Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
September-2025 Volume 56 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2025 Volume 56 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Effects of anti‑VEGF on peripapillary retinal nerve fiber layer and papillary/peripapillary blood circulation in retinopathies (Review)

  • Authors:
    • Hongwei Wang
    • Renfeng Ding
    • Wenya Jiang
    • Siyi Li
    • Yijuan Wu
    • Junfeng Mao
    • Yanan Chen
    • Peng Sun
    • Mengqi Shi
  • View Affiliations / Copyright

    Affiliations: Department of Ophthalmology, Jingjiang People's Hospital Affiliated to Yangzhou University, Taizhou, Jiangsu 214500, P.R. China, Department of Ophthalmology, The Jiamusi Center Hospital, Jiamusi, Heilongjiang 154002, P.R. China, Department of Ophthalmology, Taizhou Fourth People's Hospital, Taizhou, Jiangsu 225300, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 133
    |
    Published online on: July 2, 2025
       https://doi.org/10.3892/ijmm.2025.5574
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Vascular endothelial growth factor (VEGF) is an endothelial cell‑specific angiogenic factor. VEGF is involved in vasodilatation, nerve protection and retinal development and maturation. Over‑expression of VEGF is closely associated with retinopathies, such as retinal vein occlusion, diabetic retinopathy, age‑related macular degeneration and diabetic macular edema. Intravitreal injections of anti‑VEGFs are widely used in the treatment of retinopathies to reduce the angiogenesis and the macular edema. Hypothetically, repeated anti‑VEGF injections for retinopathies should interfere with the neuroprotective function of VEGF and might induce the vasoconstriction with a subsequent decrease in the ocular perfusion. These two could affect the optic nerve. The peripapillary retinal nerve fiber layer (p‑RNFL) thinning and the decreased papillary/peripapillary blood circulation can show the optic nerve damage earlier. In the present review, the effects of anti‑VEGFs on p‑RNFL and papillary/peripapillary blood circulation in retinopathies were comprehensively summarized and analyzed to explore whether the anti‑VEGFs cause damages to the optic nerve. The present review provided a detailed evaluation and analysis of the changes in p‑RNFL thickness, papillary/peripapillary blood circulation and intraocular pressure and the correlations between these changes with the number and type of anti‑VEGFs in 3,078 affected eyes and 520 fellow eyes with retinopathies. The present review sought to establish a foundation for the intravitreal administration of anti‑VEGFs and efficacy monitoring of the possible side effects on the optic nerve.
View Figures

Figure 1

A schematic representation of reasons
for effects of anti-VEGF on p-RNFL. The figure was created using
the word drawing tool (Eye structure from Baidu). VEGF, vascular
endothelial growth factor; p-RNFL, peripapillary retinal nerve
fiber layer; IOP, intraocular pressure.

Figure 2

A schematic representation of reasons
for effects of anti-VEGF on papillary/peripapillary blood
circulation. The figure was created using the word drawing tool
(Eye structure from Baidu). VEGF, vascular endothelial growth
factor; IOP, intraocular pressure.
View References

1 

Keck PJ, Hauser SD, Krivi G, Sanzo K, Warren T, Feder J and Connolly DT: Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science. 246:1309–1312. 1989. View Article : Google Scholar : PubMed/NCBI

2 

Wang Y, Mao XO, Xie L, Banwait S, Marti HH, Greenberg DA and Jin K: Vascular endothelial growth factor overexpression delays neurodegeneration and prolongs survival in amyotrophic lateral sclerosis mice. J Neurosci. 27:304–307. 2007. View Article : Google Scholar : PubMed/NCBI

3 

Du Y, Chen Q, Huang L, Wang S, Yin X, Zhou L, Ye Z, Ren X, Cai Y, Ding X, et al: VEGFR2 and VEGF-C suppresses the epithelial-mesenchymal transition via YAP in retinal pigment epithelial cells. Curr Mol Med. 18:273–286. 2018. View Article : Google Scholar : PubMed/NCBI

4 

Saint-Geniez M, Maharaj AS, Walshe TE, Tucker BA, Sekiyama E, Kurihara T, Darland DC, Young MJ and D'Amore PA: Endogenous VEGF is required for visual function: evidence for a survival role on müller cells and photoreceptors. PLoS One. 3:e35542008. View Article : Google Scholar

5 

Aiello LP, Avery RL, Arrigg PG, Keyt BA, Jampel HD, Shah ST, Pasquale LR, Thieme H, Iwamoto MA and Park JE: Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med. 331:1480–1487. 1994. View Article : Google Scholar : PubMed/NCBI

6 

Gunay BO and Esenulku CM: Retinal nerve fibre layer and ganglion cell layer thickness changes following intravitreal aflibercept for age-related macular degeneration. Cutan Ocul Toxicol. 41:91–97. 2022. View Article : Google Scholar : PubMed/NCBI

7 

Arumuganathan N, Wiest MRJ, Toro MD, Hamann T, Fasler K and Zweifel SA: Acute and subacute macular and peripapillary angiographic changes in choroidal and retinal blood flow post-intravitreal injections. Sci Rep. 11:19381"2021. View Article : Google Scholar : PubMed/NCBI

8 

Cheung CMG, Teo KYC, Tun SBB, Busoy JM, Veluchamy AB and Spaide RF: Differential reperfusion patterns in retinal vascular plexuses following increase in intraocular pressure an OCT angiography study. Sci Rep. 10:165052020. View Article : Google Scholar : PubMed/NCBI

9 

Gómez-Mariscal M, Muñoz-Negrete FJ and Rebolleda Fernández G: Effects of intravitreal anti-VEGF therapy on glaucoma-like progression in susceptible eyes. J Glaucoma. 29:e54–e55. 2020. View Article : Google Scholar : PubMed/NCBI

10 

Jonas JB, Budde WM and Panda-Jonas S: Ophthalmoscopic evaluation of the optic nerve head. Surv Ophthalmol. 43:293–320. 1999. View Article : Google Scholar : PubMed/NCBI

11 

Alasil T, Wang K, Yu F, Field MG, Lee H, Baniasadi N, de Boer JF, Coleman AL and Chen TC: Correlation of retinal nerve fiber layer thickness and visual fields in glaucoma: A broken stick model. Am J Ophthalmol. 157:953–959. 2014. View Article : Google Scholar : PubMed/NCBI

12 

Sugimoto M, Nunome T, Sakamoto R, Kobayashi M and Kondo M: Effect of intravitreal ranibizumab on the ocular circulation of the untreated fellow eye. Graefes Arch Clin Exp Ophthalmol. 255:1543–1550. 2017. View Article : Google Scholar : PubMed/NCBI

13 

Reinhard J, Renner M, Wiemann S, Shakoor DA, Stute G, Dick HB, Faissner A and Joachim SC: Ischemic injury leads to extracellular matrix alterations in retina and optic nerve. Sci Rep. 7:434702017. View Article : Google Scholar : PubMed/NCBI

14 

Salminen A, Kauppinen A, Hyttinen JM, Toropainen E and Kaarniranta K: Endoplasmic reticulum stress in age-related macular degeneration: Trigger for neovascularization. Mol Med. 16:535–542. 2010. View Article : Google Scholar : PubMed/NCBI

15 

Kruk J, Kubasik-Kladna K and Aboul-Enein HY: The role oxidative stress in the pathogenesis of eye diseases: Current status and a dual role of physical activity. Mini Rev Med Chem. 16:241–257. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Gao G, Li Y, Zhang D, Gee S, Crosson C and Ma J: Unbalanced expression of VEGF and PEDF in ischemia-induced retinal neovascularization. FEBS Lett. 489:270–276. 2001. View Article : Google Scholar : PubMed/NCBI

17 

Angayarkanni N, Selvi R, Pukhraj R, Biswas J, Bhavesh SJ and Tombran-Tink J: Ratio of the vitreous vascular endothelial growth factor and pigment epithelial-derived factor in Eales disease. J Ocul Biol Dis Infor. 2:20–28. 2009. View Article : Google Scholar

18 

Chen JF, Luo QH, Huang C, Liu WT, Zeng W, Gao Q, Chen P, Chen B and Chen ZL: Expression of VEGF and PEDF in early-stage retinopathy in diabetic Macaca mulatta. Nan Fang Yi Ke Da Xue Xue Bao. 37:1217–1221. 2017.In Chinese. PubMed/NCBI

19 

Yamagishi S and Imaizumi T: Diabetic vascular complications: Pathophysiology, biochemical basis and potential therapeutic strategy. Curr Pharm Des. 11:2279–2299. 2005. View Article : Google Scholar : PubMed/NCBI

20 

Yamagishi S, Matsui T, Nakamura K, Takeuchi M and Imaizumi T: Pigment epithelium-derived factor (PEDF) prevents diabetes- or advanced glycation end products (AGE)-elicited retinal leukostasis. Microvasc Res. 72:86–90. 2006. View Article : Google Scholar : PubMed/NCBI

21 

Yamagishi S, Nakamura K, Matsui T, Inagaki Y, Takenaka K, Jinnouchi Y, Yoshida Y, Matsuura T, Narama I, Motomiya Y, et al: Pigment epithelium-derived factor inhibits advanced glycation end product-induced retinal vascular hyperpermeability by blocking reactive oxygen species-mediated vascular endothelial growth factor expression. J Biol Chem. 281:20213–20220. 2006. View Article : Google Scholar : PubMed/NCBI

22 

Seddon JM, Gensler G, Milton RC, Klein ML and Rifai N: Association between C-reactive protein and age-related macular degeneration. JAMA. 291:704–710. 2004. View Article : Google Scholar : PubMed/NCBI

23 

Hachana S, Fontaine O, Sapieha P, Lesk M, Couture R and Vaucher E: The effects of anti-VEGF and kinin B (1) receptor blockade on retinal inflammation in laser-induced choroidal neovascularization. Br J Pharmacol. 177:1949–1966. 2020. View Article : Google Scholar :

24 

Wang Y, Bian ZM, Yu WZ, Yan Z, Chen WC and Li XX: Induction of interleukin-8 gene expression and protein secretion by C-reactive protein in ARPE-19 cells. Exp Eye Res. 91:135–142. 2010. View Article : Google Scholar : PubMed/NCBI

25 

Lee MY, Park S, Song JY, Ra H, Baek JU and Baek J: Inflammatory cytokines and retinal nonperfusion area in quiescent proliferative diabetic retinopathy. Cytokine. 154:1557742022. View Article : Google Scholar : PubMed/NCBI

26 

Sato T, Takeuchi M, Karasawa Y, Enoki T and Ito M: Intraocular inflammatory cytokines in patients with neovascular age-related macular degeneration before and after initiation of intravitreal injection of anti-VEGF inhibitor. Sci Rep. 8:10982018. View Article : Google Scholar : PubMed/NCBI

27 

Gong C, Qiao L, Feng R, Xu Q, Zhang Y, Fang Z, Shen J and Li S: IL-6-induced acetylation of E2F1 aggravates oxidative damage of retinal pigment epithelial cell line. Exp Eye Res. 200:1082192020. View Article : Google Scholar : PubMed/NCBI

28 

Zhu ZY, Meng YA, Yan B and Luo J: Effect of anti-VEGF treatment on nonperfusion areas in ischemic retinopathy. Int J Ophthalmol. 14:1647–1652. 2021. View Article : Google Scholar : PubMed/NCBI

29 

Metelitsina TI, Grunwald JE, DuPont JC, Ying GS, Brucker AJ and Dunaief JL: Foveolar choroidal circulation and choroidal neovascularization in age-related macular degeneration. Invest Ophthalmol Vis Sci. 49:358–363. 2008. View Article : Google Scholar : PubMed/NCBI

30 

Arjamaa O, Nikinmaa M, Salminen A and Kaarniranta K: Regulatory role of HIF-1alpha in the pathogenesis of age-related macular degeneration (AMD). Ageing Res Rev. 8:349–358. 2009. View Article : Google Scholar : PubMed/NCBI

31 

Feigl B: Age-related maculopathy-linking aetiology and pathophysiological changes to the ischaemia hypothesis. Prog Retin Eye Res. 28:63–86. 2009. View Article : Google Scholar

32 

Roybal CN, Yang S, Sun CW, Hurtado D, Jagt DL, Townes TM and Abcouwer SF: Homocysteine increases the expression of vascular endothelial growth factor by a mechanism involving endoplasmic reticulum stress and transcription factor ATF4. J Biol Chem. 279:14844–14852. 2004. View Article : Google Scholar : PubMed/NCBI

33 

Roybal CN, Hunsaker LA, Barbash O, Jagt DL and Abcouwer SF: The oxidative stressor arsenite activates vascular endothelial growth factor mRNA transcription by an ATF4-dependent mechanism. J Biol Chem. 280:20331–20339. 2005. View Article : Google Scholar : PubMed/NCBI

34 

Fernandes AF, Guo W, Zhang X, Gallagher M, Ivan M, Taylor A, Pereira P and Shang F: Proteasome-dependent regulation of signal transduction in retinal pigment epithelial cells. Exp Eye Res. 83:1472–1481. 2006. View Article : Google Scholar : PubMed/NCBI

35 

Moenner M, Pluquet O, Bouchecareilh M and Chevet E: Integrated endoplasmic reticulum stress responses in cancer. Cancer Res. 67:10631–10634. 2007. View Article : Google Scholar : PubMed/NCBI

36 

Feng Y, Wang C and Wang G: Inhibition of KCTD10 affects diabetic retinopathy progression by reducing VEGF and affecting angiogenesis. Genet Res (Camb). 2022:41123072022. View Article : Google Scholar : PubMed/NCBI

37 

Roybal CN, Marmorstein LY, Jagt DL and Abcouwer SF: Aberrant accumulation of fibulin-3 in the endoplasmic reticulum leads to activation of the unfolded protein response and VEGF expression. Invest Ophthalmol Vis Sci. 46:3973–3979. 2005. View Article : Google Scholar : PubMed/NCBI

38 

Axer-Siegel R, Bourla D, Ehrlich R, Dotan G, Benjamini Y, Gavendo S, Weinberger D and Sela BA: Association of neovascular age-related macular degeneration and hyperhomocysteinemia. Am J Ophthalmol. 137:84–89. 2004. View Article : Google Scholar : PubMed/NCBI

39 

Ji C: Dissection of endoplasmic reticulum stress signaling in alcoholic and non-alcoholic liver injury. J Gastroenterol Hepatol. 23(Suppl 1): S16–S24. 2008. View Article : Google Scholar : PubMed/NCBI

40 

Chong EW, Kreis AJ, Wong TY, Simpson JA and Guymer RH: Alcohol consumption and the risk of age-related macular degeneration: A systematic review and meta-analysis. Am J Ophthalmol. 145:707–715. 2008. View Article : Google Scholar : PubMed/NCBI

41 

Kim LA and D'Amore PA: A brief history of anti-VEGF for the treatment of ocular angiogenesis. Am J Pathol. 181:376–379. 2012. View Article : Google Scholar : PubMed/NCBI

42 

Wichrowska M, Goździewska E and Kocięcki J: The safety of Anti-VEGF treatment, in the context of the retinal nerve fibre layer, in patients with wet age-related macular degeneration: A review. Front Biosci (Landmark Ed). 28:2222023. View Article : Google Scholar : PubMed/NCBI

43 

Fleckenstein M, Keenan TDL, Guymer RH, Chakravarthy U, Schmitz-Valckenberg S, Klaver CC, Wong WT and Chew EY: Age-related macular degeneration. Nat Rev Dis Primers. 7:312021. View Article : Google Scholar : PubMed/NCBI

44 

Dugel PU, Koh A, Ogura Y, Jaffe GJ, Schmidt-Erfurth U, Brown DM, Gomes AV, Warburton J, Weichselberger A and Holz FG; HAWK and HARRIER: Phase 3, multicenter, randomized, double-masked trials of brolucizumab for neovascular age-related macular degeneration. Ophthalmology. 127:72–84. 2020. View Article : Google Scholar

45 

Liberski S, Wichrowska M and Kocięcki J: Aflibercept versus faricimab in the treatment of neovascular age-related macular degeneration and diabetic macular edema: A review. Int J Mol Sci. 23:94242022. View Article : Google Scholar : PubMed/NCBI

46 

Falavarjani KG and Nguyen QD: Adverse events and complications associated with intravitreal injection of anti-VEGF agents: A review of literature. Eye (Lond). 27:787–794. 2013. View Article : Google Scholar : PubMed/NCBI

47 

Tolentino M: Systemic and ocular safety of intravitreal anti-VEGF therapies for ocular neovascular disease. Surv Ophthalmol. 56:95–113. 2011. View Article : Google Scholar : PubMed/NCBI

48 

Bakri SJ, Pulido JS, McCannel CA, Hodge DO, Diehl N and Hillemeier J: Immediate intraocular pressure changes following intravitreal injections of triamcinolone, pegaptanib, and bevacizumab. Eye (Lond). 23:181–185. 2009. View Article : Google Scholar

49 

Gismondi M, Salati C, Salvetat ML, Zeppieri M and Brusini P: Short-term effect of intravitreal injection of Ranibizumab (Lucentis) on intraocular pressure. J Glaucoma. 18:658–661. 2009. View Article : Google Scholar : PubMed/NCBI

50 

Meyer CH, Michels S, Rodrigues EB, Hager A, Mennel S, Schmidt JC, Helb HM and Farah ME: Incidence of rhegmatogenous retinal detachments after intravitreal antivascular endothelial factor injections. Acta Ophthalmol. 89:70–75. 2011. View Article : Google Scholar

51 

Ganssauge M, Wilhelm H, Bartz-Schmidt KU and Aisenbrey S: Non-arteritic anterior ischemic optic neuropathy (NA-AION) after intravitreal injection of bevacizumab (Avastin) for treatment of angoid streaks in pseudoxanthoma elasticum. Graefes Arch Clin Exp Ophthalmol. 247:1707–1710. 2009. View Article : Google Scholar : PubMed/NCBI

52 

Hosseini H and Razeghinejad MR: Anterior ischemic optic neuropathy after intravitreal injection of bevacizumab. J Neuroophthalmol. 29:160–161. 2009. View Article : Google Scholar : PubMed/NCBI

53 

Mansour AM, Bynoe LA, Welch JC, Pesavento R, Mahendradas P, Ziemssen F and Pai SA: Retinal vascular events after intravitreal bevacizumab. Acta Ophthalmol. 88:730–735. 2010. View Article : Google Scholar

54 

Furino C, Boscia F, Cardascia N, Alessio G and Sborgia C: Hemorrhagic macular infarction after intravitreal bevacizumab for central retinal vein occlusion. Ophthalmic Surg Lasers Imaging. 9:1–2. 2010. View Article : Google Scholar

55 

Huang ZL, Lin KH, Lee YC, Sheu MM and Tsai RK: Acute vision loss after intravitreal injection of bevacizumab (avastin) associated with ocular ischemic syndrome. Ophthalmologica. 224:86–89. 2010. View Article : Google Scholar

56 

Cakmak HB, Toklu Y, Yorgun MA and Simşek S: Isolated sixth nerve palsy after intravitreal bevacizumab injection. Strabismus. 18:18–20. 2010. View Article : Google Scholar : PubMed/NCBI

57 

Damasceno NA, Yannuzzi NA, Maia M, Farah ME, Flynn HW Jr and Damasceno EF: Transient central retina artery occlusion in patients undergoing intravitreal anti vegf injections. Eur J Ophthalmol. 32:2819–2823. 2022. View Article : Google Scholar

58 

Wichrowska M, Wichrowski P and Kocięcki J: Morphological and functional assessment of the optic nerve head and retinal ganglion cells in dry vs chronically treated wet age-related macular degeneration. Clin Ophthalmol. 16:2373–2384. 2022. View Article : Google Scholar : PubMed/NCBI

59 

Lim HB, Sung JY, Ahn SI, Jo YJ and Kim JY: Retinal nerve fiber layer thickness in various retinal diseases. Optom Vis Sci. 95:247–255. 2018. View Article : Google Scholar : PubMed/NCBI

60 

Dikmetas O, Gungor G, Kapucu Y, Kocabeyoglu S, Kadayıfcılar S, Eldem B, Karahan S and Cankaya AB: Short-term effect of macular edema on the peripapillary retinal nerve fiber layer in patients with wet age-related macular degeneration and diabetic macular edema: A comparative study. Photodiagnosis Photodyn Ther. 42:1036022023. View Article : Google Scholar : PubMed/NCBI

61 

Martinez-de-la-Casa JM, Ruiz-Calvo A, Saenz-Frances F, Reche-Frutos J, Calvo-Gonzalez C, Donate-Lopez J and Garcia-Feijoo J: Retinal nerve fiber layer thickness changes in patients with age-related macular degeneration treated with intravitreal ranibizumab. Invest Ophthalmol Vis Sci. 53:6214–6218. 2012. View Article : Google Scholar : PubMed/NCBI

62 

Jun SY and Hwang DD: Short-term effect of intravitreal brolucizumab injections in patients with neovascular age-related macular degeneration on retinal nerve fiber layer thickness. Sci Rep. 13:66852023. View Article : Google Scholar : PubMed/NCBI

63 

Valverde-Megías A, Ruiz-Calvo A, Murciano-Cespedosa A, Hernández-Ruiz S, Martínez-de-la-Casa JM and García-Feijoo J: Long-term effect of intravitreal ranibizumab therapy on retinal nerve fiber layer in eyes with exudative age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol. 257:1459–1466. 2019. View Article : Google Scholar : PubMed/NCBI

64 

Parlak M, Oner FH and Saatci AO: The long-term effect of intravitreal ranibizumab on retinal nerve fiber layer thickness in exudative age-related macular degeneration. Int Ophthalmol. 35:473–480. 2015. View Article : Google Scholar

65 

Chauhan BC, Danthurebandara VM, Sharpe GP, Demirel S, Girkin CA, Mardin CY, Scheuerle AF and Burgoyne CF: Bruch's membrane opening minimum rim width and retinal nerve fiber layer thickness in a normal white population: A multicenter study. Ophthalmology. 122:1786–1794. 2015. View Article : Google Scholar : PubMed/NCBI

66 

Boltz A, Spöttl T, Huf W, Weingessel B and Vécsei-Marlovits VP: Effect of intravitreal injections due to neovascular age-related macular degeneration on retinal nerve fiber layer thickness and minimum rim width: A cross sectional study. BMC Ophthalmol. 24:1852024. View Article : Google Scholar : PubMed/NCBI

67 

Law SK, Small KW and Caprioli J: Peripapillary retinal nerve fiber measurement with spectral-domain optical coherence tomography in age-related macular degeneration. Vision (Basel). 1:262017. View Article : Google Scholar : PubMed/NCBI

68 

Ahn J, Jang K, Sohn J, Park JI and Hwang DD: Effect of intravitreal ranibizumab and aflibercept injections on retinal nerve fiber layer thickness. Sci Rep. 11:50102021. View Article : Google Scholar : PubMed/NCBI

69 

Bitirgen G, Belviranli S, Malik RA, Kerimoglu H, Satirtav G and Zengin N: Assessment of corneal sensation, innervation and retinal nerve fiber layer in patients treated with multiple intravitreal ranibizumab injections. PLoS One. 12:e01702712017. View Article : Google Scholar : PubMed/NCBI

70 

Demirel S, Batioğlu F, Özmert E and Erenler F: The effect of multiple injections of ranibizumab on retinal nerve fiber layer thickness in patients with age-related macular degeneration. Curr Eye Res. 40:87–92. 2015. View Article : Google Scholar

71 

Zucchiatti I, Cicinelli MV, Parodi MB, Pierro L, Gagliardi M, Accardo A and Bandello F: Effect of intravitreal ranibizumab on ganglion cell complex and peripapillary retinal nerve fiber layer in neovascular age-related macular degeneration using spectral domain optical coherence tomography. Retina. 37:1314–1319. 2017. View Article : Google Scholar : PubMed/NCBI

72 

El-Ashry MF, Lascaratos G and Dhillon B: Evaluation of the effect of intravitreal ranibizumab injections in patients with neovascular age related macular degeneration on retinal nerve fiber layer thickness using optical coherence tomography. Clin Ophthalmol. 9:1269–1274. 2015. View Article : Google Scholar : PubMed/NCBI

73 

Sobacı G, Güngör R and Ozge G: Effects of multiple intravitreal anti-VEGF injections on retinal nerve fiber layer and intraocular pressure: A comparative clinical study. Int J Ophthalmol. 6:211–215. 2013.

74 

Horsley MB, Mandava N, Maycotte MA and Kahook MY: Retinal nerve fiber layer thickness in patients receiving chronic anti-vascular endothelial growth factor therapy. Am J Ophthalmol. 150558–561. (e551)2010. View Article : Google Scholar : PubMed/NCBI

75 

Viggiano P, Buonamassa R, Grassi MO, Boscia G, Borrelli E, Landini L, Evangelista F, Malerba MG, Alessio G and Boscia F: Immediate effect of anti-VEGF injections on optic nerve head: Correlation between intraocular pressure and anatomical peripapillary changes. Eur J Ophthalmol. 34:1174–1182. 2024. View Article : Google Scholar

76 

Entezari M, Ramezani A and Yaseri M: Changes in retinal nerve fiber layer thickness after two intravitreal bevacizumab injections for wet type age-related macular degeneration. J Ophthalmic Vis Res. 9:449–452. 2014. View Article : Google Scholar

77 

Zivkovic M, Radosavljevic A, Zlatanovic M, Jaksic V, Davidovic S, Stamenkovic M, Todorovic I and Jaksic J: Influence of multiple Anti-VEGF injections on retinal nerve fiber layer and ganglion cell-inner plexiform layer thickness in patients with exudative age-related macular degeneration. Medicina (Kaunas). 59:1382023. View Article : Google Scholar : PubMed/NCBI

78 

Klein BE, Klein R and Jensen SC: Open-angle glaucoma and older-onset diabetes. The beaver dam eye study Ophthalmology. 101:1173–1177. 1994.

79 

Hoguet A, Chen PP, Junk AK, Mruthyunjaya P, Nouri-Mahdavi K, Radhakrishnan S, Takusagawa HL and Chen TC: The effect of anti-vascular endothelial growth factor agents on intraocular pressure and glaucoma: A report by the american academy of ophthalmology. Ophthalmology. 126:611–622. 2019. View Article : Google Scholar

80 

Khodabande A, Zarei M, Khojasteh H, Mohammadi M, Khameneh EA, Torkashvand A and Davoodabadi M: The effect of acute rises in intraocular pressure after intravitreal bevacizumab injection on the peripapillary retinal nerve fiber layer thickness and the role of anterior chamber paracentesis. J Curr Ophthalmol. 33:12–16. 2021. View Article : Google Scholar : PubMed/NCBI

81 

Soheilian M, Karimi S, Montahae T, Nikkhah H and Mosavi SA: Effects of intravitreal injection of bevacizumab with or without anterior chamber paracentesis on intraocular pressure and peripapillary retinal nerve fiber layer thickness: A prospective study. Graefes Arch Clin Exp Ophthalmol. 255:1705–1712. 2017. View Article : Google Scholar : PubMed/NCBI

82 

Levin AM, Chaya CJ, Kahook MY and Wirostko BM: Intraocular pressure elevation following intravitreal Anti-VEGF injections: Short- and long-term considerations. J Glaucoma. 30:1019–1026. 2021. View Article : Google Scholar : PubMed/NCBI

83 

Mansoori T, Agraharam SG, Manwani S and Balakrishna N: Intraocular pressure changes after intravitreal bevacizumab or ranibizumab injection: A retrospective study. J Curr Ophthalmol. 33:6–11. 2021. View Article : Google Scholar : PubMed/NCBI

84 

Karakahya RH: Anterior chamber paracentesis offers a less painful experience during intravitreal anti-vascular endothelial growth factor administration: An intraindividual study. Cureus. 13:e200512021.

85 

Türksever C, Hoffmann L and Hatz K: Peripapillary and macular microvasculature in neovascular age-related macular degeneration in long-term and recently started anti-VEGF therapy versus healthy controls. Front. Med (Lausanne). 9:10800522023. View Article : Google Scholar : PubMed/NCBI

86 

Wang L, Swaminathan SS, Yang J, Barikian A, Shi Y, Shen M, Jiang X, Feuer W, Gregori G and Rosenfeld PJ: Dose-Response relationship between intravitreal injections and retinal nerve fiber layer thinning in age-related macular degeneration. Ophthalmol Retina. 5:648–654. 2021. View Article : Google Scholar

87 

Weinreb RN and Khaw PT: Primary open-angle glaucoma. Lancet. 363:1711–1720. 2004. View Article : Google Scholar : PubMed/NCBI

88 

Sommer A, Miller NR, Pollack I, Maumenee AE and George T: The nerve fiber layer in the diagnosis of glaucoma. Arch Ophthalmol. 95:2149–2156. 1977. View Article : Google Scholar : PubMed/NCBI

89 

Cho HK and Kee C: Rate of change in Bruch's membrane opening-minimum rim width and peripapillary RNFL in early normal tension glaucoma. J Clin Med. 9:23212020. View Article : Google Scholar : PubMed/NCBI

90 

Choi HS, Joo CW, Park SP and Na KI: A decrease in Bruch's membrane opening-minimum rim area precedes decreased retinal nerve fiber layer thickness and visual field loss in glaucoma. J Glaucoma. 30:1033–1038. 2021. View Article : Google Scholar : PubMed/NCBI

91 

LoBue SA, Gindina S, Saba NJ, Chang T, Davis MJ and Fish S: Clinical features associated with acute elevated intraocular pressure after intravitreal anti-VEGF injections. Clin Ophthalmol. 17:1683–1690. 2023. View Article : Google Scholar : PubMed/NCBI

92 

Gómez-Mariscal M, Puerto B, Muñoz-Negrete FJ, de Juan V and Rebolleda G: Acute and chronic optic nerve head biomechanics and intraocular pressure changes in patients receiving multiple intravitreal injections of anti-VEGF. Graefes Arch Clin Exp Ophthalmol. 257:2221–2231. 2019. View Article : Google Scholar : PubMed/NCBI

93 

Enders P, Sitnilska V, Altay L, Schaub F, Muether PS and Fauser S: Retinal nerve fiber loss in anti-VEGF therapy for age-related macular degeneration can be decreased by anterior chamber paracentesis. Ophthalmologica. 237:111–118. 2017. View Article : Google Scholar : PubMed/NCBI

94 

Ranjbar M, Kurz M, Holzhey A, Rades D and Grisanti S: Changes in peripapillary nerve fiber layer thickness after adjuvant stereotactic radiotherapy in patients with neovascular age-related macular degeneration. Curr Eye Res. 42:1698–1706. 2017. View Article : Google Scholar : PubMed/NCBI

95 

Moshfeghi DM, Kaiser PK and Gertner M: Stereotactic low-voltage x-ray irradiation for age-related macular degeneration. Br J Ophthalmol. 95:185–188. 2011. View Article : Google Scholar

96 

Ranjbar M, Kurz M, Holzhey A, Melchert C, Rades D and Grisanti S: Stereotactic radiotherapy in neovascular age-related macular degeneration: Real-life efficacy and morphological evaluation of the outer retina-choroid complex. Medicine (Baltimore). 95:e57292016. View Article : Google Scholar : PubMed/NCBI

97 

Jackson TL, Chakravarthy U, Slakter JS, Muldrew A, Shusterman EM, O'Shaughnessy D, Arnoldussen M, Gertner ME, Danielson L and Moshfeghi DM; INTREPID Study Group: Stereotactic radiotherapy for neovascular age-related macular degeneration: Year 2 results of the INTREPID study. Ophthalmology. 122:138–145. 2015. View Article : Google Scholar

98 

Chan G, Balaratnasingam C, Xu J, Mammo Z, Han S, Mackenzie P, Merkur A, Kirker A, Albiani D, Sarunic MV and Yu DY: In vivo optical imaging of human retinal capillary networks using speckle variance optical coherence tomography with quantitative clinico-histological correlation. Microvasc Res. 100:32–39. 2015. View Article : Google Scholar : PubMed/NCBI

99 

Mansoori T, Sivaswamy J, Gamalapati JS, Agraharam SG and Balakrishna N: Measurement of radial peripapillary capillary density in the normal human retina using optical coherence tomography angiography. J Glaucoma. 26:241–246. 2017. View Article : Google Scholar

100 

Jo YH, Sung KR and Yun SC: The relationship between peripapillary vascular density and visual field sensitivity in primary open-angle and angle-closure glaucoma. Invest Ophthalmol Vis Sci. 59:5862–5867. 2018. View Article : Google Scholar : PubMed/NCBI

101 

Liu G, Wang Y and Gao P: Distributions of radial peripapillary capillary density and correlations with retinal nerve fiber layer thickness in normal subjects. Med Sci Monit. 27:e9336012021. View Article : Google Scholar : PubMed/NCBI

102 

Zhuang X, Su Y, Li M, Zhang L, Mi L, Ji Y, Deng F, Xiao O, Zhang X, Zhou L, et al: A prospective observation of influence of anti-VEGF on optic disc vasculature in nAMD patients. Photodiagnosis Photodyn Ther. 45:1038632024. View Article : Google Scholar

103 

Dugel PU, Singh RP, Koh A, Ogura Y, Weissgerber G, Gedif K, Jaffe GJ, Tadayoni R, Schmidt-Erfurth U and Holz FG: HAWK and HARRIER: Ninety-Six-week outcomes from the phase 3 trials of brolucizumab for neovascular age-related macular degeneration. Ophthalmology. 128:89–99. 2021. View Article : Google Scholar

104 

Holz FG, Dugel PU, Weissgerber G, Hamilton R, Silva R, Bandello F, Larsen M, Weichselberger A, Wenzel A, Schmidt A, et al: Single-Chain antibody fragment VEGF inhibitor RTH258 for neovascular age-related macular degeneration: A randomized controlled study. Ophthalmology. 123:1080–1089. 2016. View Article : Google Scholar : PubMed/NCBI

105 

Dugel PU, Jaffe GJ, Sallstig P, Warburton J, Weichselberger A, Wieland M and Singerman L: Brolucizumab versus aflibercept in participants with neovascular age-related macular degeneration: A randomized trial. Ophthalmology. 124:1296–1304. 2017. View Article : Google Scholar : PubMed/NCBI

106 

Lee K, Bae HW, Lee SY, Seong GJ and Kim CY: Hierarchical cluster analysis of peripapillary retinal nerve fiber layer damage and macular ganglion cell loss in open angle glaucoma. Korean J Ophthalmol. 34:56–66. 2020. View Article : Google Scholar : PubMed/NCBI

107 

Hollands H, Johnson D, Hollands S, Simel DL, Jinapriya D and Sharma S: Do findings on routine examination identify patients at risk for primary open-angle glaucoma? The rational clinical examination systematic review. JAMA. 309:2035–2042. 2013. View Article : Google Scholar : PubMed/NCBI

108 

Rud'ko AS, Budzinskaya MV, Andreeva IV, Karpilova MA and Smirnova TV: Effect of intravitreal injections of ranibizumab and aflibercept on the retinal nerve fiber layer in patients with concomitant neovascular age-related macular degeneration and glaucoma. Vestn Oftalmol. 135:177–183. 2019.In Russian. View Article : Google Scholar

109 

Kopić A, Biuk D, Barać J, Vinković M, Benašić T and Kopić V: Retinal nerve fiber layer thickness in glaucoma patients treated with multiple intravitreal anti-Vegf (Bevacizumab) injections. Acta Clin Croat. 56:406–414. 2017.

110 

Hwang DJ, Lee EJ, Lee SY, Park KH and Woo SJ: Effect of diabetic macular edema on peripapillary retinal nerve fiber layer thickness profiles. Invest Ophthalmol Vis Sci. 55:4213–4219. 2014. View Article : Google Scholar : PubMed/NCBI

111 

Yau GL, Campbell RJ, Li C and Sharma S: Peripapillary RNFL thickness in nonexudative versus chronically treated exudative age-related macular degeneration. Can J Ophthalmol. 50:345–349. 2015. View Article : Google Scholar : PubMed/NCBI

112 

Yang HS, Woo JE, Kim MH, Kim DY and Yoon YH: Co-Evaluation of peripapillary RNFL thickness and retinal thickness in patients with diabetic macular edema: RNFL misinterpretation and its adjustment. PLoS One. 12:e01703412017. View Article : Google Scholar : PubMed/NCBI

113 

Fong DS, Ferris FL III, Davis MD and Chew EY: Causes of severe visual loss in the early treatment diabetic retinopathy study: ETDRS report no. 24. Early treatment diabetic retinopathy study research group. Am J Ophthalmol. 127:137–141. 1999. View Article : Google Scholar : PubMed/NCBI

114 

Viggiano P, Grassi MO, Bisceglia G, Boscia G, Borrelli E, Malerba MG, Fracchiolla A, Alessio G and Boscia F: Short-term peripapillary structural and vascular changes following anti-VEGF vs. Dexamethasone intravitreal therapy in patients with DME. Eur J Ophthalmol. 33:2236–2242. 2023. View Article : Google Scholar : PubMed/NCBI

115 

Photocoagulation for diabetic macular edema. Early treatment diabetic retinopathy study report number 1. Early treatment diabetic retinopathy study research group. Arch Ophthalmol. 103:1796–1806. 1985. View Article : Google Scholar : PubMed/NCBI

116 

Scott IU, Danis RP, Bressler SB, Bressler NM, Browning DJ and Qin H; Diabetic Retinopathy Clinical Research Network: Effect of focal/grid photocoagulation on visual acuity and retinal thickening in eyes with non-center-involved diabetic macular edema. Retina. 29:613–617. 2009. View Article : Google Scholar : PubMed/NCBI

117 

Eren S, Ozturk T, Yaman A, Oner H and A OS: Retinal nerve fiber layer alterations after photocoagulation: A prospective spectral-domain OCT study. Open Ophthalmol J. 8:82–86. 2014. View Article : Google Scholar : PubMed/NCBI

118 

Roohipour R, Sharifian E, Moghimi S, Fard MA, Ghassemi F, Zarei M, Davoodi S, Bazvand F and Modjtahedi BS: The effect of panretinal photocoagulation (PRP) versus intravitreal bevacizumab (IVB) plus PRP on peripapillary retinal nerve fiber layer (RNFL) thickness analyzed by optical coherence tomography in patients with proliferative diabetic retinopathy. J Ophthalmic Vis Res. 14:157–163. 2019. View Article : Google Scholar : PubMed/NCBI

119 

Jampol LM, Odia I, Glassman AR, Baker CW, Bhorade AM, Han DP, Jaffe GJ, Melia M, Bressler NM and Tanna AP; Diabetic Retinopathy Clinical Research Network: Panretinal photocoagulation versus ranibizumab for proliferative diabetic retinopathy: Comparison of peripapillary retinal nerve fiber layer thickness in a randomized clinical trial. Retina. 39:69–78. 2019. View Article : Google Scholar :

120 

Shin YI, Lim HB, Koo H, Lee WH and Kim JY: Longitudinal changes in the peripapillary retinal nerve fiber layer thickness in the fellow eyes of unilateral retinal vein occlusion. Sci Rep. 10:77082020. View Article : Google Scholar : PubMed/NCBI

121 

Klein R, Klein BE, Moss SE and Meuer SM: The epidemiology of retinal vein occlusion: The beaver dam eye study. Trans Am Ophthalmol Soc. 98:133–141. 2000.

122 

Hahn P and Fekrat S: Best practices for treatment of retinal vein occlusion. Curr Opin Ophthalmol. 23:175–181. 2012. View Article : Google Scholar : PubMed/NCBI

123 

Pulido JS, Flaxel CJ, Adelman RA, Hyman L, Folk JC and Olsen TW: Retinal vein occlusions preferred practice pattern (®) guidelines. Ophthalmology. 123:P182–P208. 2016. View Article : Google Scholar

124 

Zhang M, Liu Y, Song M, Yu Y, Ruan S, Zheng K, Wang F and Sun X: Intravitreal dexamethasone implant has better retinal perfusion than anti-vascular endothelial growth factor treatment for macular edema secondary to retinal vein occlusion: A five-year real-world study. Ophthalmic Res. 66:247–258. 2023. View Article : Google Scholar

125 

Ahn J and Hwang DD: Peripapillary retinal nerve fiber layer thickness in patients with unilateral retinal vein occlusion. Sci Rep. 11:181152021. View Article : Google Scholar : PubMed/NCBI

126 

Goda I, Saliem EA, Mostafa SM, Amin AM, Omran MY, Eltantawy B, Soliman HB, Abu El-Wafa EG, Abdelgbar AA, Osman HO, et al: Longitudinal changes in peri-papillary retinal nerve fiber layer thickness in patients with unilateral branch retinal vein occlusion. Med Hypothesis Discov Innov Ophthalmol. 12:62–69. 2023. View Article : Google Scholar

127 

Moleiro AF, Godinho G, Madeira C, Pereira AF, Brandão E, Falcão-Reis F, Beato JN and Penas S: Peripapillary and subfoveal choroidal thickness in retinal vein occlusions. Clin Ophthalmol. 16:3775–3783. 2022. View Article : Google Scholar : PubMed/NCBI

128 

Munk MR, Ceklic L, Stillenmunkes R, Chaudhary V, Waheed N, Chhablani J, de Smet MD and Tillmann A: Integrated assessment of OCT, multimodal imaging, and cytokine markers for predicting treatment responses in retinal vein occlusion associated macular edema: A comparative review of Anti-VEGF and steroid therapies. Diagnostics (Basel). 14:19832024. View Article : Google Scholar : PubMed/NCBI

129 

Shin YI, Nam KY, Lee SE, Lim HB, Lee MW, Jo YJ and Kim JY: Changes in peripapillary microvasculature and retinal thickness in the fellow eyes of patients with unilateral retinal vein occlusion: An OCTA study. Invest Ophthalmol Vis Sci. 60:823–829. 2019. View Article : Google Scholar : PubMed/NCBI

130 

Qiu Y, Sun T, Xu F, Gao P, Tang G and Peng Q: Correlation of vascular change and cognitive impairment in age-related macular degeneration patients. Am J Transl Res. 13:336–348. 2021.PubMed/NCBI

131 

Fontaine O, Olivier S, Descovich D, Cordahi G, Vaucher E and Lesk MR: The effect of intravitreal injection of bevacizumab on retinal circulation in patients with neovascular macular degeneration. Invest Ophthalmol Vis Sci. 52:7400–7405. 2011. View Article : Google Scholar : PubMed/NCBI

132 

Kato N, Haruta M, Furushima K, Arai R, Matsuo Y and Yoshida S: Decrease in ocular blood flow thirty minutes after intravitreal injections of brolucizumab and aflibercept for neovascular age-related macular degeneration. Clin Ophthalmol. 17:1187–1192. 2023. View Article : Google Scholar : PubMed/NCBI

133 

Mursch-Edlmayr AS, Luft N, Podkowinski D, Ring M, Schmetterer L and Bolz M: Effects of three intravitreal injections of aflibercept on the ocular circulation in eyes with age-related maculopathy. Br J Ophthalmol. 104:53–57. 2020. View Article : Google Scholar

134 

Mursch-Edlmayr AS, Luft N, Podkowinski D, Ring M, Schmetterer L and Bolz M: Short-term effect on the ocular circulation induced by unilateral intravitreal injection of aflibercept in age-related maculopathy. Acta Ophthalmol. 97:e927–e932. 2019. View Article : Google Scholar : PubMed/NCBI

135 

Ding X, Lu L, Yang J, Chen Y and Ma J: The peripapillary retinal capillary density is highly correlated with its nerve fibre layer in normal population. Clin Hemorheol Microcirc. 74:231–239. 2020. View Article : Google Scholar

136 

Jager RD, Mieler WF and Miller JW: Age-related macular degeneration. N Engl J Med. 358:2606–2617. 2008. View Article : Google Scholar : PubMed/NCBI

137 

Sakurada Y, Nakamura Y, Yoneyama S, Mabuchi F, Gotoh T, Tateno Y, Sugiyama A, Kubota T and Iijima H: Aqueous humor cytokine levels in patients with polypoidal choroidal vasculopathy and neovascular age-related macular degeneration. Ophthalmic Res. 53:2–7. 2015. View Article : Google Scholar

138 

Obeng-Aboagye E, Frimpong A, Amponsah JA, Danso SE, Owusu EDA and Ofori MF: Inflammatory cytokines as potential biomarkers for early diagnosis of severe malaria in children in Ghana. Malar J. 22:2202023. View Article : Google Scholar : PubMed/NCBI

139 

Pessoa B, Melo-Beirão J, Meireles A and Menéres P: Challenging clinical cases-a walk through supplemental therapy with intravitreal ranibizumab therapy following treatment of diabetic macular edema with the 0.19 mg fluocinolone acetonide implant (ILUVIEN®. Int Med Case Rep J. 13:437–448. 2020.

140 

Barash A, Chui TYP, Garcia P and Rosen RB: Acute macular and peripapillary angiographic changes with intravitreal injections. Retina. 40:648–656. 2020. View Article : Google Scholar

141 

Baek SU, Park IW and Suh W: Long-term intraocular pressure changes after intravitreal injection of bevacizumab. Cutan Ocul Toxicol. 35:310–314. 2016. View Article : Google Scholar : PubMed/NCBI

142 

Zeng L, Liu X, Chen S and Ma J: Quantitative analysis of peripapillary capillary volume using dense B-scan OCT angiography in normal and diabetic retina. Eye Vis (Lond). 11:342024. View Article : Google Scholar : PubMed/NCBI

143 

Li Y, Busoy JM, Zaman BAA, Tan QSW, Tan GSW, Barathi VA, Cheung N, Wei JJ, Hunziker W, Hong W, et al: A novel model of persistent retinal neovascularization for the development of sustained anti-VEGF therapies. Exp Eye Res. 174:98–106. 2018. View Article : Google Scholar : PubMed/NCBI

144 

Gross JG, Glassman AR, Jampol LM, Inusah S, Aiello LP, Antoszyk AN, Baker CW, Berger BB, Bressler NM, Browning D, et al: Panretinal photocoagulation vs intravitreous ranibizumab for proliferative diabetic retinopathy: A randomized clinical trial. JAMA. 314:2137–2146. 2015. View Article : Google Scholar : PubMed/NCBI

145 

Reddy SV and Husain D: Panretinal photocoagulation: A review of complications. Semin Ophthalmol. 33:83–88. 2018. View Article : Google Scholar

146 

Soman M, Ganekal S, Nair U and Nair K: Effect of panretinal photocoagulation on macular morphology and thickness in eyes with proliferative diabetic retinopathy without clinically significant macular edema. Clin Ophthalmol. 6:2013–2017. 2012.PubMed/NCBI

147 

Helmy AMR, Rashad MA, Gharieb HM, Gomaa WA and Zaki RGE: Optic nerve head perfusion changes in eyes with proliferative diabetic retinopathy treated with intravitreal ranibizumab or photocoagulation: A randomized controlled trial. Med Hypothesis Discov Innov Ophthalmol. 11:144–150. 2023. View Article : Google Scholar : PubMed/NCBI

148 

Fan L, Zhu Y, Sun X, Yu J and Yan H: Patients with unilateral retinal vein occlusion show reduced radial peripapillary capillary density in their fellow eyes. BMC Ophthalmol. 21:4482021. View Article : Google Scholar : PubMed/NCBI

149 

Wang Q, Chan SY, Yan Y, Yang J, Zhou W, Jonas JB and Wei WB: Optical coherence tomography angiography in retinal vein occlusions. Graefes Arch Clin Exp Ophthalmol. 256:1615–1622. 2018. View Article : Google Scholar : PubMed/NCBI

150 

Finkelstein D: Argon laser photocoagulation for macular edema in branch vein occlusion. Ophthalmology. 93:975–977. 1986. View Article : Google Scholar : PubMed/NCBI

151 

Hayashi K and Hayashi H: Intravitreal versus retrobulbar injections of triamcinolone for macular edema associated with branch retinal vein occlusion. Am J Ophthalmol. 139:972–982. 2005. View Article : Google Scholar : PubMed/NCBI

152 

Kumagai K, Furukawa M, Ogino N, Uemura A and Larson E: Long-term outcomes of vitrectomy with or without arteriovenous sheathotomy in branch retinal vein occlusion. Retina. 27:49–54. 2007. View Article : Google Scholar : PubMed/NCBI

153 

Ehlers JP, Kim SJ, Yeh S, Thorne JE, Mruthyunjaya P, Schoenberger SD and Bakri SJ: Therapies for macular edema associated with branch retinal vein occlusion: A report by the american academy of ophthalmology. Ophthalmology. 124:1412–1423. 2017. View Article : Google Scholar : PubMed/NCBI

154 

Liu S: Effect of anti-VEGF therapy on optic disc microcirculation in patients with macular edema secondary to branch retinal vein occlusion based on OCTA. MA thesis. Gannan Medical College; Gannan: pp. 16–21. 2022, In Chinese.

155 

Sun J: The changes of radial peripapillary capillary density before and after anti-VEGF treatments in patients with branch retinal vein occlusion complicated with macular edema were evaluated by OCTA. MA thesis. Chengde Medical College; Chengde: pp. 17–22. 2022, In Chinese.

156 

Tan C: Detection and correlation analysis of microvessel density and nerve fiber layer thickness in optic disc before and after anti-vascular endothelial growth factor treatment in patients with retinal vein occlusion. MA thesis. Bengbu Medical College; Bengbu: pp. 25–30. 2021, In Chinese.

157 

Nicolai M, Franceschi A, Turris S, Rosati A, Pirani V and Mariotti C: Papillary vessel density changes after intravitreal Anti-VEGF injections in hypertensive patients with central retinal vein occlusion: An angio-OCT study. J Clin Med. 8:16362019. View Article : Google Scholar : PubMed/NCBI

158 

Asano T, Kunikata H, Yasuda M, Nishiguchi KM, Abe T and Nakazawa T: Ocular microcirculation changes, measured with laser speckle flowgraphy and optical coherence tomography angiography, in branch retinal vein occlusion with macular edema treated by ranibizumab. Int Ophthalmol. 41:151–162. 2021. View Article : Google Scholar

159 

Nagasato D, Mitamura Y, Semba K, Akaiwa K, Nagasawa T, Yoshizumi Y, Tabuchi H and Kiuchi Y: Correlation between optic nerve head circulation and visual function before and after anti-VEGF therapy for central retinal vein occlusion: Prospective, interventional case series. BMC Ophthalmol. 16:362016. View Article : Google Scholar : PubMed/NCBI

160 

Fukami M, Iwase T, Yamamoto K, Kaneko H, Yasuda S and Terasaki H: Changes in retinal microcirculation after intravitreal ranibizumab injection in eyes with macular edema secondary to branch retinal vein occlusion. Invest Ophthalmol Vis Sci. 58:1246–1255. 2017. View Article : Google Scholar : PubMed/NCBI

161 

Toto L, Evangelista F, Viggiano P, Erroi E, D'Onofrio G, Libertini D, Porreca A, D'Aloisio R, Mariacristina P, Di Antonio L, et al: Changes in ocular blood flow after ranibizumab intravitreal injection for diabetic macular edema measured using laser speckle flowgraphy. Biomed Res Int. 2020:94962422020. View Article : Google Scholar : PubMed/NCBI

162 

Mizukami T, Mizumoto S, Ishibashi T, Ueno S, Toyonishi T, Tachibana K, Mishima S and Shimomura Y: Changes in ocular blood flow after intravitreal injection for diabetic macular edema between aflibercept and faricimab. Clin Ophthalmol. 18:2407–2416. 2024. View Article : Google Scholar : PubMed/NCBI

163 

Consigli A, Papanastasiou A, Roquelaure D, Wuarin R, Roy S, Thumann G and Chronopoulos A: Changes in retinal vascular caliber after intravitreal aflibercept treatment for diabetic macular oedema. Klin Monbl Augenheilkd. 236:1318–1324. 2019.In German.

164 

Förstermann U and Sessa WC: Nitric oxide synthases: Regulation and function. Eur Heart J. 33:829–837. 2012. View Article : Google Scholar :

165 

Thulliez M, Angoulvant D, Lez ML, Jonville-Bera AP, Pisella PJ, Gueyffier F and Bejan-Angoulvant T: Cardiovascular events and bleeding risk associated with intravitreal antivascular endothelial growth factor monoclonal antibodies: Systematic review and meta-analysis. JAMA Ophthalmol. 132:1317–1326. 2014. View Article : Google Scholar : PubMed/NCBI

166 

Fung AE, Rosenfeld PJ and Reichel E: The international intravitreal bevacizumab safety survey: Using the internet to assess drug safety worldwide. Br J Ophthalmol. 90:1344–1349. 2006. View Article : Google Scholar : PubMed/NCBI

167 

Kitchens JW, Do DV, Boyer DS, Thompson D, Gibson A, Saroj N, Vitti R, Berliner AJ and Kaiser PK: Comprehensive review of ocular and systemic safety events with intravitreal aflibercept injection in randomized controlled trials. Ophthalmology. 123:1511–1520. 2016. View Article : Google Scholar : PubMed/NCBI

168 

Buyukavsar C, Sonmez M, Sagdic SK and Unal MH: Relationship between ganglion cell complex thickness and vision in age-related macular degeneration treated with aflibercept. Eur J Ophthalmol. 33:1672–1682. 2023. View Article : Google Scholar

169 

Dziedziak J, Zaleska-Żmijewska A, Szaflik JP and Cudnoch-Jędrzejewska A: Impact of arterial hypertension on the eye: A review of the pathogenesis, diagnostic methods, and treatment of hypertensive retinopathy. Med Sci Monit. 28:e9351352022. View Article : Google Scholar : PubMed/NCBI

170 

Kiyat P and Karti O: Comparison of choroidal vascularity index, retinal, and optic nerve changes in diabetes mellitus patients without diabetic retinopathy. Beyoglu Eye J. 9:228–234. 2024. View Article : Google Scholar

171 

Swaminathan SS, Jammal AA, Berchuck SI and Medeiros FA: Rapid initial OCT RNFL thinning is predictive of faster visual field loss during extended follow-up in glaucoma. Am J Ophthalmol. 229:100–107. 2021. View Article : Google Scholar : PubMed/NCBI

172 

Kim MJ, Woo SJ, Park KH and Kim TW: Retinal nerve fiber layer thickness is decreased in the fellow eyes of patients with unilateral retinal vein occlusion. Ophthalmology. 118:706–710. 2011. View Article : Google Scholar

173 

Qin HF, Shi FJ, Zhang CY, Luo DW, Qin SY, Wu J, Xie H, Zhang JT, Qiu QH, Liu K, et al: Anti-VEGF reduces inflammatory features in macular edema secondary to retinal vein occlusion. Int J Ophthalmol. 15:1296–1304. 2022. View Article : Google Scholar : PubMed/NCBI

174 

Imazeki M, Noma H, Yasuda K, Motohashi R, Goto H and Shimura M: Anti-VEGF therapy reduces inflammation in diabetic macular edema. Ophthalmic Res. 64:43–49. 2021. View Article : Google Scholar

175 

Nakao S, Arima M, Ishikawa K, Kohno R, Kawahara S, Miyazaki M, Yoshida S, Enaida H, Hafezi-Moghadam A, Kono T and Ishibashi T: Intravitreal anti-VEGF therapy blocks inflammatory cell infiltration and re-entry into the circulation in retinal angiogenesis. Invest Ophthalmol Vis Sci. 53:4323–4328. 2012. View Article : Google Scholar : PubMed/NCBI

176 

Nishijima K, Ng YS, Zhong L, Bradley J, Schubert W, Jo N, Akita J, Samuelsson SJ, Robinson GS, Adamis AP and Shima DT: Vascular endothelial growth factor-A is a survival factor for retinal neurons and a critical neuroprotectant during the adaptive response to ischemic injury. Am J Pathol. 171:53–67. 2007. View Article : Google Scholar : PubMed/NCBI

177 

Zhang J, Zhang Z, Jiang L, He S, Long X and Zheng X: Combination therapy with N-Acetylserotonin and aflibercept activated the Akt/Nrf2 pathway to inhibit apoptosis and oxidative stress in rats with retinal ischemia-reperfusion injury. Curr Eye Res. 4:280–287. 2024. View Article : Google Scholar

178 

Rani EA, Janani R, Chonche MJ and Vallikannan B: Lactucaxanthin regulates the cascade of retinal oxidative stress, endoplasmic reticulum stress and inflammatory signaling in diabetic rats. Ocul Immunol Inflamm. 31:320–328. 2023. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang H, Ding R, Jiang W, Li S, Wu Y, Mao J, Chen Y, Sun P and Shi M: Effects of anti‑VEGF on peripapillary retinal nerve fiber layer and papillary/peripapillary blood circulation in retinopathies (Review). Int J Mol Med 56: 133, 2025.
APA
Wang, H., Ding, R., Jiang, W., Li, S., Wu, Y., Mao, J. ... Shi, M. (2025). Effects of anti‑VEGF on peripapillary retinal nerve fiber layer and papillary/peripapillary blood circulation in retinopathies (Review). International Journal of Molecular Medicine, 56, 133. https://doi.org/10.3892/ijmm.2025.5574
MLA
Wang, H., Ding, R., Jiang, W., Li, S., Wu, Y., Mao, J., Chen, Y., Sun, P., Shi, M."Effects of anti‑VEGF on peripapillary retinal nerve fiber layer and papillary/peripapillary blood circulation in retinopathies (Review)". International Journal of Molecular Medicine 56.3 (2025): 133.
Chicago
Wang, H., Ding, R., Jiang, W., Li, S., Wu, Y., Mao, J., Chen, Y., Sun, P., Shi, M."Effects of anti‑VEGF on peripapillary retinal nerve fiber layer and papillary/peripapillary blood circulation in retinopathies (Review)". International Journal of Molecular Medicine 56, no. 3 (2025): 133. https://doi.org/10.3892/ijmm.2025.5574
Copy and paste a formatted citation
x
Spandidos Publications style
Wang H, Ding R, Jiang W, Li S, Wu Y, Mao J, Chen Y, Sun P and Shi M: Effects of anti‑VEGF on peripapillary retinal nerve fiber layer and papillary/peripapillary blood circulation in retinopathies (Review). Int J Mol Med 56: 133, 2025.
APA
Wang, H., Ding, R., Jiang, W., Li, S., Wu, Y., Mao, J. ... Shi, M. (2025). Effects of anti‑VEGF on peripapillary retinal nerve fiber layer and papillary/peripapillary blood circulation in retinopathies (Review). International Journal of Molecular Medicine, 56, 133. https://doi.org/10.3892/ijmm.2025.5574
MLA
Wang, H., Ding, R., Jiang, W., Li, S., Wu, Y., Mao, J., Chen, Y., Sun, P., Shi, M."Effects of anti‑VEGF on peripapillary retinal nerve fiber layer and papillary/peripapillary blood circulation in retinopathies (Review)". International Journal of Molecular Medicine 56.3 (2025): 133.
Chicago
Wang, H., Ding, R., Jiang, W., Li, S., Wu, Y., Mao, J., Chen, Y., Sun, P., Shi, M."Effects of anti‑VEGF on peripapillary retinal nerve fiber layer and papillary/peripapillary blood circulation in retinopathies (Review)". International Journal of Molecular Medicine 56, no. 3 (2025): 133. https://doi.org/10.3892/ijmm.2025.5574
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team