|
1
|
Siegel RL, Kratzer TB, Giaquinto AN, Sung
H and Jemal A: Cancer statistics, 2025. CA Cancer J Clin. 75:10–45.
2025. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Wang H, Wang T, Yan S, Tang J, Zhang Y,
Wang L, Xu H and Tu C: Crosstalk of pyroptosis and cytokine in the
tumor microenvironment: From mechanisms to clinical implication.
Mol Cancer. 23:2682024. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Li J, Zhou W, Wang H, Huang M and Deng H:
Exosomal circular RNAs in tumor microenvironment: An emphasis on
signaling pathways and clinical opportunities. MedComm (2020).
5:e700192024. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Zhang X, Tang B, Luo J, Yang Y, Weng Q,
Fang S, Zhao Z, Tu J, Chen M and Ji J: Cuproptosis, ferroptosis and
PANoptosis in tumor immune microenvironment remodeling and
immunotherapy: Culprits or new hope. Mol Cancer. 23:2552024.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Zhu D, Pan W, Li H, Hua J, Zhang C and
Zhao K: Innovative applications of bacteria and their derivatives
in targeted tumor therapy. ACS Nano. 19:5077–5109. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Arcuri LJ and Americo AD: Treatment of
relapsed/refractory multiple myeloma in the bortezomib and
lenalidomide era: A systematic review and network meta-analysis.
Ann Hematol. 100:725–734. 2021. View Article : Google Scholar
|
|
7
|
Glisovic T, Bachorik JL, Yong J and
Dreyfuss G: RNA-binding proteins and post-transcriptional gene
regulation. FEBS Lett. 582:1977–1986. 2008. View Article : Google Scholar
|
|
8
|
Bitaraf A, Razmara E, Bakhshinejad B,
Yousefi H, Vatanmakanian M, Garshasbi M, Cho WC and Babashah S: The
oncogenic and tumor suppressive roles of RNA-binding proteins in
human cancers. J Cell Physiol. 236:6200–6224. 2021. View Article : Google Scholar
|
|
9
|
Buchet-Poyau K, Courchet J, Hir HL,
Séraphin B, Scoazec JY, Duret L, Domon-Dell C, Freund JN and
Billaud M: Identification and characterization of human Mex-3
proteins, a novel family of evolutionarily conserved RNA-binding
proteins differentially localized to processing bodies. Nucleic
Acids Res. 35:1289–1300. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Draper BW, Mello CC, Bowerman B, Hardin J
and Priess JR: MEX-3 is a KH domain protein that regulates
blastomere identity in early C. elegans embryos. Cell. 87:205–216.
1996. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Lederer M, Müller S, Glaß M, Bley N,
Ihling C, Sinz A and Hüttelmaier S: Oncogenic potential of the
dual-function protein MEX3A. Biology (Basel). 10:4152021.PubMed/NCBI
|
|
12
|
Hahn WC, Bader JS, Braun TP, Califano A,
Clemons PA, Druker BJ, Ewald AJ, Fu H, Jagu S, Kemp CJ, et al: An
expanded universe of cancer targets. Cell. 184:1142–1155. 2021.
View Article : Google Scholar
|
|
13
|
Wang T and Zhang H: Exploring the roles
and molecular mechanisms of RNA binding proteins in the sorting of
noncoding RNAs into exosomes during tumor progression. J Adv Res.
65:105–123. 2024. View Article : Google Scholar
|
|
14
|
Elcheva IA, Gowda CP, Bogush D,
Gornostaeva S, Fakhardo A, Sheth N, Kokolus KM, Sharma A, Dovat S,
Uzun Y, et al: IGF2BP family of RNA-binding proteins regulate
innate and adaptive immune responses in cancer cells and tumor
microenvironment. Front Immunol. 14:12245162023. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Xu Y, Pan S, Chen H, Qian H, Wang Z and
Zhu X: MEX3A suppresses proliferation and EMT via inhibiting Akt
signaling pathway in cervical cancer. Am J Cancer Res.
11:1446–1462. 2021.PubMed/NCBI
|
|
16
|
Pereira B, Billaud M and Almeida R:
RNA-binding proteins in cancer: Old players and new actors. Trends
Cancer. 3:506–528. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Sun M, Tan Z, Lin K, Li X, Zhu J, Zhan L
and Zheng H: Advanced progression for the heterogeneity and
homeostasis of intestinal stem cells. Stem Cell Rev Rep.
19:2109–2119. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Jiang Z, Sun Z, Hu J, Li D, Xu X, Li M,
Feng Z, Zeng S, Mao H and Hu C: Grass carp Mex3A promotes
ubiquitination and degradation of RIG-I to inhibit innate immune
response. Front Immunol. 13:9093152022. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Wang B, Hong Z, Zhao C, Bi Q, Yuan J, Chen
J and Shen Y: The effects of MEX3A knockdown on proliferation,
apoptosis and migration of osteosarcoma cells. Cancer Cell Int.
21:1972021. View Article : Google Scholar :
|
|
20
|
Zhang P, Su T and Zhang S: Comprehensive
analysis of prognostic value of MEX3A and its relationship with
immune infiltrates in ovarian cancer. J Immunol Res.
2021:55741762021. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Panzeri V, Manni I, Capone A, Naro C,
Sacconi A, Di Agostino S, de Latouliere L, Montori A, Pilozzi E,
Piaggio G, et al: The RNA-binding protein MEX3A is a prognostic
factor and regulator of resistance to gemcitabine in pancreatic
ductal adenocarcinoma. Mol Oncol. 15:579–595. 2021. View Article : Google Scholar
|
|
22
|
Barriga FM, Montagni E, Mana M,
Mendez-Lago M, Hernando-Momblona X, Sevillano M, Guillaumet-Adkins
A, Rodriguez-Esteban G, Buczacki SJA, Gut M, et al: Mex3a marks a
slowly dividing subpopulation of Lgr5+ intestinal stem cells. Cell
Stem Cell. 20:801–816.e7. 2017. View Article : Google Scholar
|
|
23
|
Joazeiro CA and Weissman AM: RING finger
proteins: Mediators of ubiquitin ligase activity. Cell.
102:549–552. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Xie Q, Chu Y, Yuan W, Li Y, Li K, Wu X,
Liu X, Xu R, Cui S and Qu X: Activation of insulin-like growth
factor-1 receptor (IGF-1R) promotes growth of colorectal cancer
through triggering the MEX3A-mediated degradation of RIG-I. Acta
Pharm Sin B. 13:2963–2975. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Aizer A, Kafri P, Kalo A and Shav-Tal Y:
The P body protein Dcp1a is hyper-phosphorylated during mitosis.
PLoS One. 8:e497832013. View Article : Google Scholar
|
|
26
|
Wang JY, Liu YJ, Zhang XL, Liu YH, Jiang
LL and Hu HY: PolyQ-expanded ataxin-2 aggregation impairs cellular
processing-body homeostasis via sequestering the RNA helicase DDX6.
J Biol Chem. 300:1074132024. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Tritschler F, Eulalio A, Truffault V,
Hartmann MD, Helms S, Schmidt S, Coles M, Izaurralde E and
Weichenrieder O: A divergent Sm fold in EDC3 proteins mediates DCP1
binding and P-body targeting. Mol Cell Biol. 27:8600–8611. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Chen RX, Xu SD, Deng MH, Hao SH, Chen JW,
Ma XD, Zhuang WT, Cao JH, Lv YR, Lin JL, et al: Mex-3 RNA binding
family member A (MEX3A)/circMPP6 complex promotes colorectal cancer
progression by inhibiting autophagy. Signal Transduct Target Ther.
9:802024. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Bufalieri F, Caimano M, Severini LL,
Basili I, Paglia F, Sampirisi L, Loricchio E, Petroni M, Canettieri
G, Santoro A, et al: The RNA-Binding ubiquitin ligase MEX3A affects
glioblastoma tumorigenesis by inducing ubiquitylation and
degradation of RIG-I. Cancers (Basel). 12:3212020. View Article : Google Scholar
|
|
30
|
Xiao Y, Li Y, Shi D, Wang X, Dai S, Yang
M, Kong L, Chen B, Huang X, Lin C, et al: MEX3C-mediated decay of
SOCS3 mRNA promotes JAK2/STAT3 signaling to facilitate metastasis
in hepatocellular carcinoma. Cancer Res. 82:4191–4205. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Liu X, Wang Y, Zhou G, Zhou J, Tian Z and
Xu J: circGRAMD1B contributes to migration, invasion and
epithelial-mesenchymal transition of lung adenocarcinoma cells via
modulating the expression of SOX4. Funct Integr Genomics.
23:752023. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Liao Z, Hu C and Gao Y: Mechanisms
modulating the activities of intestinal stem cells upon radiation
or chemical agent exposure. J Radiat Res. 63:149–157. 2022.
View Article : Google Scholar
|
|
33
|
Yang P, Zhang P and Zhang S: RNA-binding
protein MEX3A interacting with DVL3 stabilizes Wnt/β-catenin
signaling in endometrial carcinoma. Int J Mol Sci. 24:5922022.
View Article : Google Scholar
|
|
34
|
Xu J, Chen S, Hao T, Liu G, Zhang K, Zhang
C and He Y: MEX3A promotes colorectal cancer migration, invasion
and EMT via regulating the Wnt/β-catenin signaling pathway. J
Cancer Res Clin Oncol. 150:3192024. View Article : Google Scholar
|
|
35
|
Jiang S, Meng L, Chen X, Liu H, Zhang J,
Chen F, Zheng J, Liu H, Wang F, Hu J and Li Z: MEX3A promotes
triple negative breast cancer proliferation and migration via the
PI3K/AKT signaling pathway. Exp Cell Res. 395:1121912020.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Xiang XX, Liu YL, Kang YF, Lu X and Xu K:
MEX3A promotes nasopharyngeal carcinoma progression via the
miR-3163/SCIN axis by regulating NF-κB signaling pathway. Cell
Death Dis. 13:4202022. View Article : Google Scholar
|
|
37
|
Feng G, Wang P, Zhang H, Cheng S, Xing Y
and Wang Y: MEX3A induces the development of thyroid cancer via
targeting CREB1. Cell Biol Int. 47:1843–1853. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Pereira B, Le Borgne M, Chartier NT,
Billaud M and Almeida R: MEX-3 proteins: Recent insights on novel
post-transcriptional regulators. Trends Biochem Sci. 38:477–479.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Cheng LT, Tan GYT, Chang FP, Wang CK, Chou
YC, Hsu PH and Hwang-Verslues WW: Core clock gene BMAL1 and
RNA-binding protein MEX3A collaboratively regulate Lgr5 expression
in intestinal crypt cells. Sci Rep. 13:175972023. View Article : Google Scholar :
|
|
40
|
Pereira B, Amaral AL, Dias A, Mendes N,
Muncan V, Silva AR, Thibert C, Radu AG, David L, Máximo V, et al:
MEX3A regulates Lgr5(+) stem cell maintenance in the developing
intestinal epithelium. EMBO Rep. 21:e489382020. View Article : Google Scholar
|
|
41
|
Domingo-Muelas A, Duart-Abadia P,
Morante-Redolat JM, Jordán-Pla A, Belenguer G, Fabra-Beser J,
Paniagua-Herranz L, Pérez-Villalba A, Álvarez-Varela A, Barriga FM,
et al: Post-transcriptional control of a stemness signature by
RNA-binding protein MEX3A regulates murine adult neurogenesis. Nat
Commun. 14:3732023. View Article : Google Scholar :
|
|
42
|
Santovito D, Henderson JM, Bidzhekov K,
Triantafyllidou V, Jansen Y, Chen Z, Farina FM, Diagel A, Aslani M,
Blanchet X, et al: Mex3a protects against atherosclerosis: Evidence
from mice and humans. Circulation. 150:1213–1216. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Sun B, Li Q, Xiao X, Zhang J, Zhou Y,
Huang Y, Gao J and Cao X: The loach haplotype-resolved genome and
the identification of Mex3a involved in fish air breathing. Cell
Genom. 4:1006702024. View Article : Google Scholar :
|
|
44
|
Santovito D, Egea V, Bidzhekov K,
Natarelli L, Mourão A, Blanchet X, Wichapong K, Aslani M, Brunßen
C, Horckmans M, et al: Autophagy unleashes noncanonical microRNA
functions. Autophagy. 16:2294–2296. 2020. View Article : Google Scholar
|
|
45
|
Santovito D, Egea V, Bidzhekov K,
Natarelli L, Mourão A, Blanchet X, Wichapong K, Aslani M, Brunßen
C, Horckmans M, et al: Noncanonical inhibition of caspase-3 by a
nuclear microRNA confers endothelial protection by autophagy in
atherosclerosis. Sci Transl Med. 12:eaaz22942020. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Li H, Liang J, Wang J, Han J, Li S, Huang
K and Liu C: Mex3a promotes oncogenesis through the RAP1/MAPK
signaling pathway in colorectal cancer and is inhibited by
hsa-miR-6887-3p. Cancer Commun (Lond). 41:472–491. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Wang Y, Liang Q, Lei K, Zhu Q, Zeng D, Liu
Y, Lu Y, Kang T, Tang N, Huang L, et al: Targeting MEX3A attenuates
metastasis of breast cancer via β-catenin signaling pathway
inhibition. Cancer Lett. 521:50–63. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Wang CK, Chen TJ, Tan GYT, Chang FP,
Sridharan S, Yu CA, Chang YH, Chen YJ, Cheng LT and Hwang-Verslues
WW: MEX3A mediates p53 degradation to suppress ferroptosis and
facilitate ovarian cancer tumorigenesis. Cancer Res. 83:251–263.
2023. View Article : Google Scholar :
|
|
49
|
Álvarez-Varela A, Novellasdemunt L,
Barriga FM, Hernando-Momblona X, Cañellas-Socias A, Cano-Crespo S,
Sevillano M, Cortina C, Stork D, Morral C, et al: Mex3a marks
drug-tolerant persister colorectal cancer cells that mediate
relapse after chemotherapy. Nat Cancer. 3:1052–1070. 2022.
View Article : Google Scholar
|
|
50
|
Lu Y, Bi T, Zhou S and Guo M: MEX3A
promotes angiogenesis in colorectal cancer via glycolysis. Libyan J
Med. 18:22024462023. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
de Sousa e Melo F, Kurtova AV, Harnoss JM,
Kljavin N, Hoeck JD, Hung J, Anderson JE, Storm EE, Modrusan Z,
Koeppen H, et al: A distinct role for Lgr5+ stem cells in primary
and metastatic colon cancer. Nature. 543:676–680. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Pereira B, Sousa S, Barros R, Carreto L,
Oliveira P, Oliveira C, Chartier NT, Plateroti M, Rouault JP,
Freund JN, et al: CDX2 regulation by the RNA-binding protein MEX3A:
impact on intestinal differentiation and stemness. Nucleic Acids
Res. 41:3986–3999. 2013. View Article : Google Scholar
|
|
53
|
Ding J, He X, Luo W, Zhou W, Chen R, Cao
G, Chen B and Xiong M: Development and validation of a
pyroptosis-related signature for predicting prognosis in
hepatocellular carcinoma. Front Genet. 13:8014192022. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Jiromaru R, Nakagawa T and Yasumatsu R:
Advanced nasopharyngeal carcinoma: Current and emerging treatment
options. Cancer Manag Res. 14:2681–2689. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Huang H, Yao Y, Deng X, Huang Z, Chen Y,
Wang Z, Hong H, Huang H and Lin T: Immunotherapy for nasopharyngeal
carcinoma: Current status and prospects (Review). Int J Oncol.
63:972023. View Article : Google Scholar :
|
|
56
|
Huang Y, Fang C, Shi JW, Wen Y and Liu D:
Identification of hMex-3A and its effect on human bladder cancer
cell proliferation. Oncotarget. 8:61215–61225. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Ouladan S and Orouji E: Chimeric antigen
receptor-T cells in colorectal cancer: Pioneering new avenues in
solid tumor immunotherapy. J Clin Oncol. 43:994–1005. 2025.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar
|
|
59
|
Zhan T, Betge J, Schulte N, Dreikhausen L,
Hirth M, Li M, Weidner P, Leipertz A, Teufel A and Ebert MP:
Digestive cancers: Mechanisms, therapeutics and management. Signal
Transduct Target Ther. 10:242025. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Chen K, Collins G, Wang H and Toh JWT:
Pathological features and prognostication in colorectal cancer.
Curr Oncol. 28:5356–5383. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Zhou X, Li S, Ma T, Zeng J, Li H, Liu X,
Li F, Jiang B, Zhao M, Liu Z and Qin Y: MEX3A knockdown inhibits
the tumorigenesis of colorectal cancer via modulating CDK2
expression. Exp Ther Med. 22:13432021. View Article : Google Scholar :
|
|
62
|
Pan L, Fan Y and Zhou L: SMYD2
epigenetically activates MEX3A and suppresses CDX2 in colorectal
cancer cells to augment cancer growth. Clin Exp Pharmacol Physiol.
49:959–969. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Yang X, Li G, Tian Y, Wang X, Xu J, Liu R,
Deng M, Shao C, Pan Y, Wu X, et al: Identifying the E2F3-MEX3A-KLF4
signaling axis that sustains cancer cells in undifferentiated and
proliferative state. Theranostics. 12:6865–6882. 2022. View Article : Google Scholar
|
|
64
|
Wang L, Liu Y, Dai Y, Tang X, Yin T, Wang
C, Wang T, Dong L, Shi M, Qin J, et al: Single-cell RNA-seq
analysis reveals BHLHE40-driven pro-tumour neutrophils with
hyperactivated glycolysis in pancreatic tumour microenvironment.
Gut. 72:958–971. 2023. View Article : Google Scholar
|
|
65
|
Xie B, Lin J, Chen X, Zhou X, Zhang Y, Fan
M, Xiang J, He N, Hu Z and Wang F: CircXRN2 suppresses tumor
progression driven by histone lactylation through activating the
hippo pathway in human bladder cancer. Mol Cancer. 22:1512023.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Colorectal cancer cells expressing Mex3a
drive recurrence after chemotherapy. Nat Cancer. 3:1024–1025. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Siegel RL, Giaquinto AN and Jemal A:
Cancer statistics, 2024. CA Cancer J Clin. 74:12–49. 2024.
View Article : Google Scholar
|
|
68
|
Liu D, Li J, Xue Y, Zhao T, Jin Z, Dan W,
Chen Z, Hu L and Sun S: Site-specific N-glycan alterations on
haptoglobin as potential biomarkers for distinguishing intrahepatic
cholangiocarcinoma from hepatocellular carcinoma. Int J Biol
Macromol. 280:1355632024. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Feng M, Pan Y, Kong R and Shu S: Therapy
of primary liver cancer. Innovation (Camb). 1:1000322020.PubMed/NCBI
|
|
70
|
Chan YT, Zhang C, Wu J, Lu P, Xu L, Yuan
H, Feng Y, Chen ZS and Wang N: Biomarkers for diagnosis and
therapeutic options in hepatocellular carcinoma. Mol Cancer.
23:1892024. View Article : Google Scholar
|
|
71
|
Yang JR, Tian YX, Li JE, Zhang Y, Fan YC
and Wang K: Mex3a promoter hypomethylation can be utilized to
diagnose HBV-associated hepatocellular carcinoma: A randomized
controlled trial. Front Pharmacol. 15:13258692024. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Fang S, Zheng L, Chen X, Guo X, Ding Y, Ma
J, Ding J, Chen W, Yang Y, Chen M, et al: MEX3A determines in vivo
hepatocellular carcinoma progression and induces resistance to
sorafenib in a Hippo-dependent way. Hepatol Int. 17:1500–1518.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Naro C, Ruta V and Sette C: Splicing
dysregulation: Hallmark and therapeutic opportunity in pancreatic
cancer. Trends Mol Med. 7:S1471–S4914. 2024.
|
|
74
|
Wang X, Shan YQ, Tan QQ, Tan CL, Zhang H,
Liu JH, Ke NW, Chen YH and Liu XB: MEX3A knockdown inhibits the
development of pancreatic ductal adenocarcinoma. Cancer Cell Int.
20:632020. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Hosein AN, Huang H, Wang Z, Parmar K, Du
W, Huang J, Maitra A, Olson E, Verma U and Brekken RA: Cellular
heterogeneity during mouse pancreatic ductal adenocarcinoma
progression at single-cell resolution. JCI Insight. 5:e1292122019.
View Article : Google Scholar
|
|
76
|
Liu Y, Xiong R, Xiao T, Xiong L, Wu J, Li
J, Feng G, Song G and Liu K: SCARA5 induced ferroptosis to effect
ESCC proliferation and metastasis by combining with ferritin light
chain. BMC Cancer. 22:13042022. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Zhou X, Li Y, Wang W, Wang S, Hou J, Zhang
A, Lv B, Gao C, Yan Z, Pang D, et al: Regulation of hippo/YAP
signaling and esophageal squamous carcinoma progression by an E3
ubiquitin ligase PARK2. Theranostics. 10:9443–9457. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Yang H, Wang F, Hallemeier CL, Lerut T and
Fu J: Oesophageal cancer. Lancet. 404:1991–2005. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Deboever N, Jones CM, Yamashita K, Ajani
JA and Hofstetter WL: Advances in diagnosis and management of
cancer of the esophagus. BMJ. 385:e0749622024. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Wei L, Wang B, Hu L, Xu Y, Li Z, Shen Y
and Huang H: MEX3A is upregulated in esophageal squamous cell
carcinoma (ESCC) and promotes development and progression of ESCC
through targeting CDK6. Aging (Albany NY). 12:21091–21113. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Nishito Y, Hasegawa M, Inohara N and Núñez
G: MEX is a testis-specific E3 ubiquitin ligase that promotes death
receptor-induced apoptosis. Biochem J. 396:411–417. 2006.
View Article : Google Scholar
|
|
82
|
Jiang H, Zhang X, Luo J, Dong C, Xue J,
Wei W, Chen J, Zhou J, Gao Y and Yang C: Knockdown of hMex-3A by
small RNA interference suppresses cell proliferation and migration
in human gastric cancer cells. Mol Med Rep. 6:575–580. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Xuan Y, Wang H, Yung MM, Chen F, Chan WS,
Chan YS, Tsui SK, Ngan HY, Chan KK and Chan DW: SCD1/FADS2 fatty
acid desaturases equipoise lipid metabolic activity and
redox-driven ferroptosis in ascites-derived ovarian cancer cells.
Theranostics. 12:3534–3552. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Chen W, Hu L, Lu X, Wang X, Zhao C, Guo C,
Li X, Ding Y, Zhao H, Tong D, et al: The RNA binding protein MEX3A
promotes tumor progression of breast cancer by post-transcriptional
regulation of IGFBP4. Breast Cancer Res Treat. 201:353–366. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Yan L, Li H, An W, Wei W, Zhang X and Wang
L: Mex-3 RNA binding MEX3A promotes the proliferation and migration
of breast cancer cells via regulating RhoA/ROCK1/LIMK1 signaling
pathway. Bioengineered. 12:5850–5858. 2021. View Article : Google Scholar
|
|
86
|
Sun H, Dai J, Chen M, Chen Q, Xie Q, Zhang
W, Li G and Yan M: miR-139-5p was identified as biomarker of
different molecular subtypes of breast carcinoma. Front Oncol.
12:8577142022. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Peng F, Wang L, Xiong L, Tang H, Du J and
Peng C: Maackiain modulates miR-374a/GADD45A axis to inhibit
triple-negative breast cancer initiation and progression. Front
Pharmacol. 13:8068692022. View Article : Google Scholar :
|
|
88
|
Ning S, Li H, Qiao K, Wang Q, Shen M, Kang
Y, Yin Y, Liu J, Liu L, Hou S, et al: Identification of long-term
survival-associated gene in breast cancer. Aging (Albany NY).
12:20332–20349. 2020. View Article : Google Scholar
|
|
89
|
Jia R, Weng Y, Li Z, Liang W, Ji Y, Liang
Y and Ning P: Bioinformatics analysis identifies IL6ST as a
potential tumor suppressor gene for triple-negative breast cancer.
Reprod Sci. 28:2331–2341. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Webb PM and Jordan SJ: Global epidemiology
of epithelial ovarian cancer. Nat Rev Clin Oncol. 21:389–400. 2024.
View Article : Google Scholar
|
|
91
|
Li F, Zhao C, Diao Y, Wang Z, Peng J, Yang
N, Qiu C, Kong B and Li Y: MEX3A promotes the malignant progression
of ovarian cancer by regulating intron retention in TIMELESS. Cell
Death Dis. 13:5532022. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Wei Y, Chen Z, Li Y and Song K: The
splicing factor WBP11 mediates MCM7 intron retention to promote the
malignant progression of ovarian cancer. Oncogene. 43:1565–1578.
2024. View Article : Google Scholar
|
|
93
|
Konstantinopoulos PA and Matulonis UA:
Clinical and translational advances in ovarian cancer therapy. Nat
Cancer. 4:1239–1257. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Liang J, Li H, Han J, Jiang J, Wang J, Li
Y, Feng Z, Zhao R, Sun Z, Lv B and Tian H: Mex3a interacts with
LAMA2 to promote lung adenocarcinoma metastasis via PI3K/AKT
pathway. Cell Death Dis. 11:6142020. View Article : Google Scholar
|
|
95
|
Zhang M, Cheng S, Jin Y, Zhao Y and Wang
Y: Roles of CA125 in diagnosis, prediction, and oncogenesis of
ovarian cancer. Biochim Biophys Acta Rev Cancer. 1875:1885032021.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Francoeur AA, Monk BJ and Tewari KS:
Treatment advances across the cervical cancer spectrum. Nat Rev
Clin Oncol. 22:182–199. 2025. View Article : Google Scholar
|
|
97
|
Yousaf S, Shehzadi A, Ahmad M, Asrar A,
Ahmed I, Iqbal HMN and Bule MH: Recent advances in HPV
biotechnology: Understanding host-virus interactions and cancer
progression-a review. Int J Surg. 110:8025–8036. 2024. View Article : Google Scholar :
|
|
98
|
Liu Y, Xu Y, Jiang W, Ji H, Wang ZW and
Zhu X: Discovery of key genes as novel biomarkers specifically
associated with HPV-negative cervical cancer. Mol Ther Methods Clin
Dev. 21:492–506. 2021. View Article : Google Scholar
|
|
99
|
Nelson CW and Mirabello L: Human
papillomavirus genomics: Understanding carcinogenicity. Tumour
Virus Res. 15:2002582023. View Article : Google Scholar :
|
|
100
|
Roesch-Dietlen F, Cano-Contreras AD,
Sánchez-Maza YJ, Espinosa-González JM, Vázquez-Prieto MÁ, Valdés-de
la O EJ, Díaz-Roesch F, Carrasco-Arroniz MÁ, Cruz-Palacios A,
Grube-Pagola P, et al: Frequency of human papillomavirus infection
in patients with gastrointestinal cancer. Rev Gastroenterol Mex
(Engl Ed). 83:253–258. 2018.In English, Spanish.
|
|
101
|
Rous FA, Singhi EK, Sridhar A, Faisal MS
and Desai A: Lung cancer treatment advances in 2022. Cancer Invest.
41:12–24. 2023. View Article : Google Scholar
|
|
102
|
Meyer ML, Peters S, Mok TS, Lam S, Yang
PC, Aggarwal C, Brahmer J, Dziadziuszko R, Felip E, Ferris A, et
al: Lung cancer research and treatment: Global perspectives and
strategic calls to action. Ann Oncol. 35:1088–1104. 2024.
View Article : Google Scholar
|
|
103
|
Zhang M, Cao L, Hou G, Lv X and Deng J:
Investigation of the potential correlation between RNA-binding
proteins in the evolutionarily conserved MEX3 family and
non-small-cell lung cancer. Mol Biotechnol. 65:1263–1274. 2023.
View Article : Google Scholar
|
|
104
|
Kang S, Ni Y, Lan K and Lv F:
Hsa_circ_0008133 contributes to lung cancer progression by
promoting glycolysis metabolism through the miR-760/MEX3A axis.
Environ Toxicol. 39:3014–3025. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
de Melo SM, da Silva ME, Torloni MR, Riera
R, De Cicco K, Latorraca CO and Pinto ACPN: Anti-PD-1 and
anti-PD-L1 antibodies for glioma. Cochrane Database Syst Rev.
1:CD0125322025.PubMed/NCBI
|
|
106
|
Cella E, Bosio A, Persico P, Caccese M,
Padovan M, Losurdo A, Maccari M, Cerretti G, Ius T, Minniti G, et
al: Corrigendum to 'PARP inhibitors in gliomas: Mechanisms of
action, current trends and future perspectives' [Cancer Treat Rev.
131(2024) 102850]. Cancer Treat Rev. 132:1028662025. View Article : Google Scholar
|
|
107
|
Yang C, Zhan H, Zhao Y, Wu Y, Li L and
Wang H: MEX3A contributes to development and progression of glioma
through regulating cell proliferation and cell migration and
targeting CCL2. Cell Death Dis. 12:142021. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Gan T, Wang Y, Xie M, Wang Q, Zhao S, Wang
P, Shi Q, Qian X, Miao F, Shen Z and Nie E: MEX3A impairs DNA
mismatch repair signaling and mediates acquired temozolomide
resistance in glioblastoma. Cancer Res. 82:4234–4246. 2022.
View Article : Google Scholar
|
|
109
|
Boucai L, Zafereo M and Cabanillas ME:
Thyroid cancer: A review. JAMA. 331:425–435. 2024. View Article : Google Scholar
|
|
110
|
Ma Y, Yin S, Liu XF, Hu J, Cai N, Zhang
XB, Fu L, Cao XC and Yu Y: Comprehensive analysis of the functions
and prognostic value of RNA-binding proteins in thyroid cancer.
Front Oncol. 11:6250072021. View Article : Google Scholar
|
|
111
|
Qin H, Ni H, Liu Y, Yuan Y, Xi T, Li X and
Zheng L: RNA-binding proteins in tumor progression. J Hematol
Oncol. 13:902020. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Muciño-Hernández MI, Montoya-Fuentes H,
Ochoa-Plascencia MR, Vázquez-Camacho G, Morales-Jeanhs EA,
Bencomo-Álvarez AE, Chejfec-Ciociano JM, Fuentes-Orozco C,
Barbosa-Camacho FJ and González-Ojeda A: Molecular identification
of human papillomavirus DNA in thyroid neoplasms: Association or
serendipity? Cureus. 13:e145782021.
|
|
113
|
Chen KR, Yang CY, Shu SG, Lo YC, Lee KW,
Wang LC, Chen JB, Shih MC, Chang HC, Hsiao YJ, et al: Endosomes
serve as signaling platforms for RIG-I ubiquitination and
activation. Sci Adv. 10:eadq06602024. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Helms MW, Jahn-Hofmann K, Gnerlich F,
Metz-Weidmann C, Braun M, Dietert G, Scherer P, Grandien K,
Theilhaber J, Cao H, et al: Utility of the RIG-I agonist
triphosphate RNA for melanoma therapy. Mol Cancer Ther.
18:2343–2356. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Vogel GF, Ebner HL, de Araujo MEG,
Schmiedinger T, Eiter O, Pircher H, Gutleben K, Witting B, Teis D,
Huber LA and Hess MW: Ultrastructural morphometry points to a new
role for LAMTOR2 in regulating the endo/lysosomal system. Traffic.
16:617–634. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Lin LL, Liu ZZ, Tian JZ, Zhang X, Zhang Y,
Yang M, Zhong HC, Fang W, Wei RX and Hu C: Integrated analysis of
nine prognostic RNA-binding proteins in soft tissue sarcoma. Front
Oncol. 11:6330242021. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Solt CM, Hill JL, Vanderpool K and Foster
MT: Obesity-induced immune dysfunction and immunosuppression: TEM
observation of visceral and subcutaneous lymph node
microarchitecture and immune cell interactions. Horm Mol Biol Clin
Investig.
39/j/hmbci.2019.39.issue-2/hmbci-2018-0083/hmbci-2018-0083.xml.
2019.
|
|
118
|
Yang D, Jiao Y, Li Y and Fang X: Clinical
characteristics and prognostic value of MEX3A mRNA in liver cancer.
PeerJ. 8:e82522020. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Ji PX, Zhang P, Zhou HL, Yu H and Fu Y:
MEX3A promotes cell proliferation by regulating the RORA/β-catenin
pathway in hepatocellular carcinoma. World J Gastrointest Oncol.
17:1020842025. View Article : Google Scholar
|
|
120
|
Shi X, Sun Y, Zhang Y, Wang W, Xu J, Guan
Y, Ding Y and Yao Y: MEX3A promotes development and progression of
breast cancer through regulation of PIK3CA. Exp Cell Res.
404:1125802021. View Article : Google Scholar
|
|
121
|
Zhang Y, Zhang Y, Song J, Cheng X, Zhou C,
Huang S, Zhao W, Zong Z and Yang L: Targeting the 'tumor
microenvironment': RNA-binding proteins in the spotlight in
colorectal cancer therapy. Int Immunopharmacol. 131:1118762024.
View Article : Google Scholar
|
|
122
|
Li M, Fan X, Zhao J and Wang D:
Establishment and validation of a four-stress granule-related gene
signature in hepatocellular carcinoma. J Clin Transl Hepatol.
12:1–14. 2024. View Article : Google Scholar
|
|
123
|
Yang L, Wang C, Li F, Zhang J, Nayab A, Wu
J, Shi Y and Gong Q: The human RNA-binding protein and E3 ligase
MEX-3C binds the MEX-3-recognition element (MRE) motif with high
affinity. J Biol Chem. 292:16221–16234. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Dong P, Taheri M and Wang F: Editorial:
Interplay between RNA-binding proteins and non-coding RNAs in tumor
therapeutic resistance. Front Oncol. 13:12011222023. View Article : Google Scholar
|
|
125
|
Huang Z, Xu E, Ma X, Wang Y, Zhu J, Zhu K,
Hu J and Zhang C: Low NT5DC2 expression predicts favorable
prognosis and suppresses soft tissue sarcoma progression via
ECM-receptor interaction pathway. Transl Oncol. 44:1019372024.
View Article : Google Scholar
|
|
126
|
Shi JW and Huang Y: Mex3a expression and
survival analysis of bladder urothelial carcinoma. Oncotarget.
8:54764–54774. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Zhang J, Liu L, Wang Z, Hou M, Dong Z, Yu
J, Sun R and Cui G: Ubiquitin-proteasome system-based signature to
predict the prognosis and drug sensitivity of hepatocellular
carcinoma. Front Pharmacol. 14:11729082023. View Article : Google Scholar
|
|
128
|
Liu H, Tang L, Li Y, Xie W, Zhang L, Tang
H, Xiao T, Yang H, Gu W, Wang H and Chen P: Nasopharyngeal
carcinoma: Current views on the tumor microenvironment's impact on
drug resistance and clinical outcomes. Mol Cancer. 23:202024.
View Article : Google Scholar : PubMed/NCBI
|