Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
November-2025 Volume 56 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2025 Volume 56 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Resistance to oncolytic virotherapy: Multidimensional mechanisms and therapeutic breakthroughs (Review)

  • Authors:
    • Jinzhou Xu
    • Zhiyu Xia
    • Shaogang Wang
    • Qidong Xia
  • View Affiliations / Copyright

    Affiliations: Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China, Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
    Copyright: © Xu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 171
    |
    Published online on: August 21, 2025
       https://doi.org/10.3892/ijmm.2025.5612
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Oncolytic viruses (OV) are an emerging form of immunotherapy that utilize naturally occurring or engineered viruses to specifically infect and lyse tumor cells. They achieve tumor treatment through direct tumor cell killing or by inducing immunogenic cell death to enhance immune responses. However, the efficacy of OV has been suboptimal in clinical trials. This review comprehensively examines mechanisms of resistance to OV through three interconnected dimensions: The characteristics of tumors and tumor cells, factors related to stromal cells and the extracellular matrix (ECM) and the host immune status. Potential solutions targeting these mechanisms are also proposed. For instance, OV typically achieve tumor selectivity through tumor‑specific receptors or specific promoters. However, due to inter‑ and intratumoral heterogeneity, the lack of such specific receptors or promoters in tumor cells can lead to off‑target effects of OV, resulting in treatment resistance. The ECM in the tumor microenvironment, such as hyaluronic acid, may also impede viral transport. Additionally, the clearance of OV by immune cells can contribute to suboptimal therapeutic outcomes of OV treatment. Consequently, investigating predictive biomarkers of OV efficacy, utilizing ECM‑degrading enzymes and combining with immune checkpoint inhibitors represents a promising strategy to augment the therapeutic effects of OV. Synthesizing current evidence, it is anticipated that future investigations will optimize the therapeutic effects of OV treatment and bring better immunotherapeutic outcomes for cancer patients.
View Figures

Figure 1

Schematic diagram of the main content
of this review. The figure summarizes the multiple layers of
resistance that limit the success of OV. In the tumor center,
heterogeneous malignant cells with variable receptor expression,
hypoxia and antiviral signaling restrict initial virus entry and
replication. Peripherally, a dysregulated vasculature-characterized
by leaky vessels, high interstitial pressure and angiogenic growth
factors-impairs intratumoral OV distribution. CAFs and a dense ECM
constitute physical and biochemical barriers that further diminish
viral spread. Innate and adaptive immune cells can either promote
or suppress OV activity. Therapeutic strategies depicted include
combination therapy with ICIs, CAR-T cells, gene-armed OVs and drug
cocktails designed to overcome these barriers. CAFs,
cancer-associated fibroblasts; CAR-T, chimeric antigen receptor T
cell; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; ECM,
extracellular matrix; ICIs, immune-checkpoint inhibitors; LAG-3,
lymphocyte-activation gene 3; NETs, neutrophil extracellular traps;
NK, natural killer; OV, oncolytic virus; PD-1, programmed cell
death protein 1; PD-L1, programmed death-ligand 1.

Figure 2

Balance between cell death and viral
replication. Oncolytic viruses follow a multistep life cycle that
determines whether tumor cell death or viral propagation
predominates. The virus first binds to surface receptors, enters
the cell and is trafficked to the nucleus or cytoplasm for
uncoating. Viral genes are transcribed and translated, followed by
genome replication and assembly of progeny virions that bud from
the cell surface. Concurrently, infected tumor cells can undergo
various death modalities-apoptosis, necroptosis, pyroptosis or
autophagy - that limit viral yields but enhance immunogenicity.
Conversely, successful viral replication may delay or inhibit these
death pathways, perpetuating infection. The balance at any moment
dictates net tumor cell killing vs. viral persistence.

Figure 3

Stromal cells and ECM reduce the
therapeutic efficiency of OVs. The tumor microenvironment presents
structural and biochemical obstacles to OV delivery and spread.
CAFs secrete collagen, hyaluronic acid and other ECM components
that create a dense physical barrier, elevating interstitial fluid
pressure and compressing blood vessels. This ECM condensation
reduces OV extravasation from leaky tumor vessels and retards
interstitial diffusion. CAFs also release growth factors such as
FGFs that stimulate angiogenesis and vascular normalization,
paradoxically decreasing vessel permeability to viruses.
Inflammatory cytokines and type-I interferons produced by stromal
and immune cells further activate antiviral states in cancer cells,
limiting viral replication. Neutralizing antibodies can bind and
inactivate OVs before they reach target cells. CAFs,
cancer-associated fibroblasts; ECM, extracellular matrix; FGFs,
fibroblast growth factors; IFN, interferon; OV, oncolytic
virus.

Figure 4

Roles of immune cells in resistance
to oncolytic virotherapy. (A) Roles of immune checkpoint expression
in resistance to oncolytic virotherapy. T cells express checkpoint
receptors including PD-1, LAG-3, TIM-3 and CTLA-4, while myeloid
cells and tumor cells upregulate PD-L1. This interaction
contributes to T cell exhaustion and diminishes their antitumor
response. (B) Roles of macrophages in resistance to oncolytic
virotherapy. Macrophages can phagocytose infected cancer cells or
produce IFN-β and TNF-α, enhancing antiviral responses. (C) Roles
of neutrophils in resistance to oncolytic virotherapy. Neutrophils
can phagocytose the virus or release NETs that physically trap the
virus. (D) Roles of NK cells in resistance to oncolytic
virotherapy. NK cells exert direct cytotoxicity against infected
cells via perforin and granzyme B. CTLA-4, cytotoxic
T-lymphocyte-associated protein 4; DC, dendritic cell; IFN-β,
interferon β; LAG-3, lymphocyte-activation gene 3; MDSC,
myeloid-derived suppressor cell; NET, neutrophil extracellular
trap; NK, natural killer; OV, oncolytic virus; PD-1, programmed
cell death protein 1; PD-L1, programmed death-ligand 1; TIM-3, T
cell immunoglobulin and mucin domain-containing protein 3; TME,
tumor microenvironment; TNF-α, tumor necrosis factor α; Treg,
regulatory T cell.
View References

1 

Siegel RL, Kratzer TB, Giaquinto AN, Sung H and Jemal A: Cancer statistics, 2025. CA Cancer J Clin. 75:10–45. 2025.PubMed/NCBI

2 

Pol J, Buqué A, Aranda F, Bloy N, Cremer I, Eggermont A, Erbs P, Fucikova J, Galon J, Limacher JM, et al: Trial watch-oncolytic viruses and cancer therapy. Oncoimmunology. 5:e11177402016. View Article : Google Scholar : PubMed/NCBI

3 

Dagogo-Jack I and Shaw AT: Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol. 15:81–94. 2018. View Article : Google Scholar

4 

Ma R, Li Z, Chiocca EA, Caligiuri MA and Yu J: The emerging field of oncolytic virus-based cancer immunotherapy. Trends Cancer. 9:122–139. 2023. View Article : Google Scholar :

5 

Nandi SS, Gohil T, Sawant SA, Lambe UP, Ghosh S and Jana S: CD155: A key receptor playing diversified roles. Curr Mol Med. 22:594–607. 2022. View Article : Google Scholar

6 

Kučan Brlić P, Lenac Roviš T, Cinamon G, Tsukerman P, Mandelboim O and Jonjić S: Targeting PVR (CD155) and its receptors in anti-tumor therapy. Cell Mol Immunol. 16:40–52. 2019. View Article : Google Scholar

7 

Yang M, Yang CS, Guo W, Tang J, Huang Q, Feng S, Jiang A, Xu X, Jiang G and Liu YQ: A novel fiber chimeric conditionally replicative adenovirus-Ad5/F35 for tumor therapy. Cancer Biol Ther. 18:833–840. 2017. View Article : Google Scholar : PubMed/NCBI

8 

Phung AT, Shah JR, Dong T, Reid T, Larson C, Sanchez AB, Oronsky B, Trogler WC, Kummel AC, Aisagbonhi O and Blair SL: CAR expression in invasive breast carcinoma and its effect on adenovirus transduction efficiency. Breast Cancer Res. 26:1312024. View Article : Google Scholar : PubMed/NCBI

9 

Scheicher NV, Berchtold S, Beil J, Smirnow I, Schenk A and Lauer UM: In vitro sensitivity of neuroendocrine neoplasms to an armed oncolytic measles vaccine virus. Cancers (Basel). 16:4882024. View Article : Google Scholar : PubMed/NCBI

10 

Cao W, Tian J, Li C, Gao Y, Liu X, Lu J, Wang Y, Wang Z, Svatek RS and Rodriguez R: A novel bladder cancer-specific oncolytic adenovirus by CD46 and its effect combined with cisplatin against cancer cells of CAR negative expression. Virol J. 14:1492017. View Article : Google Scholar

11 

Lipatova AV, Le TH, Sosnovtseva AO, Babaeva FE, Kochetkov DV and Chumakov PM: Relationship between cell receptors and tumor cell sensitivity to oncolytic enteroviruses. Bull Exp Biol Med. 166:58–62. 2018. View Article : Google Scholar : PubMed/NCBI

12 

Schäfer TE, Knol LI, Haas FV, Hartley A, Pernickel SCS, Jády A, Finkbeiner MSC, Achberger J, Arelaki S, Modic Ž, et al: Biomarker screen for efficacy of oncolytic virotherapy in patient-derived pancreatic cancer cultures. EBioMedicine. 105:1052192024. View Article : Google Scholar : PubMed/NCBI

13 

Felt SA, Droby GN and Grdzelishvili VZ: Ruxolitinib and polycation combination treatment overcomes multiple mechanisms of resistance of pancreatic cancer cells to oncolytic vesicular stomatitis virus. J Virol. 91:e00461–17. 2017. View Article : Google Scholar : PubMed/NCBI

14 

Yaiw KC, Miest TS, Frenzke M, Timm M, Johnston PB and Cattaneo R: CD20-targeted measles virus shows high oncolytic specificity in clinical samples from lymphoma patients independent of prior rituximab therapy. Gene Ther. 18:313–317. 2011. View Article : Google Scholar

15 

Ingusci S, Hall BL, Cohen JB and Glorioso JC: Oncolytic herpes simplex viruses designed for targeted treatment of EGFR-bearing tumors. Mol Ther Oncol. 32:2007612024. View Article : Google Scholar : PubMed/NCBI

16 

Leoni V, Vannini A, Gatta V, Rambaldi J, Sanapo M, Barboni C, Zaghini A, Nanni P, Lollini PL, Casiraghi C and Campadelli-Fiume G: A fully-virulent retargeted oncolytic HSV armed with IL-12 elicits local immunity and vaccine therapy towards distant tumors. PLoS Pathog. 14:e10072092018. View Article : Google Scholar : PubMed/NCBI

17 

Shiao SL, Gouin KH III, Ing N, Ho A, Basho R, Shah A, Mebane RH, Zitser D, Martinez A, Mevises NY, et al: Single-cell and spatial profiling identify three response trajectories to pembrolizumab and radiation therapy in triple negative breast cancer. Cancer Cell. 42:70–84.e8. 2024. View Article : Google Scholar : PubMed/NCBI

18 

MacLeod DT, Nakatsuji T, Yamasaki K, Kobzik L and Gallo RL: HSV-1 exploits the innate immune scavenger receptor MARCO to enhance epithelial adsorption and infection. Nat Commun. 4:19632013. View Article : Google Scholar : PubMed/NCBI

19 

MacLeod DT, Nakatsuji T, Wang Z, di Nardo A and Gallo RL: Vaccinia virus binds to the scavenger receptor MARCO on the surface of keratinocytes. J Invest Dermatol. 135:142–150. 2015. View Article : Google Scholar

20 

Stichling N, Suomalainen M, Flatt JW, Schmid M, Pacesa M, Hemmi S, Jungraithmayr W, Maler MD, Freudenberg MA, Plückthun A, et al: Lung macrophage scavenger receptor SR-A6 (MARCO) is an adenovirus type-specific virus entry receptor. PLoS Pathog. 14:e10069142018. View Article : Google Scholar : PubMed/NCBI

21 

Ghosh S, Gregory D, Smith A and Kobzik L: MARCO regulates early inflammatory responses against influenza: A useful macrophage function with adverse outcome. Am J Respir Cell Mol Biol. 45:1036–1044. 2011. View Article : Google Scholar : PubMed/NCBI

22 

Carpentier KS, Sheridan RM, Lucas CJ, Davenport BJ, Li FS, Lucas ED, McCarthy MK, Reynoso GV, May NA, Tamburini BAJ, et al: MARCO(+) lymphatic endothelial cells sequester arthritogenic alphaviruses to limit viremia and viral dissemination. EMBO J. 40:e1089662021. View Article : Google Scholar : PubMed/NCBI

23 

High M, Cho HY, Marzec J, Wiltshire T, Verhein KC, Caballero MT, Caballero MT, Acosta PL, Ciencewicki J, McCaw ZR, et al: Determinants of host susceptibility to murine respiratory syncytial virus (RSV) disease identify a role for the innate immunity scavenger receptor MARCO gene in human infants. EBioMedicine. 11:73–84. 2016. View Article : Google Scholar : PubMed/NCBI

24 

Ayala-Breton C, Barber GN, Russell SJ and Peng KW: Retargeting vesicular stomatitis virus using measles virus envelope glycoproteins. Hum Gene Ther. 23:484–491. 2012. View Article : Google Scholar :

25 

Dan J, Cai J, Zhong Y, Wang C, Huang S, Zeng Y, Fan Z, Xu C, Hu L, Zhang J, et al: Oncolytic virus M1 functions as a bifunctional checkpoint inhibitor to enhance the antitumor activity of DC vaccine. Cell Rep Med. 4:1012292023. View Article : Google Scholar : PubMed/NCBI

26 

Dong B, Tang N, Guan Y, Qu G, Miao L, Han W and Shen Z: Type and abundance of sialic acid receptors on host cell membrane affect infectivity and viral titer of different strains of Newcastle disease virus. J Virol Methods. 302:1144882022. View Article : Google Scholar : PubMed/NCBI

27 

Haisma HJ, Grill J, Curiel DT, Hoogeland S, van Beusechem VW, Pinedo HM and Gerritsen WR: Targeting of adenoviral vectors through a bispecific single-chain antibody. Cancer Gene Ther. 7:901–904. 2000. View Article : Google Scholar : PubMed/NCBI

28 

Hall BL, Leronni D, Miyagawa Y, Goins WF, Glorioso JC and Cohen JB: Generation of an oncolytic herpes simplex viral vector completely retargeted to the GDNF receptor GFRα1 for specific infection of breast cancer cells. Int J Mol Sci. 21:88152020. View Article : Google Scholar

29 

Menotti L, Avitabile E, Gatta V, Malatesta P, Petrovic B and Campadelli-Fiume G: HSV as a platform for the generation of retargeted, armed, and reporter-expressing oncolytic viruses. Viruses. 10:3522018. View Article : Google Scholar : PubMed/NCBI

30 

Merrill MK, Bernhardt G, Sampson JH, Wikstrand CJ, Bigner DD and Gromeier M: Poliovirus receptor CD155-targeted oncolysis of glioma. Neuro Oncol. 6:208–217. 2004. View Article : Google Scholar : PubMed/NCBI

31 

O'Bryan SM and Mathis JM: CXCL12 retargeting of an oncolytic adenovirus vector to the chemokine CXCR4 and CXCR7 receptors in breast cancer. J Cancer Ther. 12:311–336. 2021. View Article : Google Scholar : PubMed/NCBI

32 

Shibata T, Uchida H, Shiroyama T, Okubo Y, Suzuki T, Ikeda H, Yamaguchi M, Miyagawa Y, Fukuhara T, Cohen JB, et al: Development of an oncolytic HSV vector fully retargeted specifically to cellular EpCAM for virus entry and cell-to-cell spread. Gene Ther. 23:479–488. 2016. View Article : Google Scholar : PubMed/NCBI

33 

Tian L, Xu B, Chen Y, Li Z, Wang J, Zhang J, Ma R, Cao S, Hu W, Chiocca EA, et al: Specific targeting of glioblastoma with an oncolytic virus expressing a cetuximab-CCL5 fusion protein via innate and adaptive immunity. Nat Cancer. 3:1318–1335. 2022. View Article : Google Scholar : PubMed/NCBI

34 

Choi AH, O'Leary MP, Lu J, Kim SI, Fong Y and Chen NG: Endogenous akt activity promotes virus entry and predicts efficacy of novel chimeric orthopoxvirus in triple-negative breast cancer. Mol Ther Oncolytics. 9:22–29. 2018. View Article : Google Scholar : PubMed/NCBI

35 

Yi KH and Lauring J: Recurrent AKT mutations in human cancers: Functional consequences and effects on drug sensitivity. Oncotarget. 7:4241–4251. 2016. View Article : Google Scholar :

36 

Pelin A, Boulton S, Tamming LA, Bell JC and Singaravelu R: Engineering vaccinia virus as an immunotherapeutic battleship to overcome tumor heterogeneity. Expert Opin Biol Ther. 20:1083–1097. 2020. View Article : Google Scholar : PubMed/NCBI

37 

Zeng M, Zhang W, Li Y and Yu L: Harnessing adenovirus in cancer immunotherapy: Evoking cellular immunity and targeting delivery in cell-specific manner. Biomark Res. 12:362024. View Article : Google Scholar : PubMed/NCBI

38 

Garber K: China approves world's first oncolytic virus therapy for cancer treatment. J Natl Cancer Inst. 98:298–300. 2006. View Article : Google Scholar : PubMed/NCBI

39 

Cheng PH, Wechman SL, McMasters KM and Zhou HS: Oncolytic replication of E1b-deleted adenoviruses. Viruses. 7:5767–5779. 2015. View Article : Google Scholar : PubMed/NCBI

40 

Goradel NH, Mohajel N, Malekshahi ZV, Jahangiri S, Najafi M, Farhood B, Mortezaee K, Negahdari B and Arashkia A: Oncolytic adenovirus: A tool for cancer therapy in combination with other therapeutic approaches. J Cell Physiol. 234:8636–8646. 2019. View Article : Google Scholar

41 

Abudoureyimu M, Lai Y, Tian C, Wang T, Wang R and Chu X: Oncolytic Adenovirus-A nova for gene-targeted oncolytic viral therapy in HCC. Front Oncol. 9:11822019. View Article : Google Scholar : PubMed/NCBI

42 

Jakubczak JL, Ryan P, Gorziglia M, Clarke L, Hawkins LK, Hay C, Huang Y, Kaloss M, Marinov A, Phipps S, et al: An oncolytic adenovirus selective for retinoblastoma tumor suppressor protein pathway-defective tumors: dependence on E1A, the E2F-1 promoter, and viral replication for selectivity and efficacy. Cancer Res. 63:1490–1499. 2003.PubMed/NCBI

43 

Ortega S, Malumbres M and Barbacid M: Cyclin D-dependent kinases, INK4 inhibitors and cancer. Biochim Biophys Acta. 1602:73–87. 2002.PubMed/NCBI

44 

Bracken AP, Ciro M, Cocito A and Helin K: E2F target genes: Unraveling the biology. Trends Biochem Sci. 29:409–417. 2004. View Article : Google Scholar : PubMed/NCBI

45 

Kent LN and G: The broken cycle: E2F dysfunction in cancer. Nat Rev Cancer. 19:326–338. 2019. View Article : Google Scholar : PubMed/NCBI

46 

Shay JW: Role of telomeres and telomerase in aging and cancer. Cancer Discov. 6:584–593. 2016. View Article : Google Scholar : PubMed/NCBI

47 

Boccardi V and Marano L: Aging, cancer, and inflammation: The telomerase connection. Int J Mol Sci. 25:85422024. View Article : Google Scholar : PubMed/NCBI

48 

Alfano A, Cafferata EGA, Gangemi M, Nicola Candia A, Malnero CM, Bermudez I, Lopez MV, Ríos GD, Rotondaro C, Cuneo N, et al: In vitro and in vivo efficacy of a stroma-targeted, tumor microenviron ment responsive oncolytic adenovirus in different preclinical models of cancer. Int J Mol Sci. 24:99922023. View Article : Google Scholar

49 

Oh E, Hong J, Kwon OJ and Yun CO: A hypoxia- and telomerase-responsive oncolytic adenovirus expressing secretable trimeric TRAIL triggers tumour-specific apoptosis and promotes viral dispersion in TRAIL-resistant glioblastoma. Sci Rep. 8:14202018. View Article : Google Scholar : PubMed/NCBI

50 

Xu C, Sun Y, Wang Y, Yan Y, Shi Z, Chen L, Lin H, Lü S, Zhu M, Su C and Li Z: CEA promoter-regulated oncolytic adenovirus-mediated Hsp70 expression in immune gene therapy for pancreatic cancer. Cancer Lett. 319:154–163. 2012. View Article : Google Scholar : PubMed/NCBI

51 

Chouljenko DV, Murad YM, Lee IF, Delwar Z, Ding J, Liu G, Liu X, Bu X, Sun Y, Samudio I and Jia WW: Targeting carcinoembryonic antigen-expressing tumors using a novel transcriptional and translational dual-regulated oncolytic herpes simplex virus type 1. Mol Ther Oncolytics. 28:334–348. 2023. View Article : Google Scholar : PubMed/NCBI

52 

Cho WK, Choi DH, Park HC, Park W, Yu JI, Park YS, Park JO, Lim HY, Kang WK, Kim HC, et al: Elevated CEA is associated with worse survival in recurrent rectal cancer. Oncotarget. 8:105936–105941. 2017. View Article : Google Scholar : PubMed/NCBI

53 

Saretzki G: The telomerase connection of the brain and its implications for neurod egenerative diseases. Stem Cells. 41:233–241. 2023. View Article : Google Scholar

54 

Aquino A, Formica V, Prete SP, Correale PP, Massara MC, Turriziani M, De Vecchis L and Bonmassar E: Drug-induced increase of carcinoembryonic antigen expression in cancer cells. Pharmacol Res. 49:383–396. 2004. View Article : Google Scholar : PubMed/NCBI

55 

DeWeese TL, van der Poel H, Li S, Mikhak B, Drew R, Goemann M, Hamper U, DeJong R, Detorie N, Rodriguez R, et al: A phase I trial of CV706, a replication-competent, PSA selective oncolytic adenovirus, for the treatment of locally recurrent prostate cancer following radiation therapy. Cancer Res. 61:7464–7472. 2001.PubMed/NCBI

56 

Robert S, Roman Ortiz NI, LaRocca CJ, Ostrander JH and Davydova J: Oncolytic adenovirus for the targeting of paclitaxel-resistant breast cancer stem cells. Viruses. 16:5672024. View Article : Google Scholar : PubMed/NCBI

57 

Denkert C, Winzer KJ, Müller BM, Weichert W, Pest S, Köbel M, Kristiansen G, Reles A, Siegert A, Guski H and Hauptmann S: Elevated expression of cyclooxygenase-2 is a negative prognostic factor for disease free survival and overall survival in patients with breast carcinoma. Cancer. 97:2978–2987. 2003. View Article : Google Scholar : PubMed/NCBI

58 

Hugosson J, Godtman RA, Wallstrom J, Axcrona U, Bergh A, Egevad L, Geterud K, Khatami A, Socratous A, Spyratou V, et al: Results after four years of screening for prostate cancer with PSA and MRI. N Engl J Med. 391:1083–1095. 2024. View Article : Google Scholar : PubMed/NCBI

59 

Del Papa J, Petryk J, Bell JC and Parks RJ: An oncolytic adenovirus vector expressing p14 FAST protein induces widespread syncytium formation and reduces tumor growth rate in vivo. Mol Ther Oncolytics. 14:107–120. 2019. View Article : Google Scholar : PubMed/NCBI

60 

Lin D, Shen Y and Liang T: Oncolytic virotherapy: Basic principles, recent advances and future directions. Signal Transduct Target Ther. 8:1562023. View Article : Google Scholar : PubMed/NCBI

61 

Weibel S, Raab V, Yu YA, Worschech A, Wang E, Marincola FM and Szalay AA: Viral-mediated oncolysis is the most critical factor in the late-phase of the tumor regression process upon vaccinia virus infection. BMC Cancer. 11:682011. View Article : Google Scholar : PubMed/NCBI

62 

Li W, Turaga RC, Li X, Sharma M, Enadi Z, Dunham Tompkins SN, Hardy KC, Mishra F, Tsao J, Liu ZR, et al: Overexpression of Smac by an armed vesicular stomatitis virus overcomes tumor resistance. Mol Ther Oncolytics. 14:188–195. 2019. View Article : Google Scholar : PubMed/NCBI

63 

Dobson CC, Naing T, Beug ST, Faye MD, Chabot J, St-Jean M, Walker DE, LaCasse EC, Stojdl DF, Korneluk RG and Holcik M: Oncolytic virus synergizes with Smac mimetic compounds to induce rhabdomyosarcoma cell death in a syngeneic murine model. Oncotarget. 8:3495–3508. 2017. View Article : Google Scholar :

64 

Zhou H, Zhang Y, Wang J, Yan Y, Liu Y, Shi X, Zhang Q and Xu X: The CREB and AP-1-dependent cell communication network factor 1 regulates porcine epidemic diarrhea virus-induced cell apoptosis inhibiting virus replication through the p53 pathway. Front Microbiol. 13:8318522022. View Article : Google Scholar : PubMed/NCBI

65 

Mansour M, Palese P and Zamarin D: Oncolytic specificity of Newcastle disease virus is mediated by selectivity for apoptosis-resistant cells. J Virol. 85:6015–6023. 2011. View Article : Google Scholar : PubMed/NCBI

66 

Stanziale SF, Petrowsky H, Adusumilli PS, Ben-Porat L, Gonen M and Fong Y: Infection with oncolytic herpes simplex virus-1 induces apoptosis in neighboring human cancer cells: A potential target to increase anticancer activity. Clin Cancer Res. 10:3225–3232. 2004. View Article : Google Scholar : PubMed/NCBI

67 

Grootjans S, Vanden Berghe T and Vandenabeele P: Initiation and execution mechanisms of necroptosis: An overview. Cell Death Differ. 24:1184–1195. 2017. View Article : Google Scholar : PubMed/NCBI

68 

Suzuki T and Uchida H: Induction of necroptosis in multinucleated giant cells induced by conditionally replicating syncytial oHSV in co-cultures of cancer cells and non-cancerous cells. Mol Ther Oncol. 32:2008032024. View Article : Google Scholar : PubMed/NCBI

69 

Okamura K, Inoue H, Tanaka K, Ikematsu Y, Furukawa R, Ota K, Yoneshima Y, Iwama E and Okamoto I: Immunostimulatory oncolytic activity of coxsackievirus A11 in human malignant pleural mesothelioma. Cancer Sci. 114:1095–1107. 2023. View Article : Google Scholar :

70 

Zhang J, Liu Y, Tan J, Zhang Y, Wong CW, Lin Z, Liu X, Sander M, Yang X, Liang L, et al: Necroptotic virotherapy of oncolytic alphavirus M1 cooperated with Doxorubicin displays promising therapeutic efficacy in TNBC. Oncogene. 40:4783–4795. 2021. View Article : Google Scholar : PubMed/NCBI

71 

Van Hoecke L, Riederer S, Saelens X, Sutter G and Rojas JJ: Recombinant viruses delivering the necroptosis mediator MLKL induce a potent antitumor immunity in mice. Oncoimmunology. 9:18029682020. View Article : Google Scholar : PubMed/NCBI

72 

Wen C, Yu Y, Gao C, Qi X, Cardona CJ and Xing Z: RIPK3-dependent necroptosis Is induced and restricts viral replication in human astrocytes infected with zika virus. Front Cell Infect Microbiol. 11:6377102021. View Article : Google Scholar : PubMed/NCBI

73 

Gou H, Bian Z, Cai R, Chu P, Song S, Li Y, Jiang Z, Zhang K, Yang D and Li C: RIPK3-dependent necroptosis limits PRV replication in PK-15 cells. Front Microbiol. 12:6643532021. View Article : Google Scholar : PubMed/NCBI

74 

Hu Y, Deng X, Lv Y, Liu C, Chen J, Song J and Zhang Y: Coxsackievirus-A10 induced RIPK3-driven necroptosis to promote the formation of inflammatory response and enhance virus production via being recognized by TLR3. Mol Immunol. 178:107–116. 2025. View Article : Google Scholar : PubMed/NCBI

75 

Petrie EJ, Sandow JJ, Lehmann WIL, Liang LY, Coursier D, Young SN, Kersten WJA, Fitzgibbon C, Samson AL, Jacobsen AV, et al: Viral MLKL homologs subvert necroptotic cell death by sequestering cellular RIPK3. Cell Rep. 28:3309–3319.e5. 2019. View Article : Google Scholar : PubMed/NCBI

76 

Deng Y, Águeda-Pinto A and Brune W: No time to die: How cytomegaloviruses suppress apoptosis, necroptosis, and pyroptosis. Viruses. 16:12722024. View Article : Google Scholar : PubMed/NCBI

77 

van den Wollenberg DJM, Kemp V, Rabelink MJWE and Hoeben RC: Reovirus type 3 dearing variants do not induce necroptosis in RIPK3-expressing human tumor cell lines. Int J Mol Sci. 24:23202023. View Article : Google Scholar : PubMed/NCBI

78 

Panganiban RA, Nadeau KC and Lu Q: Pyroptosis, gasdermins and allergic diseases. Allergy. 79:2380–2395. 2024. View Article : Google Scholar : PubMed/NCBI

79 

Lin J, Sun S, Zhao K, Gao F, Wang R, Li Q, Zhou Y, Zhang J, Li Y, Wang X, et al: Oncolytic parapoxvirus induces gasdermin E-mediated pyroptosis and activates antitumor immunity. Nat Commun. 14:2242023. View Article : Google Scholar : PubMed/NCBI

80 

Wu A, Li Z, Wang Y, Chen Y, Peng J, Zhu M, Li Y, Song H, Zhou D, Zhang C, et al: Recombinant measles virus vaccine rMV-Hu191 exerts an oncolytic effect on esophageal squamous cell carcinoma via caspase-3/GSDME-mediated pyroptosis. Cell Death Discov. 9:1712023. View Article : Google Scholar : PubMed/NCBI

81 

Liu Z, Li Y, Zhu Y, Li N, Li W, Shang C, Song G, Li S, Cong J, Li T, et al: Apoptin induces pyroptosis of colorectal cancer cells via the GSDME-dependent pathway. Int J Biol Sci. 18:717–730. 2022. View Article : Google Scholar : PubMed/NCBI

82 

Chen XY, Liu Y, Zhu WB, Li SH, Wei S, Cai J, Lin Y, Liang JK, Yan GM, Guo L and Hu C: Arming oncolytic M1 virus with gasdermin E enhances antitumor efficacy in breast cancer. iScience. 27:1111482024. View Article : Google Scholar : PubMed/NCBI

83 

Wang YY, Wang J, Wang S, Yang QC, Song A, Zhang MJ, Wang WD, Liu YT, Zhang J, Wang WM, et al: Dual-responsive epigenetic inhibitor nanoprodrug combined with oncolytic virus synergistically boost cancer immunotherapy by igniting gasdermin E-mediated pyroptosis. ACS Nano. Jul 22–2024.Epub ahead of print.

84 

Deng Y, Ostermann E and Brune W: A cytomegalovirus inflammasome inhibitor reduces proinflammatory cytokine release and pyroptosis. Nat Commun. 15:7862024. View Article : Google Scholar : PubMed/NCBI

85 

Huang Y, Ma D, Huang H, Lu Y, Liao Y, Liu L, Liu X and Fang F: Interaction between HCMV pUL83 and human AIM2 disrupts the activation of the AIM2 inflammasome. Virol J. 14:342017. View Article : Google Scholar : PubMed/NCBI

86 

Wang Y, Qin Y, Wang T, Chen Y, Lang X, Zheng J, Gao S, Chen S, Zhong X, Mu Y, et al: Pyroptosis induced by enterovirus 71 and coxsackievirus B3 infection affects viral replication and host response. Sci Rep. 8:28872018. View Article : Google Scholar : PubMed/NCBI

87 

Hu Y, Zhao W, Lv Y, Li H, Li J, Zhong M, Pu D, Jian F, Song J and Zhang Y: NLRP3-dependent pyroptosis exacerbates coxsackievirus A16 and coxsackievirus A10-induced inflammatory response and viral replication in SH-SY5Y cells. Virus Res. 345:1993862024. View Article : Google Scholar : PubMed/NCBI

88 

Jiang R, Chen D, Zhang Y, Zhou L, Ge X, Han J, Guo X and Yang H: PRRSV infection inhibits CSFV C-strain replication via GSDMD-mediated pyroptosis. Vet Microbiol. 298:1102432024. View Article : Google Scholar : PubMed/NCBI

89 

Jiang J, Shen W, He Y, Liu J, Ouyang J, Zhang C and Hu K: Overexpression of NLRP12 enhances antiviral immunity and alleviates herpes simplex keratitis via pyroptosis/IL-18/IFN-γ signaling. Int Immunopharmacol. 137:1124282024. View Article : Google Scholar

90 

Zhang Z, Zhang Y and Lieberman J: Lighting a fire: Can we harness pyroptosis to ignite antitumor immunity? Cancer Immunol Res. 9:2–7. 2021. View Article : Google Scholar : PubMed/NCBI

91 

Guo ZS, Liu Z and Bartlett DL: Oncolytic immunotherapy: Dying the right way is a key to eliciting potent antitumor immunity. Front Oncol. 4:742014. View Article : Google Scholar : PubMed/NCBI

92 

Debnath J, Gammoh N and Ryan KM: Autophagy and autophagy-related pathways in cancer. Nat Rev Mol Cell Biol. 24:560–575. 2023. View Article : Google Scholar : PubMed/NCBI

93 

Lei W, Wang S, Xu N, Chen Y, Wu G, Zhang A, Chen X, Tong Y and Qian W: Enhancing therapeutic efficacy of oncolytic vaccinia virus armed with Beclin-1, an autophagic Gene in leukemia and myeloma. Biomed Pharmacother. 125:1100302020. View Article : Google Scholar : PubMed/NCBI

94 

Li K, Hu C, Xing F, Gao M, Liang J, Xiao X, Cai J, Tan Y, Hu J, Zhu W, et al: Deficiency of the IRE1α-autophagy axis enhances the antitumor effects of the oncolytic virus M1. J Virol. 92:e01331–17. 2018. View Article : Google Scholar :

95 

Xu Y, Chu L, Yuan S, Yang Y, Yang Y, Xu B, Zhang K, Liu XY, Wang R, Fang L, et al: RGD-modified oncolytic adenovirus-harboring shPKM2 exhibits a potent cytotoxic effect in pancreatic cancer via autophagy inhibition and apoptosis promotion. Cell Death Dis. 8:e28352017. View Article : Google Scholar : PubMed/NCBI

96 

Botta G, Passaro C, Libertini S, Abagnale A, Barbato S, Maione AS, Hallden G, Beguinot F, Formisano P and Portella G: Inhibition of autophagy enhances the effects of E1A-defective oncolytic adenovirus dl922-947 against glioma cells in vitro and in vivo. Hum Gene Ther. 23:623–634. 2012. View Article : Google Scholar : PubMed/NCBI

97 

Chen F, Lang L, Yang J, Yang F, Tang S, Fu Z, Saba NF, Luo M and Teng Y: SMAC-armed oncolytic virotherapy enhances the anticancer activity of PD1 blockade by modulating PANoptosis. Biomark Res. 13:82025. View Article : Google Scholar : PubMed/NCBI

98 

Chen WY, Chen YL, Lin HW, Chang CF, Huang BS, Sun WZ and Cheng WF: Stereotactic body radiation combined with oncolytic vaccinia virus induces potent anti-tumor effect by triggering tumor cell necroptosis and DAMPs. Cancer Lett. 523:149–161. 2021. View Article : Google Scholar : PubMed/NCBI

99 

Cui B, Song L, Wang Q, Li K, He Q, Wu X, Gao F, Liu M, An C, Gao Q, et al: Non-small cell lung cancers (NSCLCs) oncolysis using coxsackievirus B5 and synergistic DNA-damage response inhibitors. Signal Transduct Target Ther. 8:3662023. View Article : Google Scholar : PubMed/NCBI

100 

Ding J, Su R, Yang R, Xu J, Liu X, Yao T, Li S, Wang C, Zhang H, Yue Q, et al: Enhancing the antitumor efficacy of oncolytic adenovirus through sonodynamic therapy-augmented virus replication. ACS Nano. 18:18282–18298. 2024. View Article : Google Scholar : PubMed/NCBI

101 

Kan X, Yin Y, Song C, Tan L, Qiu X, Liao Y, Liu W, Meng S, Sun Y and Ding C: Newcastle-disease-virus-induced ferroptosis through nutrient deprivation and ferritinophagy in tumor cells. iScience. 24:1028372021. View Article : Google Scholar : PubMed/NCBI

102 

Koks CA, Garg AD, Ehrhardt M, Riva M, Vandenberk L, Boon L, De Vleeschouwer S, Agostinis P, Graf N and Van Gool SW: Newcastle disease virotherapy induces long-term survival and tumor-specific immune memory in orthotopic glioma through the induction of immunogenic cell death. Int J Cancer. 136:E313–E325. 2015. View Article : Google Scholar

103 

Li W, Ji T, Ye J, Xiong S, Si Y, Sun X, Li F and Dai Z: Ferroptosis enhances the therapeutic potential of oncolytic adenoviruses KD01 against cancer. Cancer Gene Ther. 32:403–417. 2025. View Article : Google Scholar : PubMed/NCBI

104 

Liu W, Chen H, Zhu Z, Liu Z, Ma C, Lee YJ, Bartlett DL and Guo ZS: Ferroptosis inducer improves the efficacy of oncolytic virus-mediated cancer immunotherapy. Biomedicines. 10:14252022. View Article : Google Scholar : PubMed/NCBI

105 

Rozilah MI, Yusoff K, Chia SL and Ismail S: Autophagy inhibition suppresses Newcastle disease virus-induced cell death by inhibiting viral replication in human breast cancer cells. Virology. 590:1099572024. View Article : Google Scholar

106 

Su W, Qiu W, Li SJ, Wang S, Xie J, Yang QC, Xu J, Zhang J, Xu Z and Sun ZJ: A dual-responsive STAT3 inhibitor nanoprodrug combined with oncolytic virus elicits synergistic antitumor immune responses by igniting pyroptosis. Adv Mater. 35:e22093792023. View Article : Google Scholar

107 

Sun Y, Tang L, Kan X, Tan L, Song C, Qiu X, Liao Y, Nair V, Ding C, Liu X and Sun Y: Oncolytic Newcastle disease virus induced degradation of YAP through E3 ubiquitin ligase PRKN to exacerbate ferroptosis in tumor cells. J Virol. 98:e01897232024. View Article : Google Scholar : PubMed/NCBI

108 

Tamura S, Tazawa H, Hori N, Li Y, Yamada M, Kikuchi S, Kuroda S, Urata Y, Kagawa S and Fujiwara T: p53-armed oncolytic adenovirus induces autophagy and apoptosis in KRAS and BRAF-mutant colorectal cancer cells. PLoS One. 18:e02944912023. View Article : Google Scholar : PubMed/NCBI

109 

Wang ZM, Li MK, Yang QL, Duan SX, Lou XY, Yang XY, Liu Y, Zhong YW, Qiao Y, Wang ZS, et al: Recombinant human adenovirus type 5 promotes anti-tumor immunity via inducing pyroptosis in tumor endothelial cells. Acta Pharmacol Sin. 45:2646–2656. 2024. View Article : Google Scholar : PubMed/NCBI

110 

Zhang CD, Wang YL, Zhou DM, Zhu MY, Lv Y, Hao XQ, Qu CF, Chen Y, Gu WZ, Wu BQ, et al: A recombinant Chinese measles virus vaccine strain rMV-Hu191 inhibits human colorectal cancer growth through inducing autophagy and apoptosis regulating by PI3K/AKT pathway. Transl Oncol. 14:1010912021. View Article : Google Scholar : PubMed/NCBI

111 

Zhang Y, Xu T, Tian H, Wu J, Yu X, Zeng L, Liu F, Liu Q and Huang X: Coxsackievirus group B3 has oncolytic activity against colon cancer through gasdermin E-mediated pyroptosis. Cancers (Basel). 14:62062022. View Article : Google Scholar : PubMed/NCBI

112 

Crow YJ and Casanova JL: Human life within a narrow range: The lethal ups and downs of type I interferons. Sci Immunol. 9:eadm81852024. View Article : Google Scholar : PubMed/NCBI

113 

Mesev EV, LeDesma RA and Ploss A: Decoding type I and III interferon signalling during viral infection. Nat Microbiol. 4:914–924. 2019. View Article : Google Scholar : PubMed/NCBI

114 

Guo YY, Gao Y, Zhao YL, Xie C, Gan H, Cheng X, Yang LP, Hu J, Shu HB, Zhong B, et al: Viral infection and spread are inhibited by the polyubiquitination and downregulation of TRPV2 channel by the interferon-stimulated gene TRIM21. Cell Rep. 43:1140952024. View Article : Google Scholar : PubMed/NCBI

115 

Guo YY, Gao Y, Hu YR, Zhao Y, Jiang D, Wang Y, Zhang Y, Gan H, Xie C, Liu Z, et al: The transient receptor potential vanilloid 2 (TRPV2) channel facilitates virus infection through the Ca(2+) -LRMDA axis in myeloid cells. Adv Sci (Weinh). 9:e22028572022. View Article : Google Scholar : PubMed/NCBI

116 

Ebrahimi S, Ghorbani E, Khazaei M, Avan A, Ryzhikov M, Azadmanesh K and Hassanian SM: Interferon-mediated tumor resistance to oncolytic virotherapy. J Cell Biochem. 118:1994–1999. 2017. View Article : Google Scholar : PubMed/NCBI

117 

Michalska A, Blaszczyk K, Wesoly J and Bluyssen HAR: A positive feedback amplifier circuit that regulates interferon (IFN)-stimulated gene expression and controls type I and II IFN responses. Front Immunol. 9:11352018. View Article : Google Scholar

118 

Sobol PT, Hummel JL, Rodrigues RM and Mossman KL: PML has a predictive role in tumor cell permissiveness to interferon-sensitive oncolytic viruses. Gene Ther. 16:1077–1087. 2009. View Article : Google Scholar : PubMed/NCBI

119 

Sun B, Sundström KB, Chew JJ, Bist P, Gan ES, Tan HC, Goh KC, Chawla T, Tang CK and Ooi EE: Dengue virus activates cGAS through the release of mitochondrial DNA. Sci Rep. 7:35942017. View Article : Google Scholar : PubMed/NCBI

120 

Aguirre S, Luthra P, Sanchez-Aparicio MT, Maestre AM, Patel J, Lamothe F, Fredericks AC, Tripathi S, Zhu T, Pintado-Silva J, et al: Dengue virus NS2B protein targets cGAS for degradation and prevents mitochondrial DNA sensing during infection. Nat Microbiol. 2:170372017. View Article : Google Scholar : PubMed/NCBI

121 

Liikanen I, Monsurrò V, Ahtiainen L, Raki M, Hakkarainen T, Diaconu I, Escutenaire S, Hemminki O, Dias JD, Cerullo V, et al: Induction of interferon pathways mediates in vivo resistance to oncolytic adenovirus. Mol Ther. 19:1858–1866. 2011. View Article : Google Scholar : PubMed/NCBI

122 

Li S, Zhu M, Pan R, Fang T, Cao YY, Chen S, Zhao X, Lei CQ, Guo L, Chen Y, et al: The tumor suppressor PTEN has a critical role in antiviral innate immunity. Nat Immunol. 17:241–249. 2016. View Article : Google Scholar

123 

Pikor LA, Bell JC and Diallo JS: Oncolytic viruses: Exploiting cancer's deal with the devil. Trends Cancer. 1:266–277. 2015. View Article : Google Scholar : PubMed/NCBI

124 

Delaunay T, Achard C, Boisgerault N, Grard M, Petithomme T, Chatelain C, Dutoit S, Blanquart C, Royer PJ, Minvielle S, et al: Frequent homozygous deletions of type I interferon genes in pleural mesothelioma confer sensitivity to oncolytic measles virus. J Thorac Oncol. 15:827–842. 2020. View Article : Google Scholar : PubMed/NCBI

125 

Lipatova AV, Soboleva AV, Gorshkov VA, Bubis JA, Solovyeva EM, Krasnov GS, Kochetkov DV, Vorobyev PO, Ilina IY, Moshkovskii SA, et al: Multi-omics analysis of glioblastoma cells' sensitivity to oncolytic viruses. Cancers (Basel). 13:52682021. View Article : Google Scholar : PubMed/NCBI

126 

Speer SD, Li Z, Buta S, Payelle-Brogard B, Qian L, Vigant F, Rubino E, Gardner TJ, Wedeking T, Hermann M, et al: ISG15 deficiency and increased viral resistance in humans but not mice. Nat Commun. 7:114962016. View Article : Google Scholar : PubMed/NCBI

127 

Friedman GK, Bernstock JD, Chen D, Nan L, Moore BP, Kelly VM, Youngblood SL, Langford CP, Han X, Ring EK, et al: Enhanced sensitivity of patient-derived pediatric high-grade brain tumor xenografts to oncolytic HSV-1 virotherapy correlates with nectin-1 expression. Sci Rep. 8:139302018. View Article : Google Scholar : PubMed/NCBI

128 

Song D, Jia X, Liu X, Hu L, Lin K, Xiao T, Qiao Y, Zhang J, Dan J, Wong C, et al: Identification of the receptor of oncolytic virus M1 as a therapeutic predictor for multiple solid tumors. Signal Transduct Target Ther. 7:1002022. View Article : Google Scholar : PubMed/NCBI

129 

Höti N, Johnson TJ, Chowdhury WH and Rodriguez R: Loss of cyclin-dependent kinase inhibitor alters oncolytic adenovirus replication and promotes more efficient virus production. Cancers (Basel). 10:2022018. View Article : Google Scholar : PubMed/NCBI

130 

Matveeva OV and Chumakov PM: Defects in interferon pathways as potential biomarkers of sensitivity to oncolytic viruses. Rev Med Virol. 28:e20082018. View Article : Google Scholar : PubMed/NCBI

131 

Kedarinath K, Fox CR, Crowgey E, Mazar J, Phelan P, Westmoreland TJ, Alexander KA and Parks GD: CD24 Expression dampens the basal antiviral state in human neuroblastoma cells and enhances permissivity to zika virus infection. Viruses. 14:17352022. View Article : Google Scholar : PubMed/NCBI

132 

Chen X, Liu J, Li Y, Zeng Y, Wang F, Cheng Z, Duan H, Pan G, Yang S, Chen Y, et al: IDH1 mutation impairs antiviral response and potentiates oncolytic virotherapy in glioma. Nat Commun. 14:67812023. View Article : Google Scholar : PubMed/NCBI

133 

Stavrakaki E, Dirven CMF and Lamfers MLM: Personalizing oncolytic virotherapy for glioblastoma: In search of biomarkers for response. Cancers (Basel). 13:6142021. View Article : Google Scholar : PubMed/NCBI

134 

Vasilevska J, De Souza GA, Stensland M, Skrastina D, Zhulenvovs D, Paplausks R, Kurena B, Kozlovska T and Zajakina A: Comparative protein profiling of B16 mouse melanoma cells susceptible and non-susceptible to alphavirus infection: Effect of the tumor microenvironment. Cancer Biol Ther. 17:1035–1050. 2016. View Article : Google Scholar : PubMed/NCBI

135 

Qian ZY, Pan YQ, Li XX, Chen YX, Wu HX, Liu ZX, Kosar M, Bartek J, Wang ZX and Xu RH: Modulator of TMB-associated immune infiltration (MOTIF) predicts immunotherapy response and guides combination therapy. Sci Bull (Beijing). 69:803–822. 2024. View Article : Google Scholar : PubMed/NCBI

136 

Cheng Y, Bu D, Zhang Q, Sun R, Lyle S, Zhao G, Dong L, Li H, Zhao Y, Yu J and Hao X: Genomic and transcriptomic profiling indicates the prognosis significance of mutational signature for TMB-high subtype in Chinese patients with gastric cancer. J Adv Res. 51:121–134. 2023. View Article : Google Scholar :

137 

Wilbur HC, Le DT and Agarwal P: Immunotherapy of MSI cancer: Facts and hopes. Clin Cancer Res. 30:1438–1447. 2024. View Article : Google Scholar

138 

Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, Cahill DP, Nahed BV, Curry WT, Martuza RL, et al: Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 344:1396–1401. 2014. View Article : Google Scholar : PubMed/NCBI

139 

Bieler A, Mantwill K, Dravits T, Bernshausen A, Glockzin G, Köhler-Vargas N, Lage H, Gansbacher B and Holm PS: Novel three-pronged strategy to enhance cancer cell killing in glioblastoma cell lines: Histone deacetylase inhibitor, chemotherapy, and oncolytic adenovirus dl520. Hum Gene Ther. 17:55–70. 2009. View Article : Google Scholar

140 

Kitazono M, Goldsmith ME, Aikou T, Bates S and Fojo T: Enhanced adenovirus transgene expression in malignant cells treated with the histone deacetylase inhibitor FR901228. Cancer Res. 61:6328–6330. 2001.PubMed/NCBI

141 

Chang HG, Choi YH, Hong J, Choi JW, Yoon AR and Yun CO: GM101 in combination with histone deacetylase inhibitor enhances anti-tumor effects in desmoplastic microenvironment. Cells. 10:28112021. View Article : Google Scholar : PubMed/NCBI

142 

Jaime-Ramirez AC, Yu JG, Caserta E, Yoo JY, Zhang J, Lee TJ, Hofmeister C, Lee JH, Kumar B, Pan Q, et al: Reolysin and histone deacetylase inhibition in the treatment of head and neck squamous cell carcinoma. Mol Ther Oncolytics. 5:87–96. 2017. View Article : Google Scholar : PubMed/NCBI

143 

Tong Y, Zhu W, Huang X, You L, Han X, Yang C and Qian W: PI3K inhibitor LY294002 inhibits activation of the Akt/mTOR pathway induced by an oncolytic adenovirus expressing TRAIL and sensitizes multiple myeloma cells to the oncolytic virus. Oncol Rep. 31:1581–1588. 2014. View Article : Google Scholar : PubMed/NCBI

144 

Wang L, Ning J, Wakimoto H, Wu S, Wu CL, Humphrey MR, Rabkin SD and Martuza RL: Oncolytic herpes simplex virus and PI3K inhibitor BKM120 synergize to promote killing of prostate cancer stem-like cells. Mol Ther Oncolytics. 13:58–66. 2019. View Article : Google Scholar : PubMed/NCBI

145 

Hsu WH, LaBella KA, Lin Y, Xu P, Lee R, Hsieh CE, Yang L, Zhou A, Blecher JM, Wu CJ, et al: Oncogenic KRAS drives lipofibrogenesis to promote angiogenesis and colon cancer progression. Cancer Discov. 13:2652–2673. 2023. View Article : Google Scholar : PubMed/NCBI

146 

Mahller YY, Vaikunth SS, Currier MA, Miller SJ, Ripberger MC, Hsu YH, Mehrian-Shai R, Collins MH, Crombleholme TM, Ratner N and Cripe TP: Oncolytic HSV and erlotinib inhibit tumor growth and angiogenesis in a novel malignant peripheral nerve sheath tumor xenograft model. Mol Ther. 15:279–286. 2007. View Article : Google Scholar : PubMed/NCBI

147 

Wu Z, Ichinose T, Naoe Y, Matsumura S, Villalobos IB, Eissa IR, Yamada S, Miyajima N, Morimoto D, Mukoyama N, et al: Combination of cetuximab and oncolytic virus canerpaturev synergistically inhibits human colorectal cancer growth. Mol Ther Oncolytics. 13:107–115. 2019. View Article : Google Scholar : PubMed/NCBI

148 

Yamamura K, Kasuya H, Sahin TT, Tan G, Hotta Y, Tsurumaru N, Fukuda S, Kanda M, Kobayashi D, Tanaka C, et al: Combination treatment of human pancreatic cancer xenograft models with the epidermal growth factor receptor tyrosine kinase inhibitor erlotinib and oncolytic herpes simplex virus HF10. Ann Surg Oncol. 21:691–698. 2014. View Article : Google Scholar

149 

Jha BK, Dong B, Nguyen CT, Polyakova I and Silverman RH: Suppression of antiviral innate immunity by sunitinib enhances oncolytic virotherapy. Mol Ther. 21:1749–1757. 2013. View Article : Google Scholar : PubMed/NCBI

150 

Coffey MC, Strong JE, Forsyth PA and Lee PW: Reovirus therapy of tumors with activated Ras pathway. Science. 282:1332–1334. 1998. View Article : Google Scholar : PubMed/NCBI

151 

Gong J and Mita MM: Activated ras signaling pathways and reovirus oncolysis: An update on the mechanism of preferential reovirus replication in cancer cells. Front Oncol. 4:1672014. View Article : Google Scholar : PubMed/NCBI

152 

Cai J, Lin K, Cai W, Lin Y, Liu X, Guo L, Zhang J, Xu W, Lin Z, Wong CW, et al: Tumors driven by RAS signaling harbor a natural vulnerability to oncolytic virus M1. Mol Oncol. 14:3153–3168. 2020. View Article : Google Scholar : PubMed/NCBI

153 

Zhu Z, McGray AJR, Jiang W, Lu B, Kalinski P and Guo ZS: Improving cancer immunotherapy by rationally combining oncolytic virus with modulators targeting key signaling pathways. Mol Cancer. 21:1962022. View Article : Google Scholar : PubMed/NCBI

154 

Hingorani SR: Epithelial and stromal co-evolution and complicity in pancreatic cancer. Nat Rev Cancer. 23:57–77. 2023. View Article : Google Scholar :

155 

Dalin S, Sullivan MR, Lau AN, Grauman-Boss B, Mueller HS, Kreidl E, Fenoglio S, Luengo A, Lees JA, Vander Heiden MG, et al: Deoxycytidine release from pancreatic stellate cells promotes gemcitabine resistance. Cancer Res. 79:5723–5733. 2019. View Article : Google Scholar : PubMed/NCBI

156 

Fischer A and Alsina-Sanchis E: Disturbed endothelial cell signaling in tumor progression and therapy resistance. Curr Opin Cell Biol. 86:1022872024. View Article : Google Scholar

157 

Sun Y: Tumor microenvironment and cancer therapy resistance. Cancer Lett. 380:205–215. 2016. View Article : Google Scholar

158 

Chen L, Xu YX, Wang YS, Ren YY, Dong XM, Wu P, Xie T, Zhang Q and Zhou JL: Prostate cancer microenvironment: Multidimensional regulation of immune cells, vascular system, stromal cells, and microbiota. Mol Cancer. 23:2292024. View Article : Google Scholar : PubMed/NCBI

159 

Zheng Y, Zhou R, Cai J, Yang N, Wen Z, Zhang Z, Sun H, Huang G, Guan Y, Huang N, et al: Matrix stiffness triggers lipid metabolic cross-talk between tumor and stromal cells to mediate bevacizumab resistance in colorectal cancer liver metastases. Cancer Res. 83:3577–3592. 2023. View Article : Google Scholar : PubMed/NCBI

160 

Cescon M, Rampazzo E, Bresolin S, Da Ros F, Manfreda L, Cani A, Della Puppa A, Braghetta P, Bonaldo P and Persano L: Collagen VI sustains cell stemness and chemotherapy resistance in glioblastoma. Cell Mol Life Sci. 80:2332023. View Article : Google Scholar : PubMed/NCBI

161 

Zhu J, Ma J, Huang M, Deng H and Shi G: Emerging delivery strategy for oncolytic virotherapy. Mol Ther Oncol. 32:2008092024. View Article : Google Scholar : PubMed/NCBI

162 

Guelfi S, Hodivala-Dilke K and Bergers G: Targeting the tumour vasculature: From vessel destruction to promotion. Nat Rev Cancer. 24:655–675. 2024. View Article : Google Scholar : PubMed/NCBI

163 

Wan PK, Ryan AJ and Seymour LW: Beyond cancer cells: Targeting the tumor microenvironment with gene therapy and armed oncolytic virus. Mol Ther. 29:1668–1682. 2021. View Article : Google Scholar : PubMed/NCBI

164 

Miller A, Nace R, Ayala-Breton CC, Steele M, Bailey K, Peng KW and Russell SJ: Perfusion pressure is a critical determinant of the intratumoral extravasation of oncolytic viruses. Mol Ther. 24:306–317. 2016. View Article : Google Scholar :

165 

Hong B, Muili K, Bolyard C, Russell L, Lee TJ, Banasavadi-Siddegowda Y, Yoo JY, Yan Y, Ballester LY, Bockhorst KH and Kaur B: Suppression of HMGB1 released in the glioblastoma tumor microenvironment reduces tumoral edema. Mol Ther Oncolytics. 12:93–102. 2018. View Article : Google Scholar

166 

Tseng JC, Granot T, DiGiacomo V, Levin B and Meruelo D: Enhanced specific delivery and targeting of oncolytic Sindbis viral vectors by modulating vascular leakiness in tumor. Cancer Gene Ther. 17:244–255. 2010. View Article : Google Scholar :

167 

Kurozumi K, Hardcastle J, Thakur R, Yang M, Christoforidis G, Fulci G, Hochberg FH, Weissleder R, Carson W, Chiocca EA and Kaur B: Effect of tumor microenvironment modulation on the efficacy of oncolytic virus therapy. J Natl Cancer Inst. 99:1768–1781. 2007. View Article : Google Scholar : PubMed/NCBI

168 

Liu ZL, Chen HH, Zheng LL, Sun LP and Shi L: Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct Target Ther. 8:1982023. View Article : Google Scholar : PubMed/NCBI

169 

Yousaf I, Kaeppler J, Frost S, Seymour LW and Jacobus EJ: Attenuation of the Hypoxia inducible factor pathway after oncolytic adenovirus infection coincides with decreased vessel perfusion. Cancers (Basel). 12:8512020. View Article : Google Scholar : PubMed/NCBI

170 

Breitbach CJ, De Silva NS, Falls TJ, Aladl U, Evgin L, Paterson J, Sun YY, Roy DG, Rintoul JL, Daneshmand M, et al: Targeting tumor vasculature with an oncolytic virus. Mol Ther. 19:886–894. 2011. View Article : Google Scholar : PubMed/NCBI

171 

Kim M, Nitschké M, Sennino B, Murer P, Schriver BJ, Bell A, Subramanian A, McDonald CE, Wang J, Cha H, et al: Amplification of oncolytic vaccinia virus widespread tumor cell killing by sunitinib through multiple mechanisms. Cancer Res. 78:922–937. 2018. View Article : Google Scholar

172 

Hou W, Chen H, Rojas J, Sampath P and Thorne SH: Oncolytic vaccinia virus demonstrates antiangiogenic effects mediated by targeting of VEGF. Int J Cancer. 135:1238–1246. 2014. View Article : Google Scholar : PubMed/NCBI

173 

Rizzo R, D'Accolti M, Bortolotti D, Caccuri F, Caruso A, Di Luca D and Caselli E: Human Herpesvirus 6A and 6B inhibit in vitro angiogenesis by induction of Human Leukocyte Antigen G. Sci Rep. 8:176832018. View Article : Google Scholar : PubMed/NCBI

174 

Naumenko VA, Stepanenko AA, Lipatova AV, Vishnevskiy DA and Chekhonin VP: Infection of non-cancer cells: A barrier or support for oncolytic virotherapy? Mol Ther Oncolytics. 24:663–682. 2022. View Article : Google Scholar : PubMed/NCBI

175 

Nair M, Khosla M, Otani Y, Yeh M, Park F, Shimizu T, Kang JM, Bolyard C, Yu JG, Kumar Banasavadi-Siddegowda Y, et al: Enhancing antitumor efficacy of heavily vascularized tumors by RAMBO virus through decreased tumor endothelial cell activation. Cancers (Basel). 12:10402020. View Article : Google Scholar : PubMed/NCBI

176 

Aghi M, Rabkin SD and Martuza RL: Angiogenic response caused by oncolytic herpes simplex virus-induced reduced thrombospondin expression can be prevented by specific viral mutations or by administering a thrombospondin-derived peptide. Cancer Res. 67:440–444. 2007. View Article : Google Scholar : PubMed/NCBI

177 

Kurozumi K, Hardcastle J, Thakur R, Shroll J, Nowicki M, Otsuki A, Chiocca EA and Kaur B: Oncolytic HSV-1 infection of tumors induces angiogenesis and upregulates CYR61. Mol Ther. 16:1382–1391. 2008. View Article : Google Scholar : PubMed/NCBI

178 

Hassan M, Selimovic D, El-Khattouti A, Soell M, Ghozlan H, Haikel Y, Abdelkader O and Megahed M: Hepatitis C virus-mediated angiogenesis: Molecular mechanisms and therapeutic strategies. World J Gastroenterol. 20:15467–15475. 2014. View Article : Google Scholar : PubMed/NCBI

179 

Wigner-Jeziorska P, Janik-Karpińska E, Niwald M, Saluk J and Miller E: Effect of SARS-CoV-2 infection and BNT162b2 vaccination on the mRNA expression of genes associated with angiogenesis. Int J Mol Sci. 24:160942023. View Article : Google Scholar : PubMed/NCBI

180 

Arulanandam R, Batenchuk C, Angarita FA, Ottolino-Perry K, Cousineau S, Mottashed A, Burgess E, Falls TJ, De Silva N, Tsang J, et al: VEGF-mediated induction of PRD1-BF1/Blimp1 expression sensitizes tumor vasculature to oncolytic virus infection. Cancer Cell. 28:210–224. 2015. View Article : Google Scholar : PubMed/NCBI

181 

Cords L, Engler S, Haberecker M, Rüschoff JH, Moch H, de Souza N and Bodenmiller B: Cancer-associated fibroblast phenotypes are associated with patient outcome in non-small cell lung cancer. Cancer Cell. 42:396–412.e5. 2024. View Article : Google Scholar : PubMed/NCBI

182 

Wang H, Li N, Liu Q, Guo J, Pan Q, Cheng B, Xu J, Dong B, Yang G, Yang B, et al: Antiandrogen treatment induces stromal cell reprogramming to promote castration resistance in prostate cancer. Cancer Cell. 41:1345–1362.e9. 2023. View Article : Google Scholar : PubMed/NCBI

183 

Qi R, Bai Y, Li K, Liu N, Xu Y, Dal E, Wang Y, Lin R, Wang H, Liu Z, et al: Cancer-associated fibroblasts suppress ferroptosis and induce gemcitabine resistance in pancreatic cancer cells by secreting exosome-derived ACSL4-targeting miRNAs. Drug Resist Updat. 68:1009602023. View Article : Google Scholar : PubMed/NCBI

184 

Vähä-Koskela MJ, Kallio JP, Jansson LC, Heikkilä JE, Zakhartchenko VA, Kallajoki MA, Kähäri VM and Hinkkanen AE: Oncolytic capacity of attenuated replicative semliki forest virus in human melanoma xenografts in severe combined immunodeficient mice. Cancer Res. 66:7185–7194. 2066. View Article : Google Scholar

185 

Arwert EN, Milford EL, Rullan A, Derzsi S, Hooper S, Kato T, Mansfield D, Melcher A, Harrington KJ and Sahai E: STING and IRF3 in stromal fibroblasts enable sensing of genomic stress in cancer cells to undermine oncolytic viral therapy. Nat Cell Biol. 22:758–766. 2020. View Article : Google Scholar : PubMed/NCBI

186 

Yasui T, Ohuchida K, Zhao M, Onimaru M, Egami T, Fujita H, Ohtsuka T, Mizumoto K and Tanaka M: Tumor-stroma interactions reduce the efficacy of adenoviral therapy through the HGF-MET pathway. Cancer Sci. 102:484–491. 2011. View Article : Google Scholar

187 

van Asten SD, Raaben M, Nota B and Spaapen RM: Secretome screening reveals fibroblast growth factors as novel inhibitors of viral replication. J Virol. 92:e00260–18. 2018. View Article : Google Scholar : PubMed/NCBI

188 

Hiller BE, Yin Y, Perng YC, de Araujo Castro Í, Fox LE, Locke MC, Monte KJ, López CB, Ornitz DM and Lenschow DJ: Fibroblast growth factor-9 expression in airway epithelial cells amplifies the type I interferon response and alters influenza A virus pathogenesis. PLoS Pathog. 18:e10102282022. View Article : Google Scholar : PubMed/NCBI

189 

Maddaluno L, Urwyler C, Rauschendorfer T, Meyer M, Stefanova D, Spörri R, Wietecha M, Ferrarese L, Stoycheva D, Bender D, et al: Antagonism of interferon signaling by fibroblast growth factors promotes viral replication. EMBO Mol Med. 12:e117932020. View Article : Google Scholar : PubMed/NCBI

190 

Puig-Saus C, Gros A, Alemany R and Cascalló M: Adenovirus i-leader truncation bioselected against cancer-associated fibroblasts to overcome tumor stromal barriers. Mol Ther. 20:54–62. 2012. View Article : Google Scholar :

191 

Kurisu N, Kaminade T, Eguchi M, Ishigami I, Mizuguchi H and Sakurai F: Oncolytic reovirus-mediated killing of mouse cancer-associated fibroblasts. Int J Pharm. 610:1212692021. View Article : Google Scholar : PubMed/NCBI

192 

de Sostoa J, Fajardo CA, Moreno R, Ramos MD, Farrera-Sal M and Alemany R: Targeting the tumor stroma with an oncolytic adenovirus secreting a fibroblast activation protein-targeted bispecific T-cell engager. J Immunother Cancer. 7:192019. View Article : Google Scholar : PubMed/NCBI

193 

Harryvan TJ, Golo M, Dam N, Schoonderwoerd MJA, Farshadi EA, Hornsveld M, Hoeben RC, Hawinkels LJAC and Kemp V: Gastrointestinal cancer-associated fibroblasts expressing Junctional Adhesion Molecule-A are amenable to infection by oncolytic reovirus. Cancer Gene Ther. 29:1918–1929. 2022. View Article : Google Scholar : PubMed/NCBI

194 

Jing Y, Chavez V, Ban Y, Acquavella N, El-Ashry D, Pronin A, Chen X and Merchan JR: Molecular effects of stromal-selective targeting by uPAR-retargeted oncolytic virus in breast cancer. Mol Cancer Res. 15:1410–1420. 2017. View Article : Google Scholar : PubMed/NCBI

195 

Shahvali S, Rahiman N, Jaafari MR and Arabi L: Targeting fibroblast activation protein (FAP): Advances in CAR-T cell, antibody, and vaccine in cancer immunotherapy. Drug Deliv Transl Res. 13:2041–2056. 2023. View Article : Google Scholar : PubMed/NCBI

196 

Al-Obaidi I, Sandhu C, Qureshi B and Seymour LW: The implications of oncolytic viruses targeting fibroblasts in enhancing the antitumoural immune response. Heliyon. 10:e392042024. View Article : Google Scholar : PubMed/NCBI

197 

Chen X and Song E: Turning foes to friends: Targeting cancer-associated fibroblasts. Nat Rev Drug Discov. 18:99–115. 2019. View Article : Google Scholar

198 

Long F, Zhong W, Zhao F, Xu Y, Hu X, Jia G, Huang L, Yi K, Wang N, Si H, et al: DAB2 (+) macrophages support FAP (+) fibroblasts in shaping tumor barrier and inducing poor clinical outcomes in liver cancer. Theranostics. 14:4822–4843. 2024. View Article : Google Scholar : PubMed/NCBI

199 

Yashaswini CN, Qin T, Bhattacharya D, Amor C, Lowe S, Lujambio A, Wang S and Friedman SL: Phenotypes and ontogeny of senescent hepatic stellate cells in metabolic dysfunction-associated steatohepatitis. J Hepatol. 81:207–217. 2024. View Article : Google Scholar : PubMed/NCBI

200 

Yang T, Zhai J, Hu D, Yang R, Wang G, Li Y and Liang G: 'Targeting Design' of nanoparticles in tumor therapy. Pharmaceutics. 14:19192022. View Article : Google Scholar

201 

Guedan S, Rojas JJ, Gros A, Mercade E, Cascallo M and Alemany R: Hyaluronidase expression by an oncolytic adenovirus enhances its intratumoral spread and suppresses tumor growth. Mol Ther. 18:1275–1283. 2010. View Article : Google Scholar : PubMed/NCBI

202 

Fang L, Kong SS, Zhong LK, Wang CM, Liu YJ, Ding HY, Sun J, Zhang YW, Li FZ and Huang P: Asiatic acid enhances intratumor delivery and the antitumor effect of pegylated liposomal doxorubicin by reducing tumor-stroma collagen. Acta Pharmacol Sin. 40:539–545. 2019. View Article : Google Scholar :

203 

Haseley A, Boone S, Wojton J, Yu L, Yoo JY, Yu J, Kurozumi K, Glorioso JC, Caligiuri MA and Kaur B: Extracellular matrix protein CCN1 limits oncolytic efficacy in glioma. Cancer Res. 72:1353–1362. 2012. View Article : Google Scholar : PubMed/NCBI

204 

Maillard L, Ziol M, Tahlil O, Le Feuvre C, Feldman LJ, Branellec D, Bruneval P and Steg P: Pre-treatment with elastase improves the efficiency of percutaneous adenovirus-mediated gene transfer to the arterial media. Gene Ther. 5:1023–1030. 1998. View Article : Google Scholar

205 

Kuriyama N, Kuriyama H, Julin CM, Lamborn KR and Israel MA: Protease pretreatment increases the efficacy of adenovirus-mediated gene therapy for the treatment of an experimental glioblastoma model. Cancer Res. 61:1805–1809. 2001.PubMed/NCBI

206 

Kuriyama N, Kuriyama H, Julin CM, Lamborn K and Israel MA: Pretreatment with protease is a useful experimental strategy for enhancing adenovirus-mediated cancer gene therapy. Hum Gene Ther. 11:2219–2230. 2000. View Article : Google Scholar : PubMed/NCBI

207 

McKee TD, Grandi P, Mok W, Alexandrakis G, Insin N, Zimmer JP, Bawendi MG, Boucher Y, Breakefield XO and Jain RK: Degradation of fibrillar collagen in a human melanoma xenograft improves the efficacy of an oncolytic herpes simplex virus vector. Cancer Res. 66:2509–2513. 2006. View Article : Google Scholar : PubMed/NCBI

208 

Bhattacharyya M, Jariyal H and Srivastava A: Hyaluronic acid: More than a carrier, having an overpowering extracellular and intracellular impact on cancer. Carbohydr Polym. 317:1210812023. View Article : Google Scholar : PubMed/NCBI

209 

Ganesh S, Gonzalez-Edick M, Gibbons D, Van Roey M and Jooss K: Intratumoral coadministration of hyaluronidase enzyme and oncolytic adenoviruses enhances virus potency in metastatic tumor models. Clin Cancer Res. 14:3933–3941. 2008. View Article : Google Scholar : PubMed/NCBI

210 

Samuel CS, Hewitson TD, Unemori EN and Tang ML: Drugs of the future: the hormone relaxin. Cell Mol Life Sci. 64:1539–1557. 2007. View Article : Google Scholar : PubMed/NCBI

211 

Perentes JY, McKee TD, Ley CD, Mathiew H, Dawson M, Padera TP, Munn LL, Jain RK and Boucher Y: In vivo imaging of extracellular matrix remodeling by tumor-associated fibroblasts. Nat Methods. 6:143–145. 2009. View Article : Google Scholar : PubMed/NCBI

212 

Kim JH, Lee YS, Kim H, Huang JH, Yoon AR and Yun CO: Relaxin expression from tumor-targeting adenoviruses and its intratumoral spread, apoptosis induction, and efficacy. J Natl Cancer Inst. 98:1482–1493. 2006. View Article : Google Scholar : PubMed/NCBI

213 

Kim Y, Lee HG, Dmitrieva N, Kim J, Kaur B and Friedman A: Choindroitinase ABC I-mediated enhancement of oncolytic virus spread and anti tumor efficacy: A mathematical model. PLoS One. 9:e1024992014. View Article : Google Scholar : PubMed/NCBI

214 

Mok W, Boucher Y and Jain RK: Matrix metalloproteinases-1 and -8 improve the distribution and efficacy of an oncolytic virus. Cancer Res. 67:10664–10668. 2007. View Article : Google Scholar : PubMed/NCBI

215 

Hong CS, Fellows W, Niranjan A, Alber S, Watkins S, Cohen JB, Glorioso JC and Grandi P: Ectopic matrix metalloproteinase-9 expression in human brain tumor cells enhances oncolytic HSV vector infection. Gene Ther. 17:1200–1205. 2010. View Article : Google Scholar : PubMed/NCBI

216 

Yumul R, Richter M, Lu ZZ, Saydaminova K, Wang H, Wang CH, Carter D and Lieber A: Epithelial junction opener improves oncolytic adenovirus therapy in mouse tumor models. Hum Gene Ther. 27:325–337. 2016. View Article : Google Scholar : PubMed/NCBI

217 

Binder C, Simon A, Binder L, Hagemann T, Schulz M, Emons G, Trümper L and Einspanier A: Elevated concentrations of serum relaxin are associated with metastatic disease in breast cancer patients. Breast Cancer Res Treat. 87:157–166. 2004. View Article : Google Scholar : PubMed/NCBI

218 

Daginakatte GC and Gutmann DH: Neurofibromatosis-1 (Nf1) heterozygous brain microglia elaborate paracrine factors that promote Nf1-deficient astrocyte and glioma growth. Hum Mol Genet. 16:1098–1112. 2007. View Article : Google Scholar : PubMed/NCBI

219 

Dmitrieva N, Yu L, Viapiano M, Cripe TP, Chiocca EA, Glorioso JC and Kaur B: Chondroitinase ABC I-mediated enhancement of oncolytic virus spread and antitumor efficacy. Clin Cancer Res. 17:1362–1372. 2011. View Article : Google Scholar

220 

Kanzaki A, Kasuya H, Yamamura K, Sahin TT, Nomura N, Shikano T, Shirota T, Tan G, Fukuda S, Misawa M, et al: Antitumor efficacy of oncolytic herpes simplex virus adsorbed onto antigen-specific lymphocytes. Cancer Gene Ther. 19:292–298. 2012. View Article : Google Scholar : PubMed/NCBI

221 

Netti PA, Berk DA, Swartz MA, Grodzinsky AJ and Jain RK: Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res. 60:2497–2503. 2000.PubMed/NCBI

222 

Yokoda R, Nagalo BM, Vernon B, Oklu R, Albadawi H, DeLeon TT, Zhou Y, Egan JB, Duda DG and Borad MJ: Oncolytic virus delivery: From nano-pharmacodynamics to enhanced oncolytic effect. Oncolytic Virother. 6:39–49. 2017. View Article : Google Scholar : PubMed/NCBI

223 

Kwan A, Winder N and Muthana M: Oncolytic virotherapy treatment of breast cancer: Barriers and recent advances. Viruses. 13:11282021. View Article : Google Scholar : PubMed/NCBI

224 

Fisher KD, Stallwood Y, Green NK, Ulbrich K, Mautner V and Seymour LW: Polymer-coated adenovirus permits efficient retargeting and evades neutralising antibodies. Gene Ther. 8:341–348. 2001. View Article : Google Scholar : PubMed/NCBI

225 

Wang J, Guo C, Wang XY and Yang H: 'Double-punch' strategy for delivery of viral immunotherapy with prolonged tumor retention and enhanced transfection efficacy. J Control Release. 329:328–336. 2021. View Article : Google Scholar

226 

Thambi T, Hong J, Yoon AR and Yun CO: Challenges and progress toward tumor-targeted therapy by systemic delivery of polymer-complexed oncolytic adenoviruses. Cancer Gene Ther. 29:1321–1331. 2022. View Article : Google Scholar : PubMed/NCBI

227 

Kim J, Kim PH, Kim SW and Yun CO: Enhancing the therapeutic efficacy of adenovirus in combination with biomaterials. Biomaterials. 33:1838–1850. 2012. View Article : Google Scholar

228 

Howard F and Muthana M: Designer nanocarriers for navigating the systemic delivery of oncolytic viruses. Nanomedicine (Lond). 15:93–110. 2020. View Article : Google Scholar

229 

Almstätter I, Mykhaylyk O, Settles M, Altomonte J, Aichler M, Walch A, Rummeny EJ, Ebert O, Plank C and Braren R: Characterization of magnetic viral complexes for targeted delivery in oncology. Theranostics. 5:667–685. 2015. View Article : Google Scholar : PubMed/NCBI

230 

Lara HH, Ayala-Nuñez NV, Ixtepan-Turrent L and Rodriguez-Padilla C: Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotechnology. 8:12010. View Article : Google Scholar : PubMed/NCBI

231 

Ran L, Tan X, Li Y, Zhang H, Ma R, Ji T, Dong W, Tong T, Liu Y, Chen D, et al: Delivery of oncolytic adenovirus into the nucleus of tumorigenic cells by tumor microparticles for virotherapy. Biomaterials. 89:56–66. 2016. View Article : Google Scholar : PubMed/NCBI

232 

Hong Y, Kim YK, Kim GB, Nam GH, Kim SA, Park Y, Yang Y and Kim IS: Degradation of tumour stromal hyaluronan by small extracellular vesicle-PH20 stimulates CD103(+) dendritic cells and in combination with PD-L1 blockade boosts anti-tumour immunity. J Extracell Vesicles. 8:16708932019. View Article : Google Scholar : PubMed/NCBI

233 

Liu L, Liu W, Han Z, Shan Y, Xie Y, Wang J, Qi H and Xu Q: Extracellular Vesicles-in-Hydrogel (EViH) targeting pathophysiology for tissue repair. Bioact Mater. 44:283–318. 2024.PubMed/NCBI

234 

Jung BK, Ko HY, Kang H, Hong J, Ahn HM, Na Y, Kim H, Kim JS and Yun CO: Relaxin-expressing oncolytic adenovirus induces remodeling of physical and immunological aspects of cold tumor to potentiate PD-1 blockade. J Immunother Cancer. 8:e0007632020. View Article : Google Scholar : PubMed/NCBI

235 

Wang S, Li Y, Xu C, Dong J and Wei J: An oncolytic vaccinia virus encoding hyaluronidase reshapes the extracellular matrix to enhance cancer chemotherapy and immunotherapy. J Immunother Cancer. 12:e0084312024. View Article : Google Scholar : PubMed/NCBI

236 

Farrera-Sal M, Moreno R, Mato-Berciano A, Maliandi MV, Bazan-Peregrino M and Alemany R: Hyaluronidase expression within tumors increases virotherapy efficacy and T cell accumulation. Mol Ther Oncolytics. 22:27–35. 2021. View Article : Google Scholar : PubMed/NCBI

237 

Schäfer S, Weibel S, Donat U, Zhang Q, Aguilar RJ, Chen NG and Szalay AA: Vaccinia virus-mediated intra-tumoral expression of matrix metalloproteinase 9 enhances oncolysis of PC-3 xenograft tumors. BMC Cancer. 12:3662012. View Article : Google Scholar : PubMed/NCBI

238 

Swanner J, Shim JS, Rivera-Caraballo KA, Vázquez-Arreguín K, Hong B, Bueso-Perez AJ, Lee TJ, Banasavadi-Siddegowda YK, Kaur B and Yoo JY: esRAGE-expressing oHSV enhances anti-tumor efficacy by inhibition of endothelial cell activation. Mol Ther Oncolytics. 28:171–181. 2023. View Article : Google Scholar : PubMed/NCBI

239 

Jeong SN and Yoo SY: Novel oncolytic virus armed with cancer suicide gene and normal vasculogenic gene for improved anti-tumor activity. Cancers (Basel). 12:10702020. View Article : Google Scholar : PubMed/NCBI

240 

Al-Zaher AA, Moreno R, Fajardo CA, Arias-Badia M, Farrera M, de Sostoa J, Rojas LA and Alemany R: Evidence of anti-tumoral efficacy in an immune competent setting with an iRGD-Modified hyaluronidase-armed oncolytic adenovirus. Mol Ther Oncolytics. 8:62–70. 2018. View Article : Google Scholar : PubMed/NCBI

241 

Puig-Saus C, Rojas LA, Laborda E, Figueras A, Alba R, Fillat C and Alemany R: iRGD tumor-penetrating peptide-modified oncolytic adenovirus shows enhanced tumor transduction, intratumoral dissemination and antitumor efficacy. Gene Ther. 21:767–774. 2014. View Article : Google Scholar : PubMed/NCBI

242 

Everts A, Bergeman M, McFadden G and Kemp V: Simultaneous tumor and stroma targeting by oncolytic viruses. Biomedicines. 8:4742020. View Article : Google Scholar : PubMed/NCBI

243 

Lavilla-Alonso S, Bauer MM, Abo-Ramadan U, Ristimäki A, Halavaara J, Desmond RA, Wang D, Escutenaire S, Ahtiainen L, Saksela K, et al: Macrophage metalloelastase (MME) as adjuvant for intra-tumoral injection of oncolytic adenovirus and its influence on metastases development. Cancer Gene Ther. 19:126–134. 2012. View Article : Google Scholar

244 

Hu J, Chen C, Lu R, Zhang Y, Wang Y, Hu Q, Li W, Wang S, Jing O, Yi H, et al: β-adrenergic receptor inhibitor and oncolytic herpesvirus combination therapy shows enhanced antitumoral and antiangiogenic effects on colorectal cancer. Front Pharmacol. 12:7352782021. View Article : Google Scholar

245 

Thaci B, Ulasov IV, Ahmed AU, Ferguson SD, Han Y and Lesniak MS: Anti-angiogenic therapy increases intratumoral adenovirus distribution by inducing collagen degradation. Gene Ther. 20:318–327. 2013. View Article : Google Scholar

246 

Ikeda K, Ichikawa T, Wakimoto H, Silver JS, Deisboeck TS, Finkelstein D, Harsh GR IV, Louis DN, Bartus RT, Hochberg FH and Chiocca EA: Oncolytic virus therapy of multiple tumors in the brain requires suppression of innate and elicited antiviral responses. Nat Med. 5:881–887. 1999. View Article : Google Scholar : PubMed/NCBI

247 

Ikeda K, Wakimoto H, Ichikawa T, Jhung S, Hochberg FH, Louis DN and Chiocca EA: Complement depletion facilitates the infection of multiple brain tumors by an intravascular, replication-conditional herpes simplex virus mutant. J Virol. 74:4765–4775. 2000. View Article : Google Scholar : PubMed/NCBI

248 

Carlisle R, Choi J, Bazan-Peregrino M, Laga R, Subr V, Kostka L, Ulbrich K, Coussios CC and Seymour LW: Enhanced tumor uptake and penetration of virotherapy using polymer stealthing and focused ultrasound. J Natl Cancer Inst. 105:1701–1710. 2013. View Article : Google Scholar : PubMed/NCBI

249 

Bazan-Peregrino M, Arvanitis CD, Rifai B, Seymour LW and Coussios CC: Ultrasound-induced cavitation enhances the delivery and therapeutic efficacy of an oncolytic virus in an in vitro model. J Control Release. 157:235–242. 2012. View Article : Google Scholar

250 

Sun S, Liu Y, He C, Hu W, Liu W, Huang X, Wu J, Xie F, Chen C, Wang J, et al: Combining NanoKnife with M1 oncolytic virus enhances anticancer activity in pancreatic cancer. Cancer Lett. 502:9–24. 2021. View Article : Google Scholar : PubMed/NCBI

251 

Otani Y, Yoo JY, Shimizu T, Kurozumi K, Date I and Kaur B: Implications of immune cells in oncolytic herpes simplex virotherapy for glioma. Brain Tumor Pathol. 39:57–64. 2022. View Article : Google Scholar : PubMed/NCBI

252 

Donat U, Weibel S, Hess M, Stritzker J, Härtl B, Sturm JB, Chen NG, Gentschev I and Szalay AA: Preferential colonization of metastases by oncolytic vaccinia virus strain GLV-1h68 in a human PC-3 prostate cancer model in nude mice. PLoS One. 7:e459422012. View Article : Google Scholar : PubMed/NCBI

253 

Lynch C, Pitroda SP and Weichselbaum RR: Radiotherapy, immunity, and immune checkpoint inhibitors. Lancet Oncol. 25:e352–e362. 2024. View Article : Google Scholar : PubMed/NCBI

254 

Munir AZ, Gutierrez A, Qin J, Lichtman AH and Moslehi JJ: Immune-checkpoint inhibitor-mediated myocarditis: CTLA4, PD1 and LAG3 in the heart. Nat Rev Cancer. 24:540–553. 2024. View Article : Google Scholar : PubMed/NCBI

255 

Kwan A, Winder N, Atkinson E, Al-Janabi H, Allen RJ, Hughes R, Moamin M, Louie R, Evans D, Hutchinson M, et al: Macrophages Mediate the Antitumor Effects of the Oncolytic Virus HSV1716 in Mammary Tumors. Mol Cancer Ther. 20:589–601. 2021. View Article : Google Scholar

256 

Bommareddy PK, Aspromonte S, Zloza A, Rabkin SD and Kaufman HL: MEK inhibition enhances oncolytic virus immunotherapy through increased tumor cell killing and T cell activation. Sci Transl Med. 10:eaau04172018. View Article : Google Scholar : PubMed/NCBI

257 

Mostafa AA, Meyers DE, Thirukkumaran CM, Liu PJ, Gratton K, Spurrell J, Shi Q, Thakur S and Morris DG: Oncolytic reovirus and immune checkpoint inhibition as a novel immunotherapeutic strategy for breast cancer. Cancers (Basel). 10:2052018. View Article : Google Scholar : PubMed/NCBI

258 

Burke S, Shergold A, Elder MJ, Whitworth J, Cheng X, Jin H, Wilkinson RW, Harper J and Carroll DK: Oncolytic Newcastle disease virus activation of the innate immune response and priming of antitumor adaptive responses in vitro. Cancer Immunol Immunother. 69:1015–1027. 2020. View Article : Google Scholar : PubMed/NCBI

259 

Chon HJ, Lee WS, Yang H, Kong SJ, Lee NK, Moon ES, Choi J, Han EC, Kim JH, Ahn JB, et al: Tumor microenvironment remodeling by intratumoral oncolytic vaccinia virus enhances the efficacy of immune-checkpoint blockade. Clin Cancer Res. 25:1612–1623. 2019. View Article : Google Scholar

260 

Lovatt C and Parker AL: Oncolytic viruses and immune checkpoint inhibitors: The 'Hot' new power couple. Cancers (Basel). 15:41782023. View Article : Google Scholar

261 

Bernstock JD, Vicario N, Rong L, Valdes PA, Choi BD, Chen JA, DiToro D, Osorio DS, Kachurak K, Gessler F, et al: A novel in situ multiplex immunofluorescence panel for the assessment of tumor immunopathology and response to virotherapy in pediatric glioblastoma reveals a role for checkpoint protein inhibition. Oncoimmunology. 8:e16789212019. View Article : Google Scholar : PubMed/NCBI

262 

Annels NE, Mansfield D, Arif M, Ballesteros-Merino C, Simpson GR, Denyer M, Sandhu SS, Melcher AA, Harrington KJ, Davies B, et al: Phase I Trial of an ICAM-1-targeted immunotherapeutic-coxsackievirus A21 (CVA21) as an oncolytic agent against non muscle-invasive bladder cancer. Clin Cancer Res. 25:5818–5831. 2019. View Article : Google Scholar : PubMed/NCBI

263 

Zhang B, Huang J, Tang J, Hu S, Luo S, Luo Z, Zhou F, Tan S, Ying J, Chang Q, et al: Intratumoral OH2, an oncolytic herpes simplex virus 2, in patients with advanced solid tumors: A multicenter, phase I/II clinical trial. J Immunother Cancer. 9:e0022242021. View Article : Google Scholar : PubMed/NCBI

264 

Saha D, Martuza RL and Rabkin SD: Macrophage polarization contributes to glioblastoma eradication by combination immunovirotherapy and immune checkpoint blockade. Cancer Cell. 32:253–267.e5. 2017. View Article : Google Scholar : PubMed/NCBI

265 

Liang Y, Wang B, Chen Q, Fu X, Jiang C, Lin Z, Zhuang Q, Zeng Y, Liu X and Zhang D: Systemic delivery of glycosylated-PEG-masked oncolytic virus enhances targeting of antitumor immuno-virotherapy and modulates T and NK cell infiltration. Theranostics. 13:5452–5468. 2023. View Article : Google Scholar : PubMed/NCBI

266 

Patel MR, Dash A, Jacobson BA, Ji Y, Baumann D, Ismail K and Kratzke RA: JAK/STAT inhibition with ruxolitinib enhances oncolytic virotherapy in non-small cell lung cancer models. Cancer Gene Ther. 26:411–418. 2019. View Article : Google Scholar : PubMed/NCBI

267 

Nguyen TT, Ramsay L, Ahanfeshar-Adams M, Lajoie M, Schadendorf D, Alain T and Watson IR: Mutations in the IFNγ-JAK-STAT pathway causing resistance to immune checkpoint inhibitors in melanoma increase sensitivity to oncolytic virus treatment. Clin Cancer Res. 27:3432–3442. 2021. View Article : Google Scholar : PubMed/NCBI

268 

Lecoultre M, Walker PR and El Helali A: Oncolytic virus and tumor-associated macrophage interactions in cancer immunotherapy. Clin Exp Med. 24:2022024. View Article : Google Scholar : PubMed/NCBI

269 

Fujikura Y, Kudlackova P, Vokurka M, Krijt J and Melkova Z: The effect of nitric oxide on vaccinia virus-encoded ribonucleotide reductase. Nitric Oxide. 20:114–121. 2009. View Article : Google Scholar

270 

Pittet MJ, Michielin O and Migliorini D: Clinical relevance of tumour-associated macrophages. Nat Rev Clin Oncol. 19:402–421. 2022. View Article : Google Scholar : PubMed/NCBI

271 

Meisen WH, Wohleb ES, Jaime-Ramirez AC, Bolyard C, Yoo JY, Russell L, Hardcastle J, Dubin S, Muili K, Yu J, et al: The impact of macrophage- and microglia-secreted TNFα on Oncolytic HSV-1 therapy in the glioblastoma tumor microenvironment. Clin Cancer Res. 21:3274–3285. 2015. View Article : Google Scholar : PubMed/NCBI

272 

van den Bossche WBL, Kleijn A, Teunissen CE, Voerman JSA, Teodosio C, Noske DP, van Dongen JJM, Dirven CMF and Lamfers MLM: Oncolytic virotherapy in glioblastoma patients induces a tumor macrophage phenotypic shift leading to an altered glioblastoma microenvironment. Neuro Oncol. 20:1494–1504. 2018. View Article : Google Scholar : PubMed/NCBI

273 

Kober C, Rohn S, Weibel S, Geissinger U, Chen NG and Szalay AA: Microglia and astrocytes attenuate the replication of the oncolytic vaccinia virus LIVP 1.1.1 in murine GL261 gliomas by acting as vaccinia virus traps. J Transl Med. 13:2162015. View Article : Google Scholar : PubMed/NCBI

274 

Liu YP, Suksanpaisan L, Steele MB, Russell SJ and Peng KW: Induction of antiviral genes by the tumor microenvironment confers resistance to virotherapy. Sci Rep. 3:23752013. View Article : Google Scholar : PubMed/NCBI

275 

Zhang Q and Liu F: Advances and potential pitfalls of oncolytic viruses expressing immunomodulatory transgene therapy for malignant gliomas. Cell Death Dis. 11:4852020. View Article : Google Scholar : PubMed/NCBI

276 

Shen Z, Liu X, Fan G, Na J, Liu Q, Lin F, Zhang Z and Zhong L: Improving the therapeutic efficacy of oncolytic viruses for cancer: Targeting macrophages. J Transl Med. 21:8422023. View Article : Google Scholar : PubMed/NCBI

277 

Blitz SE, Kappel AD, Gessler FA, Klinger NV, Arnaout O, Lu Y, Peruzzi PP, Smith TR, Chiocca EA, Friedman GK and Bernstock JD: Tumor-associated macrophages/microglia in glioblastoma oncolytic virotherapy: A double-edged sword. Int J Mol Sci. 23:18082022. View Article : Google Scholar : PubMed/NCBI

278 

Ferguson MS, Chard Dunmall LS, Gangeswaran R, Marelli G, Tysome JR, Burns E, Whitehead MA, Aksoy E, Alusi G, Hiley C, et al: Transient inhibition of PI3Kδ enhances the therapeutic effect of intravenous delivery of oncolytic vaccinia virus. Mol Ther. 28:1263–1275. 2020. View Article : Google Scholar : PubMed/NCBI

279 

Lee TJ, Nair M, Banasavadi-Siddegowda Y, Liu J, Nallanagulagari T, Jaime-Ramirez AC, Guo JY, Quadri H, Zhang J, Bockhorst KH, et al: Enhancing therapeutic efficacy of oncolytic herpes simplex virus-1 with integrin β1 blocking antibody OS2966. Mol Cancer Ther. 18:1127–1136. 2019. View Article : Google Scholar : PubMed/NCBI

280 

Thorne AH, Meisen WH, Russell L, Yoo JY, Bolyard CM, Lathia JD, Rich J, Puduvalli VK, Mao H, Yu J, et al: Role of cysteine-rich 61 protein (CCN1) in macrophage-mediated oncolytic herpes simplex virus clearance. Mol Ther. 22:1678–1687. 2014. View Article : Google Scholar : PubMed/NCBI

281 

Zhang KL, Li RP, Zhang BP, Gao ST, Li B, Huang CJ, Cao R, Cheng JY, Xie XD, Yu ZH and Feng XY: Efficacy of a new oncolytic adenovirus armed with IL-13 against oral carcinoma models. Onco Targets Ther. 12:6515–6523. 2019. View Article : Google Scholar : PubMed/NCBI

282 

Hedrick CC and Malanchi I: Neutrophils in cancer: Heterogeneous and multifaceted. Nat Rev Immunol. 22:173–187. 2022. View Article : Google Scholar

283 

Ng MSF, Kwok I, Tan L, Shi C, Cerezo-Wallis D, Tan Y, Leong K, Calvo GF, Yang K, Zhang Y, et al: Deterministic reprogramming of neutrophils within tumors. Science. 383:eadf64932024. View Article : Google Scholar : PubMed/NCBI

284 

Andzinski L, Kasnitz N, Stahnke S, Wu CF, Gereke M, von Köckritz-Blickwede M, Schilling B, Brandau S, Weiss S and Jablonska J: Type I IFNs induce anti-tumor polarization of tumor associated neutrophils in mice and human. Int J Cancer. 138:1982–1993. 2016. View Article : Google Scholar

285 

Naumenko V, Turk M, Jenne CN and Kim SJ: Neutrophils in viral infection. Cell Tissue Res. 371:505–516. 2018. View Article : Google Scholar : PubMed/NCBI

286 

Taifour T, Attalla SS, Zuo D, Gu Y, Sanguin-Gendreau V, Proud H, Solymoss E, Bui T, Kuasne H, Papavasiliou V, et al: The tumor-derived cytokine Chi3l1 induces neutrophil extracellular traps that promote T cell exclusion in triple-negative breast cancer. Immunity. 56:2755–2772.e8. 2023. View Article : Google Scholar : PubMed/NCBI

287 

He XY, Gao Y, Ng D, Michalopoulou E, George S, Adrover JM, Sun L, Albrengues J, Daßler-Plenker J, Han X, et al: Chronic stress increases metastasis via neutrophil-mediated changes to the microenvironment. Cancer Cell. 42:474–486.e12. 2024. View Article : Google Scholar : PubMed/NCBI

288 

Zhou D, Zhang C, Sun J and Yuan M: Neutrophils in oncolytic virus immunotherapy. Front Immunol. 15:14904142024. View Article : Google Scholar : PubMed/NCBI

289 

Dai W, Tian R, Yu L, Bian S, Chen Y, Yin B, Luan Y, Chen S, Fan Z, Yan R, et al: Overcoming therapeutic resistance in oncolytic herpes virotherapy by targeting IGF2BP3-induced NETosis in malignant glioma. Nat Commun. 15:1312024. View Article : Google Scholar : PubMed/NCBI

290 

Price PJ, Luckow B, Torres-Domínguez LE, Brandmüller C, Zorn J, Kirschning CJ, Sutter G and Lehmann MH: Chemokine (C-C Motif) receptor 1 is required for efficient recruitment of neutrophils during respiratory infection with modified vaccinia virus Ankara. J Virol. 88:10840–10850. 2014. View Article : Google Scholar : PubMed/NCBI

291 

West BC, Escheté ML, Cox ME and King JW: Neutrophil uptake of vaccinia virus in vitro. J Infect Dis. 156:597–606. 1987. View Article : Google Scholar : PubMed/NCBI

292 

Breitbach CJ, Paterson JM, Lemay CG, Falls TJ, McGuire A, Parato KA, Stojdl DF, Daneshmand M, Speth K, Kirn D, et al: Targeted inflammation during oncolytic virus therapy severely compromises tumor blood flow. Mol Ther. 15:1686–1693. 2007. View Article : Google Scholar : PubMed/NCBI

293 

Taipale K, Liikanen I, Koski A, Heiskanen R, Kanerva A, Hemminki O, Oksanen M, Grönberg-Vähä-Koskela S, Hemminki K, Joensuu T and Hemminki A: Predictive and prognostic clinical variables in cancer patients treated with adenoviral oncolytic immunotherapy. Mol Ther. 24:1323–1332. 2016. View Article : Google Scholar : PubMed/NCBI

294 

He CB and Lin XJ: Inflammation scores predict the survival of patients with hepatocellular carcinoma who were treated with transarterial chemoembolization and recombinant human type-5 adenovirus H101. PLoS One. 12:e01747692017. View Article : Google Scholar : PubMed/NCBI

295 

Zhou D, Xu W, Ding X, Guo H, Wang J, Zhao G, Zhang C, Zhang Z, Wang Z, Wang P, et al: Transient inhibition of neutrophil functions enhances the antitumor effect of intravenously delivered oncolytic vaccinia virus. Cancer Sci. 115:1129–1140. 2024. View Article : Google Scholar : PubMed/NCBI

296 

Fu X, Tao L, Rivera A, Xu H and Zhang X: Virotherapy induces massive infiltration of neutrophils in a subset of tumors defined by a strong endogenous interferon response activity. Cancer Gene Ther. 18:785–794. 2011. View Article : Google Scholar : PubMed/NCBI

297 

Minott JA, van Vloten JP, Chan L, Mehrani Y, Bridle BW and Karimi K: The role of neutrophils in oncolytic orf virus-mediated cancer immunotherapy. Cells. 11:28582018. View Article : Google Scholar

298 

Liu Y, Xu C, Xiao X, Chen Y, Wang X, Liu W, Tan Y, Zhu W, Hu J, Liang J, et al: Overcoming resistance to oncolytic virus M1 by targeting PI3K-γ in tumor-associated myeloid cells. Mol Ther. 30:3677–3693. 2022. View Article : Google Scholar : PubMed/NCBI

299 

Bulstrode H, Girdler GC, Gracia T, Aivazidis A, Moutsopoulos I, Young AMH, Hancock J, He X, Ridley K, Xu Z, et al: Myeloid cell interferon secretion restricts Zika flavivirus infection of developing and malignant human neural progenitor cells. Neuron. 110:3936–3951.e10. 2022. View Article : Google Scholar : PubMed/NCBI

300 

Noh MH, Kang JM, Miller AA, Nguyen G, Huang M, Shim JS, Bueso-Perez AJ, Murphy SA, Rivera-Caraballo KA, Otani Y, et al: Targeting IGF2 to reprogram the tumor microenvironment for enhanced viro-immunotherapy. Neuro Oncol. 26:1602–1616. 2024. View Article : Google Scholar : PubMed/NCBI

301 

Bald T, Krummel MF, Smyth MJ and Barry KC: The NK cell-cancer cycle: Advances and new challenges in NK cell-based immunotherapies. Nat Immunol. 21:835–847. 2020. View Article : Google Scholar : PubMed/NCBI

302 

Alvarez-Breckenridge CA, Yu J, Price R, Wojton J, Pradarelli J, Mao H, Wei M, Wang Y, He S, Hardcastle J, et al: NK cells impede glioblastoma virotherapy through NKp30 and NKp46 natural cytotoxicity receptors. Nat Med. 18:1827–1834. 2012. View Article : Google Scholar : PubMed/NCBI

303 

Reale A, Gatta A, Shaik AKB, Shallak M, Chiaravalli AM, Cerati M, Zaccaria M, La Rosa S, Calistri A, Accolla RS and Forlani G: An oncolytic HSV-1 vector induces a therapeutic adaptive immune response against glioblastoma. J Transl Med. 22:8622024. View Article : Google Scholar : PubMed/NCBI

304 

Kim Y, Yoo JY, Lee TJ, Liu J, Yu J, Caligiuri MA, Kaur B and Friedman A: Complex role of NK cells in regulation of oncolytic virus-bortezomib therapy. Proc Natl Acad Sci USA. 115:4927–4932. 2018. View Article : Google Scholar : PubMed/NCBI

305 

Varudkar N, Oyer JL, Copik A and Parks GD: Oncolytic parainfluenza virus combines with NK cells to mediate killing of infected and non-infected lung cancer cells within 3D spheroids: role of type I and type III interferon signaling. J Immunother Cancer. 9:e0023732021. View Article : Google Scholar : PubMed/NCBI

306 

Wang Y, Jin J, Li Y, Zhou Q, Yao R, Wu Z, Hu H, Fang Z, Dong S, Cai Q, et al: NK cell tumor therapy modulated by UV-inactivated oncolytic herpes simplex virus type 2 and checkpoint inhibitors. Transl Res. 240:64–86. 2022. View Article : Google Scholar

307 

Yan Y, Li S, Jia T, Du X, Xu Y, Zhao Y, Li L, Liang K, Liang W, Sun H and Li R: Combined therapy with CTL cells and oncolytic adenovirus expressing IL-15-induced enhanced antitumor activity. Tumour Biol. 36:4535–4543. 2015. View Article : Google Scholar : PubMed/NCBI

308 

Alvarez-Breckenridge CA, Yu J, Price R, Wei M, Wang Y, Nowicki MO, Ha YP, Bergin S, Hwang C, Fernandez SA, et al: The histone deacetylase inhibitor valproic acid lessens NK cell action against oncolytic virus-infected glioblastoma cells by inhibition of STAT5/T-BET signaling and generation of gamma interferon. J Virol. 86:4566–4577. 2012. View Article : Google Scholar : PubMed/NCBI

309 

Altomonte J, Wu L, Meseck M, Chen L, Ebert O, Garcia-Sastre A, Fallon J, Mandeli J and Woo SL: Enhanced oncolytic potency of vesicular stomatitis virus through vector-mediated inhibition of NK and NKT cells. Cancer Gene Ther. 16:266–278. 2009. View Article : Google Scholar

310 

Han J, Chen X, Chu J, Xu B, Meisen WH, Chen L, Zhang L, Zhang J, He X, Wang QE, et al: TGFβ treatment enhances glioblastoma virotherapy by inhibiting the innate immune response. Cancer Res. 75:5273–5282. 2015. View Article : Google Scholar : PubMed/NCBI

311 

Kurmasheva N, Said A, Wong B, Kinderman P, Han X, Rahimic AHF, Kress A, Carter-Timofte ME, Holm E, van der Horst D, et al: Octyl itaconate enhances VSVdelta51 oncolytic virotherapy by multitarget inhibition of antiviral and inflammatory pathways. Nat Commun. 15:40962024. View Article : Google Scholar

312 

Taverner WK, Jacobus EJ, Christianson J, Champion B, Paton AW, Paton JC, Su W, Cawood R, Seymour LW and Lei-Rossmann J: Calcium influx caused by ER stress inducers enhances oncolytic adenovirus enadenotucirev replication and killing through PKCα activation. Mol Ther Oncolytics. 15:117–130. 2019. View Article : Google Scholar :

313 

Bhatt DK, Janzen T, Daemen T and Weissing FJ: Modelling the spatial dynamics of oncolytic virotherapy in the presence of virus-resistant tumour cells. PLoS Comput Biol. 18:e10100762022. View Article : Google Scholar : PubMed/NCBI

314 

Kloker LD, Yurttas C and Lauer UM: Three-dimensional tumor cell cultures employed in virotherapy research. Oncolytic Virother. 7:79–93. 2018. View Article : Google Scholar : PubMed/NCBI

315 

Brachtlova T, Li J, van der Meulen-Muileman IH, Sluiter F, von Meijenfeldt W, Witte I, Massaar S, van den Oever R, de Vrij J and van Beusechem VW: Quantitative virus-associated RNA detection to monitor oncolytic adenovirus replication. Int J Mol Sci. 25:65512024. View Article : Google Scholar : PubMed/NCBI

316 

Karnik I, Her Z, Neo SH, Liu WN and Chen Q: Emerging preclinical applications of humanized mouse models in the discovery and validation of novel immunotherapeutics and their mechanisms of action for improved cancer treatment. Pharmaceutics. 15:16002023. View Article : Google Scholar : PubMed/NCBI

317 

Ambegoda P, Wei HC and Jang SR: The role of immune cells in resistance to oncolytic viral therapy. Math Biosci Eng. 21:5900–5946. 2024. View Article : Google Scholar : PubMed/NCBI

318 

West J, Robertson-Tessi M and Anderson ARA: Agent-based methods facilitate integrative science in cancer. Trends Cell Biol. 33:300–311. 2023. View Article : Google Scholar

319 

Sachak-Patwa R, Lafferty EI, Schmit CJ, Thompson RN and Byrne HM: A target-cell limited model can reproduce influenza infection dynamics in hosts with differing immune responses. J Theor Biol. 567:1114912023. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Xu J, Xia Z, Wang S and Xia Q: Resistance to oncolytic virotherapy: Multidimensional mechanisms and therapeutic breakthroughs (Review). Int J Mol Med 56: 171, 2025.
APA
Xu, J., Xia, Z., Wang, S., & Xia, Q. (2025). Resistance to oncolytic virotherapy: Multidimensional mechanisms and therapeutic breakthroughs (Review). International Journal of Molecular Medicine, 56, 171. https://doi.org/10.3892/ijmm.2025.5612
MLA
Xu, J., Xia, Z., Wang, S., Xia, Q."Resistance to oncolytic virotherapy: Multidimensional mechanisms and therapeutic breakthroughs (Review)". International Journal of Molecular Medicine 56.5 (2025): 171.
Chicago
Xu, J., Xia, Z., Wang, S., Xia, Q."Resistance to oncolytic virotherapy: Multidimensional mechanisms and therapeutic breakthroughs (Review)". International Journal of Molecular Medicine 56, no. 5 (2025): 171. https://doi.org/10.3892/ijmm.2025.5612
Copy and paste a formatted citation
x
Spandidos Publications style
Xu J, Xia Z, Wang S and Xia Q: Resistance to oncolytic virotherapy: Multidimensional mechanisms and therapeutic breakthroughs (Review). Int J Mol Med 56: 171, 2025.
APA
Xu, J., Xia, Z., Wang, S., & Xia, Q. (2025). Resistance to oncolytic virotherapy: Multidimensional mechanisms and therapeutic breakthroughs (Review). International Journal of Molecular Medicine, 56, 171. https://doi.org/10.3892/ijmm.2025.5612
MLA
Xu, J., Xia, Z., Wang, S., Xia, Q."Resistance to oncolytic virotherapy: Multidimensional mechanisms and therapeutic breakthroughs (Review)". International Journal of Molecular Medicine 56.5 (2025): 171.
Chicago
Xu, J., Xia, Z., Wang, S., Xia, Q."Resistance to oncolytic virotherapy: Multidimensional mechanisms and therapeutic breakthroughs (Review)". International Journal of Molecular Medicine 56, no. 5 (2025): 171. https://doi.org/10.3892/ijmm.2025.5612
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team