|
1
|
Fan S, Kong C, Zhou R, Zheng X, Ren D and
Yin Z: Protein post-translational modifications based on
proteomics: A potential regulatory role in animal science. J Agric
Food Chem. 72:6077–6088. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Nakamura T and Lipton SA: Nitrosative
stress in the nervous system: Guidelines for designing experimental
strategies to study protein S-Nitrosylation. Neurochem Res.
41:510–514. 2016. View Article : Google Scholar
|
|
3
|
Zhao Q, Ma J, Xie F, Wang Y, Zhang Y, Li
H, Sun Y, Wang L, Guo M and Han K: Recent advances in predicting
protein S-nitrosylation sites. Biomed Res Int. 2021:55422242021.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Kaya E, Zinnuroglu M and Tugcu I: Kinesio
taping compared to physical therapy modalities for the treatment of
shoulder impingement syndrome. Clin Rheumatol. 30:201–207. 2011.
View Article : Google Scholar
|
|
5
|
Yu B, Ichinose F, Bloch DB and Zapol WM:
Inhaled nitric oxide. Br J Pharmacol. 176:246–255. 2019. View Article : Google Scholar
|
|
6
|
Lundberg JO and Weitzberg E: Nitric oxide
signaling in health and disease. Cell. 185:2853–2878. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Andrabi SM, Sharma NS, Karan A, Shahriar
SMS, Cordon B, Ma B and Xie J: Nitric oxide: Physiological
functions, delivery, and biomedical applications. Adv Sci (Weinh).
10:e23032592023. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Alderton WK, Cooper CE and Knowles RG:
Nitric oxide synthases: Structure, function and inhibition.
Biochemical J. 357:593–615. 2001. View Article : Google Scholar
|
|
9
|
Förstermann U and Sessa WC: Nitric oxide
synthases: Regulation and function. Eur Heart J. 33:829–837. 2012.
View Article : Google Scholar :
|
|
10
|
Guo Y, Wen J, He A, Qu C, Peng Y, Luo S
and Wang X: iNOS contributes to heart failure with preserved
ejection fraction through mitochondrial dysfunction and Akt
S-nitrosylation. J Adv Res. 43:175–186. 2023. View Article : Google Scholar :
|
|
11
|
Anavi S and Tirosh O: iNOS as a metabolic
enzyme under stress conditions. Free Radical Biol Med. 146:16–35.
2020. View Article : Google Scholar
|
|
12
|
Rudic RD, Shesely EG, Maeda N, Smithies O,
Segal SS and Sessa WC: Direct evidence for the importance of
endothelium-derived nitric oxide in vascular remodeling. J Clin
Invest. 101:731–736. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Radomski MW, Palmer RM and Moncada S: The
antiaggregating properties of vascular endothelium: Interactions
between prostacyclin and nitric oxide. Br J Pharmacol. 92:639–646.
1987. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Kubes P, Suzuki M and Granger DN: Nitric
oxide: An endogenous modulator of leukocyte adhesion. Proc Natl
Acad Sci USA. 88:4651–4655. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Zhou L and Zhu DY: Neuronal nitric oxide
synthase: Structure, subcellular localization, regulation, and
clinical implications. Nitric Oxide. 20:223–230. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Schwarz PM, Kleinert H and Förstermann U:
Potential functional significance of brain-type and muscle-type
nitric oxide synthase I expressed in adventitia and media of rat
aorta. Arterioscler Thromb Vasc Biol. 19:2584–2590. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Fernando V, Zheng X, Walia Y, Sharma V,
Letson J and Furuta S: S-Nitrosylation: An emerging paradigm of
redox signaling. Antioxidants (Basel). 8:4042019. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Martínez-Ruiz A, Araújo IM,
Izquierdo-Álvarez A, Hernansanz-Agustín P, Lamas S and Serrador J:
Specificity in S-nitrosylation: A short-range mechanism for NO
signaling? Antioxid Redox Signal. 19:1220–1235. 2013. View Article : Google Scholar :
|
|
19
|
Tegeder I: Nitric oxide mediated redox
regulation of protein homeostasis. Cell Signal. 53:348–356. 2019.
View Article : Google Scholar
|
|
20
|
Bradley SA and Steinert JR: Nitric
oxide-mediated posttranslational modifications: Impacts at the
synapse. Oxid Med Cell Longev. 2016:56810362016. View Article : Google Scholar
|
|
21
|
Penna C, Sorge M, Femminò S, Pagliaro P
and Brancaccio M: Redox aspects of chaperones in cardiac function.
Front Physiol. 9:2162018. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Sun J, Steenbergen C and Murphy E:
S-nitrosylation: NO-related redox signaling to protect against
oxidative stress. Antioxid Redox Signal. 8:1693–1705. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Sharma V, Fernando V, Letson J, Walia Y,
Zheng X, Fackelman D and Furuta S: S-Nitrosylation in tumor
microenvironment. Int J Mol Sci. 22:46002021. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Anand P, Hausladen A, Wang YJ, Zhang GF,
Stomberski C, Brunengraber H, Hess DT and Stamler JS:
Identification of S-nitroso-CoA reductases that regulate protein
S-nitrosylation. Proc Natl Acad Sci USA. 111:18572–18577. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Hess DT and Stamler JS: Regulation by
S-nitrosylation of protein post-translational modification. J Biol
Chem. 287:4411–4418. 2012. View Article : Google Scholar :
|
|
26
|
Stamler JS, Simon DI, Osborne JA, Mullins
ME, Jaraki O, Michel T, Singel DJ and Loscalzo J: S-nitrosylation
of proteins with nitric oxide: Synthesis and characterization of
biologically active compounds. Proc Natl Acad Sci USA. 89:444–448.
1992. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Hess DT, Matsumoto A, Kim SO, Marshall HE
and Stamler JS: Protein S-nitrosylation: Purview and parameters.
Nat Rev Mol Cell Biol. 6:150–166. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Lancaster JR Jr: Nitric oxide: A brief
overview of chemical and physical properties relevant to
therapeutic applications. Future Sci OA. 1:Fso592015. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Nakamura T and Lipton SA: Protein
S-Nitrosylation as a therapeutic target for neurodegenerative
diseases. Trends Pharmacol Sci. 37:73–84. 2016. View Article : Google Scholar :
|
|
30
|
Möller MN, Li Q, Vitturi DA, Robinson JM,
Lancaster JR Jr and Denicola A: Membrane 'lens' effect: Focusing
the formation of reactive nitrogen oxides from the *NO/O2 reaction.
Chem Res Toxicol. 20:709–714. 2007. View Article : Google Scholar
|
|
31
|
Jia J, Arif A, Terenzi F, Willard B, Plow
EF, Hazen SL and Fox PL: Target-selective protein S-nitrosylation
by sequence motif recognition. Cell. 159:623–634. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Cheng S, Shi T, Wang XL, Liang J, Wu H,
Xie L, Li Y and Zhao YL: Features of S-nitrosylation based on
statistical analysis and molecular dynamics simulation: Cysteine
acidity, surrounding basicity, steric hindrance and local
flexibility. Mol Biosyst. 10:2597–2606. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Pérez-Mato I, Castro C, Ruiz FA, Corrales
FJ and Mato JM: Methionine adenosyltransferase S-nitrosylation is
regulated by the basic and acidic amino acids surrounding the
target thiol. J Biol Chem. 274:17075–17079. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Doulias PT, Greene JL, Greco TM,
Tenopoulou M, Seeholzer SH, Dunbrack RL and Ischiropoulos H:
Structural profiling of endogenous S-nitrosocysteine residues
reveals unique features that accommodate diverse mechanisms for
protein S-nitrosylation. Proc Natl Acad Sci USA. 107:16958–16963.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Beltrán B, Orsi A, Clementi E and Moncada
S: Oxidative stress and S-nitrosylation of proteins in cells. Br J
Pharmacol. 129:953–960. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Treuer AV and Gonzalez DR: Nitric oxide
synthases, S-nitrosylation and cardiovascular health: From
molecular mechanisms to therapeutic opportunities (review). Mol Med
Rep. 11:1555–1565. 2015. View Article : Google Scholar
|
|
37
|
Rizza S and Filomeni G: Chronicles of a
reductase: Biochemistry, genetics and physio-pathological role of
GSNOR. Free Radic Biol Med. 110:19–30. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Tang X, Zhao S, Liu J, Liu X, Sha X, Huang
C, Hu L, Sun S, Gao Y, Chen H, et al: Mitochondrial GSNOR
alleviates cardiac dysfunction via ANT1 denitrosylation. Circ Res.
133:220–236. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Sengupta R, Ryter SW, Zuckerbraun BS,
Tzeng E, Billiar TR and Stoyanovsky DA: Thioredoxin catalyzes the
denitrosation of low-molecular mass and protein S-nitrosothiols.
Biochemistry. 46:8472–8483. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Kalinina E and Novichkova M: Glutathione
in protein redox modulation through S-Glutathionylation and
S-Nitrosylation. Molecules. 26:4352021. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Chen L, Wu R, Feng J, Feng T, Wang C, Hu
J, Zhan N, Li Y, Ma X, Ren B, et al: Transnitrosylation mediated by
the non-canonical catalase ROG1 regulates nitric oxide signaling in
plants. Dev Cell. 53:444–457. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Furuta S: Basal S-Nitrosylation is the
guardian of tissue homeostasis. Trends Cancer. 3:744–748. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Murray CI, Uhrigshardt H, O'meally RN,
Cole RN and Van Eyk JE: Identification and quantification of
S-nitrosylation by cysteine reactive tandem mass tag switch assay.
Mol Cell Proteomics. 11:M111.0134412012. View Article : Google Scholar :
|
|
44
|
Liu LS, Ma H, Zhu JY, Han XX and Zhao B:
Quantification of protein S-nitrosylation probed by resonance Raman
spectroscopy. Spectroscopy and Spectral Analysis. 40:141–142.
2020.In Chinese.
|
|
45
|
Jaffrey SR, Erdjument-Bromage H, Ferris
CD, Tempst P and Snyder SH: Protein S-nitrosylation: A
physiological signal for neuronal nitric oxide. Nat Cell Biol.
3:193–197. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Forrester MT, Foster MW, Benhar M and
Stamler JS: Detection of protein S-nitrosylation with the
biotin-switch technique. Free Radic Biol Med. 46:119–126. 2009.
View Article : Google Scholar
|
|
47
|
Qu Z, Meng F, Bomgarden RD, Viner RI, Li
J, Rogers JC, Cheng J, Greenlief CM, Cui J, Lubahn DB, et al:
Proteomic quantification and site-mapping of S-nitrosylated
proteins using isobaric iodoTMT reagents. J Proteome Res.
13:3200–3211. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Mnatsakanyan R, Markoutsa S, Walbrunn K,
Roos A, Verhelst SHL and Zahedi RP: Proteome-wide detection of
S-nitrosylation targets and motifs using bioorthogonal
cleavable-linker-based enrichment and switch technique. Nat Commun.
10:21952019. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Zhang L, Shang P, Chen C, Zhou J and Zhu
S: Surface plasmon resonance spectroscopy for detection of
S-nitrosylated proteins. Methods Mol Biol. 1747:103–111. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Qin G, Qu M, Jia B, Wang W, Luo Z, Song
CP, Tao WA and Wang P: FAT-switch-based quantitative
S-nitrosoproteomics reveals a key role of GSNOR1 in regulating ER
functions. Nat Commun. 14:32682023. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Chen YJ, Ching WC, Lin YP and Chen Y:
Methods for detection and characterization of protein
S-nitrosylation. Methods. 62:138–150. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Kobayashi A, Kang MI, Watai Y, Tong KI,
Shibata T, Uchida K and Yamamoto M: Oxidative and electrophilic
stresses activate Nrf2 through inhibition of ubiquitination
activity of Keap1. Mol Cell Biol. 26:221–229. 2006. View Article : Google Scholar :
|
|
53
|
Morris G, Walder K, Carvalho AF, Tye SJ,
Lucas K, Berk M and Maes M: The role of hypernitrosylation in the
pathogenesis and pathophysiology of neuroprogressive diseases.
Neurosci Biobehav Rev. 84:453–469. 2018. View Article : Google Scholar
|
|
54
|
Palmieri MC, Lindermayr C, Bauwe H,
Steinhauser C and Durner J: Regulation of plant glycine
decarboxylase by s-nitrosylation and glutathionylation. Plant
Physiol. 152:1514–1528. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Gietler M, Nykiel M, Orzechowski S, Fettke
J and Zagdańska B: Proteomic analysis of S-nitrosylated and
S-glutathionylated proteins in wheat seedlings with different
dehydration tolerances. Plant Physiol Biochem. 108:507–518. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Lin A, Wang Y, Tang J, Xue P, Li C, Liu L,
Hu B, Yang F, Loake GJ and Chu C: Nitric oxide and protein
S-nitrosylation are integral to hydrogen peroxide-induced leaf cell
death in rice. Plant Physiol. 158:451–464. 2012. View Article : Google Scholar :
|
|
57
|
Ortega-Galisteo AP, Rodríguez-Serrano M,
Pazmiño DM, Gupta DK, Sandalio LM and Romero-Puertas MC:
S-Nitrosylated proteins in pea (Pisum sativum L.) leaf peroxisomes:
Changes under abiotic stress. J Exp Bot. 63:2089–2103. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Montrichard F, Alkhalfioui F, Yano H,
Vensel WH, Hurkman WJ and Buchanan B: Thioredoxin targets in
plants: The first 30 years. J Proteomics. 72:452–474. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Wang W, Vinocur B, Shoseyov O and Altman
A: Role of plant heat-shock proteins and molecular chaperones in
the abiotic stress response. Trends Plant Sci. 9:244–252. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Balmant KM, Parker J, Yoo MJ, Zhu N,
Dufresne C and Chen S: Redox proteomics of tomato in response to
Pseudomonas syringae infection. Hortic Res. 2:150432015. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Ozawa K, Komatsubara AT, Nishimura Y,
Sawada T, Kawafune H, Tsumoto H, Tsuji Y, Zhao J, Kyotani Y, Tanaka
T, et al: S-nitrosylation regulates mitochondrial quality control
via activation of parkin. Sci Rep. 3:22022013. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Matthews JR, Botting CH, Panico M, Morris
HR and Hay RT: Inhibition of NF-kappaB DNA binding by nitric oxide.
Nucleic Acids Res. 24:2236–2242. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Li F, Sonveaux P, Rabbani ZN, Liu S, Yan
B, Huang Q, Vujaskovic Z, Dewhirst MW and Li CY: Regulation of
HIF-1alpha stability through S-nitrosylation. Mol Cell. 26:63–74.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Fourquet S, Guerois R, Biard D and
Toledano MB: Activation of NRF2 by nitrosative agents and H2O2
involves KEAP1 disulfide formation. J Biol Chem. 285:8463–8471.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Kim SO, Merchant K, Nudelman R, Beyer WF
Jr, Keng T, DeAngelo J, Hausladen A and Stamler J: OxyR: A
molecular code for redox-related signaling. Cell. 109:383–396.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Barrett DM, Black SM, Todor H,
Schmidt-Ullrich RK, Dawson KS and Mikkelsen RB: Inhibition of
protein-tyrosine phosphatases by mild oxidative stresses is
dependent on S-nitrosylation. J Biol Chem. 280:14453–14461. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Caviedes A, Maturana B, Corvalán K, Engler
A, Gordillo F, Varas-Godoy M, Smalla KH, Batiz LF, Lafourcade C,
Kaehne T and Wyneken U: eNOS-dependent S-nitrosylation of the NF-κB
subunit p65 has neuroprotective effects. Cell Death Dis. 12:42021.
View Article : Google Scholar
|
|
68
|
Sanhueza C, Bennett JC,
Valenzuela-Valderrama M, Contreras P, Lobos-González L, Campos A,
Wehinger S, Lladser Á, Kiessling R, Leyton L and Quest AFG:
Caveolin-1-mediated tumor suppression is linked to reduced HIF1α
S-Nitrosylation and transcriptional activity in hypoxia. Cancers
(Basel). 12:23492020. View Article : Google Scholar
|
|
69
|
Yi W, Zhang Y, Liu B, Zhou Y, Liao D, Qiao
X, Gao D, Xie T, Yao Q, Zhang Y, et al: Protein S-nitrosylation
regulates proteostasis and viability of hematopoietic stem cell
during regeneration. Cell Rep. 34:1089222021. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Lin Z, Zhao S, Li X, Miao Z, Cao J, Chen
Y, Shi Z, Zhang J, Wang D, Chen S, et al: Cathepsin B
S-nitrosylation promotes ADAR1-mediated editing of its own mRNA
transcript via an ADD1/MATR3 regulatory axis. Cell Res. 33:546–561.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Ryan SD, Dolatabadi N, Chan SF, Zhang X,
Akhtar MW, Parker J, Soldner F, Sunico CR, Nagar S, Talantova M, et
al: Isogenic human iPSC Parkinson's model shows nitrosative
stress-induced dysfunction in MEF2-PGC1α transcription. Cell.
155:1351–1364. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Zhou HL, Zhang R, Anand P, Stomberski CT,
Qian Z, Hausladen A, Wang L, Rhee EP, Parikh SM, Karumanchi SA and
Stamler JS: Metabolic reprogramming by the S-nitroso-CoA reductase
system protects against kidney injury. Nature. 565:96–100. 2019.
View Article : Google Scholar
|
|
73
|
Foster MW, Mcmahon TJ and Stamler JS:
S-nitrosylation in health and disease. Trends Mol Med. 9:160–168.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Foster MW, Hess DT and Stamler JS: Protein
S-nitrosylation in health and disease: A current perspective.
Trends Mol Med. 15:391–404. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Yoon S, Kim M, Lee H, Kang G, Bedi K,
Margulies KB, Jain R, Nam KI, Kook H and Eom GH: S-Nitrosylation of
histone deacetylase 2 by neuronal nitric oxide synthase as a
mechanism of diastolic dysfunction. Circulation. 143:1912–1925.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Nogi M, Satoh K, Sunamura S, Kikuchi N,
Satoh T, Kurosawa R, Omura J, Elias-Al-Mamun M, Siddique MA, Numano
K, et al: Small GTP-binding protein GDP dissociation stimulator
prevents thoracic aortic aneurysm formation and rupture by
phenotypic preservation of aortic smooth muscle cells. Circulation.
138:2413–2433. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Pan L, Lin Z, Tang X, Tian J, Zheng Q,
Jing J, Xie L, Chen H, Lu Q, Wang H, et al: S-Nitrosylation of
plastin-3 exacerbates thoracic aortic dissection formation via
endothelial barrier dysfunction. Arterioscler Thromb Vasc Biol.
40:175–188. 2020. View Article : Google Scholar
|
|
78
|
Zhang Y, Zhang H, Zhao S, Qi Z, He Y,
Zhang X, Wu W, Yan K, Hu L, Sun S, et al: S-Nitrosylation of
Septin2 exacerbates aortic aneurysm and dissection by coupling the
TIAM1-RAC1 axis in macrophages. Circulation. 149:1903–1920. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Nakamura T, Tu S, Akhtar MW, Sunico CR,
Okamoto S and Lipton SA: Aberrant protein s-nitrosylation in
neurodegenerative diseases. Neuron. 78:596–614. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Okamoto S, Nakamura T, Cieplak P, Chan SF,
Kalashnikova E, Liao L, Saleem S, Han X, Clemente A, Nutter A, et
al: S-nitrosylation-mediated redox transcriptional switch modulates
neurogenesis and neuronal cell death. Cell Rep. 8:217–228. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Cho DH, Nakamura T, Fang J, Cieplak P,
Godzik A, Gu Z and Lipton SA: S-nitrosylation of Drp1 mediates
beta-amyloid-related mitochondrial fission and neuronal injury.
Science. 324:102–105. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Wang X, Su B, Lee HG, Li X, Perry G, Smith
MA and Zhu X: Impaired balance of mitochondrial fission and fusion
in Alzheimer's disease. J Neurosci. 29:9090–9103. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Nakamura T, Oh CK, Liao L, Zhang X, Lopez
KM, Gibbs D, Deal AK, Scott HR, Spencer B, Masliah E, et al:
Noncanonical transnitrosylation network contributes to synapse loss
in Alzheimer's disease. Science. 371:eaaw08432021. View Article : Google Scholar
|
|
84
|
Chung KK, Thomas B, Li X, Pletnikova O,
Troncoso JC, Marsh L, Dawson VL and Dawson TM: S-nitrosylation of
parkin regulates ubiquitination and compromises parkin's protective
function. Science. 304:1328–1331. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Tsang AH, Lee YI, Ko HS, Savitt JM,
Pletnikova O, Troncoso JC, Dawson VL, Dawson TM and Chung KK:
S-nitrosylation of XIAP compromises neuronal survival in
Parkinson's disease. Proc Natl Acad Sci USA. 106:4900–4905. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Jin L, Cao Y, Zhang T, Wang P, Ji D, Liu
X, Shi H, Hua L, Yu R and Gao S: Effects of ERK1/2 S-nitrosylation
on ERK1/2 phosphorylation and cell survival in glioma cells. Int J
Mol Med. 41:1339–1348. 2018.
|
|
87
|
Shen X, Burguillos MA, Osman AM, Frijhoff
J, Carrillo-Jiménez A, Kanatani S, Augsten M, Saidi D, Rodhe J,
Kavanagh E, et al: Glioma-induced inhibition of caspase-3 in
microglia promotes a tumor-supportive phenotype. Nat Immunol.
17:1282–1290. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Qiu F, Liu Y and Liu Z: The role of
protein S-nitrosylation in mitochondrial quality control in central
nervous system Diseases. Aging Dis. 25: View Article : Google Scholar : 2024.
|
|
89
|
Yao D, Gu Z, Nakamura T, Shi ZQ, Ma Y,
Gaston B, Palmer LA, Rockenstein EM, Zhang Z, Masliah E, et al:
Nitrosative stress linked to sporadic Parkinson's disease:
S-nitrosylation of parkin regulates its E3 ubiquitin ligase
activity. Proc Natl Acad Sci USA. 101:10810–10814. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Wang J, Yang S, He P, Schetter AJ, Gaedcke
J, Ghadimi BM, Ried T, Yfantis HG, Lee DH, Gaida MM, et al:
Endothelial nitric oxide synthase traffic inducer (NOSTRIN) is a
negative regulator of disease aggressiveness in pancreatic cancer.
Clin Cancer Res. 22:5992–6001. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Wang J, He P, Gaida M, Yang S, Schetter
AJ, Gaedcke J, Ghadimi BM, Ried T, Yfantis H, Lee D, et al:
Inducible nitric oxide synthase enhances disease aggressiveness in
pancreatic cancer. Oncotarget. 7:52993–53004. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Tan C, Li Y, Huang X, Wei M, Huang Y, Tang
Z, Huang H, Zhou W, Wang Y and Hu J: Extensive protein
S-nitrosylation associated with human pancreatic ductal
adenocarcinoma pathogenesis. Cell Death Dis. 10:9142019. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Deng WW, Zhou ZK, Zhang HY, Du ZX and Wang
HQ: Effect of NO on apoptosis of human thyroid cancer cells induced
by tumor necrosis factor-related apoptosis-inducing ligand. Chin J
Cancer Prev Treat. 15:1691–1694. 2008.In Chinese.
|
|
94
|
Tang CH, Wei W, Hanes MA and Liu L:
Hepatocarcinogenesis driven by GSNOR deficiency is prevented by
iNOS inhibition. Cancer Res. 73:2897–2904. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Wei W, Yang Z, Tang CH and Liu L: Targeted
deletion of GSNOR in hepatocytes of mice causes nitrosative
inactivation of O6-alkylguanine-DNA alkyltransferase and increased
sensitivity to genotoxic diethylnitrosamine. Carcinogenesis.
32:973–977. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Zhang X, Li G, Guo Y, Song Y, Chen L, Ruan
Q, Wang Y, Sun L, Hu Y, Zhou J, et al: Regulation of ezrin tension
by S-nitrosylation mediates non-small cell lung cancer invasion and
metastasis. Theranostics. 9:2555–2571. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Okuda K, Nakahara K, Ito A, Iijima Y,
Nomura R, Kumar A, Fujikawa K, Adachi K, Shimada Y, Fujio S, et al:
Pivotal role for S-nitrosylation of DNA methyltransferase 3B in
epigenetic regulation of tumorigenesis. Nat Commun. 14:6212023.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Liang F, Wang M, Li J and Guo J: The
evolution of S-nitrosylation detection methodology and the role of
protein S-nitrosylation in various cancers. Cancer Cell Int.
24:4082024. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Zhou HL, Grimmett ZW, Venetos NM,
Stomberski CT, Qian Z, McLaughlin PJ, Bansal PK, Zhang R, Reynolds
JD, Premont RT and Stamler JS: An enzyme that selectively
S-nitrosylates proteins to regulate insulin signaling. Cell.
186:5812–5825.e21. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Zhou HL, Premont RT and Stamler JS: The
manifold roles of protein S-nitrosylation in the life of insulin.
Nat Rev Endocrinol. 18:111–128. 2022. View Article : Google Scholar :
|
|
101
|
Li Y, Zhang Y, Wang L, Wang P, Xue Y, Li
X, Qiao X, Zhang X, Xu T, Liu G, et al: Autophagy impairment
mediated by S-nitrosation of ATG4B leads to neurotoxicity in
response to hyperglycemia. Autophagy. 13:1145–1160. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Carvalho-Filho MA, Ropelle ER, Pauli RJ,
Cintra DE, Tsukumo DM, Silveira LR, Curi R, Carvalheira JB, Velloso
LA and Saad MJ: Aspirin attenuates insulin resistance in muscle of
diet-induced obese rats by inhibiting inducible nitric oxide
synthase production and S-nitrosylation of IRbeta/IRS-1 and Akt.
Diabetologia. 52:2425–2434. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Fang J, Nakamura T, Cho DH, Gu Z and
Lipton SA: S-nitrosylation of peroxiredoxin 2 promotes oxidative
stress-induced neuronal cell death in Parkinson's disease. Proc
Natl Acad Sci USA. 104:18742–18747. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Li K, Huang M, Xu P, Wang M, Ye S, Wang Q,
Zeng S, Chen X, Gao W, Chen J, et al: Microcystins-LR induced
apoptosis via S-nitrosylation of GAPDH in colorectal cancer cells.
Ecotoxicol Environ Saf. 190:1100962020. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Wang W, Wang D, Kong C, Li S, Xie L, Lin
Z, Zheng Y, Zhou J, Han Y and Ji Y: eNOS S-nitrosylation mediated
OxLDL-induced endothelial dysfunction via increasing the
interaction of eNOS with β-catenin. Biochim Biophys Acta Mol Basic
Dis. 1865:1793–1801. 2019. View Article : Google Scholar
|
|
106
|
Ye H, Zhang C, Li L, Li C, Yu J, Ji D,
Liang Z, Wu J and Huang Z: A fluorescent probe for imaging and
treating S-nitrosation stress in OGD/R cells. Antioxidants (Basel).
14:3112025. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Marley R, Feelisch M, Holt S and Moore K:
A chemiluminescense-based assay for S-nitrosoalbumin and other
plasma S-nitrosothiols. Free Radic Res. 32:1–9. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Gow AJ, Chen Q, Hess DT, Day BJ,
Ischiropoulos H and Stamler JS: Basal and stimulated protein
S-nitrosylation in multiple cell types and tissues. J Biol Chem.
277:9637–9640. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Forrester MT, Thompson JW, Foster MW,
Nogueira L, Moseley MA and Stamler JS: Proteomic analysis of
S-nitrosylation and denitrosylation by resin-assisted capture. Nat
Biotechnol. 27:557–559. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Seneviratne U, Nott A, Bhat VB, Ravindra
KC, Wishnok JS, Tsai LH and Tannenbaum SR: S-nitrosation of
proteins relevant to Alzheimer's disease during early stages of
neurodegeneration. Proc Natl Acad Sci USA. 113:4152–4157. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Liu J: Effects and mechanisms of
S-nitrosylated ANT1 on pathological cardiac hypertrophy. Nanjing
Medical University; Master's thesis. 2017, In Chinese.
|
|
112
|
Zamorano P, Marín N, Córdova F, Aguilar A,
Meininger C, Boric MP, Golenhofen N, Contreras JE, Sarmiento J,
Durán WN and Sánchez FA: S-nitrosylation of VASP at cysteine 64
mediates the inflammation-stimulated increase in microvascular
permeability. Am J Physiol Heart Circ Physiol. 313:H66–H71. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Li J, Zhang Y, Zhang Y, Lü S, Miao Y, Yang
J, Huang S, Ma X, Han L, Deng J, et al: GSNOR modulates
hyperhomocysteinemia-induced T cell activation and atherosclerosis
by switching Akt S-nitrosylation to phosphorylation. Redox Biol.
17:386–399. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Majumdar U, Manivannan S, Basu M, Ueyama
Y, Blaser MC, Cameron E, McDermott MR, Lincoln J, Cole SE, Wood S,
et al: Nitric oxide prevents aortic valve calcification by
S-nitrosylation of USP9X to activate NOTCH signaling. Sci Adv.
7:eabe37062021. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Chao ML, Luo S, Zhang C, Zhou X, Zhou M,
Wang J, Kong C, Chen J, Lin Z, Tang X, et al:
S-nitrosylation-mediated coupling of G-protein alpha-2 with CXCR5
induces Hippo/YAP-dependent diabetes-accelerated atherosclerosis.
Nat Commun. 12:44522021. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Martínez-Ruiz A, Villanueva L, González De
Orduña C, López-Ferrer D, Higueras MA, Tarín C, Rodríguez-Crespo I,
Vázquez J and Lamas S: S-nitrosylation of Hsp90 promotes the
inhibition of its ATPase and endothelial nitric oxide synthase
regulatory activities. Proc Natl Acad Sci USA. 102:8525–8530. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Hara MR, Thomas B, Cascio MB, Bae BI,
Hester LD, Dawson VL, Dawson TM, Sawa A and Snyder SH:
Neuroprotection by pharmacologic blockade of the GAPDH death
cascade. Proc Natl Acad Sci USA. 103:3887–3889. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Kwak YD, Ma T, Diao S, Zhang X, Chen Y,
Hsu J, Lipton SA, Masliah E, Xu H and Liao FF: NO signaling and
S-nitrosylation regulate PTEN inhibition in neurodegeneration. Mol
Neurodegener. 5:492010. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Nakamura T, Wang L, Wong CC, Scott FL,
Eckelman BP, Han X, Tzitzilonis C, Meng F, Gu Z, Holland EA, et al:
Transnitrosylation of XIAP regulates caspase-dependent neuronal
cell death. Mol Cell. 39:184–195. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Abrams AJ, Farooq A and Wang G:
S-nitrosylation of ApoE in Alzheimer's disease. Biochemistry.
50:3405–3407. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Qu J, Nakamura T, Cao G, Holland EA,
McKercher SR and Lipton SA: S-Nitrosylation activates Cdk5 and
contributes to synaptic spine loss induced by beta-amyloid peptide.
Proc Natl Acad Sci USA. 108:14330–143305. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Kornberg MD, Sen N, Hara MR, Juluri KR,
Nguyen JV, Snowman AM, Law L, Hester LD and Snyder SH: GAPDH
mediates nitrosylation of nuclear proteins. Nat Cell Biol.
12:1094–1100. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Leon-Bollotte L, Subramaniam S, Cauvard O,
Plenchette-Colas S, Paul C, Godard C, Martinez-Ruiz A, Legembre P,
Jeannin JF and Bettaieb A: S-nitrosylation of the death receptor
fas promotes fas ligand-mediated apoptosis in cancer cells.
Gastroenterology. 140:2009–2018. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Zhao Q, Zheng K, Ma C, Li J, Zhuo L, Huang
W, Chen T and Jiang Y: PTPS facilitates compartmentalized LTBP1
S-nitrosylation and promotes tumor growth under hypoxia. Mol Cell.
77:95–107.e5. 2020. View Article : Google Scholar
|