|
1
|
GBD 2021 Oral Disorders Collaborators:
Trends in the global, regional, and national burden of oral
conditions from 1990 to 2021: A systematic analysis for the global
burden of disease study 2021. Lancet. 405:897–910. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Wu L, Zhang SQ, Zhao L, Ren ZH and Hu CY:
Global, regional, and national burden of periodontitis from 1990 to
2019: Results from the global burden of disease study 2019. J
Periodontol. 93:1445–1454. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Cui Y, Tian G, Li R, Shi Y, Zhou T and Yan
Y: Epidemiological and sociodemographic transitions of severe
periodontitis incidence, prevalence, and disability-adjusted life
years for 21 world regions and globally from 1990 to 2019: An
age-period-cohort analysis. J Periodontol. 94:193–203. 2023.
View Article : Google Scholar
|
|
4
|
Valverde A, George A, Nares S and Naqvi
AR: Emerging therapeutic strategies targeting bone signaling
pathways in periodontitis. J Periodontal Res. 60:101–120. 2025.
View Article : Google Scholar :
|
|
5
|
Crick F: Central dogma of molecular
biology. Nature. 227:561–563. 1970. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Fabbri M, Girnita L, Varani G and Calin
GA: Decrypting noncoding RNA interactions, structures, and
functional networks. Genome Res. 29:1377–1388. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Alghazali T, Ahmed AT, Hussein UAR,
Sanghvi G, Uthirapathy S, Edan RT, Lal M, Shit D, Naidu KS and
Al-Hamairy AK: Noncoding RNA (ncRNA)-mediated regulation of TLRs:
Critical regulator of inflammation in tumor microenvironment. Med
Oncol. 42:1442025. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Fang F, Zhang K, Chen Z and Wu B:
Noncoding RNAs: New insights into the odontogenic differentiation
of dental tissue-derived mesenchymal stem cells. Stem Cell Res
Ther. 10:2972019. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Kristensen L, Sandersen MS, Stagsted LVW,
Ebbesen KK, Hansen TB and Kjems J: The biogenesis, biology and
characterization of circular RNAs. Nat Rev Genet. 20:675–691. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Chen Q, Meng X, Liao Q and Chen M:
Versatile interactions and bioinformatics analysis of noncoding
RNAs. Brief Bioinform. 20:1781–1794. 2019. View Article : Google Scholar
|
|
11
|
Micheel J, Safrastyan A and Wollny D:
Advances in non-coding RNA sequencing. Noncoding RNA.
7:702021.PubMed/NCBI
|
|
12
|
Wolfien M, Brauer DL, Bagnacani A and
Wolkenhauer O: Workflow development for the functional
characterization of ncRNAs. Methods Mol Biol. 1912:111–132. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Rinaldi S, Moroni E, Rozza R and
Magistrato A: Frontiers and challenges of computing ncRNAs
biogenesis, function and modulation. J Chem Theory Comput.
20:993–1018. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Pekáčová A, Baloun J, Švec X and Šenolt L:
Non-coding RNAs in diseases with a focus on osteoarthritis. Wiley
Interdiscip Rev RNA. 14:e17562023. View Article : Google Scholar
|
|
15
|
Adamouli D, Marasli C and Bobetsis YA: The
expression patterns of non-coding RNAs in periodontal disease. Dent
J (Basel). 12:1592024. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Taheri M, Khoshbakht T, Hussen BM,
Abdullah ST, Ghafouri-Fard S and Sayad A: Emerging role of miRNAs
in the pathogenesis of periodontitis. Curr Stem Cell Res Ther.
19:427–448. 2024. View Article : Google Scholar
|
|
17
|
Ni H, Ge Y, Zhuge Y, Liu X, Chen H, Liu J,
Li W, Wang X, Shen G, Wang Q, et al: LncRNA MIR181A1HG deficiency
attenuates vascular inflammation and atherosclerosis. Circ Res.
136:862–883. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Shi W, Song J, Weiner JM III, Chopra A,
Dommisch H, Beule D and Schaefer AS: lncRNA CDKN2B-AS1 regulates
collagen expression. Hum Genet. 143:907–919. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Huang W, Li X, Huang C, Tang Y, Zhou Q and
Chen W: LncRNAs and rheumatoid arthritis: From identifying
mechanisms to clinical investigation. Front Immunol. 12:8077382022.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Carpenter S: Long noncoding RNA: Novel
links between gene expression and innate immunity. Virus Res.
212:137–145. 2016. View Article : Google Scholar
|
|
21
|
Amroodi MN, Maghsoudloo M, Amiri S,
Mokhtari K, Mohseni P, Pourmarjani A, Jamali B, Khosroshahi EM,
Asadi S, Tabrizian P, et al: Unraveling the molecular and
immunological landscape: Exploring signaling pathways in
osteoporosis. Biomed Pharmacother. 177:1169542024. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Luo R, Yao Y, Chen Z and Sun X: An
examination of the LPS-TLR4 immune response through the analysis of
molecular structures and protein-protein interactions. Cell Commun
Signal. 23:1422025. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Liu W, Zheng Y, Chen B, Ke T and Shi Z:
LncRNA papillary thyroid carcinoma susceptibility candidate 3
(PTCSC3) regulates the proliferation of human periodontal ligament
stem cells and toll-like receptor 4 (TLR4) expression to improve
periodontitis. BMC Oral Health. 19:1082019. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Wangzhou K, Gong L, Liu C, Tan Y, Chen J,
Li C, Lai Z and Hao C: LncRNA MAFG-AS1 regulates human periodontal
ligament stem cell proliferation and Toll-like receptor 4
expression. Oral Dis. 26:1302–1307. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Ahmad I, Naqvi RA, Valverde A and Naqvi
AR: LncRNA MALAT1/microRNA-30b axis regulates macrophage
polarization and function. Front Immunol. 14:12148102023.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Zhang L, Lv H, Cui Y and Shi R: The role
of long non-coding RNA (lncRNA) nuclear paraspeckle assembly
transcript 1 (NEAT1) in chronic periodontitis progression.
Bioengineered. 13:2336–2345. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Ruan D, Wu C and Zhang Y and Zhang Y:
LncRNA LOXL1-AS1 inhibits proliferation of PDLSCs and downregulates
IL-1β in periodontitis patients. J Periodontal Res. 57:324–331.
2022. View Article : Google Scholar
|
|
28
|
Cheng L, Fan Y, Cheng J, Wang J, Liu Q and
Feng Z: Long non-coding RNA ZFY-AS1 represses periodontitis tissue
inflammation and oxidative damage via modulating
microRNA-129-5p/DEAD-Box helicase 3 X-linked axis. Bioengineered.
13:12691–12705. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Han Y, Huang Y, Yang Q, Jia L, Zheng Y and
Li W: Long non-coding RNA SNHG5 mediates periodontal inflammation
through the NF-κB signalling pathway. J Clin Periodontol.
49:1038–1051. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Wang H, Qiao X, Zhang C, Hou J and Qi S:
Long non-coding RNA LINC00616 promotes ferroptosis of periodontal
ligament stem cells via the microRNA-370/transferrin receptor axis.
Bioengineered. 13:13070–13081. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Zhou M, Hu H, Han Y, Li J, Zhang Y, Tang
S, Yuan Y and Zhang X: Long non-coding RNA 01126 promotes
periodontitis pathogenesis of human periodontal ligament cells via
miR-518a-5p/HIF-1α/MAPK pathway. Cell Prolif. 54:e129572021.
View Article : Google Scholar
|
|
32
|
Tang S, Zhong Y, Li J, Ji P and Zhang X:
Long intergenic non-coding RNA 01126 activates IL-6/JAK2/STAT3
pathway to promote periodontitis pathogenesis. Oral Dis.
31:193–205. 2025. View Article : Google Scholar
|
|
33
|
Li L, Qin W, Ye T, Wang C, Qin Z, Ma Y, Mu
Z, Jiao K, Tay FR, Niu W and Niu L: Bioactive Zn-V-Si-Ca glass
nanoparticle hydrogel microneedles with antimicrobial and
antioxidant properties for bone regeneration in diabetic
periodontitis. ACS Nano. 19:7981–7995. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Sun R, Duan D and Li R: Transcriptome
sequencing identifies abnormal lncRNAs and mRNAs and reveals
potentially hub immune-related mRNA in osteoporosis with vertebral
fracture. Clin Interv Aging. 19:203–217. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Li H, Zheng F, Tao A, Wu T, Zhan X, Tang
H, Cui X, Ma Z, Li C, Jiang J and Wang Y: LncRNA H19 promotes
osteoclast differentiation by sponging miR-29c-3p to increase
expression of cathepsin K. Bone. 192:1173402025. View Article : Google Scholar
|
|
36
|
Li Q, Zhou H, Wang C and Zhu Z: Long
non-coding RNA Linc01133 promotes osteogenic differentiation of
human periodontal ligament stem cells via microRNA-30c/bone
gamma-carboxyglutamate protein axis. Bioengineered. 13:9602–9612.
2022.PubMed/NCBI
|
|
37
|
Dong Y, Feng S and Dong F:
Maternally-expressed gene 3 (MEG3)/miR-143-3p regulates injury to
periodontal ligament cells by mediating the AKT/inhibitory κB
kinase (IKK) pathway. Med Sci Monit. 26:e9224862020. View Article : Google Scholar
|
|
38
|
Lai L, Wang Z, Ge Y, Qiu W, Wu B, Fang F,
Xu H and Chen Z: Comprehensive analysis of the long noncoding
RNA-associated competitive endogenous RNA network in the osteogenic
differentiation of periodontal ligament stem cells. BMC Genomics.
23:12022. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Liu Y, Liu C, Zhang A, Yin S, Wang T, Wang
Y, Wang M, Liu Y, Ying Q, Sun J, et al: Down-regulation of long
non-coding RNA MEG3 suppresses osteogenic differentiation of
periodontal ligament stem cells (PDLSCs) through miR-27a-3p/IGF1
axis in periodontitis. Aging (Albany NY). 11:5334–5350. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Bian M, Yu Y, Li Y, Zhou Z, Wu X, Ye X and
Yu J: Upregulating the expression of LncRNA ANRIL promotes
osteogenesis via the miR-7-5p/IGF-1R axis in the inflamed
periodontal ligament stem cells. Front Cell Dev Biol. 9:6044002021.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Zhong X and Wang H: LncRNA JHDM1D-AS1
promotes osteogenic differentiation of periodontal ligament cells
by targeting miR-532-5p to activate IGF1R signaling. J Periodontal
Res. 59:220–230. 2024. View Article : Google Scholar
|
|
42
|
Wang X and Wang Y: LncRNA DCST1-AS1
inhibits PDLCs' proliferation in periodontitis and may bind with
miR-21 precursor to upregulate PLAP-1. J Periodontal Res.
56:256–264. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Gu Y and Bai Y: LncRNA MALAT1 promotes
osteogenic differentiation through the miR-93-5p/SMAD5 axis. Oral
Dis. 30:2398–2409. 2024. View Article : Google Scholar
|
|
44
|
Guo J and Zheng M: The regulation
mechanism of LINC00707 on the osteogenic differentiation of human
periodontal ligament stem cells. J Mol Histol. 53:13–26. 2022.
View Article : Google Scholar
|
|
45
|
Zhang X, Yan Q, Liu X, Gao J, Xu Y, Jin Z
and Qin W: LncRNA00638 promotes the osteogenic differentiation of
periodontal mesenchymal stem cells from periodontitis patients
under static mechanical strain. Stem Cell Res Ther. 14:1772023.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Wang Z, Wang D, Guo S, Zhuo Q, Jiang D and
Yu Z: Long noncoding RNA distal-less homeobox 2 antisense 1
restrains inflammatory response and apoptosis of periodontal
ligament cells by binding with microRNA-330-3p to regulate Ro60, Y
RNA binding protein. Arch Oral Biol. 133:1052982022. View Article : Google Scholar
|
|
47
|
Wang S and Duan Y: LncRNA OIP5-AS1
inhibits the lipopolysaccharide-induced inflammatory response and
promotes osteogenic differentiation of human periodontal ligament
cells by sponging miR-92a-3p. Bioengineered. 13:12055–12066. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Yao S, Lu H, Zhou T, Jiang Q, Jiang C, Hu
W, Li M, Tan CP, Feng Y, Du Q, et al: Sciadonic acid attenuates
high-fat diet-induced bone metabolism disorders in mice. Food
Funct. 15:4490–4502. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Zhou Z, Zhan C, Li W, Luo W, Liu Y, He F,
Tian Y, Lin Z and Song Z: Monocytic myeloid-derived suppressor
cells contribute to the exacerbation of bone destruction in
periodontitis. J Transl Med. 23:2172025. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Zhang X, Zhao Y, Zhao Z, Han X and Chen Y:
Knockdown of DANCR reduces osteoclastogenesis and root resorption
induced by compression force via Jagged1. Cell Cycle. 18:1759–1769.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Feng J, Tan A, Li W and Zheng Y: Small
nucleolar RNA host gene 5 plays a role in orthodontic tooth
movement by inhibiting osteoclast differentiation. Orthod Craniofac
Res. 27:775–784. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Jin F, Li J, Zhang YB, Liu X, Cai M, Liu
M, Li M, Ma C, Yue R, Zhu Y, et al: A functional motif of long
noncoding RNA Nron against osteoporosis. Nat Commun. 12:33192021.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Li R, Huang Z and Chen M: Long non-coding
RNA EPB41L4A-AS1 serves as a diagnostic marker for chronic
periodontitis and regulates periodontal ligament injury and
osteogenic differentiation by targeting miR-214-3p/YAP1. J Inflamm
Res. 18:2483–2497. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Chen P, Huang Y, Wang Y, Li S, Chu H and
Rong M: MALAT1 overexpression promotes the proliferation of human
periodontal ligament stem cells by upregulating fibroblast growth
factor 2. Exp Ther Med. 18:1627–1632. 2019.PubMed/NCBI
|
|
55
|
Wang Y, Sun Y, Zheng P, Cai C, Jiang Y,
Zhang H, Li Z and Cai Q: Long non-coding RNAs mortal obligate RNA
transcript regulates the proliferation of human periodontal
ligament stem cells and affects the recurrence of periodontitis.
Arch Oral Biol. 105:1–4. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Wu X, Cao Z, Chen H, Ou Q, Huang X and
Wang Y: Downregulation of Linc-RNA activator of myogenesis lncRNA
participates in FGF2-mediated proliferation of human periodontal
ligament stem cells. J Periodontol. 91:422–427. 2020. View Article : Google Scholar
|
|
57
|
Han Y, Wang F, Shao L, Huang P and Xu Y:
LncRNA TUG1 mediates lipopolysaccharide-induced proliferative
inhibition and apoptosis of human periodontal ligament cells by
sponging miR-132. Acta Biochim Biophys Sin (Shanghai).
51:1208–1215. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Yu W, Gu Q, Wu D, Zhang W, Li G, Lin L,
Lowe JM, Hu S, Li TW, Zhou Z, et al: Identification of potentially
functional circRNAs and prediction of circRNA-miRNA-mRNA regulatory
network in periodontitis: Bridging the gap between bioinformatics
and clinical needs. J Periodontal Res. 57:594–614. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Li J and Xie R: Circular RNA expression
profile in gingival tissues identifies circ_0062491 and
circ_0095812 as potential treatment targets. J Cell Biochem.
120:14867–14874. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Wang L, Li Y, Hong F and Ning H:
Circ_0062491 alleviates LPS-induced apoptosis and inflammation in
periodontitis by regulating miR-498/SOCS6 axis. Innate Immun.
28:174–184. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Bian Y, Yu J, Liu Y, Shi Y, Hou Y and Liu
X: CircPVT1 promotes periodontitis progression by regulating
miR-24-3p/HIF1AN pathway. J Stomatol Oral Maxillofac Surg.
126:1021982025. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Zhao XQ, Ao CB and Yan YT: The circular
RNA circ_0099630/miR-940/receptor-associated factor 6 regulation
cascade modulates the pathogenesis of periodontitis. J Dent Sci.
17:1566–1576. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Li W, Zhang Z, Li Y and Wang Z: Abnormal
hsa_circ_0003948 expression affects chronic periodontitis
development by regulating miR-144-3p/NR2F2/PTEN signaling. J
Periodontal Res. 57:316–323. 2022. View Article : Google Scholar
|
|
64
|
Pan J, Zhao L, Liu J and Wang G:
Inhibition of circular RNA circ_0138959 alleviates pyroptosis of
human gingival fibroblasts via the microRNA-527/caspase-5 axis.
Bioengineered. 13:1908–1920. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Gu X, Li M, Jin Y, Liu D and Wei F:
Identification and integrated analysis of differentially expressed
lncRNAs and circRNAs reveal the potential ceRNA networks during
PDLSC osteogenic differentiation. BMC Genet. 18:1002017. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Qi Y, Lin C, Zhao C and Wu Y: Circ_0003072
mediates the pro-osteogenic differentiation effect of betulinic
acid on human periodontal ligament stem cells. Int Dent J.
75:1390–1399. 2025. View Article : Google Scholar :
|
|
67
|
Xiao T, Shi Y, Ye Y, Wang J, Wang W, Yu H,
Yan M and Yu J: Circ-SPATA13 regulates the osteogenic
differentiation of human periodontal ligament stem cells through
the miR-485-5p_R + 1/BMP7 axis. Cell Signal. 127:1115612025.
View Article : Google Scholar
|
|
68
|
Ye Y, Ke Y, Liu L, Xiao T and Yu J:
CircRNA FAT1 regulates osteoblastic differentiation of periodontal
ligament stem cells via miR-4781-3p/SMAD5 pathway. Stem Cells Int.
2021:51774882021. View Article : Google Scholar
|
|
69
|
Wang C, Gong J, Li D and Xing X:
circ_0062491 alleviates periodontitis via the miR-142-5p/IGF1 axis.
Open Med (Wars). 17:638–647. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Liu J, Liu R, Wang H, Zhang Z, Wang J and
Wei F: CircPRKD3/miR-6783-3p responds to mechanical force to
facilitate the osteogenesis of stretched periodontal ligament stem
cells. J Orthop Surg Res. 19:2572024. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Li M, Du M, Wang Y, Zhu J, Pan J, Cao Z
and He H: CircRNA Lrp6 promotes cementoblast differentiation via
miR-145a-5p/Zeb2 axis. J Periodontal Res. 56:1200–1212. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Zheng J, Zhu X, He Y, Hou S, Liu T, Zhi K,
Hou T and Gao L: CircCDK8 regulates osteogenic differentiation and
apoptosis of PDLSCs by inducing ER stress/autophagy during hypoxia.
Ann N Y Acad Sci. 1485:56–70. 2021. View Article : Google Scholar
|
|
73
|
Xie L, Ren X, Yang Z, Zhou T, Zhang M, An
W and Guan Z: Exosomal circ_0000722 derived from periodontal
ligament stem cells undergoing osteogenic differentiation promotes
osteoclastogenesis. Int Immunopharmacol. 128:1115202024. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Wang J, Wang Z, Huang M, Zhang Y and Xu L:
Circ_0099630 participates in SPRY1-mediated repression in
periodontitis. Int Dent J. 73:136–143. 2023. View Article : Google Scholar :
|
|
75
|
Yu B, Hu J, Li Q and Wang F: CircMAP3K11
contributes to proliferation, apoptosis and migration of human
periodontal ligament stem cells in inflammatory microenvironment by
regulating TLR4 via miR-511 sponging. Front Pharmacol.
12:6333532021. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Wang H, Gao S and Dissanayaka WL:
Circ_0003764 regulates the osteogenic differentiation of
periodontal ligament stem cells. Int Dent J. 74:1110–1119. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Wang F, Chen X, Han Y, Xi S and Wu G:
circRNA CDR1as regulated the proliferation of human periodontal
ligament stem cells under a lipopolysaccharide-induced inflammatory
condition. Mediators Inflamm. 2019:16253812019. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Li X, Zheng Y, Zheng Y, Huang Y, Zhang Y,
Jia L and Li W: Circular RNA CDR1as regulates osteoblastic
differentiation of periodontal ligament stem cells via the
miR-7/GDF5/SMAD and p38 MAPK signaling pathway. Stem Cell Res Ther.
9:2322018. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Gu X, Li X, Jin Y, Zhang Z, Li M, Liu D
and Wei F: CDR1as regulated by hnRNPM maintains stemness of
periodontal ligament stem cells via miR-7/KLF4. J Cell Mol Med.
25:4501–4515. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Ma C, Gu R, Wang X, He S, Bai J, Zhang L,
Zhang J, Li Q, Qu L, Xin W, et al: circRNA CDR1as promotes
pulmonary artery smooth muscle cell calcification by upregulating
CAMK2D and CNN3 via sponging miR-7-5p. Mol Ther Nucleic Acids.
22:530–541. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Zhao F, Chen T and Jiang N:
CDR1as/miR-7/CKAP4 axis contributes to the pathogenesis of
abdominal aortic aneurysm by regulating the proliferation and
apoptosis of primary vascular smooth muscle cells. Exp Ther Med.
19:3760–3766. 2020.PubMed/NCBI
|
|
82
|
Yang W, Yang X, Wang X, Gu J, Zhou D, Wang
Y, Yin B, Guo J and Zhou M: Silencing CDR1as enhances the
sensitivity of breast cancer cells to drug resistance by acting as
a miR-7 sponge to down-regulate REGγ. J Cell Mol Med. 23:4921–4932.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Yu L, Gong X, Sun L, Zhou Q, Lu B and Zhu
L: The circular RNA Cdr1as Act as an oncogene in hepatocellular
carcinoma through targeting miR-7 expression. PLoS One.
11:e01583472016. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Kwon EJ, Kim HJ, Woo BH, Joo JY, Kim YH
and Park HR: Profiling of plasma-derived exosomal RNA expression in
patients with periodontitis: A pilot study. Oral Dis. 29:1726–1737.
2023. View Article : Google Scholar
|
|
85
|
Duran-Pinedo AE, Yost S and Frias-Lopez J:
Small RNA transcriptome of the oral microbiome during periodontitis
progression. Appl Environ Microbiol. 81:6688–6699. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Xiao J, Deng Y, Xie J, Liu H, Yang Q,
Zhang Y, Huang X and Cao Z: Apoptotic vesicles from macrophages
exacerbate periodontal bone resorption in periodontitis via
delivering miR-143-3p targeting Igfbp5. J Nanobiotechnology.
22:6582024. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Wang XW, Liu CX, Chen LL and Zhang QC: RNA
structure probing uncovers RNA structure-dependent biological
functions. Nat Chem Biol. 17:755–766. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Martens L, Rühle F, Witten A, Meder B,
Katus HA, Arbustini E, Hasenfuß G, Sinner MF, Kääb S, Pankuweit S,
et al: A genetic variant alters the secondary structure of the
lncRNA H19 and is associated with dilated cardiomyopathy. RNA Biol.
18(Suppl 1): S409–S415. 2021. View Article : Google Scholar
|
|
89
|
Zhou H, Hao X, Zhang P and He S: Noncoding
RNA mutations in cancer. Wiley Interdiscip Rev RNA. 14:e18122023.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Bose E, Xiong S and Jones AN: Probing RNA
structure and dynamics using nanopore and next generation
sequencing. J Biol Chem. 300:1073172024. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Takizawa N: RNA structure determination by
high-throughput structural analysis. Methods Mol Biol.
2586:217–231. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Wang S, Sun Z, Lei Z and Zhang HT:
RNA-binding proteins and cancer metastasis. Semin Cancer Biol.
86:748–768. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Xu M, Gan D, Zhang XY, He XT, Wu RX, Yin
Y, Jin R, Li L, Tan YJ, Chen FM, et al: SLC30A4-AS1 mediates the
senescence of periodontal ligament stem cells in inflammatory
environments via the alternative splicing of TP53BP1. Cell Prolif.
58:e137782025. View Article : Google Scholar
|
|
94
|
Hu A, Xiao F, Wu W, Xu H and Su J:
LincRNA-EPS inhibits caspase-11 and NLRP3 inflammasomes in gingival
fibroblasts to alleviate periodontal inflammation. Cell Prolif.
57:e135392024. View Article : Google Scholar
|
|
95
|
Xu K, Li YD, Ren LY, Song HL, Yang QY and
Xu DL: Long non-coding RNA X-inactive specific transcript (XIST)
interacting with USF2 promotes osteogenic differentiation of
periodontal ligament stem cells through regulation of WDR72
transcription. J Periodontal Res. 58:1235–1247. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Li X, Tian BM, Deng DK, Liu F, Zhou H,
Kong DQ, Qu HL, Sun LJ, He XT and Chen FM: LncRNA GACAT2 binds with
protein PKM1/2 to regulate cell mitochondrial function and
cementogenesis in an inflammatory environment. Bone Res. 10:292022.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Long L, Zhang C, He Z, Liu O, Yang H and
Fan Z: LncRNA NR_045147 modulates osteogenic differentiation and
migration in PDLSCs via ITGB3BP degradation and mitochondrial
dysfunction. Stem Cells Transl Med. 14:szae0882025. View Article : Google Scholar :
|
|
98
|
Lu Y, Ruan X, Xiao G, Dai Y, Li G, Cai G,
Zheng L, Guan Z, Sun W and Wang H: Lockd enhances mandibular
mesenchymal stem cell proliferation while inhibiting osteogenic
capability via binding with SUZ12 in the inflammatory
microenvironment. J Clin Periodontol. 52:171–185. 2025. View Article : Google Scholar
|
|
99
|
Yan H and Bu P: Non-coding RNA in cancer.
Essays Biochem. 65:625–639. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Wang J, Zhu S, Meng N, He Y, Lu R and Yan
GR: ncRNA-encoded peptides or proteins and cancer. Mol Ther.
27:1718–1725. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Tan S, Yang W, Ren Z, Peng Q, Xu X, Jiang
X, Wu Z, Oyang L, Luo X, Lin J, et al: Noncoding RNA-encoded
peptides in cancer: biological functions, posttranslational
modifications and therapeutic potential. J Hematol Oncol.
18:202025. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Lin Y, Wang Y, Li L and Zhang K: Coding
circular RNA in human cancer. Genes Dis. 12:1013472024. View Article : Google Scholar
|
|
103
|
Zhang Y: LncRNA-encoded peptides in
cancer. J Hematol Oncol. 17:662024. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Li Q, Guo G, Chen Y, Lu L, Li H, Zhou Z,
Guo J, Gan X, Hu Y, Li Q, et al: HCP5 derived novel microprotein
triggers progression of gastric cancer through regulating
ferroptosis. Adv Sci (Weinh). 11:e24070122024. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Zheng X, Wang M, Liu S, Chen H, Li Y, Yuan
F, Yang L, Qiu S, Wang H, Xie Z and Xiang M: A lncRNA-encoded
mitochondrial micropeptide exacerbates microglia-mediated
neuroinflammation in retinal ischemia/reperfusion injury. Cell
Death Dis. 14:1262023. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Xu N, Jiang J, Jiang F, Dong G, Meng L,
Wang M, Chen J, Li C, Shi Y, He S and Li R: CircCDC42-encoded
CDC42-165aa regulates macrophage pyroptosis in Klebsiella
pneumoniae infection through Pyrin inflammasome activation. Nat
Commun. 15:57302024. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Liang Y, Lv D, Liu K, Yang L, Shu H, Wen
L, Lv C, Sun Q, Yin J, Liu H, et al: MicroProteinDB: A database to
provide knowledge on sequences, structures and function of
ncRNA-derived microproteins. Comput Biol Med. 177:1086602024.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
He S, Yang S, Zhang Y, Li X, Gao D, Zhong
Y, Cao L, Ma H, Liu Y, Li G, et al: LncRNA ODIR1 inhibits
osteogenic differentiation of hUC-MSCs through the
FBXO25/H2BK120ub/H3K4me3/OSX axis. Cell Death Dis. 10:9472019.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Pang Y, Liu Z, Han H, Wang B, Li W, Mao C
and Liu S: Peptide SMIM30 promotes HCC development by inducing
SRC/YES1 membrane anchoring and MAPK pathway activation. J Hepatol.
73:1155–1169. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Chen S, Tang M, Yu X, Qian W, Xu Y, Li J,
Wu G and Zhang S: A microprotein encoded by LINC00263 promotes
breast cancer osteolytic bone metastasis by inducing
osteoclastogenesis and inhibiting osteoclast ferroptosis. Oncogene.
44:2201–2216. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Gonzalez-Fernandez J, Zaragozano S,
Monteagudo-Sánchez A, Simon C and Vilella F: Single-cell
technology: The key to an improved understanding of the human
endometrium in health and disease. Am J Obstet Gynecol. 232(Suppl
4): S43–S53. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Gulati GS, D'Silva JP, Liu Y, Wang L and
Newman AM: Profiling cell identity and tissue architecture with
single-cell and spatial transcriptomics. Nat Rev Mol Cell Biol.
26:11–31. 2025. View Article : Google Scholar
|
|
113
|
Zhu ZX, Liu Y, Wang J, Xie Y, Li RY, Ma Q,
Tu Q, Melhem NA, Couldwell S, El-Araby RE, et al: A novel
lncRNA-mediated epigenetic regulatory mechanism in periodontitis.
Int J Biol Sci. 19:5187–5203. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Yang Q, Wang M, Xu J, Yu D, Li Y, Chen Y
and Zhang X, Zhang J, Gu J and Zhang X: LINC02159 promotes
non-small cell lung cancer progression via ALYREF/YAP1 signaling.
Mol Cancer. 22:1222023. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Sur S, Pal JK, Shekhar S, Bafna P and
Bhattacharyya R: Emerging role and clinical applications of
circular RNAs in human diseases. Funct Integr Genomics. 25:772025.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Jiang X, Liu Z, Wang H and Wang L:
Discovery of lncRNA-based ProsRISK score in serum as potential
biomarkers for improved accuracy of prostate cancer detection. J
Cell Mol Med. 29:e705552025. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Xu L, Li J, Li L, Zhang Q, Feng Q and Bai
L: LncRNA CYP1B1-AS1 as a clinical biomarker exacerbates sepsis
inflammatory response via targeting miR-18a-5p. BMC Immunol.
26:322025. View Article : Google Scholar
|
|
118
|
Xu J, Tian Z, Huang L and Yu Y: LINC01094
as a diagnostic marker of osteoporotic fractures is involved in
fracture healing. J Endocrinol. 265:e2500082025. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Liu C, Xu P, Shao S, Wang F, Zheng Z, Li
S, Liu W and Li G: The value of urinary exosomal lncRNA SNHG16 as a
diagnostic biomarker for bladder cancer. Mol Biol Rep.
50:8297–8304. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Sharma D, Singh A, Wilson C, Swaroop P,
Kumar S, Yadav DK, Jain V, Agarwala S, Husain M and Sharawat SK:
Exosomal long non-coding RNA MALAT1: A candidate of liquid biopsy
in monitoring of Wilms' tumor. Pediatr Surg Int. 40:572024.
View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Tang C, He X, Jia L and Zhang X: Circular
RNAs in glioma: Molecular functions and pathological implications.
Noncoding RNA Res. 9:105–115. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Zhao RJ, Zhang WY and Fan XX: Circular
RNAs: Potential biomarkers and therapeutic targets for autoimmune
diseases. Heliyon. 10:e236942023. View Article : Google Scholar
|
|
123
|
Zhang X, Wan M, Min X, Chu G, Luo Y, Han
Z, Li W, Xu R, Luo J, Li W, et al: Circular RNA as biomarkers for
acute ischemic stroke: A systematic review and meta-analysis. CNS
Neurosci Ther. 29:2086–2100. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Yılmaz B and Emingil G: Validating
proteomic biomarkers in saliva: Distinguishing between health and
periodontal diseases. Expert Rev Proteomics. 21:417–429. 2024.
View Article : Google Scholar
|
|
125
|
Schmalz G, Li S, Burkhardt R, Rinke S,
Krause F, Haak R and Ziebolz D: MicroRNAs as salivary markers for
periodontal diseases: A new diagnostic approach? Biomed Res Int.
2016:10275252016. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Nappi F: Non-coding RNA-targeted therapy:
A state-of-the-art review. Int J Mol Sci. 25:36302024. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Nemeth K, Bayraktar R, Ferracin M and
Calin GA: Non-coding RNAs in disease: From mechanisms to
therapeutics. Nat Rev Genet. 25:211–232. 2024. View Article : Google Scholar
|
|
128
|
Kim M, Jeong M, Hur S, Cho Y, Park J, Jung
H, Seo Y, Woo HA, Nam KT, Lee K and Lee H: Engineered ionizable
lipid nanoparticles for targeted delivery of RNA therapeutics into
different types of cells in the liver. Sci Adv. 7:eabf43982021.
View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Chen Y, Yang X, Li J, Luo H, Huang Q, Yang
W, Lei T, Lui S, Gong Q, Li H, et al: A nasally administrated
reactive oxygen species-responsive carrier-free gene delivery
nanosystem for Alzheimer's disease combination therapy. J Control
Release. 381:1136042025. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Jiang Y, Jiang R, Xia Z, Guo M, Fu Y, Wang
X and Xie J: Engineered neutrophil membrane-camouflaged
nanocomplexes for targeted siRNA delivery against myocardial
ischemia reperfusion injury. J Nanobiotechnology. 23:1342025.
View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Wang Y, Ma Z, Jiang L, Bojan N, Sha Y,
Huang B, Ming L, Shen J and Pang W: Specific muscle targeted
delivery of miR-130a loaded lipid nanoparticles: A novel approach
to inhibit lipid accumulation in skeletal muscle and obesity. J
Nanobiotechnology. 23:1592025. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Tong H, Ma Z, Yu J, Li D, Zhu Q, Shi H, Wu
Y, Yang H, Zheng Y, Sun D, et al: Optimizing peptide-conjugated
lipid nanoparticles for efficient siRNA delivery across the
blood-brain barrier and treatment of glioblastoma multiforme. ACS
Chem Biol. 20:942–952. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Westemeier-Rice ES, Winters MT, Rawson TW,
Patel KJ, McHugh O, Ward S, McLaughlin S, Stewart A, Misra B,
Dziadowicz S, et al: Lnc-RAINY regulates genes involved in
radiation susceptibility through DNA:DNA:RNA triplex-forming
interactions and has tumor therapeutic potential in lung cancers.
Noncoding RNA Res. 12:152–166. 2024. View Article : Google Scholar
|
|
134
|
Jia Y, Xu L, Leng S, Sun Y, Huang X, Wang
Y, Ren H, Li G, Bai Y, Zhang Z, et al: Nose-to-brain delivery of
circular RNA SCMH1-loaded lipid nanoparticles for ischemic stroke
therapy. Adv Mater. 37:e25005982025. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Kulkarni JA, Witzigmann D, Thomson SB,
Chen S, Leavitt BR, Cullis PR and van der Meel R: The current
landscape of nucleic acid therapeutics. Nat Nanotechnol.
16:630–643. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Li J, Jin F, Cai M, Lin T, Wang X and Sun
Y: LncRNA nron inhibits bone resorption in periodontitis. J Dent
Res. 101:187–195. 2022. View Article : Google Scholar
|