Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
October-2025 Volume 56 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2025 Volume 56 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role of the TGF‑β/Smad signaling pathway in the transition from acute kidney injury to chronic kidney disease (Review)

  • Authors:
    • Yuanxia Zou
    • Jian Dai
    • Jianchun Li
    • Min Liu
    • Run Li
    • Guiping Li
    • Junyu Lai
    • Li Wang
  • View Affiliations / Copyright

    Affiliations: Research Center for Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China, Department of Neurology, The Third People's Hospital of Luzhou, Luzhou, Sichuan 646000, P.R. China, Department of Children's Diagnosis and Treatment Center, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China, Department of Urology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
    Copyright: © Zou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 162
    |
    Published online on: July 30, 2025
       https://doi.org/10.3892/ijmm.2025.5603
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The progression from acute kidney injury (AKI) to chronic kidney disease (CKD) has become a focal point of investigation, with the TGF‑β/Smad signaling pathway emerging as a key mediator in this process. The present review assesses how TGF‑β/Smad contributes to renal fibrosis and the subsequent deterioration of kidney function following AKI. Drawing on recent experimental and clinical findings, this study explores how pathway activation promotes tubular cell injury, inflammation and interstitial fibrosis. By examining these molecular and cellular events, this study offers fresh insights into the complex mechanisms that underlie the AKI‑CKD transition and highlights potential therapeutic strategies aimed at interrupting or slowing disease progression.
View Figures

Figure 1

Timeline of milestones in TGF-β
signaling research.

Figure 2

Biological processes of AKI-CKD and
its relationship with TGF-β/Smad signaling. The Figure was created
by Figdraw 2.0 (https://www.figdraw.com). AKI, acute kidney injury;
CKD, chronic kidney disease; GSK-3β, glycogen synthase kinase-3β;
TGF-β, transforming growth factor-β; MAPK, mitogen-activated
protein kinases; Shc, SHC adaptor protein; SARA, SMAD anchor for
receptor activation; SOS, son of sevenless (a guanine nucleotide
exchange factor); TAK1, TGF-beta-activated kinase 1; APC,
adenomatous polyposis coli.

Figure 3

Crosstalk of TGF-β/Smad signaling
with other signaling pathways in renal fibrosis. The Figure was
created by Figdraw 2.0 (https://www.figdraw.com). AKI, acute kidney injury;
ECM, extracellular matrix; CKD, chronic kidney disease; EMT,
epithelial-to-mesenchymal transition; TEC, T-cell protein tyrosine
kinase; DAMP, damage-associated molecular patterns; MCP-1, monocyte
chemoattractant protein-1; ROS, reactive oxygen species; TβR, TGF-β
recepter.
View References

1 

Sutherland SM, Kaddourah A, Gillespie SE, Soranno DE, Woroniecki RP, Basu RK and Zappitelli M; Assessment of the Worldwide Acute Kidney Injury, Renal Angina and Epidemiology (AWARE) Investigators: Cumulative application of creatinine and urine output staging optimizes the kidney disease: Improving global outcomes definition and identifies increased mortality risk in hospitalized patients with acute kidney injury. Crit Care Med. 49:1912–1922. 2021. View Article : Google Scholar : PubMed/NCBI

2 

Chawla LS, Bellomo R, Bihorac A, Goldstein SL, Siew ED, Bagshaw SM, Bittleman D, Cruz D, Endre Z, Fitzgerald RL, et al: Acute kidney disease and renal recovery: Consensus report of the acute disease quality initiative (ADQI) 16 workgroup. Nat Rev Nephrol. 13:241–257. 2017. View Article : Google Scholar : PubMed/NCBI

3 

Fu Y and Dong Z: Immune response in COVID-19-associated acute kidney injury and maladaptive kidney repair. Integr Med Nephrol Androl. 10:e000222023. View Article : Google Scholar

4 

Zhu Z, Hu J, Chen Z, Feng J, Yang X, Liang W and Ding G: Transition of acute kidney injury to chronic kidney disease: Role of metabolic reprogramming. Metabolism. 131:1551942022. View Article : Google Scholar : PubMed/NCBI

5 

Niculae A, Gherghina ME, Peride I, Tiglis M, Nechita AM and Checherita IA: Pathway from acute kidney injury to chronic kidney disease: Molecules involved in renal fibrosis. Int J Mol Sci. 24:140192023. View Article : Google Scholar : PubMed/NCBI

6 

Neyra JA and Chawla LS: Acute kidney disease to chronic kidney disease. Crit Care Clin. 37:453–474. 2021. View Article : Google Scholar : PubMed/NCBI

7 

Nangaku M, Hirakawa Y, Mimura I, Inagi R and Tanaka T: Epigenetic changes in the acute kidney injury-to-chronic kidney disease transition. Nephron. 137:256–259. 2017. View Article : Google Scholar : PubMed/NCBI

8 

Koh ES and Chung S: Recent update on acute kidney injury-to-chronic kidney disease transition. Yonsei Med J. 65:247–256. 2024. View Article : Google Scholar : PubMed/NCBI

9 

Venkatachalam MA, Weinberg JM, Kriz W and Bidani AK: Failed tubule recovery, AKI-CKD transition, and kidney disease progression. J Am Soc Nephrol. 26:1765–1776. 2015. View Article : Google Scholar : PubMed/NCBI

10 

Guo R, Duan J, Pan S, Cheng F, Qiao Y, Feng Q, Liu D and Liu Z: The road from AKI to CKD: Molecular mechanisms and therapeutic targets of ferroptosis. Cell Death Dis. 14:4262023. View Article : Google Scholar : PubMed/NCBI

11 

André C, Bodeau S, Kamel S, Bennis Y and Caillard P: The AKI-to-CKD transition: The role of uremic toxins. Int J Mol Sci. 24:161522023. View Article : Google Scholar : PubMed/NCBI

12 

Song Z and Gong X: Research progress on the potential mechanisms of acute kidney injury and chronic kidney disease induced by proton pump inhibitors. Integr Med Nephrol Androl. 10:e000272023. View Article : Google Scholar

13 

Yu XY, Sun Q, Zhang YM, Zou L and Zhao YY: TGF-β/Smad signaling pathway in tubulointerstitial fibrosis. Front Pharmacol. 13:8605882022. View Article : Google Scholar

14 

Ma TT and Meng XM: TGF-β/Smad and renal fibrosis. Adv Exp Med Biol. 1165:347–364. 2019. View Article : Google Scholar

15 

Lan HY and Chung ACK: TGF-β/Smad signaling in kidney disease. Semin Nephrol. 32:236–243. 2012. View Article : Google Scholar : PubMed/NCBI

16 

Lan HY: Diverse roles of TGF-β/Smads in renal fibrosis and inflammation. Int J Biol Sci. 7:1056–1067. 2011. View Article : Google Scholar :

17 

Zou LL, Li JR, Li H, Tan JL, Wang MX, Liu NN, Gao RM, Yan HY, Wang XK, Dong B, et al: TGF-β isoforms inhibit hepatitis C virus propagation in transforming growth factor beta/SMAD protein signalling pathway dependent and independent manners. J Cell Mol Med. 25:3498–3510. 2021. View Article : Google Scholar : PubMed/NCBI

18 

Sultana M, Tayyab M, Sunil, Parveen S, Hussain M, Saeed S, Riaz Z and Shabbir S: In silico molecular characterization of TGF-β gene family in Bufo bufo: Genome-wide analysis. J Biomol Struct Dyn. Feb 12–2024.Epub ahead of print. View Article : Google Scholar

19 

Chen T, Zhu C, Wang X, Pan Y and Huang B: Asiatic acid encapsulated exosomes of hepatocellular carcinoma inhibit epithelial-mesenchymal transition through transforming growth factor beta/smad signaling pathway. J Biomed Nanotechnol. 17:2338–2350. 2021. View Article : Google Scholar

20 

Chen Y, Di C, Zhang X, Wang J, Wang F, Yan JF, Xu C, Zhang J, Zhang Q, Li H, et al: Transforming growth factor β signaling pathway: A promising therapeutic target for cancer. J Cell Physiol. 235:1903–1914. 2020. View Article : Google Scholar

21 

de Larco JE and Todaro GJ: Growth factors from murine sarcoma virus-transformed cells. Proc Natl Acad Sci USA. 75:4001–4005. 1978. View Article : Google Scholar : PubMed/NCBI

22 

Wang HL, Wang L, Zhao CY and Lan HY: Role of TGF-beta signaling in beta cell proliferation and function in diabetes. Biomolecules. 12:3732022. View Article : Google Scholar : PubMed/NCBI

23 

Kahata K, Dadras MS and Moustakas A: TGF-β family signaling in epithelial differentiation and epithelial-mesenchymal transition. Cold Spring Harb Perspect Biol. 10:a0221942018. View Article : Google Scholar

24 

Song J and Shi W: The concomitant apoptosis and EMT underlie the fundamental functions of TGF-β. Acta Biochim Biophys Sin (Shanghai). 50:91–97. 2018. View Article : Google Scholar

25 

Peng D, Fu M, Wang M, Wei Y and Wei X: Targeting TGF-β signal transduction for fibrosis and cancer therapy. Mol Cancer. 21:1042022. View Article : Google Scholar

26 

Roberts AB, Anzano MA, Lamb LC, Smith JM and Sporn MB: New class of transforming growth factors potentiated by epidermal growth factor: Isolation from non-neoplastic tissues. Proc Natl Acad Sci USA. 78:5339–5343. 1981. View Article : Google Scholar : PubMed/NCBI

27 

Moses HL, Branum EL, Proper JA and Robinson RA: Transforming growth factor production by chemically transformed cells. Cancer Res. 41:2842–2848. 1981.PubMed/NCBI

28 

Roberts AB, Anzano MA, Meyers CA, Wideman J, Blacher R, Pan YC, Stein S, Lehrman SR, Smith JM, Lamb LC, et al: Purification and properties of a type beta transforming growth factor from bovine kidney. Biochemistry. 22:5692–5698. 1983. View Article : Google Scholar : PubMed/NCBI

29 

Derynck R, Jarrett JA, Chen EY, Eaton DH, Bell JR, Assoian RK, Roberts AB, Sporn MB and Goeddel DV: Human transforming growth factor-beta complementary DNA sequence and expression in normal and transformed cells. Nature. 316:701–705. 1985. View Article : Google Scholar : PubMed/NCBI

30 

Cheifetz S, Weatherbee JA, Tsang ML, Anderson JK, Mole JE, Lucas R and Massagué J: The transforming growth factor-beta system, a complex pattern of cross-reactive ligands and receptors. Cell. 48:409–415. 1987. View Article : Google Scholar : PubMed/NCBI

31 

ten Dijke P, Hansen P, Iwata KK, Pieler C and Foulkes JG: Identification of another member of the transforming growth factor type beta gene family. Proc Natl Acad Sci USA. 85:4715–4719. 1988. View Article : Google Scholar : PubMed/NCBI

32 

Derynck R, Lindquist PB, Lee A, Wen D, Tamm J, Graycar JL, Rhee L, Mason AJ, Miller DA, Coffey RJ, et al: A new type of transforming growth factor-beta, TGF-beta 3. EMBO J. 7:3737–3743. 1988. View Article : Google Scholar : PubMed/NCBI

33 

Connor TB Jr, Roberts AB, Sporn MB, Danielpour D, Dart LL, Michels RG, de Bustros S, Enger C, Kato H, Lansing M, et al: Correlation of fibrosis and transforming growth factor-beta type 2 levels in the eye. J Clin Invest. 83:1661–1666. 1989. View Article : Google Scholar : PubMed/NCBI

34 

Border WA, Okuda S, Languino LR, Sporn MB and Ruoslahti E: Suppression of experimental glomerulonephritis by antiserum against transforming growth factor beta 1. Nature. 346:371–374. 1990. View Article : Google Scholar : PubMed/NCBI

35 

Pierce DF Jr, Gorska AE, Chytil A, Meise KS, Page DL, Coffey RJ Jr and Moses HL: Mammary tumor suppression by transforming growth factor beta 1 transgene expression. Proc Natl Acad Sci USA. 92:4254–4258. 1995. View Article : Google Scholar : PubMed/NCBI

36 

Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J, Fan RS, Zborowska E, Kinzler KW, Vogelstein B, et al: Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science. 268:1336–1338. 1995. View Article : Google Scholar : PubMed/NCBI

37 

Zhang Y, Feng X, We R and Derynck R: Receptor-associated Mad homologues synergize as effectors of the TGF-beta response. Nature. 383:168–172. 1996. View Article : Google Scholar : PubMed/NCBI

38 

Eppert K, Scherer SW, Ozcelik H, Pirone R, Hoodless P, Kim H, Tsui LC, Bapat B, Gallinger S, Andrulis IL, et al: MADR2 maps to 18q21 and encodes a TGFbeta-regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell. 86:543–552. 1996. View Article : Google Scholar : PubMed/NCBI

39 

Fakhrai H, Mantil JC, Liu L, Nicholson GL, Murphy-Satter CS, Ruppert J and Shawler DL: Phase I clinical trial of a TGF-beta antisense-modified tumor cell vaccine in patients with advanced glioma. Cancer Gene Ther. 13:1052–1060. 2006. View Article : Google Scholar : PubMed/NCBI

40 

Trachtman H, Fervenza FC, Gipson DS, Heering P, Jayne DR, Peters H, Rota S, Remuzzi G, Rump LC, Sellin LK, et al: A phase 1, single-dose study of fresolimumab, an anti-TGF-β antibody, in treatment-resistant primary focal segmental glomerulosclerosis. Kidney Int. 79:1236–1243. 2011. View Article : Google Scholar : PubMed/NCBI

41 

King TE Jr, Bradford WZ, Castro-Bernardini S, Fagan EA, Glaspole I, Glassberg MK, Gorina E, Hopkins PM, Kardatzke D, Lancaster L, et al: A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med. 370:2083–2092. 2014. View Article : Google Scholar : PubMed/NCBI

42 

Rodon J, Carducci MA, Sepulveda-Sánchez JM, Azaro A, Calvo E, Seoane J, Braña I, Sicart E, Gueorguieva I, Cleverly AL, et al: First-in-human dose study of the novel transforming growth factor-β receptor I kinase inhibitor LY2157299 monohydrate in patients with advanced cancer and glioma. Clin Cancer Res. 21:553–560. 2015. View Article : Google Scholar

43 

Yang S, Yang G, Wang X, Xiang J, Kang L and Liang Z: SIRT2 alleviated renal fibrosis by deacetylating SMAD2 and SMAD3 in renal tubular epithelial cells. Cell Death Dis. 14:6462023. View Article : Google Scholar : PubMed/NCBI

44 

Miyazawa K, Itoh Y, Fu H and Miyazono K: Receptor-activated transcription factors and beyond: Multiple modes of Smad2/3-dependent transmission of TGF-β signaling. J Biol Chem. 300:1072562024. View Article : Google Scholar

45 

Massagué J: TGF-beta signal transduction. Annu Rev Biochem. 67:753–791. 1998. View Article : Google Scholar : PubMed/NCBI

46 

Itoh S and ten Dijke P: Negative regulation of TGF-beta receptor/Smad signal transduction. Curr Opin Cell Biol. 19:176–184. 2007. View Article : Google Scholar : PubMed/NCBI

47 

Moustakas A and Heldin CH: The regulation of TGFbeta signal transduction. Development. 136:3699–3714. 2009. View Article : Google Scholar : PubMed/NCBI

48 

Meng XM, Nikolic-Paterson DJ and Lan HY: TGF-β: The master regulator of fibrosis. Nat Rev Nephrol. 12:325–338. 2016. View Article : Google Scholar : PubMed/NCBI

49 

Derynck R and Budi EH: Specificity, versatility, and control of TGF-β family signaling. Sci Signal. 12:eaav51832019. View Article : Google Scholar

50 

Gewin LS: Transforming growth factor-β in the acute kidney injury to chronic kidney disease transition. Nephron. 143:154–157. 2019. View Article : Google Scholar

51 

Yang Q, Ren GL, Wei B, Jin J, Huang XR, Shao W, Li J, Meng XM and Lan HY: Conditional knockout of TGF-βRII/Smad2 signals protects against acute renal injury by alleviating cell necroptosis, apoptosis and inflammation. Theranostics. 9:8277–8293. 2019. View Article : Google Scholar :

52 

Gewin L: The many talents of transforming growth factor-β in the kidney. Curr Opin Nephrol Hypertens. 28:203–210. 2019. View Article : Google Scholar : PubMed/NCBI

53 

Hoi S, Tsuchiya H, Itaba N, Suzuki K, Oka H, Morimoto M, Takata T, Isomoto H and Shiota G: WNT/β-catenin signal inhibitor IC-2-derived small-molecule compounds suppress TGF-β1-induced fibrogenic response of renal epithelial cells by inhibiting SMAD2/3 signalling. Clin Exp Pharmacol Physiol. 47:940–946. 2020. View Article : Google Scholar : PubMed/NCBI

54 

Li J, Zou Y, Kantapan J, Su H, Wang L and Dechsupa N: TGF-β/Smad signaling in chronic kidney disease: Exploring post-translational regulatory perspectives (review). Mol Med Rep. 30:1432024. View Article : Google Scholar

55 

Chen DQ, Cao G, Zhao H, Chen L, Yang T, Wang M, Vaziri ND, Guo Y and Zhao YY: Combined melatonin and poricoic acid A inhibits renal fibrosis through modulating the interaction of Smad3 and β-catenin pathway in AKI-to-CKD continuum. Ther Adv Chronic Dis. 10:20406223198691162019. View Article : Google Scholar

56 

Kim IY, Song SH, Seong EY, Lee DW, Bae SS and Lee SB: Akt1 is involved in renal fibrosis and tubular apoptosis in a murine model of acute kidney injury-to-chronic kidney disease transition. Exp Cell Res. 424:1135092023. View Article : Google Scholar : PubMed/NCBI

57 

Liu W, Li F, Guo D, Du C, Zhao S, Li J, Yan Z and Hao J: Schisandrin B alleviates renal tubular cell epithelial-mesenchymal transition and mitochondrial dysfunction by kielin/chordin-like protein upregulation via Akt pathway inactivation and adenosine 5′-monophosphate, AMP)-activated protein kinase pathway activation in diabetic kidney disease. Molecules. 28:78512023. View Article : Google Scholar

58 

Kim IY, Park YK, Song SH, Seong EY, Lee DW, Bae SS and Lee SB: Role of Akt1 in renal fibrosis and tubular dedifferentiation during the progression of acute kidney injury to chronic kidney disease. Korean J Intern Med. 36:962–974. 2021. View Article : Google Scholar :

59 

Zhou L, Chen X, Lu M, Wu Q, Yuan Q, Hu C, Miao J, Zhang Y, Li H, Hou FF, et al: Wnt/β-catenin links oxidative stress to podocyte injury and proteinuria. Kidney Int. 95:830–845. 2019. View Article : Google Scholar : PubMed/NCBI

60 

Feng Y, Liang Y, Ren J and Dai C: Canonical Wnt signaling promotes macrophage proliferation during kidney fibrosis. Kidney Dis (Basel). 4:95–103. 2018. View Article : Google Scholar : PubMed/NCBI

61 

Djudjaj S and Boor P: Cellular and molecular mechanisms of kidney fibrosis. Mol Aspects Med. 65:16–36. 2019. View Article : Google Scholar

62 

Finke M, Kümpers P and Rovas A: Epidemiology and causes of acute renal failure and transition to chronic kidney disease. Dtsch Med Wochenschr. 147:227–235. 2022.In German. PubMed/NCBI

63 

Leng X, Li Q, Chen W, Feng H, Li L, Yu L, Huang P, Ma P and Xie F: C-176 inhibits macrophage polarization towards M1-subtype and ameliorates LPS induced acute kidney injury. Eur J Pharmacol. 984:1770282024. View Article : Google Scholar : PubMed/NCBI

64 

Ibrahim H, Sharawy MH, Hamed MF and Abu-Elsaad N: Peficitinib halts acute kidney injury via JAK/STAT3 and growth factors immunomodulation. Eur J Pharmacol. 984:1770202024. View Article : Google Scholar : PubMed/NCBI

65 

Guzzi F, Cirillo L, Roperto RM, Romagnani P and Lazzeri E: Molecular mechanisms of the acute kidney injury to chronic kidney disease transition: An updated view. Int J Mol Sci. 20:49412019. View Article : Google Scholar : PubMed/NCBI

66 

Belavgeni A, Meyer C, Stumpf J, Hugo C and Linkermann A: Ferroptosis and necroptosis in the kidney. Cell Chem Biol. 27:448–462. 2020. View Article : Google Scholar : PubMed/NCBI

67 

Luo K: Signaling cross talk between TGF-β/Smad and other signaling pathways. Cold Spring Harb Perspect Biol. 9:a0221372017. View Article : Google Scholar

68 

Seoane J, Le HV, Shen L, Anderson SA and Massagué J: Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell. 117:211–223. 2004. View Article : Google Scholar : PubMed/NCBI

69 

Conery AR, Cao Y, Thompson EA, Townsend CM Jr, Ko TC and Luo K: Akt interacts directly with Smad3 to regulate the sensitivity to TGF-beta induced apoptosis. Nat Cell Biol. 6:366–372. 2004. View Article : Google Scholar : PubMed/NCBI

70 

Wang M, Chen DQ, Chen L, Liu D, Zhao H, Zhang ZH, Vaziri ND, Guo Y, Zhao YY and Cao G: Novel RAS inhibitors poricoic acid ZG and poricoic Acid ZH attenuate renal fibrosis via a Wnt/β-catenin pathway and targeted phosphorylation of smad3 signaling. J Agric Food Chem. 66:1828–1842. 2018. View Article : Google Scholar : PubMed/NCBI

71 

Takekawa M, Tatebayashi K, Itoh F, Adachi M, Imai K and Saito H: Smad-dependent GADD45beta expression mediates delayed activation of p38 MAP kinase by TGF-beta. EMBO J. 21:6473–6482. 2002. View Article : Google Scholar : PubMed/NCBI

72 

Yeh YY, Chiao CC, Kuo WY, Hsiao YC, Chen YJ, Wei YY, Lai TH, Fong YC and Tang CH: TGF-beta1 increases motility and alphavbeta3 integrin up-regulation via PI3K, Akt and NF-kappaB-dependent pathway in human chondrosarcoma cells. Biochem Pharmacol. 75:1292–1301. 2008. View Article : Google Scholar : PubMed/NCBI

73 

Ogawa K, Chen F, Kuang C and Chen Y: Suppression of matrix metalloproteinase-9 transcription by transforming growth factor-beta is mediated by a nuclear factor-kappaB site. Biochem J. 381:413–422. 2004. View Article : Google Scholar : PubMed/NCBI

74 

Liu HJ, Miao H, Yang JZ, Liu F, Cao G and Zhao YY: Deciphering the role of lipoproteins and lipid metabolic alterations in ageing and ageing-associated renal fibrosis. Ageing Res Rev. 85:1018612023. View Article : Google Scholar : PubMed/NCBI

75 

Liu Y: kidney fibrosis: Fundamental questions, challenges, and perspectives. Integr Med Nephrol Androl. 11:e24–00027. 2024. View Article : Google Scholar

76 

Wang Y, Guo J, Shao B, Chen H and Lan H: The Role of TGF-β1/SMAD in diabetic nephropathy: Mechanisms and research development. Sichuan Da Xue Xue Bao Yi Xue Ban. 54:1065–1073. 2023.In Chinese.

77 

Zhang J, Cao L, Wang X, Li Q, Zhang M, Cheng C, Yu L, Xue F, Sui W, Sun S, et al: The E3 ubiquitin ligase TRIM31 plays a critical role in hypertensive nephropathy by promoting proteasomal degradation of MAP3K7 in the TGF-β1 signaling pathway. Cell Death Differ. 29:556–567. 2022. View Article : Google Scholar

78 

Dan Hu Q, Wang HL, Liu J, He T, Tan RZ, Zhang Q, Su HW, Kantawong F, Lan HY and Wang L: Btg2 promotes focal segmental glomerulosclerosis via smad3-dependent podocyte-mesenchymal transition. Adv Sci (Weinh). 10:e23043602023. View Article : Google Scholar : PubMed/NCBI

79 

Chalkia A, Gakiopoulou H, Theohari I, Foukas PG, Vassilopoulos D and Petras D: Transforming growth factor-β1/Smad signaling in glomerulonephritis and its association with progression to chronic kidney disease. Am J Nephrol. 52:653–665. 2021. View Article : Google Scholar

80 

Chen L, Yang T, Lu DW, Zhao H, Feng YL, Chen H, Chen DQ, Vaziri ND and Zhao YY: Central role of dysregulation of TGF-β/Smad in CKD progression and potential targets of its treatment. Biomed Pharmacother. 101:670–681. 2018. View Article : Google Scholar : PubMed/NCBI

81 

Zhang W, Li X, Tang Y, Chen C, Jing R and Liu T: miR-155-5p implicates in the pathogenesis of renal fibrosis via targeting SOCS1 and SOCS6. Oxid Med Cell Longev. 2020:62639212020.PubMed/NCBI

82 

Wang R, Wu G, Dai T, Lang Y, Chi Z, Yang S and Dong D: Naringin attenuates renal interstitial fibrosis by regulating the TGF-β/Smad signaling pathway and inflammation. Exp Ther Med. 21:662021. View Article : Google Scholar

83 

Mai X, Shang J, Chen Q, Gu S, Hong Y, Zhou J and Zhang M: Endophilin A2 protects against renal fibrosis by targeting TGF-β/Smad signaling. FASEB J. 36:e226032022. View Article : Google Scholar

84 

El-Waseif EG, Sharawy MH and Suddek GM: The modulatory effect of sodium molybdate against cisplatin-induced CKD: Role of TGF-β/Smad signaling pathway. Life Sci. 306:1208452022. View Article : Google Scholar

85 

Zou X, Wu M, Tu M, Tan X, Long Y, Xu Y and Li M: 4-Octyl itaconate inhibits high glucose induced renal tubular epithelial cell fibrosis through TGF-β-ROS pathway. J Recept Signal Transduct Res. 44:27–34. 2024. View Article : Google Scholar : PubMed/NCBI

86 

Wang L, Zha H, Huang J and Shi L: Flavin containing monooxygenase 2 regulates renal tubular cell fibrosis and paracrine secretion via SMURF2 in AKI-CKD transformation. Int J Mol Med. 52:1102023. View Article : Google Scholar :

87 

Kurzhagen JT, Dellepiane S, Cantaluppi V and Rabb H: AKI: An increasingly recognized risk factor for CKD development and progression. J Nephrol. 33:1171–1187. 2020. View Article : Google Scholar : PubMed/NCBI

88 

Rayego-Mateos S, Marquez-Expósito L, Rodrigues-Diez R, Sanz AB, Guiteras R, Doladé N, Rubio-Soto I, Manonelles A, Codina S, Ortiz A, et al: Molecular mechanisms of kidney injury and repair. Int J Mol Sci. 23:15422022. View Article : Google Scholar : PubMed/NCBI

89 

Zhao M, Wang Y, Li L, Liu S, Wang C, Yuan Y, Yang G, Chen Y, Cheng J, Lu Y and Liu J: Mitochondrial ROS promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting TFAM-mediated mtDNA maintenance. Theranostics. 11:1845–1863. 2021. View Article : Google Scholar : PubMed/NCBI

90 

Canaud G and Bonventre JV: Cell cycle arrest and the evolution of chronic kidney disease from acute kidney injury. Nephrol Dial Transplant. 30:575–583. 2015. View Article : Google Scholar :

91 

Wang Z and Zhang C: From AKI to CKD: Maladaptive repair and the underlying mechanisms. Int J Mol Sci. 23:108802022. View Article : Google Scholar : PubMed/NCBI

92 

Wu M, Chen W, Miao M, Jin Q, Zhang S, Bai M, Fan J, Zhang Y, Zhang A, Jia Z and Huang S: Anti-anemia drug FG4592 retards the AKI-to-CKD transition by improving vascular regeneration and antioxidative capability. Clin Sci (Lond). 135:1707–1726. 2021. View Article : Google Scholar : PubMed/NCBI

93 

Huang R, Fu P and Ma L: Kidney fibrosis: From mechanisms to therapeutic medicines. Signal Transduct Target Ther. 8:1292023. View Article : Google Scholar : PubMed/NCBI

94 

Li L, Fu H and Liu Y: The fibrogenic niche in kidney fibrosis: Components and mechanisms. Nat Rev Nephrol. 18:545–557. 2022. View Article : Google Scholar : PubMed/NCBI

95 

Zheng D, Liu J, Piao H, Zhu Z, Wei R and Liu K: ROS-triggered endothelial cell death mechanisms: Focus on pyroptosis, parthanatos, and ferroptosis. Front Immunol. 13:10392412022. View Article : Google Scholar : PubMed/NCBI

96 

Molema G, Zijlstra JG, van Meurs M and Kamps JAAM: Renal microvascular endothelial cell responses in sepsis-induced acute kidney injury. Nat Rev Nephrol. 18:95–112. 2022. View Article : Google Scholar

97 

Jourde-Chiche N, Fakhouri F, Dou L, Bellien J, Burtey S, Frimat M, Jarrot PA, Kaplanski G, Le Quintrec M, Pernin V, et al: Endothelium structure and function in kidney health and disease. Nat Rev Nephrol. 15:87–108. 2019. View Article : Google Scholar : PubMed/NCBI

98 

Aranda-Rivera AK, Cruz-Gregorio A, Aparicio-Trejo OE and Pedraza-Chaverri J: Mitochondrial redox signaling and oxidative stress in kidney diseases. Biomolecules. 11:11442021. View Article : Google Scholar : PubMed/NCBI

99 

Kishi S, Nagasu H, Kidokoro K and Kashihara N: Oxidative stress and the role of redox signalling in chronic kidney disease. Nat Rev Nephrol. 20:101–119. 2024. View Article : Google Scholar

100 

Fontecha-Barriuso M, Martin-Sanchez D, Martinez-Moreno JM, Monsalve M, Ramos AM, Sanchez-Niño MD, Ruiz-Ortega M, Ortiz A and Sanz AB: The role of PGC-1α and mitochondrial biogenesis in kidney diseases. Biomolecules. 10:3472020. View Article : Google Scholar

101 

Zhang X, Agborbesong E and Li X: The role of mitochondria in acute kidney injury and chronic kidney disease and its therapeutic potential. Int J Mol Sci. 22:112532021. View Article : Google Scholar : PubMed/NCBI

102 

Grgic I, Duffield JS and Humphreys BD: The origin of interstitial myofibroblasts in chronic kidney disease. Pediatr Nephrol. 27:183–193. 2012. View Article : Google Scholar

103 

Yeh TH, Tu KC, Wang HY and Chen JY: From acute to chronic: Unraveling the pathophysiological mechanisms of the progression from acute kidney injury to acute kidney disease to chronic kidney Disease. Int J Mol Sci. 25:17552024. View Article : Google Scholar : PubMed/NCBI

104 

Liu J, Kumar S, Dolzhenko E, Alvarado GF, Guo J, Lu C, Chen Y, Li M, Dessing MC, Parvez RK, et al: Molecular characterization of the transition from acute to chronic kidney injury following ischemia/reperfusion. JCI Insight. 2:e947162017. View Article : Google Scholar : PubMed/NCBI

105 

Li H, Hu L, Zheng C, Kong Y, Liang M and Li Q: Ankrd1 as a potential biomarker for the transition from acute kidney injury to chronic kidney disease. Sci Rep. 15:46592025. View Article : Google Scholar : PubMed/NCBI

106 

Wen Y, Xu L, Melchinger I, Thiessen-Philbrook H, Moledina DG, Coca SG, Hsu CY, Go AS, Liu KD, Siew ED, et al: Longitudinal biomarkers and kidney disease progression after acute kidney injury. JCI Insight. 8:e1677312023. View Article : Google Scholar : PubMed/NCBI

107 

Muto Y, Dixon EE, Yoshimura Y, Wu H, Omachi K, Ledru N, Wilson PC, King AJ, Eric Olson N, Gunawan MG, et al: Defining cellular complexity in human autosomal dominant polycystic kidney disease by multimodal single cell analysis. Nat Commun. 13:64972022. View Article : Google Scholar : PubMed/NCBI

108 

Kirita Y, Wu H, Uchimura K, Wilson PC and Humphreys BD: Cell profiling of mouse acute kidney injury reveals conserved cellular responses to injury. Proc Natl Acad Sci USA. 117:15874–15883. 2020. View Article : Google Scholar : PubMed/NCBI

109 

Ma T, Li H, Liu H, Peng Y, Lin T, Deng Z, Jia N, Chen Z and Wang P: Neat1 promotes acute kidney injury to chronic kidney disease by facilitating tubular epithelial cells apoptosis via sequestering miR-129-5p. Mol Ther. 30:3313–3332. 2022. View Article : Google Scholar : PubMed/NCBI

110 

Zheng Z, Xu K, Li C, Qi C, Fang Y, Zhu N, Bao J, Zhao Z, Yu Q, Wu H and Liu J: NLRP3 associated with chronic kidney disease progression after ischemia/reperfusion-induced acute kidney injury. Cell Death Discov. 7:3242021. View Article : Google Scholar : PubMed/NCBI

111 

Fu Y, Xiang Y, Wang Y, Liu Z, Yang D, Zha J, Tang C, Cai J, Chen G and Dong Z: The STAT1/HMGB1/NF-κB pathway in chronic inflammation and kidney injury after cisplatin exposure. Theranostics. 13:2757–2773. 2023. View Article : Google Scholar :

112 

Cui N, Liu C, Tang X, Song L, Xiao Z, Wang C, Wu Y, Zhou Y, Peng C, Liu Y, et al: ISG15 accelerates acute kidney injury and the subsequent AKI-to-CKD transition by promoting TGFβR1 ISGylation. Theranostics. 14:4536–4553. 2024. View Article : Google Scholar :

113 

Doke T, Mukherjee S, Mukhi D, Dhillon P, Abedini A, Davis JG, Chellappa K, Chen B, Baur JA and Susztak K: NAD+ precursor supplementation prevents mtRNA/RIG-I-dependent inflammation during kidney injury. Nat Metab. 5:414–430. 2023. View Article : Google Scholar : PubMed/NCBI

114 

Cai Y, Chen J, Liu J, Zhu K, Xu Z, Shen J, Wang D and Chu L: Identification of six hub genes and two key pathways in two rat renal fibrosis models based on bioinformatics and RNA-seq transcriptome analyses. Front Mol Biosci. 9:10357722022. View Article : Google Scholar : PubMed/NCBI

115 

Berezin AE, Berezina TA, Hoppe UC, Lichtenauer M and Berezin AA: An overview of circulating and urinary biomarkers capable of predicting the transition of acute kidney injury to chronic kidney disease. Expert Rev Mol Diagn. 24:627–647. 2024. View Article : Google Scholar : PubMed/NCBI

116 

Puri B, Majumder S and Gaikwad AB: Novel dysregulated long non-coding RNAs in the acute kidney injury-to-chronic kidney diseases transition unraveled by transcriptomic analysis. Pharmacol Res Perspect. 12:e700362024. View Article : Google Scholar : PubMed/NCBI

117 

Badurdeen Z, Alli-Shaik A, Ratnatunga NVI, Abeysekera TDJ, Wijetunge S, Hemage RKD, Fernando BNTW, Hettiarachchi TW, Gunaratne J and Nanayakkara N: Serum transforming growth factor-beta 1 and creatinine for early diagnosis of CKD of unknown or uncertain etiology phenotypes. Kidney Int Rep. 8:368–372. 2022. View Article : Google Scholar

118 

Wu W, Wang X, Yu X and Lan HY: Smad3 signatures in renal inflammation and fibrosis. Int J Biol Sci. 18:2795–2806. 2022. View Article : Google Scholar : PubMed/NCBI

119 

Kuang Q, Wu S, Xue N, Wang X, Ding X and Fang Y: Selective Wnt/β-Catenin pathway activation concomitant with sustained overexpression of miR-21 is responsible for aristolochic acid-induced AKI-to-CKD transition. Front Pharmacol. 12:6672822021. View Article : Google Scholar

120 

Nath KA, Croatt AJ, Warner GM and Grande JP: Genetic deficiency of Smad3 protects against murine ischemic acute kidney injury. Am J Physiol Renal Physiol. 301:F436–F442. 2011. View Article : Google Scholar : PubMed/NCBI

121 

Yan Z, Wang G and Shi X: Advances in the progression and prognosis biomarkers of chronic kidney disease. Front Pharmacol. 12:7853752021. View Article : Google Scholar

122 

González-Nicolás MÁ, González-Guerrero C, Goicoechea M, Boscá L, Valiño-Rivas L and Lázaro A: Biomarkers in contrast-induced acute kidney injury: Towards A new perspective. Int J Mol Sci. 25:34382024. View Article : Google Scholar : PubMed/NCBI

123 

Wang JY, Gao YB, Zhang N, Zou DW, Wang P, Zhu ZY, Li JY, Zhou SN, Wang SC, Wang YY and Yang JK: miR-21 overexpression enhances TGF-β1-induced epithelial-to-mesenchymal transition by target smad7 and aggravates renal damage in diabetic nephropathy. Mol Cell Endocrinol. 392:163–172. 2014. View Article : Google Scholar : PubMed/NCBI

124 

Tsuji K, Nakanoh H, Fukushima K, Kitamura S and Wada J: MicroRNAs as biomarkers and therapeutic targets for acute kidney injury. Diagnostics (Basel). 13:28932023. View Article : Google Scholar : PubMed/NCBI

125 

Chen C, Lu C, Qian Y, Li H, Tan Y, Cai L and Weng H: Urinary miR-21 as a potential biomarker of hypertensive kidney injury and fibrosis. Sci Rep. 7:177372017. View Article : Google Scholar : PubMed/NCBI

126 

Lv LL, Cao YH, Ni HF, Xu M, Liu D, Liu H, Chen PS and Liu BC: MicroRNA-29c in urinary exosome/microvesicle as a biomarker of renal fibrosis. Am J Physiol Renal Physiol. 305:F1220–F1227. 2013. View Article : Google Scholar : PubMed/NCBI

127 

He L, Wei Q, Liu J, Yi M, Liu Y, Liu H, Sun L, Peng Y, Liu F, Venkatachalam MA and Dong Z: AKI on CKD: Heightened injury, suppressed repair, and the underlying mechanisms. Kidney Int. 92:1071–1083. 2017. View Article : Google Scholar : PubMed/NCBI

128 

Lu Y, Xu S, Tang R, Han C and Zheng C: A potential link between fibroblast growth factor-23 and the progression of AKI to CKD. BMC Nephrol. 24:872023. View Article : Google Scholar : PubMed/NCBI

129 

Gifford CC, Lian F, Tang J, Costello A, Goldschmeding R, Samarakoon R and Higgins PJ: PAI-1 induction during kidney injury promotes fibrotic epithelial dysfunction via deregulation of klotho, p53, and TGF-β1-receptor signaling. FASEB J. 35:e217252021. View Article : Google Scholar

130 

Paniagua-Sancho M, Quiros Y, Casanova AG, Blanco-Gozalo V, Agüeros-Blanco C, Benito-Hernández A, Ramos-Barron MA, Gómez-Alamillo C, Arias M, Sancho-Martínez SM and López-Hernández FJ: Urinary plasminogen activator inhibitor-1: A biomarker of acute tubular injury. Am J Nephrol. 52:714–724. 2021. View Article : Google Scholar : PubMed/NCBI

131 

Yang L, Si P, Kuerban T, Guo L, Zhan S, Zuhaer Y, Zuo Y, Lu P, Bai X and Liu T: UHRF1 promotes epithelial-mesenchymal transition mediating renal fibrosis by activating the TGF-β/SMAD signaling pathway. Sci Rep. 15:33462025. View Article : Google Scholar

132 

Livingston MJ, Shu S, Fan Y, Li Z, Jiao Q, Yin XM, Venkatachalam MA and Dong Z: Tubular cells produce FGF2 via autophagy after acute kidney injury leading to fibroblast activation and renal fibrosis. Autophagy. 19:256–277. 2023. View Article : Google Scholar :

133 

Ren LL, Miao H, Wang YN, Liu F, Li P and Zhao YY: TGF-β as A master regulator of aging-associated tissue fibrosis. Aging Dis. 14:1633–1650. 2023. View Article : Google Scholar : PubMed/NCBI

134 

Fei S, Ma Y, Zhou B, Chen X, Zhang Y, Yue K, Li Q, Gui Y, Xiang T, Liu J, et al: Platelet membrane biomimetic nanoparticle-targeted delivery of TGF-β1 siRNA attenuates renal inflammation and fibrosis. Int J Pharm. 659:1242612024. View Article : Google Scholar

135 

Wang B, Ding X, Ding C, Tesch G, Zheng J, Tian P, Ricardo S, Shen HH and Xue W: WNT1-inducible-signaling pathway protein 1 regulates the development of kidney fibrosis through the TGF-β1 pathway. FASEB J. 34:14507–14520. 2020. View Article : Google Scholar : PubMed/NCBI

136 

Wang H, Wang B, Zhang A, Hassounah F, Seow Y, Wood M, Ma F, Klein JD, Price SR and Wang XH: Exosome-mediated miR-29 transfer reduces muscle atrophy and kidney fibrosis in mice. Mol Ther. 27:571–583. 2019. View Article : Google Scholar : PubMed/NCBI

137 

Wang B, Jha JC, Hagiwara S, McClelland AD, Jandeleit-Dahm K, Thomas MC, Cooper ME and Kantharidis P: Transforming growth factor-β1-mediated renal fibrosis is dependent on the regulation of transforming growth factor receptor 1 expression by let-7b. Kidney Int. 85:352–361. 2014. View Article : Google Scholar

138 

Qin W, Chung AC, Huang XR, Meng XM, Hui DS, Yu CM, Sung JJ and Lan HY: TGF-β/Smad3 signaling promotes renal fibrosis by inhibiting miR-29. J Am Soc Nephrol. 22:1462–1474. 2011. View Article : Google Scholar : PubMed/NCBI

139 

Kato M, Arce L, Wang M, Putta S, Lanting L and Natarajan R: A microRNA circuit mediates transforming growth factor-β1 autoregulation in renal glomerular mesangial cells. Kidney Int. 80:358–368. 2011. View Article : Google Scholar : PubMed/NCBI

140 

Singh SP, Tao S, Fields TA, Webb S, Harris RC and Rao R: Glycogen synthase kinase-3 inhibition attenuates fibroblast activation and development of fibrosis following renal ischemia-reperfusion in mice. Dis Model Mech. 8:931–940. 2015.PubMed/NCBI

141 

Wang X, Feng S, Fan J, Li X, Wen Q and Luo N: New strategy for renal fibrosis: Targeting Smad3 proteins for ubiquitination and degradation. Biochem Pharmacol. 116:200–209. 2016. View Article : Google Scholar : PubMed/NCBI

142 

Jinnin M, Ihn H and Tamaki K: Characterization of SIS3, a novel specific inhibitor of Smad3, and its effect on transforming growth factor-beta1-induced extracellular matrix expression. Mol Pharmacol. 69:597–607. 2006. View Article : Google Scholar

143 

Lan HY: Smad7 as a therapeutic agent for chronic kidney diseases. Front Biosci. 13:4984–4992. 2008. View Article : Google Scholar : PubMed/NCBI

144 

Meng XM, Chung AC and Lan HY: Role of the TGF-β/BMP-7/Smad pathways in renal diseases. Clin Sci (Lond). 124:243–254. 2013. View Article : Google Scholar

145 

Kim S, Jeong CH, Song SH, Um JE, Kim HS, Yun JS, Han D, Cho ES, Nam BY, Yook JI, et al: Micellized protein transduction domain-bone morphogenetic protein-7 efficiently blocks renal fibrosis via inhibition of transforming growth factor-beta-mediated epithelial-mesenchymal transition. Front Pharmacol. 11:5912752020. View Article : Google Scholar : PubMed/NCBI

146 

Liu R, Das B, Xiao W, Li Z, Li H, Lee K and He JC: A novel inhibitor of homeodomain interacting protein kinase 2 mitigates kidney fibrosis through inhibition of the TGF-β1/Smad3 pathway. J Am Soc Nephrol. 28:2133–2143. 2017. View Article : Google Scholar : PubMed/NCBI

147 

Chang X, Zhen X, Liu J, Ren X, Hu Z, Zhou Z, Zhu F, Ding K and Nie J: The antihelmenthic phosphate niclosamide impedes renal fibrosis by inhibiting homeodomain-interacting protein kinase 2 expression. Kidney Int. 92:612–624. 2017. View Article : Google Scholar : PubMed/NCBI

148 

Zhang Z, Li Z, Cao K, Fang D, Wang F, Bi G, Yang J, He Y, Wu J, Wei Y and Song X: Adjunctive therapy with statins reduces residual albuminuria/proteinuria and provides further renoprotection by downregulating the angiotensin II-AT1 pathway in hypertensive nephropathy. J Hypertens. 35:1442–1456. 2017. View Article : Google Scholar : PubMed/NCBI

149 

Tian T, Zhang J, Zhu X, Wen S, Shi D and Zhou H: FTY720 ameliorates renal fibrosis by simultaneously affecting leucocyte recruitment and TGF-β signalling in fibroblasts. Clin Exp Immunol. 190:68–78. 2017. View Article : Google Scholar : PubMed/NCBI

150 

Zhou X, Zhang J, Xu C and Wang W: Curcumin ameliorates renal fibrosis by inhibiting local fibroblast proliferation and extracellular matrix deposition. J Pharmacol Sci. 126:344–350. 2014. View Article : Google Scholar : PubMed/NCBI

151 

Qin T, Yin S, Yang J, Zhang Q, Liu Y, Huang F and Cao W: Sinomenine attenuates renal fibrosis through Nrf2-mediated inhibition of oxidative stress and TGFβ signaling. Toxicol Appl Pharmacol. 304:1–8. 2016. View Article : Google Scholar : PubMed/NCBI

152 

Wang HW, Shi L, Xu YP, Qin XY and Wang QZ: Oxymatrine inhibits renal fibrosis of obstructive nephropathy by downregulating the TGF-β1-Smad3 pathway. Ren Fail. 38:945–951. 2016. View Article : Google Scholar : PubMed/NCBI

153 

Liu L, Wang Y, Yan R, Li S, Shi M, Xiao Y and Guo B: Oxymatrine inhibits renal tubular EMT induced by high glucose via upregulation of SnoN and inhibition of TGF-β1/Smad signaling pathway. PLoS One. 11:e01519862016. View Article : Google Scholar

154 

Wang DT, Huang RH, Cheng X, Zhang ZH, Yang YJ and Lin X: Tanshinone IIA attenuates renal fibrosis and inflammation via altering expression of TGF-β/Smad and NF-κB signaling pathway in 5/6 nephrectomized rats. Int Immunopharmacol. 26:4–12. 2015. View Article : Google Scholar : PubMed/NCBI

155 

Cheng H, Bo Y, Shen W, Tan J, Jia Z, Xu C and Li F: Leonurine ameliorates kidney fibrosis via suppressing TGF-β and NF-κB signaling pathway in UUO mice. Int Immunopharmacol. 25:406–415. 2015. View Article : Google Scholar : PubMed/NCBI

156 

Luo Q, Tian L, Di L, Yan YM, Wei XY, Wang XF and Cheng YX: (±)-Sinensilactam A, a pair of rare hybrid metabolites with Smad3 phosphorylation inhibition from Ganoderma sinensis. Org Lett. 17:1565–1568. 2015. View Article : Google Scholar : PubMed/NCBI

157 

Wang Y, Liu N, Su X, Zhou G, Sun G, Du F, Bian X and Wang B: Epigallocatechin-3-gallate attenuates transforming growth factor-β1 induced epithelial-mesenchymal transition via Nrf2 regulation in renal tubular epithelial cells. Biomed Pharmacother. 70:260–267. 2015. View Article : Google Scholar : PubMed/NCBI

158 

Zhang L, Li Z, He W, Xu L, Wang J, Shi J and Sheng M: Effects of astragaloside IV against the TGF-β1-induced epithelial-to-mesenchymal transition in peritoneal mesothelial cells by promoting smad 7 expression. Cell Physiol Biochem. 37:43–54. 2015. View Article : Google Scholar

159 

Wang L, Chi YF, Yuan ZT, Zhou WC, Yin PH, Zhang XM, Peng W and Cai H: Astragaloside IV inhibits renal tubulointerstitial fibrosis by blocking TGF-β/Smad signaling pathway in vivo and in vitro. Exp Biol Med (Maywood). 239:1310–1324. 2014. View Article : Google Scholar : PubMed/NCBI

160 

Dou F, Ding Y, Wang C, Duan J, Wang W, Xu H, Zhao X, Wang J and Wen A: Chrysophanol ameliorates renal interstitial fibrosis by inhibiting the TGF-β/Smad signaling pathway. Biochem Pharmacol. 180:1140792020. View Article : Google Scholar

161 

Chen SJ, Wu P, Sun LJ, Zhou B, Niu W, Liu S, Lin FJ and Jiang GR: miR-204 regulates epithelial-mesenchymal transition by targeting SP1 in the tubular epithelial cells after acute kidney injury induced by ischemia-reperfusion. Oncol Rep. 37:1148–1158. 2017. View Article : Google Scholar

162 

Song J, Yu W, Chen S, Huang J, Zhou C and Liang H: Remimazolam attenuates inflammation and kidney fibrosis following folic acid injury. Eur J Pharmacol. 966:1763422024. View Article : Google Scholar : PubMed/NCBI

163 

Douvris A, Viñas JL, Gutsol A, Zimpelmann J, Burger D and Burns KD: miR-486-5p protects against rat ischemic kidney injury and prevents the transition to chronic kidney disease and vascular dysfunction. Clin Sci (Lond). 138:599–614. 2024. View Article : Google Scholar : PubMed/NCBI

164 

Játiva S, Torrico S, Calle P, Muñoz Á, García M, Larque AB, Poch E and Hotter G: NGAL release from peripheral blood mononuclear cells protects against acute kidney injury and prevents AKI induced fibrosis. Biomed Pharmacother. 153:1134152022. View Article : Google Scholar : PubMed/NCBI

165 

Torrico S, Hotter G, Muñoz Á, Calle P, García M, Poch E and Játiva S: PBMC therapy reduces cell death and tissue fibrosis after acute kidney injury by modulating the pattern of monocyte/macrophage survival in tissue. Biomed Pharmacother. 178:1171862024. View Article : Google Scholar : PubMed/NCBI

166 

Chiang CH, Lan TY, Hsieh JH, Lin SC, Chen JW and Chang TT: Diosgenin reduces acute kidney injury and ameliorates the progression to chronic kidney disease by modifying the NOX4/p65 signaling pathways. J Agric Food Chem. 72:17444–17454. 2024. View Article : Google Scholar : PubMed/NCBI

167 

Xin W, Gong S, Chen Y, Yao M, Qin S, Chen J, Zhang A, Yu W, Zhou S, Zhang B, et al: Self-assembling P38 peptide inhibitor nanoparticles ameliorate the transition from acute to chronic kidney disease by suppressing ferroptosis. Adv Healthc Mater. 13:e24004412024. View Article : Google Scholar : PubMed/NCBI

168 

Perez-Moreno E, Toledo T, Campusano P, Zuñiga S, Azócar L, Feuerhake T, Méndez GP, Labarca M, Pérez-Molina F, de la Peña A, et al: Galectin-8 counteracts folic acid-induced acute kidney injury and prevents its transition to fibrosis. Biomed Pharmacother. 177:1169232024. View Article : Google Scholar : PubMed/NCBI

169 

Barrera-Chimal J, Rocha L, Amador-Martínez I, Pérez-Villalva R, González R, Cortés-González C, Uribe N, Ramírez V, Berman N, Gamba G and Bobadilla NA: Delayed spironolactone administration prevents the transition from acute kidney injury to chronic kidney disease through improving renal inflammation. Nephrol Dial Transplant. 34:794–801. 2019. View Article : Google Scholar

170 

Li ZL, Wang B, Lv LL, Tang TT, Wen Y, Cao JY, Zhu XX, Feng ST, Crowley SD and Liu BC: FIH-1-modulated HIF-1α C-TAD promotes acute kidney injury to chronic kidney disease progression via regulating KLF5 signaling. Acta Pharmacol Sin. 42:2106–2119. 2021. View Article : Google Scholar : PubMed/NCBI

171 

Guo X, Xu L, Velazquez H, Chen TM, Williams RM, Heller DA, Burtness B, Safirstein R and Desir GV: Kidney-targeted renalase agonist prevents cisplatin-induced chronic kidney disease by inhibiting regulated necrosis and inflammation. J Am Soc Nephrol. 33:342–356. 2022. View Article : Google Scholar :

172 

Czopek A, Moorhouse R, Gallacher PJ, Pugh D, Ivy JR, Farrah TE, Godden E, Hunter RW, Webb DJ, Tharaux PL, et al: Endothelin blockade prevents the long-term cardiovascular and renal sequelae of acute kidney injury in mice. Sci Transl Med. 14:eabf50742022. View Article : Google Scholar : PubMed/NCBI

173 

Chen Y, Bai X, Chen J, Huang M, Hong Q, Ouyang Q, Sun X, Zhang Y, Liu J, Wang X, et al: Pyruvate kinase M2 regulates kidney fibrosis through pericyte glycolysis during the progression from acute kidney injury to chronic kidney disease. Cell Prolif. 57:e135482024. View Article : Google Scholar :

174 

Hu Z, Zhan J, Pei G and Zeng R: Depletion of macrophages with clodronate liposomes partially attenuates renal fibrosis on AKI-CKD transition. Ren Fail. 45:21494122023. View Article : Google Scholar : PubMed/NCBI

175 

Gu L, Gao Q, Ni L, Wang M and Shen F: Fasudil inhibits epithelial-myofibroblast transdifferentiation of human renal tubular epithelial HK-2 cells induced by high glucose. Chem Pharm Bull (Tokyo). 61:688–694. 2013. View Article : Google Scholar : PubMed/NCBI

176 

Wang Z, Perez M, Lee ES, Kojima S and Griffin M: The functional relationship between transglutaminase 2 and transforming growth factor β1 in the regulation of angiogenesis and endothelial-mesenchymal transition. Cell Death Dis. 8:e30322017. View Article : Google Scholar

177 

Cao Y, Su H, Zeng J, Xie Y, Liu Z, Liu F, Qiu Y, Yi F, Lin J, Hammes HP and Zhang C: Integrin β8 prevents pericyte-myofibroblast transition and renal fibrosis through inhibiting the TGF-β1/TGFBR1/Smad3 pathway in diabetic kidney disease. Transl Res. 265:36–50. 2024. View Article : Google Scholar

178 

Li J, Qu X, Yao J, Caruana G, Ricardo SD, Yamamoto Y, Yamamoto H and Bertram JF: Blockade of endothelial-mesenchymal transition by a Smad3 inhibitor delays the early development of streptozotocin-induced diabetic nephropathy. Diabetes. 59:2612–2624. 2010. View Article : Google Scholar : PubMed/NCBI

179 

Akhurst RJ and Hata A: Targeting the TGFβ signalling pathway in disease. Nat Rev Drug Discov. 11:790–811. 2012. View Article : Google Scholar : PubMed/NCBI

180 

Peñalva MA, Zhang J, Xiang X and Pantazopoulou A: Transport of fungal RAB11 secretory vesicles involves myosin-5, dynein/dynactin/p25, and kinesin-1 and is independent of kinesin-3. Mol Biol Cell. 28:947–961. 2017. View Article : Google Scholar : PubMed/NCBI

181 

Tzavlaki K and Moustakas A: TGF-β signaling. Biomolecules. 10:4872020. View Article : Google Scholar

182 

Deng Z, Fan T, Xiao C, Tian H, Zheng Y, Li C and He J: TGF-β signaling in health, disease, and therapeutics. Signal Transduct Target Ther. 9:612024. View Article : Google Scholar

183 

Rodón J, Carducci M, Sepulveda-Sánchez JM, Azaro A, Calvo E, Seoane J, Braña I, Sicart E, Gueorguieva I, Cleverly A, et al: Pharmacokinetic, pharmacodynamic and biomarker evaluation of transforming growth factor-β receptor I kinase inhibitor, galunisertib, in phase 1 study in patients with advanced cancer. Invest New Drugs. 33:357–370. 2015. View Article : Google Scholar

184 

Kawamura M, Sato S, Matsumoto G, Fukuda T, Shiba-Fukushima K, Noda S, Takanashi M, Mori N and Hattori N: Loss of nuclear REST/NRSF in aged-dopaminergic neurons in Parkinson's disease patients. Neurosci Lett. 699:59–63. 2019. View Article : Google Scholar : PubMed/NCBI

185 

Levey AS, Inker LA, Matsushita K, Greene T, Willis K, Lewis E, de Zeeuw D, Cheung AK and Coresh J: GFR decline as an end point for clinical trials in CKD: A scientific workshop sponsored by the National Kidney Foundation and the US food and drug administration. Am J Kidney Dis. 64:821–835. 2014. View Article : Google Scholar : PubMed/NCBI

186 

Levey AS, Gansevoort RT, Coresh J, Inker LA, Heerspink HL, Grams ME, Greene T, Tighiouart H, Matsushita K, Ballew SH, et al: Change in albuminuria and GFR as end points for clinical trials in early stages of CKD: A scientific workshop sponsored by the national kidney foundation in collaboration with the US food and drug administration and european medicines agency. Am J Kidney Dis. 75:84–104. 2020. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zou Y, Dai J, Li J, Liu M, Li R, Li G, Lai J and Wang L: Role of the TGF‑β/Smad signaling pathway in the transition from acute kidney injury to chronic kidney disease (Review). Int J Mol Med 56: 162, 2025.
APA
Zou, Y., Dai, J., Li, J., Liu, M., Li, R., Li, G. ... Wang, L. (2025). Role of the TGF‑β/Smad signaling pathway in the transition from acute kidney injury to chronic kidney disease (Review). International Journal of Molecular Medicine, 56, 162. https://doi.org/10.3892/ijmm.2025.5603
MLA
Zou, Y., Dai, J., Li, J., Liu, M., Li, R., Li, G., Lai, J., Wang, L."Role of the TGF‑β/Smad signaling pathway in the transition from acute kidney injury to chronic kidney disease (Review)". International Journal of Molecular Medicine 56.4 (2025): 162.
Chicago
Zou, Y., Dai, J., Li, J., Liu, M., Li, R., Li, G., Lai, J., Wang, L."Role of the TGF‑β/Smad signaling pathway in the transition from acute kidney injury to chronic kidney disease (Review)". International Journal of Molecular Medicine 56, no. 4 (2025): 162. https://doi.org/10.3892/ijmm.2025.5603
Copy and paste a formatted citation
x
Spandidos Publications style
Zou Y, Dai J, Li J, Liu M, Li R, Li G, Lai J and Wang L: Role of the TGF‑β/Smad signaling pathway in the transition from acute kidney injury to chronic kidney disease (Review). Int J Mol Med 56: 162, 2025.
APA
Zou, Y., Dai, J., Li, J., Liu, M., Li, R., Li, G. ... Wang, L. (2025). Role of the TGF‑β/Smad signaling pathway in the transition from acute kidney injury to chronic kidney disease (Review). International Journal of Molecular Medicine, 56, 162. https://doi.org/10.3892/ijmm.2025.5603
MLA
Zou, Y., Dai, J., Li, J., Liu, M., Li, R., Li, G., Lai, J., Wang, L."Role of the TGF‑β/Smad signaling pathway in the transition from acute kidney injury to chronic kidney disease (Review)". International Journal of Molecular Medicine 56.4 (2025): 162.
Chicago
Zou, Y., Dai, J., Li, J., Liu, M., Li, R., Li, G., Lai, J., Wang, L."Role of the TGF‑β/Smad signaling pathway in the transition from acute kidney injury to chronic kidney disease (Review)". International Journal of Molecular Medicine 56, no. 4 (2025): 162. https://doi.org/10.3892/ijmm.2025.5603
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team