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Chang L, Wei Y and Hashimoto K:
Brain-gut-microbiota axis in depression: A historical overview and
future directions. Brain Res Bull. 182:44–56. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Gossard TR, Trotti LM, Videnovic A and St
Louis EK: Restless legs syndrome: Contemporary diagnosis and
treatment. Neurotherapeutic. 18:140–155. 2021. View Article : Google Scholar
|
|
6
|
Sun SY and Chen GH: Treatment of circadian
rhythm sleep-wake disorders. Curr Neuropharmacol. 20:1022–1034.
2022. View Article : Google Scholar
|
|
7
|
Arnulf I, Thomas R, Roy A and Dauvilliers
Y: Update on the treatment of idiopathic hypersomnia: Progress,
challenges, and expert opinion. Sleep Med Rev. 69:1017662023.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
You M, Chen N, Yang Y, Cheng L, He H, Cai
Y, Liu Y, Liu H and Hong G: The gut microbiota-brain axis in
neurological disorders. MedComm (2020). 5:e6562024. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Haarhuis JE, Kardinaal A and Kortman GAM:
Probiotics, prebiotics and postbiotics for better sleep quality: A
narrative review. Benef Microbes. 13:169–182. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Singh V, Yeoh BS, Chassaing B, Xiao X,
Saha P, Aguilera Olvera R, Lapek JD Jr, Zhang L, Wang WB, Hao S, et
al: Dysregulated microbial fermentation of soluble fiber induces
cholestatic liver cancer. Cell. 175:679–694.e22. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Barrett E, Ross RP, O'Toole PW, Fitzgerald
GF and Stanton C: γ-Aminobutyric acid production by culturable
bacteria from the human intestine. J Appl Microbiol. 113:411–417.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Chen H, Nwe PK, Yang Y, Rosen CE, Bielecka
AA, Kuchroo M, Cline GW, Kruse AC, Ring AM, Crawford JM and Palm
NW: A forward chemical genetic screen reveals gut microbiota
metabolites that modulate host physiology. Cell. 177:1217–1231.e18.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Ren Z, Zhang R, Li Y, Li Y, Yang Z and
Yang H: Ferulic acid exerts neuroprotective effects against
cerebral ischemia/reperfusion-induced injury via antioxidant and
anti-apoptotic mechanisms in vitro and in vivo. Int J Mol Med.
40:1444–1456. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Verzelloni E, Pellacani C, Tagliazucchi D,
Tagliaferri S, Calani L, Costa LG, Brighenti F, Borges G, Crozier
A, Conte A and Del Rio D: Antiglycative and neuroprotective
activity of colon-derived polyphenol catabolites. Mol Nutr Food
Res. 55(Suppl 1): S35–S43. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Mao JH, Kim YM, Zhou YX, Hu D, Zhong C,
Chang H, Brislawn CJ, Fansler S, Langley S, Wang Y, et al: Genetic
and metabolic links between the murine microbiome and memory.
Microbiome. 8:532020. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Ahmed H, Leyrolle Q, Koistinen V,
Kärkkäinen O, Layé S, Delzenne N and Hanhineva K:
Microbiota-derived metabolites as drivers of gut-brain
communication. Gut Microbes. 14:21028782022. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Mann ER, Lam YK and Uhlig HH: Short-chain
fatty acids: Linking diet, the microbiome and immunity. Nat Rev
Immunol. 24:577–595. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Agus A, Clément K and Sokol H: Gut
microbiota-derived metabolites as central regulators in metabolic
disorders. Gut. 70:1174–1182. 2021. View Article : Google Scholar
|
|
19
|
Ganz J: Revealing the complexity of the
gut's brain. Nat Neurosci. 24:1–2. 2021. View Article : Google Scholar
|
|
20
|
Margolis KG, Cryan JF and Mayer EA: The
microbiota-gut-brain axis: From motility to mood. Gastroenterology.
160:1486–1501. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Niesler B, Kuerten S, Demir IE and Schäfer
KH: Disorders of the enteric nervous system-a holistic view. Nat
Rev Gastroenterol Hepatol. 18:393–410. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Bonaz B, Bazin T and Pellissier S: The
vagus nerve at the interface of the microbiota-gut-brain axis.
Front Neurosci. 12:492018. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Agirman G, Yu KB and Hsiao EY: Signaling
inflammation across the gut-brain axis. Science. 374:1087–1092.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Zielinski MR and Gibbons AJ:
Neuroinflammation, sleep, and circadian rhythms. Front Cell Infect
Microbiol. 12:8530962022. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Grigg JB and Sonnenberg GF:
Host-microbiota interactions shape local and systemic inflammatory
diseases. J Immunol. 198:564–571. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Salvo-Romero E, Stokes P and Gareau MG:
Microbiota-immune interactions: From gut to brain. Lymphosign J.
7:1–23. 2020. View Article : Google Scholar
|
|
27
|
Zheng D, Liwinski T and Elinav E:
Interaction between microbiota and immunity in health and disease.
Cell Res. 30:492–506. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Averina OV, Zorkina YA, Yunes RA, Kovtun
AS, Ushakova VM, Morozova AY, Kostyuk GP, Danilenko VN and
Chekhonin VP: Bacterial metabolites of human gut microbiota
correlating with depression. Int J Mol Sci. 21:92342020. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Parker A, Fonseca S and Carding SR: Gut
microbes and metabolites as modulators of blood-brain barrier
integrity and brain health. Gut Microbes. 11:135–157. 2020.
View Article : Google Scholar :
|
|
30
|
Dalile B, Van Oudenhove L, Vervliet B and
Verbeke K: The role of short-chain fatty acids in
microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol.
16:461–478. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Gibson JA, Sladen GE and Dawson AM:
Protein absorption and ammonia production: The effects of dietary
protein and removal of the colon. Br J Nutr. 35:61–65. 1976.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Tan JK, Macia L and Mackay CR: Dietary
fiber and SCFAs in the regulation of mucosal immunity. J Allergy
Clin Immunol. 151:361–370. 2023. View Article : Google Scholar
|
|
33
|
Fock E and Parnova R: Mechanisms of
blood-brain barrier protection by microbiota-derived short-chain
fatty acids. Cells. 12:6572023. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Ikeda T, Nishida A, Yamano M and Kimura I:
Short-chain fatty acid receptors and gut microbiota as therapeutic
targets in metabolic, immune, and neurological diseases. Pharmacol
Ther. 239:1082732022. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Li Y, Shao L, Mou Y, Zhang Y and Ping Y:
Sleep, circadian rhythm and gut microbiota: Alterations in
Alzheimer's disease and their potential links in the pathogenesis.
Gut Microbes. 13:19574072021. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Zhu R, Fang Y, Li H, Liu Y, Wei J, Zhang
S, Wang L, Fan R, Wang L, Li S and Chen T: Psychobiotic
Lactobacillus plantarum JYLP-326 relieves anxiety, depression, and
insomnia symptoms in test anxious college via modulating the gut
microbiota and its metabolism. Front Immunol. 14:11581372023.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Li Y, Zhang B, Zhou Y, Wang D, Liu X, Li
L, Wang T, Zhang Y, Jiang M, Tang H, et al: Gut microbiota changes
and their relationship with inflammation in patients with acute and
chronic insomnia. Nat Sci Sleep. 12:895–905. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Shimizu Y, Yamamura R, Yokoi Y, Ayabe T,
Ukawa S and Nakamura K, Okada E, Imae A, Nakagawa T, Tamakoshi A
and Nakamura K: Shorter sleep time relates to lower human defensin
5 secretion and compositional disturbance of the intestinal
microbiota accompanied by decreased short-chain fatty acid
production. Gut Microbes. 15:21903062023. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Zuraikat FM, Wood RA, Barragán R and
St-Onge MP: Sleep and diet: Mounting evidence of a cyclical
relationship. Annu Rev Nutr. 41:309–332. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Wikoff WR, Anfora AT, Liu J, Schultz PG,
Lesley SA, Peters EC and Siuzdak G: Metabolomics analysis reveals
large effects of gut microflora on mammalian blood metabolites.
Proc Natl Acad Sci USA. 106:3698–3703. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Dicks LMT: Gut bacteria and
neurotransmitters. Microorganisms. 10:18382022. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Liu N, Sun S, Wang P, Sun Y, Hu Q and Wang
X: The mechanism of secretion and metabolism of gut-derived
5-hydroxytryptamine. Int J Mol Sci. 22:79312021. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Gao K, Mu CL, Farzi A and Zhu WY:
Tryptophan metabolism: A link between the gut microbiota and brain.
Adv Nutr. 11:709–723. 2020. View Article : Google Scholar :
|
|
44
|
Xie Y, Wang C, Zhao D, Wang C and Li C:
Dietary proteins regulate serotonin biosynthesis and catabolism by
specific gut microbes. J Agric Food Chem. 68:5880–5890. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Parkar SG, Kalsbeek A and Cheeseman JF:
Potential role for the gut microbiota in modulating host circadian
rhythms and metabolic health. Microorganisms. 7:412019. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Gershon MD and Tack J: The serotonin
signaling system: From basic understanding to drug development for
functional GI disorders. Gastroenterology. 132:397–414. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Latorre E, Mendoza C, Matheus N, Castro M,
Grasa L, Mesonero JE and Alcalde AI: IL-10 modulates serotonin
transporter activity and molecular expression in intestinal
epithelial cells. Cytokine. 61:778–784. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Buey B, Forcén A, Grasa L, Layunta E,
Mesonero JE and Latorre E: Gut microbiota-derived short-chain fatty
acids: Novel regulators of intestinal serotonin transporter. Life
(Basel). 13:10852023.PubMed/NCBI
|
|
49
|
Cai J, Cheung J, Cheung SWM, Chin KTC,
Leung RWK, Lam RST, Sharma R, Yiu JHC and Woo CW: Butyrate acts as
a positive allosteric modulator of the 5-HT transporter to decrease
availability of 5-HT in the ileum. Br J Pharmacol. 181:1654–1670.
2024. View Article : Google Scholar
|
|
50
|
Dicks LMT: Our mental health is determined
by an intrinsic interplay between the central nervous system,
enteric nerves, and gut microbiota. Int J Mol Sci. 25:382023.
View Article : Google Scholar
|
|
51
|
Wei L, Singh R and Ghoshal UC:
Enterochromaffin cells-gut microbiota crosstalk: Underpinning the
symptoms, pathogenesis, and pharmacotherapy in disorders of
gut-brain interaction. J Neurogastroenterol Motil. 28:357–375.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Guo X, Yin C, Yang F, Zhang Y, Huang H,
Wang J, Deng B, Cai T, Rao Y and Xi R: The cellular diversity and
transcription factor code of Drosophila enteroendocrine cells. Cell
Rep. 29:4172–4185.e5. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Ye L, Bae M, Cassilly CD, Jabba SV, Thorpe
DW, Martin AM, Lu HY, Wang J, Thompson JD, Lickwar CR, et al:
Enteroendocrine cells sense bacterial tryptophan catabolites to
activate enteric and vagal neuronal pathways. Cell Host Microbe.
29:179–196.e9. 2021. View Article : Google Scholar :
|
|
54
|
Gao T, Wang Z, Cao J, Dong Y and Chen Y:
Melatonin alleviates oxidative stress in sleep deprived mice:
Involvement of small intestinal mucosa injury. Int Immunopharmacol.
78:1060412020. View Article : Google Scholar
|
|
55
|
Gao T, Wang Z, Dong Y, Cao J, Lin R, Wang
X, Yu Z and Chen Y: Role of melatonin in sleep deprivation-induced
intestinal barrier dysfunction in mice. J Pineal Res.
67:e125742019. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Yu H, Lin L, Zhang Z, Zhang H and Hu H:
Targeting NF-κB pathway for the therapy of diseases: Mechanism and
clinical study. Signal Transduct Target Ther. 5:2092020. View Article : Google Scholar
|
|
57
|
Wu Z, Liu L, Li L, Cao X, Jia W, Liao X,
Zhao Z, Qi H, Fan G, Lu H, et al: Oral nano-antioxidants improve
sleep by restoring intestinal barrier integrity and preventing
systemic inflammation. Natl Sci Rev. 10:nwad3092023. View Article : Google Scholar
|
|
58
|
Veler H: Sleep and inflammation:
Bidirectional relationship. Sleep Med Clin. 18:213–218. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Yang Y, Gu K, Meng C, Li J, Lu Q, Zhou X,
Yan D, Li D, Pei C, Lu Y, et al: Relationship between sleep and
serum inflammatory factors in patients with major depressive
disorder. Psychiatry Res. 329:1155282023. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Wang Z, Chen WH, Li SX, He ZM, Zhu WL, Ji
YB, Wang Z, Zhu XM, Yuan K, Bao YP, et al: Gut microbiota modulates
the inflammatory response and cognitive impairment induced by sleep
deprivation. Mol Psychiatry. 26:6277–6292. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Su H, Zhang C, Zou X, Lu F, Zeng Y, Guan
H, Ren Y, Yuan F, Xu L, Zhang M and Dong H: Jiao-tai-wan inhibits
inflammation of the gut-brain-axis and attenuates cognitive
impairment in insomnic rats. J Ethnopharmacol. 250:1124782020.
View Article : Google Scholar
|
|
62
|
Hergenhan S, Holtkamp S and Scheiermann C:
Molecular interactions between components of the circadian clock
and the immune system. J Mol Biol. 432:3700–3713. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Zhao Z, Ning J, Bao XQ, Shang M, Ma J, Li
G and Zhang D: Fecal microbiota transplantation protects
rotenone-induced Parkinson's disease mice via suppressing
inflammation mediated by the lipopolysaccharide-TLR4 signaling
pathway through the microbiota-gut-brain axis. Microbiome.
9:2262021. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
McCuaig B and Goto Y: Immunostimulating
commensal bacteria and their potential use as therapeutics. Int J
Mol Sci. 24:156442023. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Mohawk JA, Green CB and Takahashi JS:
Central and peripheral circadian clocks in mammals. Annu Rev
Neurosci. 35:445–462. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Prinz M, Jung S and Priller J: Microglia
biology: One century of evolving concepts. Cell. 179:292–311. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Horng S, Therattil A, Moyon S, Gordon A,
Kim K, Argaw AT, Hara Y, Mariani JN, Sawai S, Flodby P, et al:
Astrocytic tight junctions control inflammatory CNS lesion
pathogenesis. J Clin Invest. 127:3136–3151. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Gudkov SV, Burmistrov DE, Kondakova EV,
Sarimov RM, Yarkov RS, Franceschi C and Vedunova MV: An emerging
role of astrocytes in aging/neuroinflammation and gut-brain axis
with consequences on sleep and sleep disorders. Ageing Res Rev.
83:1017752023. View Article : Google Scholar
|
|
69
|
Wang X, Wang Z, Cao J, Dong Y and Chen Y:
Gut microbiota-derived metabolites mediate the neuroprotective
effect of melatonin in cognitive impairment induced by sleep
deprivation. Microbiome. 11:172023. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Zhang L, Ko CY and Zeng YM:
Immunoregulatory effect of short-chain fatty acids from gut
microbiota on obstructive sleep apnea-associated hypertension. Nat
Sci Sleep. 14:393–405. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Mowat AM and Agace WW: Regional
specialization within the intestinal immune system. Nat Rev
Immunol. 14:667–685. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Nastasi C, Candela M, Bonefeld CM, Geisler
C, Hansen M, Krejsgaard T, Biagi E, Andersen MH, Brigidi P, Ødum N,
et al: The effect of short-chain fatty acids on human
monocyte-derived dendritic cells. Sci Rep. 5:161482015. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Gao J, Xu K, Liu H, Liu G, Bai M, Peng C,
Li T and Yin Y: Impact of the gut microbiota on intestinal immunity
mediated by tryptophan metabolism. Front Cell Infect Microbiol.
8:132018. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Szelest M, Walczak K and Plech T: A new
insight into the potential role of tryptophan-derived AhR ligands
in skin physiological and pathological processes. Int J Mol Sci.
22:11042021. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Sun M, Ma N, He T, Johnston LJ and Ma X:
Tryptophan (Trp) modulates gut homeostasis via aryl hydrocarbon
receptor (AhR). Crit Rev Food Sci Nutr. 60:1760–1768. 2020.
View Article : Google Scholar
|
|
76
|
Nicolas GR and Chang PV: Deciphering the
chemical lexicon of host-gut microbiota interactions. Trends
Pharmacol Sci. 40:430–445. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Xie L, Wu Q, Li K, Khan MAS, Zhang A,
Sinha B, Li S, Chang SL, Brody DL, Grinstaff MW, et al: Tryptophan
metabolism in Alzheimer's disease with the involvement of microglia
and astrocyte crosstalk and gut-brain axis. Aging Dis.
15:2168–2190. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Rothhammer V, Borucki DM, Tjon EC,
Takenaka MC, Chao CC, Ardura-Fabregat A, de Lima KA,
Gutiérrez-Vázquez C, Hewson P, Staszewski O, et al: Microglial
control of astrocytes in response to microbial metabolites. Nature.
557:724–728. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Rothhammer V, Mascanfroni ID, Bunse L,
Takenaka MC, Kenison JE, Mayo L, Chao CC, Patel B, Yan R, Blain M,
et al: Type I interferons and microbial metabolites of tryptophan
modulate astrocyte activity and central nervous system inflammation
via the aryl hydrocarbon receptor. Nat Med. 22:586–597. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Marsland BJ: Regulating inflammation with
microbial metabolites. Nat Med. 22:581–583. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Wang P, Sun H, Maitiabula G, Zhang L, Yang
J, Zhang Y, Gao X, Li J, Xue B, Li CJ and Wang X: Total parenteral
nutrition impairs glucose metabolism by modifying the gut
microbiome. Nat Metab. 5:331–348. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Chimerel C, Emery E, Summers DK, Keyser U,
Gribble FM and Reimann F: Bacterial metabolite indole modulates
incretin secretion from intestinal enteroendocrine L cells. Cell
Rep. 9:1202–1208. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Taati M, Barzegar PEF and Raisi A:
Exercise improves spatial learning and memory performance through
the central GLP-1 receptors. Behav Neurol. 2022:29006282022.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Budni J, Bellettini-Santos T, Mina F,
Garcez ML and Zugno AI: The involvement of BDNF, NGF and GDNF in
aging and Alzheimer's disease. Aging Dis. 6:331–341. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Athauda D and Foltynie T: Protective
effects of the GLP-1 mimetic exendin-4 in Parkinson's disease.
Neuropharmacology. 136:260–270. 2018. View Article : Google Scholar
|
|
86
|
van Bloemendaal L, Ten Kulve JS, la Fleur
SE, Ijzerman RG and Diamant M: Effects of glucagon-like peptide 1
on appetite and body weight: focus on the CNS. J Endocrinol.
221:T1–T16. 2014. View Article : Google Scholar
|
|
87
|
Mir FA and Jha SK: The Kir channel in the
nucleus tractus solitarius integrates the chemosensory system with
REM sleep executive machinery for homeostatic balance. Sci Rep.
14:216512024. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Zheng D, Ratiner K and Elinav E: Circadian
influences of diet on the microbiome and immunity. Trends Immunol.
41:512–530. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Kuang Z, Wang Y, Li Y, Ye C, Ruhn KA,
Behrendt CL, Olson EN and Hooper LV: The intestinal microbiota
programs diurnal rhythms in host metabolism through histone
deacetylase 3. Science. 365:1428–1434. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Ni Y, Ma L, Wu T, Lim AL, Zhang W, Yang L,
Nakao Y and Fu Z: The involvement of sympathetic nervous system in
essence of chicken-facilitated physiological adaption and circadian
resetting. Life Sci. 201:54–62. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Nobs SP, Tuganbaev T and Elinav E:
Microbiome diurnal rhythmicity and its impact on host physiology
and disease risk. EMBO Rep. 20:e471292019. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Thaiss CA, Levy M, Korem T, Dohnalová L,
Shapiro H, Jaitin DA, David E, Winter DR, Gury-BenAri M, Tatirovsky
E, et al: Microbiota diurnal rhythmicity programs host
transcriptome oscillations. Cell. 167:1495–1510.e12. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Zhang Y, Li Y, Yuan Y, Wang J, Zhang S,
Zhu R, Wang Y, Wu Y, Liao X and Mi J: Reducing light exposure
enhances the circadian rhythm of the biological clock through
interactions with the gut microbiota. Sci Total Environ.
858:1600412023. View Article : Google Scholar
|
|
94
|
Singh K, Jha NK and Thakur A:
Spatiotemporal chromatin dynamics-A telltale of circadian
epigenetic gene regulation. Life Sci. 221:377–391. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Xiong L, Zhou W and Mas P: Illuminating
the Arabidopsis circadian epigenome: Dynamics of histone
acetylation and deacetylation. Curr Opin Plant Biol. 69:1022682022.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Tahara Y, Yamazaki M, Sukigara H,
Motohashi H, Sasaki H, Miyakawa H, Haraguchi A, Ikeda Y, Fukuda S
and Shibata S: Gut microbiota-derived short chain fatty acids
induce circadian clock entrainment in mouse peripheral tissue. Sci
Rep. 8:13952018. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Fawad JA, Luzader DH, Hanson GF, Moutinho
TJ Jr, McKinney CA, Mitchell PG, Brown-Steinke K, Kumar A, Park M,
Lee S, et al: Histone deacetylase inhibition by gut
microbe-generated short-chain fatty acids entrains intestinal
epithelial circadian rhythms. Gastroenterology. 163:1377–1390.e11.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Kim DS, Woo JS, Min HK, Choi JW, Moon JH,
Park MJ, Kwok SK, Park SH and Cho ML: Short-chain fatty acid
butyrate induces IL-10-producing B cells by regulating
circadian-clock-related genes to ameliorate Sjögren's syndrome. J
Autoimmun. 119:1026112021. View Article : Google Scholar
|
|
99
|
Jin UH, Lee SO, Sridharan G, Lee K,
Davidson LA, Jayaraman A, Chapkin RS, Alaniz R and Safe S:
Microbiome-derived tryptophan metabolites and their aryl
hydrocarbon receptor-dependent agonist and antagonist activities.
Mol Pharmacol. 85:777–788. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Tischkau SA: Mechanisms of circadian clock
interactions with aryl hydrocarbon receptor signalling. Eur J of
Neurosci. 51:379–395. 2020. View Article : Google Scholar
|
|
101
|
Salminen A: Aryl hydrocarbon receptor
(AhR) impairs circadian regulation: Impact on the aging process.
Ageing Res Rev. 87:1019282023. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Petrus P, Cervantes M, Samad M, Sato T,
Chao A, Sato S, Koronowski KB, Park G, Alam Y, Mejhert N, et al:
Tryptophan metabolism is a physiological integrator regulating
circadian rhythms. Mol Metab. 64:1015562022. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Axelrod S, Li X, Sun Y, Lincoln S,
Terceros A, O'Neil J, Wang Z, Nguyen A, Vora A, Spicer C, et al:
The Drosophila blood-brain barrier regulates sleep via Moody G
protein-coupled receptor signaling. Proc Natl Acad Sci USA.
120:e23093311202023. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Pardridge WM and Fierer G: Transport of
tryptophan into brain from the circulating, albumin-bound pool in
rats and in rabbits. J Neurochem. 54:971–976. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Sun N, Hu H, Wang F, Li L, Zhu W, Shen Y,
Xiu J and Xu Q: Antibiotic-induced microbiome depletion in adult
mice disrupts blood-brain barrier and facilitates brain
infiltration of monocytes after bone-marrow transplantation. Brain
Behav Immun. 92:102–114. 2021. View Article : Google Scholar
|
|
106
|
Fröhlich EE, Farzi A, Mayerhofer R,
Reichmann F, Jačan A, Wagner B, Zinser E, Bordag N, Magnes C,
Fröhlich E, et al: Cognitive impairment by antibiotic-induced gut
dysbiosis: Analysis of gut microbiota-brain communication. Brain
Behav Immun. 56:1402016. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Wen J, Ding Y, Wang L and Xiao Y: Gut
microbiome improves postoperative cognitive function by decreasing
permeability of the blood-brain barrier in aged mice. Brain Res
Bull. 164:249–256. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Praveenraj SS, Sonali S, Anand N, Tousif
HA, Vichitra C, Kalyan M, Kanna PV, Chandana KA, Shasthara P,
Mahalakshmi AM, et al: The role of a gut microbial-derived
metabolite, trimethylamine N-oxide (TMAO), in neurological
disorders. Mol Neurobiol. 59:6684–6700. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Wallace TC, Blusztajn JK, Caudill MA,
Klatt KC, Natker E, Zeisel SH and Zelman KM: Choline: The
underconsumed and underappreciated essential nutrient. Nutr Today.
53:240–253. 2018. View Article : Google Scholar
|
|
110
|
Janeiro MH, Ramírez MJ, Milagro FI,
Martínez JA and Solas M: Implication of trimethylamine N-Oxide
(TMAO) in disease: Potential biomarker or new therapeutic target.
Nutrients. 10:13982018. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Hoyles L, Pontifex MG, Rodriguez-Ramiro I,
Anis-Alavi MA, Jelane KS, Snelling T, Solito E, Fonseca S, Carvalho
AL, Carding SR, et al: Regulation of blood-brain barrier integrity
by microbiome-associated methylamines and cognition by
trimethylamine N-oxide. Microbiome. 9:2352021. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Badran M, Khalyfa A, Ericsson AC, Puech C,
McAdams Z, Bender SB and Gozal D: Gut microbiota mediate vascular
dysfunction in a murine model of sleep apnoea: Effect of
probiotics. Eur Respir J. 61:22000022023. View Article : Google Scholar
|
|
113
|
Gamage AM, Liao C, Cheah IK, Chen Y, Lim
DRX, Ku JWK, Chee RSL, Seebeck MGFP, Halliwell B and Gan YH: The
proteobacterial species Burkholderia pseudomallei produces
ergothioneine, which enhances virulence in mammalian infection.
FASEB J. 32:6395–6409. 2018. View Article : Google Scholar
|
|
114
|
Kalaras MD, Richie JP, Calcagnotto A and
Beelman RB: Mushrooms: A rich source of the antioxidants
ergothioneine and glutathione. Food Chem. 233:429–433. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Vallianatou T, Lin W, Bèchet NB, Correia
MS, Shanbhag NC, Lundgaard I and Globisch D: Differential
regulation of oxidative stress, microbiota-derived, and energy
metabolites in the mouse brain during sleep. J Cereb Blood Flow
Metab. 41:3324–3338. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Cheah IK and Halliwell B: Ergothioneine,
recent developments. Redox Biol. 42:1018682021. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Matsuda Y, Ozawa N, Shinozaki T,
Wakabayashi KI, Suzuki K, Kawano Y, Ohtsu I and Tatebayashi Y:
Ergothioneine, a metabolite of the gut bacterium Lactobacillus
reuteri, protects against stress-induced sleep disturbances. Transl
Psychiatry. 10:1702020. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Buret AG, Allain T, Motta JP and Wallace
JL: Effects of hydrogen sulfide on the microbiome: From toxicity to
therapy. Antioxid Redox Signal. 36:211–219. 2022. View Article : Google Scholar :
|
|
119
|
Tudor JC, Davis EJ, Peixoto L, Wimmer ME,
van Tilborg E, Park AJ, Poplawski SG, Chung CW, Havekes R, Huang J,
et al: Sleep deprivation impairs memory by attenuating
mTORC1-dependent protein synthesis. Sci Signal. 9:ra412016.
View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Wei HJ, Xu JH, Li MH, Tang JP, Zou W,
Zhang P, Wang L, Wang CY and Tang XQ: Hydrogen sulfide inhibits
homocysteine-induced endoplasmic reticulum stress and neuronal
apoptosis in rat hippocampus via upregulation of the BDNF-TrkB
pathway. Acta Pharmacol Sin. 35:707–715. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Kang X, Jiang L, Lan F, Tang YY, Zhang P,
Zou W, Chen YJ and Tang XQ: Hydrogen sulfide antagonizes sleep
deprivation-induced depression- and anxiety-like behaviors by
inhibiting neuroinflammation in a hippocampal Sirt1-dependent
manner. Brain Res Bull. 177:194–202. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Caspani G and Swann J: Small talk:
Microbial metabolites involved in the signaling from microbiota to
brain. Curr Opinion Pharmacol. 48:99–106. 2019. View Article : Google Scholar
|
|
123
|
Bowers SJ, Vargas F, González A, He S,
Jiang P, Dorrestein PC, Knight R, Wright KP Jr, Lowry CA, Fleshner
M, et al: Repeated sleep disruption in mice leads to persistent
shifts in the fecal microbiome and metabolome. PLoS One.
15:e02290012020. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Fang D, Xu T, Sun J, Shi J, Li F, Yin Y,
Wang Z and Liu Y: Nicotinamide mononucleotide ameliorates sleep
deprivation-induced gut microbiota dysbiosis and restores
colonization resistance against intestinal infections. Adv Sci
(Weinh). 10:22071702023. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Zielinski MR, McKenna JT and McCarley RW:
Functions and mechanisms of sleep. AIMS Neurosci. 3:67–104. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Kalinchuk AV, McCarley RW,
Porkka-Heiskanen T and Basheer R: The time course of adenosine,
nitric oxide (NO) and inducible NO synthase changes in the brain
with sleep loss and their role in the non-rapid eye movement sleep
homeostatic cascade. J Neurochem. 116:260–272. 2011. View Article : Google Scholar
|
|
127
|
Chen L, Majde JA and Krueger JM:
Spontaneous sleep in mice with targeted disruptions of neuronal or
inducible nitric oxide synthase genes. Brain Res. 973:214–222.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Porkka-Heiskanen T, Strecker RE, Thakkar
M, Bjørkum AA, Greene RW and McCarley RW: Adenosine: A mediator of
the sleep-inducing effects of prolonged wakefulness. Science.
276:1265–1268. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Marini S, Santangeli O, Saarelainen P,
Middleton B, Chowdhury N, Skene DJ, Costa R, Porkka-Heiskanen T and
Montagnese S: Abnormalities in the polysomnographic, adenosine and
metabolic response to sleep deprivation in an animal model of
hyperammonemia. Front Physiol. 8:6362017. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Aburto MR and Cryan JF: Gastrointestinal
and brain barriers: Unlocking gates of communication across the
microbiota-gut-brain axis. Nat Rev Gastroenterol Hepatol.
21:222–247. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Schroeder S, Hofer SJ, Zimmermann A,
Pechlaner R, Dammbrueck C, Pendl T, Marcello GM, Pogatschnigg V,
Bergmann M, Müller M, et al: Dietary spermidine improves cognitive
function. Cell Rep. 35:1089852021. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Bedont JL, Kolesnik A, Pivarshev P, Malik
D, Hsu CT, Weljie A and Sehgal A: Chronic sleep loss sensitizes
Drosophila melanogaster to nitrogen stress. Curr Biol.
33:1613–1623.e5. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Ren H, Kong X, Zhang Y, Deng F, Li J, Zhao
F, Li P, Pei K, Tan J, Cheng Y, et al: The therapeutic potential of
Ziziphi Spinosae Semen and Polygalae Radix in insomnia management:
Insights from gut microbiota and serum metabolomics techniques. J
Ethnopharmacol. 330:1182552024. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Sun Y, Chen S, Wei R, Xie X, Wang C, Fan
S, Zhang X, Su J, Liu J, Jia W and Wang X: Metabolome and gut
microbiota variation with long-term intake of Panax ginseng
extracts on rats. Food Funct. 9:3547–3556. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Qiao T, Wang Y, Liang K, Zheng B, Ma J, Li
F, Liu C, Zhu M and Song M: Effects of the Radix Ginseng and Semen
Ziziphi Spinosae drug pair on the GLU/GABA-GLN metabolic cycle and
the intestinal microflora of insomniac rats based on the brain-gut
axis. Front Pharmacol. 13:10945072022. View Article : Google Scholar
|
|
136
|
Hao KX, Shen CY and Jiang JG: Sedative and
hypnotic effects of Polygala tenuifolia willd. Saponins on insomnia
mice and their targets. J Ethnopharmacol. 323:1176182024.
View Article : Google Scholar
|
|
137
|
Fasina OB, Wang J, Mo J, Osada H, Ohno H,
Pan W, Xiang L and Qi J: Gastrodin from gastrodia elata enhances
cognitive function and neuroprotection of AD mice via the
regulation of gut microbiota composition and inhibition of neuron
inflammation. Front Pharmacol. 13:8142712022. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Liu B, Li F, Xu Y, Wu Q and Shi J:
Gastrodin improves cognitive dysfunction in REM sleep-deprived rats
by regulating TLR4/NF-κB and Wnt/β-catenin signaling pathways.
Brain Sci. 13:1792023. View Article : Google Scholar
|
|
139
|
Zhu C, Zhang Z, Wang S and Sun Z: Study on
the mechanism of Gastrodiae Rhizoma, Lycii Fructus, and Ziziphi
Spinosae Semen in sedation and tranquillising mind. Mol Divers.
28:3279–3294. 2024. View Article : Google Scholar
|
|
140
|
Chang HH, Yi PL, Cheng CH, Lu CY, Hsiao
YT, Tsai YF, Li CL and Chang FC: Biphasic effects of baicalin, an
active constituent of Scutellaria baicalensis Georgi, in the
spontaneous sleep-wake regulation. J Ethnopharmacol. 135:359–368.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Wan S, Wang L, Hao Z, Zhu L, Mao X, Li H,
Sun P, Yin W, Fan K, Zhang H, et al: Baicalin ameliorates the gut
barrier function and intestinal microbiota of broiler chickens.
Acta Biochim Biophys Sin (Shanghai). 56:634–644. 2024.PubMed/NCBI
|
|
142
|
Yao C, Wang Z, Jiang H, Yan R, Huang Q,
Wang Y, Xie H, Zou Y, Yu Y and Lv L: Ganoderma lucidum promotes
sleep through a gut microbiota-dependent and serotonin-involved
pathway in mice. Sci Rep. 11:136602021. View Article : Google Scholar : PubMed/NCBI
|