You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
|
Lamptey RNL, Chaulagain B, Trivedi R, Gothwal A, Layek B and Singh J: A Review of the common neurodegenerative disorders: Current therapeutic approaches and the potential role of nanotherapeutics. Int J Mol Sci. 23:18512022. View Article : Google Scholar : PubMed/NCBI | |
|
Hou Y, Dan X, Babbar M, Wei Y, Hasselbalch SG, Croteau DL and Bohr VA: Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol. 15:565–581. 2019. View Article : Google Scholar | |
|
Scheltens P, De Strooper B, Kivipelto M, Holstege H, Chetelat G, Teunissen CE, Cummings J and van der Flier WM: Alzheimer's disease. Lancet. 397:1577–1590. 2021. View Article : Google Scholar | |
|
Kalia LV and Lang AE: Parkinson's disease. Lancet. 386:896–912. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Feldman EL, Goutman SA, Petri S, Mazzini L, Savelieff MG, Shaw PJ and Sobue G: Amyotrophic lateral sclerosis. Lancet. 400:1363–1380. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Vaquer-Alicea J and Diamond MI: Propagation of protein aggregation in neurodegenerative diseases. Annu Rev Biochem. 88:785–810. 2019. View Article : Google Scholar | |
|
Dugger BN and Dickson DW: Pathology of neurodegenerative diseases. Cold Spring Harb Perspect Biol. 9:a0280352017. View Article : Google Scholar : PubMed/NCBI | |
|
Gao C, Jiang J, Tan Y and Chen S: Microglia in neurodegenerative diseases: Mechanism and potential therapeutic targets. Signal Transduct Target Ther. 8:3592023. View Article : Google Scholar : | |
|
Kent SA and Miron VE: Microglia regulation of central nervous system myelin health and regeneration. Nat Rev Immunol. 24:49–63. 2024. View Article : Google Scholar | |
|
Voet S, Srinivasan S, Lamkanfi M and van Loo G: Inflammasomes in neuroinflammatory and neurodegenerative diseases. EMBO Mol Med. 11:e102482019. View Article : Google Scholar : PubMed/NCBI | |
|
Sun N, Victor MB, Park YP, Xiong X, Scannail AN, Leary N, Prosper S, Viswanathan S, Luna X, Boix CA, et al: Human microglial state dynamics in Alzheimer's disease progression. Cell. 186:4386–4403.e29. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Yu H, Chang Q, Sun T, He X, Wen L, An J, Feng J and Zhao Y: Metabolic reprogramming and polarization of microglia in Parkinson's disease: Role of inflammasome and iron. Ageing Res Rev. 90:1020322023. View Article : Google Scholar : PubMed/NCBI | |
|
Clarke BE and Patani R: The microglial component of amyotrophic lateral sclerosis. Brain. 143:3526–3539. 2020. View Article : Google Scholar | |
|
Billingham LK, Stoolman JS, Vasan K, Rodriguez AE, Poor TA, Szibor M, Jacobs HT, Reczek CR, Rashidi A, Zhang P, et al: Mitochondrial electron transport chain is necessary for NLRP3 inflammasome activation. Nat Immunol. 23:692–704. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Cella M, Mallinson K, Ulrich JD, Young KL, Robinette ML, Gilfillan S, Krishnan GM, Sudhakar S, Zinselmeyer BH, et al: TREM2 lipid sensing sustains the microglial response in an Alzheimer's disease model. Cell. 160:1061–1071. 2015. View Article : Google Scholar : | |
|
Zheng Z, Chen M, Feng S, Zhao H, Qu T, Zhao X, Ruan Q, Li L and Guo J: VDR and deubiquitination control neuronal oxidative stress and microglial inflammation in Parkinson's disease. Cell Death Discov. 10:1502024. View Article : Google Scholar | |
|
Yoon H, Shaw JL, Haigis MC and Greka A: Lipid metabolism in sickness and in health: Emerging regulators of lipotoxicity. Mol Cell. 81:3708–3730. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Shang C, Su Y, Ma J, Li Z, Wang P, Ma H, Song J and Zhang Z: Huanshaodan regulates microglial glucose metabolism reprogramming to alleviate neuroinflammation in AD mice through mTOR/HIF-1α signaling pathway. Front Pharmacol. 15:14345682024. View Article : Google Scholar | |
|
Baik SH, Kang S, Lee W, Choi H, Chung S, Kim JI and Mook-Jung I: A breakdown in metabolic reprogramming causes microglia dysfunction in Alzheimer's disease. Cell Metab. 30:493–507.e6. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Nugent AA, Lin K, van Lengerich B, Lianoglou S, Przybyla L, Davis SS, Llapashtica C, Wang J, Kim DJ, Xia D, et al: TREM2 regulates microglial cholesterol metabolism upon chronic phagocytic challenge. Neuron. 105:837–854.e9. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Chausse B, Kakimoto PA and Kann O: Microglia and lipids: How metabolism controls brain innate immunity. Semin Cell Dev Biol. 112:137–144. 2021. View Article : Google Scholar | |
|
Lull ME and Block ML: Microglial activation and chronic neurodegeneration. Neurotherapeutics. 7:354–365. 2010. View Article : Google Scholar | |
|
Fernando KKM and Wijayasinghe YS: Sirtuins as potential therapeutic targets for mitigating neuroinflammation associated with Alzheimer's disease. Front Cell Neurosci. 15:7466312021. View Article : Google Scholar | |
|
Licata L, Viale G, Giuliano M, Cur igliano G, Chavez-MacGregor M, Foldi J, Oke O, Collins J, Del Mastro L, Puglisi F, et al: Oncotype DX results increase concordance in adjuvant chemotherapy recommendations for early-stage breast cancer. NPJ Breast Cancer. 9:512023. View Article : Google Scholar : | |
|
Weiss F, Hughes L, Fu Y, Bardy C, Halliday GM and Dzamko N: Astrocytes contribute to toll-like receptor 2-mediated neurodegeneration and alpha-synuclein pathology in a human midbrain Parkinson's model. Transl Neurodegener. 13:622024. View Article : Google Scholar : PubMed/NCBI | |
|
Sun L, Jiang WW, Wang Y, Yuan YS, Rong Z, Wu J, Fan Y, Lu M and Zhang KZ: Phosphorylated α-synuclein aggregated in Schwann cells exacerbates peripheral neuroinflammation and nerve dysfunction in Parkinson's disease through TLR2/NF-κB pathway. Cell Death Discov. 7:2892021. View Article : Google Scholar | |
|
Wendimu MY and Hooks SB: Microglia phenotypes in aging and neurodegenerative diseases. Cells. 11:20192022. View Article : Google Scholar | |
|
Kettenmann H, Kirchhoff F and Verkhratsky A: Microglia: New roles for the synaptic stripper. Neuron. 77:10–18. 2013. View Article : Google Scholar | |
|
Platanitis E and Decker T: Regulatory networks involving STATs, IRFs, and NFκB in inflammation. Front Immunol. 9:25422018. View Article : Google Scholar | |
|
Stewart CR, Stuart LM, Wilkinson K, van Gils JM, Deng J, Halle A, Rayner KJ, Boyer L, Zhong R, Frazier WA, et al: CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol. 11:155–161. 2010. View Article : Google Scholar : | |
|
Wang Y, Wang YC and Ma J: Effects of electroacupuncture on Sirt3/NLRP3/GSDMD signaling pathway in the substantia nigra of midbrain of rats with Parkinson's disease. Zhen Ci Yan Jiu. 49:384–390. 2024.In Chinese. | |
|
Yu CH, Davidson S, Harapas CR, Hilton JB, Mlodzianoski MJ, Laohamonthonkul P, Louis C, Low RRJ, Moecking J, De Nardo D, et al: TDP-43 triggers mitochondrial DNA release via mPTP to activate cGAS/STING in ALS. Cell. 183:636–649.e18. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Becker LA, Huang B, Bieri G, Ma R, Knowles DA, Jafar-Nejad P, Messing J, Kim HJ, Soriano A, Auburger G, et al: Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice. Nature. 544:367–371. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Deane R, Singh I, Sagare AP, Bell RD, Ross NT, LaRue B, Love R, Perry S, Paquette N, Deane RJ, et al: A multimodal RAGE-specific inhibitor reduces amyloid β-mediated brain disorder in a mouse model of Alzheimer disease. J Clin Invest. 122:1377–1392. 2012. View Article : Google Scholar : | |
|
Hanslik KL and Ulland TK: The role of microglia and the Nlrp3 inflammasome in Alzheimer's disease. Front Neurol. 11:5707112020. View Article : Google Scholar : | |
|
Bolos M, Llorens-Martin M, Perea JR, Jurado-Arjona J, Rabano A, Hernandez F and Avila J: Absence of CX3CR1 impairs the internalization of Tau by microglia. Mol Neurodegener. 12:592017. View Article : Google Scholar : | |
|
Chidambaram H, Das R and Chinnathambi S: Interaction of Tau with the chemokine receptor, CX3CR1 and its effect on microglial activation, migration and proliferation. Cell Biosci. 10:1092020. View Article : Google Scholar | |
|
Wilton DK, Mastro K, Heller MD, Gergits FW, Willing CR, Fahey JB, Frouin A, Daggett A, Gu X, Kim YA, et al: Microglia and complement mediate early corticostriatal synapse loss and cognitive dysfunction in Huntington's disease. Nat Med. 29:2866–2884. 2023. View Article : Google Scholar | |
|
Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S, Merry KM, Shi Q, Rosenthal A, Barres BA, et al: Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science. 352:712–716. 2016. View Article : Google Scholar : | |
|
Kim A, Garcia-Garcia E, Straccia M, Comella-Bolla A, Miguez A, Masana M, Alberch J, Canals JM and Rodriguez MJ: Reduced fractalkine levels lead to striatal synaptic plasticity deficits in Huntington's disease. Front Cell Neurosci. 14:1632020. View Article : Google Scholar | |
|
Logan T, Simon MJ, Rana A, Cherf GM, Srivastava A, Davis SS, Low RLY, Chiu CL, Fang M, Huang F, et al: Rescue of a lysosomal storage disorder caused by Grn loss of function with a brain penetrant progranulin biologic. Cell. 184:4651–4668.e25. 2021. View Article : Google Scholar | |
|
Mata-Martinez E, Diaz-Munoz M and Vazquez-Cuevas FG: Glial cells and brain diseases: Inflammasomes as relevant pathological entities. Front Cell Neurosci. 16:9295292022. View Article : Google Scholar : | |
|
Xu P, Zhang X, Liu Q, Xie Y, Shi X, Chen J, Li Y, Guo H, Sun R, Hong Y, et al: Microglial TREM-1 receptor mediates neuroinflammatory injury via interaction with SYK in experimental ischemic stroke. Cell Death Dis. 10:5552019. View Article : Google Scholar : | |
|
Qin Q, Teng Z, Liu C, Li Q, Yin Y and Tang Y: TREM2, microglia, and Alzheimer's disease. Mech Ageing Dev. 195:1114382021. View Article : Google Scholar | |
|
Caldeira C, Cunha C, Vaz AR, Falcao AS, Barateiro A, Seixas E, Fernandes A and Brites D: Key Aging-associated alterations in primary microglia response to Beta-amyloid stimulation. Front Aging Neurosci. 9:2772017. View Article : Google Scholar : PubMed/NCBI | |
|
Condello C, Yuan P, Schain A and Grutzendler J: Microglia Constitute a barrier that prevents neurotoxic protofibrillar Aβ42 hotspots around plaques. Nat Commun. 6:61762015. View Article : Google Scholar | |
|
Feng W, Zhang Y, Wang Z, Xu H, Wu T, Marshall C, Gao J and Xiao M: Microglia Prevent beta-amyloid plaque formation in the early stage of an Alzheimer's disease mouse model with suppression of glymphatic clearance. Alzheimers Res Ther. 12:1252020. View Article : Google Scholar | |
|
Krasemann S, Madore C, Cialic R, Baufeld C, Calcagno N, El Fatimy R, Beckers L, O'Loughlin E, Xu Y, Fanek Z, et al: The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity. 47:566–581.e9. 2017. View Article : Google Scholar : | |
|
Felsky D, Patrick E, Schneider JA, Mostafavi S, Gaiteri C, Patsopoulos N, Bennett DA and De Jager PL: Polygenic analysis of inflammatory disease variants and effects on microglia in the aging brain. Mol Neurodegener. 13:382018. View Article : Google Scholar | |
|
Absinta M, Maric D, Gharagozloo M, Garton T, Smith MD, Jin J, Fitzgerald KC, Song A, Liu P, Lin JP, et al: A lymphocyte-microglia-astrocyte axis in chronic active multiple sclerosis. Nature. 597:709–714. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Werneburg S, Jung J, Kunjamma RB, Ha SK, Luciano NJ, Willis CM, Gao G, Biscola NP, Havton LA, Crocker SJ, et al: Targeted complement inhibition at synapses prevents microglial synaptic engulfment and synapse loss in demyelinating disease. Immunity. 52:167–182.e7. 2020. View Article : Google Scholar : | |
|
Ellrichmann G, Reick C, Saft C and Linker RA: The role of the immune system in Huntington's disease. Clin Dev Immunol. 2013:5412592013. View Article : Google Scholar : PubMed/NCBI | |
|
Creus-Muncunill J and Ehrlich ME: Cell-Autonomous and Non-cell-autonomous pathogenic mechanisms in Huntington's disease: Insights from in vitro and in vivo models. Neurotherapeutics. 16:957–978. 2019. View Article : Google Scholar | |
|
Udeochu JC, Amin S, Huang Y, Fan L, Torres ERS, Carling GK, Liu B, McGurran H, Coronas-Samano G, Kauwe G, et al: Tau activation of microglial cGAS-IFN reduces MEF2C-mediated cognitive resilience. Nat Neurosci. 26:737–750. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Hu Y, Fryatt GL, Ghorbani M, Obst J, Menassa DA, Martin-Estebane M, Muntslag TAO, Olmos-Alonso A, Guerrero-Carrasco M, Thomas D, et al: Replicative senescence dictates the emergence of disease-associated microglia and contributes to Aβ pathology. Cell Rep. 35:1092282021. View Article : Google Scholar | |
|
Yamamoto M, Kiyota T, Walsh SM, Liu J, Kipnis J and Ikezu T: Cytokine-mediated inhibition of fibrillar amyloid-beta peptide degradation by human mononuclear phagocytes. J Immunol. 181:3877–3886. 2008. View Article : Google Scholar | |
|
Han F, Perrin RJ, Wang Q, Wang Y, Perlmutter JS, Morris JC, Benzinger TLS and Xu J: Neuroinflammation and Myelin Status in Alzheimer's disease, Parkinson's disease, and normal aging brains: A small sample study. Parkinsons Dis. 2019:79754072019.PubMed/NCBI | |
|
Jurga AM, Paleczna M and Kuter KZ: Overview of general and discriminating markers of differential microglia phenotypes. Front Cell Neurosci. 14:1982020. View Article : Google Scholar : | |
|
Gadani SP, Cronk JC, Norris GT and Kipnis J: IL-4 in the brain: A cytokine to remember. J Immunol. 189:4213–4219. 2012. View Article : Google Scholar | |
|
Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Munch AE, Chung WS, Peterson TC, et al: Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 541:481–487. 2017. View Article : Google Scholar | |
|
Tecchio C, Micheletti A and Cassatella MA: Neutrophil-derived cytokines: Facts beyond expression. Front Immunol. 5:5082014. View Article : Google Scholar : PubMed/NCBI | |
|
Kummer MP, Hermes M, Delekarte A, Hammerschmidt T, Kumar S, Terwel D, Walter J, Pape HC, König S, Roeber S, et al: Nitration of tyrosine 10 critically enhances amyloid β aggregation and plaque formation. Neuron. 71:833–844. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Wang WY, Tan MS, Yu JT and Tan L: Role of pro-inflammatory cytokines released from microglia in Alzheimer's disease. Ann Transl Med. 3:1362015.PubMed/NCBI | |
|
Sheffield LG, Marquis JG and Berman NE: Regional distribution of cortical microglia parallels that of neurofibrillary tangles in Alzheimer's disease. Neurosci Lett. 285:165–168. 2000. View Article : Google Scholar | |
|
Venegas C and Heneka MT: Danger-associated molecular patterns in Alzheimer's disease. J Leukoc Biol. 101:87–98. 2017. View Article : Google Scholar | |
|
Jha MK, Jo M, Kim JH and Suk K: Microglia-astrocyte crosstalk: An intimate molecular conversation. Neuroscientist. 25:227–240. 2019. View Article : Google Scholar | |
|
Hanisch UK and Kettenmann H: Microglia: Active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci. 10:1387–1394. 2007. View Article : Google Scholar | |
|
Valdearcos M, Douglass JD, Robblee MM, Dorfman MD, Stifler DR, Bennett ML, Gerritse I, Fasnacht R, Barres BA, Thaler JP and Koliwad SK: Microglial inflammatory signaling orchestrates the hypothalamic immune response to dietary excess and mediates obesity susceptibility. Cell Metab. 26:185–197.e3. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Doens D and Fernandez PL: Microglia receptors and their implications in the response to amyloid β for Alzheimer's disease pathogenesis. J Neuroinflammation. 11:482014. View Article : Google Scholar | |
|
Kim E, Tolhurst AT, Qin LY, Chen XY, Febbraio M and Cho S: CD36/fatty acid translocase, an inflammatory mediator, is involved in hyperlipidemia-induced exacerbation in ischemic brain injury. J Neurosci. 28:4661–4670. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Gao D, Ashraf MZ, Kar NS, Lin D, Sayre LM and Podrez EA: Structural basis for the recognition of oxidized phospholipids in oxidized low density lipoproteins by class B scavenger receptors CD36 and SR-BI. J Biol Chem. 285:4447–4454. 2010. View Article : Google Scholar : | |
|
Coraci IS, Husemann J, Berman JW, Hulette C, Dufour JH, Campanella GK, Luster AD, Silverstein SC and El-Khoury JB: CD36, a class B scavenger receptor, is expressed on microglia in Alzheimer's disease brains and can mediate production of reactive oxygen species in response to beta-amyloid fibrils. Am J Pathol. 160:101–112. 2002. View Article : Google Scholar | |
|
Yamanaka M, Ishikawa T, Griep A, Axt D, Kummer MP and Heneka MT: PPARγ/RXRα-induced and CD36-mediated microglial amyloid-β phagocytosis results in cognitive improvement in amyloid precursor protein/presenilin 1 mice. J Neurosci. 32:17321–17331. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Sheedy FJ, Grebe A, Rayner KJ, Kalantari P, Ramkhelawon B, Carpenter SB, Becker CE, Ediriweera HN, Mullick AE, Golenbock DT, et al: CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat Immunol. 14:812–820. 2013. View Article : Google Scholar : | |
|
Cantuti-Castelvetri L, Fitzner D, Bosch-Queralt M, Weil MT, Su M, Sen P, Ruhwedel T, Mitkovski M, Trendelenburg G, Lütjohann D, et al: Defective cholesterol clearance limits remyelination in the aged central nervous system. Science. 359:684–688. 2018. View Article : Google Scholar | |
|
Yeh FL, Wang Y, Tom I, Gonzalez LC and Sheng M: TREM2 binds to apolipoproteins, including APOE and CLU/APOJ, and thereby facilitates uptake of Amyloid-beta by microglia. Neuron. 91:328–340. 2016. View Article : Google Scholar | |
|
Lessard CB, Malnik SL, Zhou Y, Ladd TB, Cruz PE, Ran Y, Mahan TE, Chakrabaty P, Holtzman DM, Ulrich JD, et al: High-affinity interactions and signal transduction between Aβ oligomers and TREM2. EMBO Mol Med. 10:e90272018. View Article : Google Scholar | |
|
Beisiegel U, Weber W and Bengtsson-Olivecrona G: Lipoprotein lipase enhances the binding of chylomicrons to low density lipoprotein receptor-related protein. Proc Natl Acad Sci USA. 88:8342–8346. 1991. View Article : Google Scholar | |
|
Gao Y, Vidal-Itriago A, Kalsbeek MJ, Layritz C, Garcia-Caceres C, Tom RZ, Eichmann TO, Vaz FM, Houtkooper RH, Van der Wel N, et al: Lipoprotein lipase maintains microglial innate immunity in obesity. Cell Rep. 20:3034–3042. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Aflaki E, Radovic B, Chandak PG, Kolb D, Eisenberg T, Ring J, Fertschai I, Uellen A, Wolinski H, Kohlwein SD, et al: Triacylglycerol accumulation activates the mitochondrial apoptosis pathway in macrophages. J Biol Chem. 286:7418–7428. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Weinger JG, Brosnan CF, Loudig O, Goldberg MF, Macian F, Arnett HA, Prieto AL, Tsiperson V and Shafit-Zagardo B: Loss of the receptor tyrosine kinase Axl leads to enhanced inflammation in the CNS and delayed removal of myelin debris during experimental autoimmune encephalomyelitis. J Neuroinflammation. 8:492011. View Article : Google Scholar : | |
|
Shirotani K, Hori Y, Yoshizaki R, Higuchi E, Colonna M, Saito T, Hashimoto S, Saito T, Saido TC and Iwata N: Aminophospholipids are Signal-transducing TREM2 ligands on apoptotic cells. Sci Rep. 9:75082019. View Article : Google Scholar : | |
|
Bogie JF, Jorissen W, Mailleux J, Nijland PG, Zelcer N, Vanmierlo T, Van Horssen J, Stinissen P, Hellings N and Hendriks JJ: Myelin alters the inflammatory phenotype of macrophages by activating PPARs. Acta Neuropathol Commun. 1:432013. View Article : Google Scholar | |
|
Bogie JF, Timmermans S, Huynh-Thu VA, Irrthum A, Smeets HJ, Gustafsson JA, Steffensen KR, Mulder M, Stinissen P, Hellings N and Hendriks JJ: Myelin-derived lipids modulate macrophage activity by liver X receptor activation. PLoS One. 7:e449982012. View Article : Google Scholar : PubMed/NCBI | |
|
Safaiyan S, Kannaiyan N, Snaidero N, Brioschi S, Biber K, Yona S, Edinger AL, Jung S, Rossner MJ and Simons M: Age-related myelin degradation burdens the clearance function of microglia during aging. Nat Neurosci. 19:995–998. 2016. View Article : Google Scholar | |
|
Gabande-Rodriguez E, Perez-Canamas A, Soto-Huelin B, Mitroi DN, Sanchez-Redondo S, Martinez-Saez E, Venero C, Peinado H and Ledesma MD: Lipid-induced lysosomal damage after demyelination corrupts microglia protective function in lysosomal storage disorders. EMBO J. 38:e995532019. View Article : Google Scholar | |
|
Carta AR and Simuni T: Thiazolidinediones under preclinical and early clinical development for the treatment of Parkinson's disease. Expert Opin Investig Drugs. 24:219–227. 2015. View Article : Google Scholar | |
|
Pioglitazone in early Parkinson's disease: A phase 2, multicentre, double-blind, randomised trial. Lancet Neurol. 14:795–803. 2015. View Article : Google Scholar | |
|
Huyghe S, Mannaerts GP, Baes M and Van Veldhoven PP: Peroxisomal multifunctional protein-2: The enzyme, the patients and the knockout mouse model. Biochim Biophys Acta. 1761:973–994. 2006. View Article : Google Scholar | |
|
Gong Y, Sasidharan N, Laheji F, Frosch M, Musolino P, Tanzi R, Kim DY, Biffi A, El Khoury J and Eichler F: Microglial dysfunction as a key pathological change in adrenomyeloneuropathy. Ann Neurol. 82:813–827. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Beckers L, Geric I, Stroobants S, Beel S, Van Damme P, D'Hooge R and Baes M: Microglia lacking a peroxisomal β-oxidation enzyme chronically alter their inflammatory profile without evoking neuronal and behavioral deficits. J Neuroinflammation. 16:612019. View Article : Google Scholar | |
|
Verheijden S, Beckers L, Casazza A, Butovsky O, Mazzone M and Baes M: Identification of a chronic non-neurodegenerative microglia activation state in a mouse model of peroxisomal β-oxidation deficiency. Glia. 63:1606–1620. 2015. View Article : Google Scholar | |
|
Sangineto M, Ciarnelli M, Cassano T, Radesco A, Moola A, Bukke VN, Romano A, Villani R, Kanwal H, Capitanio N, et al: Metabolic reprogramming in inflammatory microglia indicates a potential way of targeting inflammation in Alzheimer's disease. Redox Biol. 66:1028462023. View Article : Google Scholar : PubMed/NCBI | |
|
Meiser J, Kramer L, Sapcariu SC, Battello N, Ghelfi J, D'Herouel AF, Skupin A and Hiller K: Pro-inflammatory macrophages sustain pyruvate oxidation through pyruvate dehydrogenase for the synthesis of itaconate and to enable cytokine expression. J Biol Chem. 291:3932–3946. 2016. View Article : Google Scholar : | |
|
Lauterbach MA, Hanke JE, Serefidou M, Mangan MSJ, Kolbe CC, Hess T, Rothe M, Kaiser R, Hoss F, Gehlen J, et al: Toll-like receptor signaling rewires macrophage metabolism and promotes histone acetylation via ATP-citrate lyase. Immunity. 51:997–1011.e7. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Plastira I, Bernhart E, Joshi L, Koyani CN, Strohmaier H, Reicher H, Malle E and Sattler W: MAPK signaling determines lysophosphatidic acid (LPA)-induced inflammation in microglia. J Neuroinflammation. 17:1272020. View Article : Google Scholar : | |
|
Huang YL, Morales-Rosado J, Ray J, Myers TG, Kho T, Lu M and Munford RS: Toll-like receptor agonists promote prolonged triglyceride storage in macrophages. J Biol Chem. 289:3001–3012. 2014. View Article : Google Scholar : | |
|
Palmieri EM, Gonzalez-Cotto M, Baseler WA, Davies LC, Ghesquiere B, Maio N, Rice CM, Rouault TA, Cassel T, Higashi RM, et al: Nitric oxide orchestrates metabolic rewiring in M1 macrophages by targeting aconitase 2 and pyruvate dehydrogenase. Nat Commun. 11:6982020. View Article : Google Scholar | |
|
Rosas-Ballina M, Guan XL, Schmidt A and Bumann D: Classical activation of macrophages leads to lipid droplet formation without de novo fatty acid synthesis. Front Immunol. 11:1312020. View Article : Google Scholar : PubMed/NCBI | |
|
Bailey AP, Koster G, Guillermier C, Hirst EM, MacRae JI, Lechene CP, Postle AD and Gould AP: Antioxidant role for lipid droplets in a stem cell niche of drosophila. Cell. 163:340–353. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Khatchadourian A, Bourque SD, Richard VR, Titorenko VI and Maysinger D: Dynamics and regulation of lipid droplet formation in lipopolysaccharide (LPS)-stimulated microglia. Biochim Biophys Acta. 1821:607–617. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Marschallinger J, Iram T, Zardeneta M, Lee SE, Lehallier B, Haney MS, Pluvinage JV, Mathur V, Hahn O, Morgens DW, et al: Lipid-droplet-accumulating microglia represent a dysfunctional and proinflammatory state in the aging brain. Nat Neurosci. 23:194–208. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Bogie JFJ, Grajchen E, Wouters E, Corrales AG, Dierckx T, Vanherle S, Mailleux J, Gervois P, Wolfs E, Dehairs J, et al: Stearoyl-CoA desaturase-1 impairs the reparative properties of macrophages and microglia in the brain. J Exp Med. 217:e201916602020. View Article : Google Scholar : PubMed/NCBI | |
|
Szatmari I, Torocsik D, Agostini M, Nagy T, Gurnell M, Barta E, Chatterjee K and Nagy L: PPARgamma regulates the function of human dendritic cells primarily by altering lipid metabolism. Blood. 110:3271–3280. 2007. View Article : Google Scholar | |
|
Schonfeld P and Reiser G: Brain energy metabolism spurns fatty acids as fuel due to their inherent mitotoxicity and potential capacity to unleash neurodegeneration. Neurochem Int. 109:68–77. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Li LO, Klett EL and Coleman RA: Acyl-CoA synthesis, lipid metabolism and lipotoxicity. Biochim Biophys Acta. 1801:246–251. 2010. View Article : Google Scholar : | |
|
Fonteh AN, Cipolla M, Chiang J, Arakaki X and Harrington MG: Human cerebrospinal fluid fatty acid levels differ between supernatant fluid and brain-derived nanoparticle fractions, and are altered in Alzheimer's disease. PLoS One. 9:e1005192014. View Article : Google Scholar | |
|
Cunnane SC, Schneider JA, Tangney C, Tremblay-Mercier J, Fortier M, Bennett DA and Morris MC: Plasma and brain fatty acid profiles in mild cognitive impairment and Alzheimer's disease. J Alzheimers Dis. 29:691–697. 2012. View Article : Google Scholar | |
|
Snowden SG, Ebshiana AA, Hye A, An Y, Pletnikova O, O'Brien R, Troncoso J, Legido-Quigley C and Thambisetty M: Association between fatty acid metabolism in the brain and Alzheimer disease neuropathology and cognitive performance: A nontargeted metabolomic study. PLoS Med. 14:e10022662017. View Article : Google Scholar : | |
|
Belkouch M, Hachem M, Elgot A, Lo Van A, Picq M, Guichardant M, Lagarde M and Bernoud-Hubac N: The pleiotropic effects of omega-3 docosahexaenoic acid on the hallmarks of Alzheimer's disease. J Nutr Biochem. 38:1–11. 2016. View Article : Google Scholar | |
|
Fonteh AN, Cipolla M, Chiang AJ, Edminster SP, Arakaki X and Harrington MG: Polyunsaturated fatty acid composition of cerebrospinal fluid fractions shows their contribution to cognitive resilience of a Pre-symptomatic Alzheimer's disease cohort. Front Physiol. 11:832020. View Article : Google Scholar : PubMed/NCBI | |
|
Prasad MR, Lovell MA, Yatin M, Dhillon H and Markesbery WR: Regional membrane phospholipid alterations in Alzheimer's disease. Neurochem Res. 23:81–88. 1998. View Article : Google Scholar | |
|
Sebastiao AM, Colino-Oliveira M, Assaife-Lopes N, Dias RB and Ribeiro JA: Lipid rafts, synaptic transmission and plasticity: Impact in Age-related neurodegenerative diseases. Neuropharmacology. 64:97–107. 2013. View Article : Google Scholar | |
|
Sezgin E, Levental I, Mayor S and Eggeling C: The mystery of membrane organization: Composition, regulation and roles of lipid rafts. Nat Rev Mol Cell Biol. 18:361–374. 2017. View Article : Google Scholar : | |
|
Martin V, Fabelo N, Santpere G, Puig B, Marin R, Ferrer I and Diaz M: Lipid alterations in lipid rafts from Alzheimer's disease human brain cortex. J Alzheimers Dis. 19:489–502. 2010. View Article : Google Scholar | |
|
Fabelo N, Martin V, Marin R, Moreno D, Ferrer I and Diaz M: Altered lipid composition in cortical lipid rafts occurs at early stages of sporadic Alzheimer's disease and facilitates APP/BACE1 interactions. Neurobiol Aging. 35:1801–1812. 2014. View Article : Google Scholar | |
|
Filippov V, Song MA, Zhang K, Vinters HV, Tung S, Kirsch WM, Yang J and Duerksen-Hughes PJ: Increased ceramide in brains with Alzheimer's and other neurodegenerative diseases. J Alzheimers Dis. 29:537–547. 2012. View Article : Google Scholar | |
|
Cutler RG, Kelly J, Storie K, Pedersen WA, Tammara A, Hatanpaa K, Troncoso JC and Mattson MP: Involvement of oxidative Stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer's disease. Proc Natl Acad Sci USA. 101:2070–2075. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Han X, M Holtzman D, McKeel DW Jr, Kelley J and Morris JC: Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer's disease: Potential role in disease pathogenesis. J Neurochem. 82:809–818. 2002. View Article : Google Scholar | |
|
He X, Huang Y, Li B, Gong CX and Schuchman EH: Deregulation of sphingolipid metabolism in Alzheimer's disease. Neurobiol Aging. 31:398–408. 2010. View Article : Google Scholar : | |
|
Soderberg M, Edlund C, Alafuzoff I, Kristensson K and Dallner G: Lipid composition in different regions of the brain in Alzheimer's disease/senile dementia of Alzheimer's type. J Neurochem. 59:1646–1653. 1992. View Article : Google Scholar : PubMed/NCBI | |
|
Siskind LJ: Mitochondrial ceramide and the induction of apoptosis. J Bioenerg Biomembr. 37:143–153. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Morris MC, Evans DA, Bienias JL, Tangney CC, Bennett DA, Wilson RS, Aggarwal N and Schneider J: Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease. Arch Neurol. 60:940–946. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Grimm MO, Grimm HS, Pätzold AJ, Zinser EG, Halonen R, Duering M, Tschape JA, De Strooper B, Müller U, Shen J and Hartmann T: Regulation of cholesterol and sphingomyelin metabolism by amyloid-beta and presenilin. Nat Cell Biol. 7:1118–1123. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng H, Wang M, Li JL, Cairns NJ and Han X: Specific changes of sulfatide levels in individuals with pre-clinical Alzheimer's disease: An early event in disease pathogenesis. J Neurochem. 127:733–738. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Couttas TA, Kain N, Suchowerska AK, Quek LE, Turner N, Fath T, Garner B and Don AS: Loss of ceramide synthase 2 activity, necessary for myelin biosynthesis, precedes tau pathology in the cortical pathogenesis of Alzheimer's disease. Neurobiol Aging. 43:89–100. 2016. View Article : Google Scholar | |
|
Nasrabady SE, Rizvi B, Goldman JE and Brickman AM: White matter changes in Alzheimer's disease: A focus on myelin and oligodendrocytes. Acta Neuropathol Commun. 6:222018. View Article : Google Scholar : PubMed/NCBI | |
|
Heverin M, Bogdanovic N, Lutjohann D, Bayer T, Pikuleva I, Bretillon L, Diczfalusy U, Winblad B and Bjorkhem I: Changes in the levels of cerebral and extracerebral sterols in the brain of patients with Alzheimer's disease. J Lipid Res. 45:186–193. 2004. View Article : Google Scholar | |
|
Popp J, Meichsner S, Kolsch H, Lewczuk P, Maier W, Kornhuber J, Jessen F and Lutjohann D: Cerebral and extracerebral cholesterol metabolism and CSF markers of Alzheimer's disease. Biochem Pharmacol. 86:37–42. 2013. View Article : Google Scholar | |
|
Liu Y, Zhong X, Shen J, Jiao L, Tong J, Zhao W, Du K, Gong S, Liu M and Wei M: Elevated serum TC and LDL-C levels in Alzheimer's disease and mild cognitive impairment: A meta-analysis study. Brain Res. 1727:1465542020. View Article : Google Scholar | |
|
Zhang J and Liu Q: Cholesterol metabolism and homeostasis in the brain. Protein Cell. 6:254–264. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Tajima Y, Ishikawa M, Maekawa K, Murayama M, Senoo Y, Nishimaki-Mogami T, Nakanishi H, Ikeda K, Arita M and Taguchi R: Lipidomic analysis of brain tissues and plasma in a mouse model expressing mutated human amyloid precursor protein/tau for Alzheimer's disease. Lipids Health Dis. 12:682013. View Article : Google Scholar | |
|
Bhattacharyya R, Barren C and Kovacs DM: Palmitoylation of amyloid precursor protein regulates amyloidogenic processing in lipid rafts. J Neurosci. 33:11169–11183. 2013. View Article : Google Scholar : | |
|
Wang H, Kulas JA, Wang C, Holtzman DM, Ferris HA and Hansen SB: Regulation of beta-amyloid production in neurons by astrocyte-derived cholesterol. Proc Natl Acad Sci USA. 118:e21021911182021. View Article : Google Scholar | |
|
Qi G, Mi Y, Shi X, Gu H, Brinton RD and Yin F: ApoE4 impairs Neuron-astrocyte coupling of fatty acid metabolism. Cell Rep. 34:1085722021. View Article : Google Scholar : | |
|
Zhao J, Davis MD, Martens YA, Shinohara M, Graff-Radford NR, Younkin SG, Wszolek ZK, Kanekiyo T and Bu G: APOE ε4/ε4 diminishes neurotrophic function of human iPSC-derived astrocytes. Hum Mol Genet. 26:2690–2700. 2017. View Article : Google Scholar | |
|
Kober DL and Brett TJ: TREM2-ligand interactions in health and disease. J Mol Biol. 429:1607–1629. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Gouna G, Klose C, Bosch-Queralt M, Liu L, Gokce O, Schifferer M, Cantuti-Castelvetri L and Simons M: TREM2-dependent lipid droplet biogenesis in phagocytes is required for remyelination. J Exp Med. 218:e202102272021. View Article : Google Scholar : | |
|
Basil MC and Levy BD: Specialized Pro-resolving mediators: Endogenous regulators of infection and inflammation. Nat Rev Immunol. 16:51–67. 2016. View Article : Google Scholar | |
|
Whittington RA, Planel E and Terrando N: Impaired resolution of inflammation in Alzheimer's disease: A review. Front Immunol. 8:14642017. View Article : Google Scholar | |
|
Emre C, Hjorth E, Bharani K, Carroll S, Granholm AC and Schultzberg M: Receptors for Pro-resolving mediators are increased in Alzheimer's disease brain. Brain Pathol. 30:614–640. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu M, Wang X, Hjorth E, Colas RA, Schroeder L, Granholm AC, Serhan CN and Schultzberg M: Pro-resolving lipid mediators improve neuronal survival and increase Aβ42 phagocytosis. Mol Neurobiol. 53:2733–2749. 2016. View Article : Google Scholar | |
|
Wang X, Zhu M, Hjorth E, Cortes-Toro V, Eyjolfsdottir H, Graff C, Nennesmo I, Palmblad J, Eriksdotter M, et al: Resolution of inflammation is altered in Alzheimer's disease. Alzheimers Dement. 11:40–50. e1–e2. 2015. View Article : Google Scholar | |
|
Malaplate-Armand C, Florent-Bechard S, Youssef I, Koziel V, Sponne I, Kriem B, Leininger-Muller B, Olivier JL, Oster T and Pillot T: Soluble oligomers of amyloid-beta peptide induce neuronal apoptosis by activating a cPLA2-dependent sphingomyelinase-ceramide pathway. Neurobiol Dis. 23:178–189. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Prasad VV, Nithipatikom K and Harder DR: Ceramide elevates 12-hydroxyeicosatetraenoic acid levels and upregulates 12-lipoxygenase in rat primary hippocampal cell cultures containing predominantly astrocytes. Neurochem Int. 53:220–229. 2008. View Article : Google Scholar | |
|
Assayag K, Yakunin E, Loeb V, Selkoe DJ and Sharon R: Polyunsaturated fatty acids induce alpha-synuclein-related pathogenic changes in neuronal cells. Am J Pathol. 171:2000–2011. 2007. View Article : Google Scholar | |
|
Flores-Leon M and Outeiro TF: More than meets the eye in Parkinson's disease and other synucleinopathies: From proteinopathy to lipidopathy. Acta Neuropathol. 146:369–385. 2023. View Article : Google Scholar | |
|
Yakunin E, Loeb V, Kisos H, Biala Y, Yehuda S, Yaari Y, Selkoe DJ and Sharon R: Α-synuclein neuropathology is controlled by nuclear hormone receptors and enhanced by docosahexaenoic acid in a mouse model for Parkinson's disease. Brain Pathol. 22:280–294. 2012. View Article : Google Scholar | |
|
Galvagnion C: The role of lipids interacting with α-synuclein in the pathogenesis of Parkinson's disease. J Parkinsons Dis. 7:433–450. 2017. View Article : Google Scholar | |
|
Garcia-Sanz P, MFG Aerts J and Moratalla R: The role of cholesterol in alpha-synuclein and lewy body pathology in GBA1 Parkinson's disease. Mov Disord. 36:1070–1085. 2021. View Article : Google Scholar | |
|
Paslawski W, Zareba-Paslawska J, Zhang X, Holzl K, Wadensten H, Shariatgorji M, Janelidze S, Hansson O, Forsgren L, Andrén PE and Svenningsson P: α-synuclein-lipoprotein interactions and elevated ApoE level in cerebrospinal fluid from Parkinson's disease patients. Proc Natl Acad Sci USA. 116:15226–15235. 2019. View Article : Google Scholar | |
|
Kim HE, Grant AR, Simic MS, Kohnz RA, Nomura DK, Durieux J, Riera CE, Sanchez M, Kapernick E, Wolff S and Dillin A: Lipid biosynthesis coordinates a mitochondrial-to-Cytosolic stress response. Cell. 166:1539–1552.e16. 2016. View Article : Google Scholar | |
|
Stein D, Mizrahi A, Golova A, Saretzky A, Venzor AG, Slobodnik Z, Kaluski S, Einav M, Khrameeva E and Toiber D: Aging and pathological aging signatures of the brain: Through the focusing lens of SIRT6. Aging (Albany NY). 13:6420–6441. 2021. View Article : Google Scholar | |
|
Smirnov D, Eremenko E, Stein D, Kaluski S, Jasinska W, Cosentino C, Martinez-Pastor B, Brotman Y, Mostoslavsky R, Khrameeva E and Toiber D: SIRT6 is a key regulator of mitochondrial function in the brain. Cell Death Dis. 14:352023. View Article : Google Scholar : PubMed/NCBI | |
|
Ghio S, Kamp F, Cauchi R, Giese A and Vassallo N: Interaction of α-synuclein with biomembranes in Parkinson's disease-role of cardiolipin. Prog Lipid Res. 61:73–82. 2016. View Article : Google Scholar | |
|
Chu CT, Ji J, Dagda RK, Jiang JF, Tyurina YY, Kapralov AA, Tyurin VA, Yanamala N, Shrivastava IH, Mohammadyani D, et al: Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nat Cell Biol. 15:1197–1205. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Doblado L, Lueck C, Rey C, Samhan-Arias AK, Prieto I, Stacchiotti A and Monsalve M: Mitophagy in human diseases. Int J Mol Sci. 22:39032021. View Article : Google Scholar : | |
|
Rocha EM, Smith GA, Park E, Cao H, Graham AR, Brown E, McLean JR, Hayes MA, Beagan J, Izen SC, et al: Sustained systemic glucocerebrosidase inhibition induces Brain α-synuclein aggregation, microglia and complement C1q activation in mice. Antioxid Redox Signal. 23:550–564. 2015. View Article : Google Scholar : | |
|
Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE, Challis C, Schretter CE, Rocha S, Gradinaru V, et al: Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson's disease. Cell. 167:1469–1480.e12. 2016. View Article : Google Scholar | |
|
Mogi M, Harada M, Kondo T, Riederer P, Inagaki H, Minami M and Nagatsu T: Interleukin-1 beta, interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the brain from parkinsonian patients. Neurosci Lett. 180:147–150. 1994. View Article : Google Scholar | |
|
Moloney EB, Moskites A, Ferrari EJ, Isacson O and Hallett PJ: The glycoprotein GPNMB is selectively elevated in the substantia nigra of Parkinson's disease patients and increases after lysosomal stress. Neurobiol Dis. 120:1–11. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Rebeck GW: The role of APOE on lipid homeostasis and inflammation in normal brains. J Lipid Res. 58:1493–1499. 2017. View Article : Google Scholar | |
|
Atagi Y, Liu CC, Painter MM, Chen XF, Verbeeck C, Zheng H, Li X, Rademakers R, Kang SS, Xu H, et al: Apolipoprotein E is a ligand for triggering receptor expressed on myeloid cells 2 (TREM2). J Biol Chem. 290:26043–26050. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Herrera AJ, Castano A, Venero JL, Cano J and Machado A: The single intranigral injection of LPS as a new model for studying the selective effects of inflammatory reactions on dopaminergic system. Neurobiol Dis. 7:429–447. 2000. View Article : Google Scholar | |
|
Gao HM, Kotzbauer PT, Uryu K, Leight S, Trojanowski JQ and Lee VM: Neuroinflammation and oxidation/nitration of alpha-synuclein linked to dopaminergic neurodegeneration. J Neurosci. 28:7687–7698. 2008. View Article : Google Scholar | |
|
Ioannou MS, Jackson J, Sheu SH, Chang CL, Weigel AV, Liu H, Pasolli HA, Xu CS, Pang S, Matthies D, et al: Neuron-astrocyte metabolic coupling protects against Activity-induced fatty acid toxicity. Cell. 177:1522–1535.e14. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Braidy N, Gai WP, Xu YH, Sachdev P, Guillemin GJ, Jiang XM, Ballard JW, Horan MP, Fang ZM, Chong BH and Chan DK: Uptake and mitochondrial dysfunction of alpha-synuclein in human astrocytes, cortical neurons and fibroblasts. Transl Neurodegener. 2:202013. View Article : Google Scholar : PubMed/NCBI | |
|
Sipione S, Rigamonti D, Valenza M, Zuccato C, Conti L, Pritchard J, Kooperberg C, Olson JM and Cattaneo E: Early transcriptional profiles in huntingtin-inducible striatal cells by microarray analyses. Hum Mol Genet. 11:1953–1965. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Leoni V and Caccia C: Study of cholesterol metabolism in Huntington's disease. Biochem Biophys Res Commun. 446:697–701. 2014. View Article : Google Scholar | |
|
Karasinska JM and Hayden MR: Cholesterol metabolism in Huntington disease. Nat Rev Neurol. 7:561–572. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Leoni V and Caccia C: The impairment of cholesterol metabolism in Huntington disease. Biochim Biophys Acta. 1851:1095–1105. 2015. View Article : Google Scholar | |
|
Valenza M, Rigamonti D, Goffredo D, Zuccato C, Fenu S, Jamot L, Strand A, Tarditi A, Woodman B, Racchi M, et al: Dysfunction of the cholesterol biosynthetic pathway in Huntington's disease. J Neurosci. 25:9932–9939. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Wang N, Yvan-Charvet L, Lutjohann D, Mulder M, Vanmierlo T, Kim TW and Tall AR: ATP-binding cassette transporters G1 and G4 mediate cholesterol and desmosterol efflux to HDL and regulate sterol accumulation in the brain. FASEB J. 22:1073–1082. 2008. View Article : Google Scholar | |
|
Leoni V, Long JD, Mills JA, Di Donato S and Paulsen JS; PREDICT-HD study group: Plasma 24S-hydroxycholesterol correlation with markers of Huntington disease progression. Neurobiol Dis. 55:37–43. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Tansey TR and Shechter I: Squalene synthase: Structure and regulation. Prog Nucleic Acid Res Mol Biol. 65:157–195. 2001. View Article : Google Scholar | |
|
Kreilaus F, Spiro AS, McLean CA, Garner B and Jenner AM: Evidence for altered cholesterol metabolism in Huntington's disease post mortem brain tissue. Neuropathol Appl Neurobiol. 42:535–546. 2016. View Article : Google Scholar | |
|
Valenza M, Leoni V, Tarditi A, Mariotti C, Bjorkhem I, Di Donato S and Cattaneo E: Progressive dysfunction of the cholesterol biosynthesis pathway in the R6/2 mouse model of Huntington's disease. Neurobiol Dis. 28:133–142. 2007. View Article : Google Scholar | |
|
Martin MG, Pfrieger F and Dotti CG: Cholesterol in brain disease: Sometimes determinant and frequently implicated. EMBO Rep. 15:1036–1052. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Valenza M, Leoni V, Karasinska JM, Petricca L, Fan J, Carroll J, Pouladi MA, Fossale E, Nguyen HP, Riess O, et al: Cholesterol defect is marked across multiple rodent models of Huntington's disease and is manifest in astrocytes. J Neurosci. 30:10844–10850. 2010. View Article : Google Scholar | |
|
Xu Z, He S, Begum MM and Han X: Myelin lipid alterations in neurodegenerative diseases: Landscape and pathogenic implications. Antioxid Redox Signal. 41:1073–1099. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Lawton KA, Brown MV, Alexander D, Li Z, Wulff JE, Lawson R, Jaffa M, Milburn MV, Ryals JA, Bowser R, et al: Plasma metabolomic biomarker panel to distinguish patients with amyotrophic lateral sclerosis from disease mimics. Amyotroph Lateral Scler Frontotemporal Degener. 15:362–370. 2014. View Article : Google Scholar | |
|
Goutman SA, Boss J, Guo K, Alakwaa FM, Patterson A, Kim S, Savelieff MG, Hur J and Feldman EL: Untargeted metabolomics yields insight into ALS disease mechanisms. J Neurol Neurosurg Psychiatry. 91:1329–1338. 2020. View Article : Google Scholar | |
|
Sol J, Jove M, Povedano M, Sproviero W, Dominguez R, Pinol-Ripoll G, Romero-Guevara R, Hye A, Al-Chalabi A, Torres P, et al: Lipidomic traits of plasma and cerebrospinal fluid in amyotrophic lateral sclerosis correlate with disease progression. Brain Commun. 3:fcab1432021. View Article : Google Scholar : PubMed/NCBI | |
|
Area-Gomez E, Larrea D, Yun T, Xu Y, Hupf J, Zandkarimi F, Chan RB and Mitsumoto H: Lipidomics study of plasma from patients suggest that ALS and PLS are part of a continuum of motor neuron disorders. Sci Rep. 11:135622021. View Article : Google Scholar | |
|
FernAndez-Eulate G, Ruiz-Sanz JI, Riancho J, ZufirIa M, GereNu G, FernAndez-TorrOn R, Poza-Aldea JJ, Ondaro J, Espinal JB, GonzÁlez-ChinchÓn G, et al: A comprehensive serum lipidome profiling of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. 21:252–262. 2020. View Article : Google Scholar | |
|
Winkler EA, Sengillo JD, Sullivan JS, Henkel JS, Appel SH and Zlokovic BV: Blood-spinal cord barrier breakdown and pericyte reductions in amyotrophic lateral sclerosis. Acta Neuropathol. 125:111–120. 2013. View Article : Google Scholar | |
|
Waters S, Swanson MEV, Dieriks BV, Zhang YB, Grimsey NL, Murray HC, Turner C, Waldvogel HJ, Faull RLM, An J, et al: Blood-spinal cord barrier leakage is independent of motor neuron pathology in ALS. Acta Neuropathol Commun. 9:1442021. View Article : Google Scholar : PubMed/NCBI | |
|
Blasco H, Veyrat-Durebex C, Bocca C, Patin F, Vourc'h P, Kouassi Nzoughet J, Lenaers G, Andres CR, Simard G, Corcia P and Reynier P: Lipidomics reveals Cerebrospinal-Fluid signatures of ALS. Sci Rep. 7:176522017. View Article : Google Scholar | |
|
Patin F, Corcia P, Vourc'h P, Nadal-Desbarats L, Baranek T, Goossens JF, Marouillat S, Dessein AF, Descat A, Madji Hounoum B, et al: Omics to explore amyotrophic lateral sclerosis evolution: The central role of arginine and proline metabolism. Mol Neurobiol. 54:5361–5374. 2017. View Article : Google Scholar | |
|
Cutler RG, Pedersen WA, Camandola S, Rothstein JD and Mattson MP: Evidence that accumulation of ceramides and cholesterol esters mediates oxidative Stress-induced death of motor neurons in amyotrophic lateral sclerosis. Ann Neurol. 52:448–457. 2002. View Article : Google Scholar | |
|
Dodge JC, Jensen EH, Yu J, Sardi SP, Bialas AR, Taksir TV, Bangari DS and Shihabuddin LS: Neutral lipid cacostasis contributes to disease pathogenesis in amyotrophic lateral sclerosis. J Neurosci. 40:9137–9147. 2020. View Article : Google Scholar | |
|
Dodge JC, Treleaven CM, Pacheco J, Cooper S, Bao C, Abraham M, Cromwell M, Sardi SP, Chuang WL, Sidman RL, et al: Glycosphingolipids are modulators of disease pathogenesis in amyotrophic lateral sclerosis. Proc Natl Acad Sci USA. 112:8100–8105. 2015. View Article : Google Scholar : | |
|
Burg T, Rossaert E, Moisse M, Van Damme P and Van Den Bosch L: Histone deacetylase inhibition regulates lipid homeostasis in a mouse model of amyotrophic lateral sclerosis. Int J Mol Sci. 22:112242021. View Article : Google Scholar : | |
|
Chaves-Filho AB, Pinto IFD, Dantas LS, Xavier AM, Inague A, Faria RL, Medeiros MHG, Glezer I, Yoshinaga MY and Miyamoto S: Alterations in lipid metabolism of spinal cord linked to amyotrophic lateral sclerosis. Sci Rep. 9:116422019. View Article : Google Scholar : | |
|
Ramirez-Nunez O, Jove M, Torres P, Sol J, Fontdevila L, Romero-Guevara R, Andres-Benito P, Ayala V, Rossi C, Boada J, et al: Nuclear lipidome is altered in amyotrophic lateral sclerosis: A pilot study. J Neurochem. 158:482–499. 2021. View Article : Google Scholar | |
|
Johnson JO, Chia R, Miller DE, Li R, Kumaran R, Abramzon Y, Alahmady N, Renton AE, Topp SD, Gibbs JR, et al: Association of variants in the SPTLC1 gene with juvenile amyotrophic lateral sclerosis. JAMA Neurol. 78:1236–1248. 2021. View Article : Google Scholar | |
|
Mohassel P, Donkervoort S, Lone MA, Nalls M, Gable K, Gupta SD, Foley AR, Hu Y, Saute JAM, Moreira AL, et al: Childhood amyotrophic lateral sclerosis caused by excess sphingolipid synthesis. Nat Med. 27:1197–1204. 2021. View Article : Google Scholar | |
|
Kim SM, Noh MY, Kim H, Cheon SY, Lee KM, Lee J, Cha E, Park KS, Lee KW, Sung JJ and Kim SH: 25-Hydroxycholesterol is involved in the pathogenesis of amyotrophic lateral sclerosis. Oncotarget. 8:11855–11867. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Dodge JC, Yu J, Sardi SP and Shihabuddin LS: Sterol auto-oxidation adversely affects human motor neuron viability and is a neuropathological feature of amyotrophic lateral sclerosis. Sci Rep. 11:8032021. View Article : Google Scholar : PubMed/NCBI | |
|
Kann O: The interneuron energy hypothesis: Implications for brain disease. Neurobiol Dis. 90:75–85. 2016. View Article : Google Scholar | |
|
Mauch DH, Nägler K, Schumacher S, Göritz C, Müller EC, Otto A and Pfrieger FW: CNS synaptogenesis promoted by Glia-derived cholesterol. Science. 294:1354–1357. 2001. View Article : Google Scholar | |
|
Foley P: Lipids in Alzheimer's disease: A century-old story. Biochim Biophys Acta. 1801:750–753. 2010. View Article : Google Scholar | |
|
Cai XT, Li H, Borch Jensen M, Maksoud E, Borneo J, Liang Y, Quake SR, Luo L, Haghighi P and Jasper H: Gut cytokines modulate olfaction through metabolic reprogramming of glia. Nature. 596:97–102. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
den Brok MH, Raaijmakers TK, Collado-Camps E and Adema GJ: Lipid droplets as immune modulators in myeloid cells. Trends Immunol. 39:380–392. 2018. View Article : Google Scholar | |
|
Lee JY, Marian OC and Don AS: Defective lysosomal lipid catabolism as a common pathogenic mechanism for dementia. Neuromolecular Med. 23:1–24. 2021. View Article : Google Scholar | |
|
Lin CH, Liao LY, Yang TY, Chang YJ, Tung CW, Hsu SL and Hsueh CM: Microglia-derived adiposomes are potential targets for the treatment of ischemic stroke. Cell Mol Neurobiol. 39:591–604. 2019. View Article : Google Scholar | |
|
Chali F, Milior G, Marty S, Morin-Brureau M, Le Duigou C, Savary E, Blugeon C, Jourdren L and Miles R: Lipid markers and related transcripts during excitotoxic neurodegeneration in kainate-treated mice. Eur J Neurosci. 50:1759–1778. 2019. View Article : Google Scholar | |
|
Astarita G, Jung KM, Vasilevko V, Dipatrizio NV, Martin SK, Cribbs DH, Head E, Cotman CW and Piomelli D: Elevated stearoyl-CoA desaturase in brains of patients with Alzheimer's disease. PLoS One. 6:e247772011. View Article : Google Scholar : PubMed/NCBI | |
|
Shibuya Y, Chang CC and Chang TY: ACAT1/SOAT1 as a therapeutic target for Alzheimer's disease. Future Med Chem. 7:2451–2467. 2015. View Article : Google Scholar | |
|
Lin YT, Seo J, Gao F, Feldman HM, Wen HL, Penney J, Cam HP, Gjoneska E, Raja WK, Cheng J, et al: APOE4 causes widespread molecular and cellular alterations associated with Alzheimer's disease phenotypes in human iPSC-derived brain cell types. Neuron. 98:1141–1154.e7. 2018. View Article : Google Scholar | |
|
Chen Y, Strickland MR, Soranno A and Holtzman DM: Apolipoprotein E: Structural Insights and Links to Alzheimer disease pathogenesis. Neuron. 109:205–221. 2021. View Article : Google Scholar | |
|
Yen JHJ and Yu ICI: The role of ApoE-mediated microglial lipid metabolism in brain aging and disease. Immunometabolism (Cobham). 5:e000182023. View Article : Google Scholar | |
|
Sienski G, Narayan P, Bonner JM, Kory N, Boland S, Arczewska AA, Ralvenius WT, Akay L, Lockshin E, He L, et al: APOE4 disrupts intracellular lipid homeostasis in human iPSC-derived glia. Sci Transl Med. 13:eaaz45642021. View Article : Google Scholar : PubMed/NCBI | |
|
Tcw J, Qian L, Pipalia NH, Chao MJ, Liang SA, Shi Y, Jain BR, Bertelsen SE, Kapoor M, Marcora E, et al: Cholesterol and matrisome pathways dysregulated in astrocytes and microglia. Cell. 185:2213–2233.e25. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Victor MB, Leary N, Luna X, Meharena HS, Scannail AN, Bozzelli PL, Samaan G, Murdock MH, von Maydell D, Effenberger AH, et al: Lipid accumulation induced by APOE4 impairs microglial surveillance of neuronal-network activity. Cell Stem Cell. 29:1197–1212.e8. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Guglielmotto M, Monteleone D, Piras A, Valsecchi V, Tropiano M, Ariano S, Fornaro M, Vercelli A, Puyal J, Arancio O, et al: Aβ1-42 monomers or oligomers have different effects on autophagy and apoptosis. Autophagy. 10:1827–1843. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Baerends E, Soud K, Folke J, Pedersen AK, Henmar S, Konrad L, Lycas MD, Mori Y, Pakkenberg B, Woldbye DPD, et al: Modeling the early stages of Alzheimer's disease by administering intracerebroventricular injections of human native Aβ oligomers to rats. Acta Neuropathol Commun. 10:1132022. View Article : Google Scholar | |
|
Brown AJ and Jessup W: Oxysterols: Sources, cellular storage and metabolism, and new insights into their roles in cholesterol homeostasis. Mol Aspects Med. 30:111–122. 2009. View Article : Google Scholar | |
|
Chang JY, Chavis JA, Liu LZ and Drew PD: Cholesterol oxides induce programmed cell death in microglial cells. Biochem Biophys Res Commun. 249:817–821. 1998. View Article : Google Scholar | |
|
Liu J, Liu Y, Chen J, Hu C, Teng M, Jiao K, Shen Z, Zhu D, Yue J, Li Z and Li Y: The ROS-mediated activation of IL-6/STAT3 signaling pathway is involved in the 27-hydroxycholesterol-induced cellular senescence in nerve cells. Toxicol In Vitro. 45:10–18. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Simpson DSA and Oliver PL: ROS Generation in microglia: Understanding oxidative stress and inflammation in neurodegenerative disease. Antioxidants (Basel). 9:7432020. View Article : Google Scholar : PubMed/NCBI | |
|
Olsen BN, Schlesinger PH and Baker NA: Perturbations of membrane structure by cholesterol and cholesterol derivatives are determined by sterol orientation. J Am Chem Soc. 131:4854–4865. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Kauffman JM, Westerman PW and Carey MC: Fluorocholesterols, in contrast to hydroxycholesterols, exhibit interfacial properties similar to cholesterol. J Lipid Res. 41:991–1003. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Appelqvist H, Wäster P, Kågedal K and Öllinger K: The lysosome: From waste bag to potential therapeutic target. J Mol Cell Biol. 5:214–226. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Gosselet F, Saint-Pol J and Fenart L: Effects of oxysterols on the blood-brain barrier: Implications for Alzheimer's disease. Biochem Biophys Res Commun. 446:687–691. 2014. View Article : Google Scholar | |
|
Trompier D, Vejux A, Zarrouk A, Gondcaille C, Geillon F, Nury T, Savary S and Lizard G: Brain peroxisomes. Biochimie. 98:102–110. 2014. View Article : Google Scholar | |
|
Loving BA, Tang M, Neal MC, Gorkhali S, Murphy R, Eckel RH and Bruce KD: Lipoprotein lipase regulates microglial lipid droplet accumulation. Cells. 10:1982021. View Article : Google Scholar | |
|
Berghoff SA, Spieth L, Sun T, Hosang L, Schlaphoff L, Depp C, Düking T, Winchenbach J, Neuber J, Ewers D, et al: Microglia facilitate repair of demyelinated lesions via Post-squalene sterol synthesis. Nat Neurosci. 24:47–60. 2021. View Article : Google Scholar : | |
|
Ciesielska A, Matyjek M and Kwiatkowska K: TLR4 and CD14 trafficking and its influence on LPS-induced Pro-inflammatory signaling. Cell Mol Life Sci. 78:1233–1261. 2021. View Article : Google Scholar | |
|
Sheng JG, Bora SH, Xu G, Borchelt DR, Price DL and Koliatsos VE: Lipopolysaccharide-Induced-neuroinflammation increases intracellular accumulation of amyloid precursor protein and amyloid beta peptide in APPswe transgenic mice. Neurobiol Dis. 14:133–145. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y, Yin M, Cao X, Hu G and Xiao M: Pro- and Anti-inflammatory effects of high cholesterol diet on aged brain. Aging Dis. 9:374–390. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Iannucci J, Sen A and Grammas P: Isoform-specific effects of apolipoprotein E on markers of inflammation and toxicity in brain glia and neuronal cells in vitro. Curr Issues Mol Biol. 43:215–225. 2021. View Article : Google Scholar | |
|
Churchward MA and Todd KG: Statin treatment affects cytokine release and phagocytic activity in primary cultured microglia through two separable mechanisms. Mol Brain. 7:852014. View Article : Google Scholar : PubMed/NCBI | |
|
Tanaka N, Abe-Dohmae S, Iwamoto N, Fitzgerald ML and Yokoyama S: Helical apolipoproteins of High-density lipoprotein enhance phagocytosis by stabilizing ATP-binding cassette transporter A7. J Lipid Res. 51:2591–2599. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Aikawa T, Holm ML and Kanekiyo T: ABCA7 and pathogenic pathways of Alzheimer's disease. Brain Sci. 8:272018. View Article : Google Scholar : PubMed/NCBI | |
|
Dai W, Yao RM, Mi TY, Zhang LM, Wu HL, Cheng JB and Li YF: Cognition-enhancing effect of YL-IPA08, a potent ligand for the translocator protein (18 kDa) in the 5 x FAD transgenic mouse model of Alzheimer's pathology. J Psychopharmacol. 36:1176–1187. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Bouhrara M, Reiter DA, Bergeron CM, Zukley LM, Ferrucci L, Resnick SM and Spencer RG: Evidence of demyelination in mild cognitive impairment and dementia using a direct and specific magnetic resonance imaging measure of myelin content. Alzheimers Dement. 14:998–1004. 2018. View Article : Google Scholar | |
|
Benitez A, Fieremans E, Jensen JH, Falangola MF, Tabesh A, Ferris SH and Helpern JA: White matter tract integrity metrics reflect the vulnerability of Late-myelinating tracts in Alzheimer's disease. Neuroimage Clin. 4:64–71. 2014. View Article : Google Scholar | |
|
Depp C, Sun T, Sasmita AO, Spieth L, Berghoff SA, Nazarenko T, Overhoff K, Steixner-Kumar AA, Subramanian S, Arinrad S, et al: Myelin dysfunction drives amyloid-β deposition in models of Alzheimer's disease. Nature. 618:349–357. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Mathys H, Davila-Velderrain J, Peng Z, Gao F, Mohammadi S, Young JZ, Menon M, He L, Abdurrob F, Jiang X, et al: Single-cell transcriptomic analysis of Alzheimer's disease. Nature. 570:332–337. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Saez-Atienzar S and Masliah E: Cellular senescence and Alzheimer disease: The egg and the chicken scenario. Nat Rev Neurosci. 21:433–444. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Lloyd AF and Miron VE: The Pro-remyelination properties of microglia in the central nervous system. Nat Rev Neurol. 15:447–458. 2019. View Article : Google Scholar | |
|
Cignarella F, Filipello F, Bollman B, Cantoni C, Locca A, Mikesell R, Manis M, Ibrahim A, Deng L, Benitez BA, et al: TREM2 activation on microglia promotes myelin debris clearance and remyelination in a model of multiple sclerosis. Acta Neuropathol. 140:513–534. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Miron VE, Boyd A, Zhao JW, Yuen TJ, Ruckh JM, Shadrach JL, van Wijngaarden P, Wagers AJ, Williams A, Franklin RJM, et al: M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci. 16:1211–1218. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Lloyd AF, Davies CL, Holloway RK, Labrak Y, Ireland G, Carradori D, Dillenburg A, Borger E, Soong D, Richardson JC, et al: Central nervous system regeneration is driven by microglia necroptosis and repopulation. Nat Neurosci. 22:1046–1052. 2019. View Article : Google Scholar : | |
|
Mecha M, Yanguas-Casás N, Feliú A, Mestre L, Carrillo-Salinas F, Azcoitia I, Yong VW and Guaza C: The endocannabinoid 2-AG enhances spontaneous remyelination by targeting microglia. Brain Behav Immun. 77:110–126. 2019. View Article : Google Scholar | |
|
Wang X, Cao K, Sun X, Chen Y, Duan Z, Sun L, Guo L, Bai P, Sun D, Fan J, et al: Macrophages in spinal cord injury: Phenotypic and functional change from exposure to myelin debris. Glia. 63:635–651. 2015. View Article : Google Scholar : | |
|
Mrdjen D, Pavlovic A, Hartmann FJ, Schreiner B, Utz SG, Leung BP, Lelios I, Heppner FL, Kipnis J, Merkler D, et al: High-Dimensional Single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity. 48:5992018. View Article : Google Scholar | |
|
Hammond TR, Dufort C, Dissing-Olesen L, Giera S, Young A, Wysoker A, Walker AJ, Gergits F, Segel M, Nemesh J, et al: Single-Cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity. 50:253–271.e6. 2019. View Article : Google Scholar | |
|
Zrzavy T, Hametner S, Wimmer I, Butovsky O, Weiner HL and Lassmann H: Loss of 'homeostatic' microglia and patterns of their activation in active multiple sclerosis. Brain. 140:1900–1913. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Locatelli G, Theodorou D, Kendirli A, Jordão MJC, Staszewski O, Phulphagar K, Cantuti-Castelvetri L, Dagkalis A, Bessis A, Simons M, et al: Mononuclear phagocytes locally specify and adapt their phenotype in a multiple sclerosis model. Nat Neurosci. 21:1196–1208. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Wlodarczyk A, Benmamar-Badel A, Cédile O, Jensen KN, Kramer I, Elsborg NB and Owens T: CSF1R stimulation promotes increased neuroprotection by CD11c+ microglia in EAE. Front Cell Neurosci. 12:5232018. View Article : Google Scholar | |
|
Yu Z, Sun D, Feng J, Tan W, Fang X, Zhao M, Zhao X, Pu Y, Huang A, Xiang Z, et al: MSX3 Switches microglia polarization and protects from Inflammation-induced demyelination. J Neurosci. 35:6350–6365. 2015. View Article : Google Scholar | |
|
Zabala A, Vazquez-Villoldo N, Rissiek B, Gejo J, Martin A, Palomino A, Perez-Samartín A, Pulagam KR, Lukowiak M, Capetillo-Zarate E, et al: P2X4 receptor controls microglia activation and favors remyelination in autoimmune encephalitis. EMBO Mol Med. 10:e87432018. View Article : Google Scholar : | |
|
Brüne B, Dehne N, Grossmann N, Jung M, Namgaladze D, Schmid T, von Knethen A and Weigert A: Redox control of inflammation in macrophages. Antioxid Redox Signal. 19:595–637. 2013. View Article : Google Scholar | |
|
Conrad M, Kagan VE, Bayir H, Pagnussat GC, Head B, Traber MG and Stockwell BR: Regulation of lipid peroxidation and ferroptosis in diverse species. Genes Dev. 32:602–619. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Wenzel SE, Tyurina YY, Zhao J, St Croix CM, Dar HH, Mao G, Tyurin VA, Anthonymuthu TS, Kapralov AA, Amoscato AA, et al: PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals. Cell. 171:628–641.e26. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Kagan VE, Mao G, Qu F, Angeli JP, Doll S, Croix CS, Dar HH, Liu B, Tyurin VA, Ritov VB, et al: Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol. 13:81–90. 2017. View Article : Google Scholar | |
|
Anthonymuthu TS, Kenny EM, Shrivastava I, Tyurina YY, Hier ZE, Ting HC, Dar HH, Tyurin VA, Nesterova A, Amoscato AA, et al: Empowerment of 15-lipoxygenase catalytic competence in selective oxidation of membrane ETE-PE to ferroptotic death signals, HpETE-PE. J Am Chem Soc. 140:17835–17839. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Kapralov AA, Yang Q, Dar HH, Tyurina YY, Anthonymuthu TS, Kim R, St Croix CM, Mikulska-Ruminska K, Liu B, Shrivastava IH, et al: Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death. Nat Chem Biol. 16:278–290. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A, et al: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 13:91–98. 2017. View Article : Google Scholar | |
|
Zhou Y, Yang Y, Yi L, Pan M, Tang W and Duan H: Propofol mitigates Sepsis-induced brain injury by inhibiting ferroptosis via activation of the Nrf2/HO-1axis. Neurochem Res. 49:2131–2147. 2024. View Article : Google Scholar | |
|
Zhou X, Zhao R, Lv M, Xu X, Liu W, Li X, Gao Y, Zhao Z, Zhang Z, Li Y, et al: ACSL4 promotes microgliamediated neuroinflammation by regulating lipid metabolism and VGLL4 expression. Brain Behav Immun. 109:331–343. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Liang D, Minikes AM and Jiang X: Ferroptosis at the intersection of lipid metabolism and cellular signaling. Mol Cell. 82:2215–2227. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Wu H, Li N, Peng S, Fu H, Hu Z and Su L: Maresin1 improves hippocampal neuroinflammation and cognitive function in septic rats by activating the SLC7A11/GPX4 ferroptosis signaling pathway. Int Immunopharmacol. 131:1117922024. View Article : Google Scholar | |
|
Fernández-Mendívil C, Luengo E, Trigo-Alonso P, García-Magro N, Negredo P and López MG: Protective role of microglial HO-1 blockade in aging: Implication of iron metabolism. Redox Biol. 38:1017892021. View Article : Google Scholar | |
|
Gao S, Zhou L, Lu J, Fang Y, Wu H, Xu W, Pan Y, Wang J, Wang X, Zhang J and Shao A: Cepharanthine attenuates early brain injury after subarachnoid hemorrhage in mice via inhibiting 15-Lipoxygenase-1-Mediated microglia and endothelial cell ferroptosis. Oxid Med Cell Longev. 2022:42952082022. View Article : Google Scholar : | |
|
Strike SC, Carlisle A, Gibson EL and Dyall SC: A High Omega-3 fatty acid multinutrient supplement benefits cognition and mobility in older women: A randomized, Double-blind, Placebo-controlled pilot study. J Gerontol A Biol Sci Med Sci. 71:236–242. 2016. View Article : Google Scholar | |
|
Lee LK, Shahar S, Chin AV and Yusoff NA: Docosahexaenoic Acid-concentrated fish oil supplementation in subjects with mild cognitive impairment (MCI): A 12-month randomised, double-blind, placebo-controlled trial. Psychopharmacology (Berl). 225:605–612. 2013. View Article : Google Scholar | |
|
Serrano-Pozo A, Vega GL, Lütjohann D, Locascio JJ, Tennis MK, Deng A, Atri A, Hyman BT, Irizarry MC and Growdon JH: Effects of simvastatin on cholesterol metabolism and Alzheimer disease biomarkers. Alzheimer Dis Assoc Disord. 24:220–226. 2010. View Article : Google Scholar | |
|
Evans BA, Evans JE, Baker SP, Kane K, Swearer J, Hinerfeld D, Caselli R, Rogaeva E, St George-Hyslop P, Moonis M and Pollen DA: Long-term statin therapy and CSF cholesterol levels: Implications for Alzheimer's disease. Dement Geriatr Cogn Disord. 27:519–524. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Qin Z, Gu M, Zhou J, Zhang W, Zhao N, Lü Y and Yu W: Triggering receptor expressed on myeloid cells 2 activation downregulates toll-like receptor 4 expression and ameliorates cognitive impairment in the Aβ1-42-induced Alzheimer's disease mouse model. Synapse. 74:e221612020. View Article : Google Scholar | |
|
Price BR, Sudduth TL, Weekman EM, Johnson S, Hawthorne D, Woolums A and Wilcock DM: Therapeutic Trem2 activation ameliorates amyloid-beta deposition and improves cognition in the 5XFAD model of amyloid deposition. J Neuroinflammation. 17:2382020. View Article : Google Scholar : PubMed/NCBI | |
|
Fitz NF, Nam KN, Wolfe CM, Letronne F, Playso BE, Iordanova BE, Kozai TDY, Biedrzycki RJ, Kagan VE, Tyurina YY, et al: Phospholipids of APOE lipoproteins activate microglia in an Isoform-specific manner in preclinical models of Alzheimer's disease. Nat Commun. 12:34162021. View Article : Google Scholar : PubMed/NCBI | |
|
Griciuc A, Patel S, Federico AN, Choi SH, Innes BJ, Oram MK, Cereghetti G, McGinty D, Anselmo A, Sadreyev RI, et al: TREM2 Acts downstream of CD33 in modulating microglial pathology in Alzheimer's disease. Neuron. 103:820–835.e827. 2019. View Article : Google Scholar | |
|
Lefterov I, Schug J, Mounier A, Nam KN, Fitz NF and Koldamova R: RNA-sequencing reveals transcriptional up-regulation of Trem2 in response to bexarotene treatment. Neurobiol Dis. 82:132–140. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Tai LM, Koster KP, Luo J, Lee SH, Wang YT, Collins NC, Ben Aissa M, Thatcher GRJ and LaDu MJ: Amyloid-β pathology and APOE genotype modulate retinoid X receptor agonist activity in vivo. J Biol Chem. 289:30538–30555. 2014. View Article : Google Scholar : | |
|
Khan N, Syed DN, Ahmad N and Mukhtar H: Fisetin: A dietary antioxidant for health promotion. Antioxid Redox Signal. 19:151–162. 2013. View Article : Google Scholar : | |
|
Prior M, Chiruta C, Currais A, Goldberg J, Ramsey J, Dargusch R, Maher PA and Schubert D: Back to the future with phenotypic screening. ACS Chem Neurosci. 5:503–513. 2014. View Article : Google Scholar | |
|
Ates G, Goldberg J, Currais A and Maher P: CMS121, a fatty acid synthase inhibitor, protects against excess lipid peroxidation and inflammation and alleviates cognitive loss in a transgenic mouse model of Alzheimer's disease. Redox Biol. 36:1016482020. View Article : Google Scholar : PubMed/NCBI | |
|
Ayala A, Muñoz MF and Argüelles S: Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014:3604382014. View Article : Google Scholar : PubMed/NCBI | |
|
Oostveen JA, Dunn E, Carter DB and Hall ED: Neuroprotective efficacy and mechanisms of novel pyrrolopyrimidine lipid peroxidation inhibitors in the gerbil forebrain ischemia model. J Cereb Blood Flow Metab. 18:539–547. 1998. View Article : Google Scholar |