Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
November-2025 Volume 56 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2025 Volume 56 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Pathogen virulence genes: Advances, challenges and future directions in infectious disease research (Review)

  • Authors:
    • Yun Chen
    • Xiaolong Wu
    • Chengcheng Xu
    • Jianxiang Huang
    • Lingyu Zhang
    • Peng Qiu
    • Danling Zheng
    • Wang Chen
    • Shuyao Zhang
  • View Affiliations / Copyright

    Affiliations: Department of Pharmacy, Guangzhou Red Cross Hospital (Guangzhou Red Cross Hospital of Jinan University), Guangzhou, Guangdong 510220, P.R. China
    Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 173
    |
    Published online on: August 22, 2025
       https://doi.org/10.3892/ijmm.2025.5614
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Pathogens, including bacteria, viruses and fungi, employ virulence genes to invade their hosts, circumvent immunity and induce diseases. The present review examines the categorization and regulatory mechanisms of virulence genes and their co‑evolution with antimicrobial resistance. The present review focused on the fimbrial adhesion H adhesion gene of Escherichia coli, the spike protein gene of severe acute respiratory syndrome coronavirus 2 and the enhanced filamentous growth protein 1 (EFG1) morphological transition gene of Candida albicans, as well as their roles in host adhesion, immune evasion and tissue damage. Application of technologies, including multi‑omics integration, artificial intelligence and CRISPR‑based genome editing, is discussed in the context of precision diagnostics, targeted therapy and vaccine development. By elucidating pathogen adaptation dynamics and host‑pathogen interactions, the present review offers a basis for reducing the global burden of drug‑resistant infections through improved surveillance and personalized interventions.
View Figures

Figure 1

Mechanisms of action of various
virulence genes. FimH (type 1 fimbrial adhesin), FnbA
(fibronectin-binding protein A), IpaBCD (invasion plasmid antigens
B, C and D), CtxAB (cholera toxin subunits A and B), CPS (capsular
polysaccharide synthesis locus), and In1 (internalin-like invasion
factor). FimH mediates mannose-based adhesion of E. coli to
uroepithelium; FnbA anchors Staphylococcus aureus to
fibronectin for tissue invasion; IpaBCD drives Shigella
entry via actin remodeling; CtxAB triggers chloride/water efflux
causing diarrhea; Botulinum toxin blocks acetylcholine release
producing flaccid paralysis; InlA/InlB enable Listeria to
cross intestinal epithelia; CPS forms pneumococcal capsules
that resist phagocytosis; together they exemplify adhesion,
invasion, immune evasion and toxin production.

Figure 2

Mechanisms underlying the association
between virulence genes and drug resistance. Tn554 (staphylococcal
transposon 554), IncF (incompatibility group F plasmid), Pel (Pel
polysaccharide synthesis locus), Psl (Pseudomonas surface
polysaccharide locus). Tn554 and IncF act as mobile genetic
elements that co-transfer virulence and antibiotic-resistance
genes, accelerating spread. Pel and Psl encode exopolysaccharides
needed for Pseudomonas aeruginosa biofilm formation; once
the matrix is built, antibiotics penetrate poorly and resistance
determinants are amplified within the protected community.
View References

1 

Zhu YS, Sun ZS, Zheng JX, Zhang SX, Yin JX, Zhao HQ, Shen HM, Baneth G, Chen JH and Kassegne K: Prevalence and attributable health burdens of vector-borne parasitic infectious diseases of poverty, 1990-2021: Findings from the global burden of disease study 2021. Infect Dis Poverty. 13:962024. View Article : Google Scholar : PubMed/NCBI

2 

GBD 2019 Antimicrobial Resistance Collaborators: Global mortality associated with 33 bacterial pathogens in 2019: A systematic analysis for the global burden of disease study 2019. Lancet. 400:2221–2248. 2022. View Article : Google Scholar : PubMed/NCBI

3 

Casadevall A and Pirofski LA: The damage-response framework of microbial pathogenesis. Nat Rev Microbiol. 1:17–24. 2003. View Article : Google Scholar

4 

Siscar-Lewin S, Hube B and Brunke S: Emergence and evolution of virulence in human pathogenic fungi. Trends Microbiol. 30:693–704. 2022. View Article : Google Scholar : PubMed/NCBI

5 

Ullah N, Assawakongkarat T, Akeda Y and Chaichanawongsaroj N: Detection of Extended-spectrum β-lactamase-producing Escherichia coli isolates by isothermal amplification and association of their virulence genes and phylogroups with extraintestinal infection. Sci Rep. 13:120222023. View Article : Google Scholar

6 

Orlek A, Anjum MF, Mather AE, Stoesser N and Walker AS: Factors associated with plasmid antibiotic resistance gene carriage revealed using large-scale multivariable analysis. Sci Rep. 13:25002023. View Article : Google Scholar : PubMed/NCBI

7 

Jackson N, Belmont CR, Tarlton NJ, Allegretti YH, Adams-Sapper S, Huang YY, Borges CA, Frazee BW, Florence-Petrovic D, Hufana C, et al: Genetic predictive factors for nonsusceptible phenotypes and multidrug resistance in expanded-spectrum cephalosporin-resistant uropathogenic Escherichia coli from a multicenter cohort: Insights into the phenotypic and genetic basis of coresistance. mSphere. 7:e00471222022. View Article : Google Scholar : PubMed/NCBI

8 

Li JJ, Spychala CN, Hu F, Sheng JF and Doi Y: Complete nucleotide sequences of bla (CTX-M)-harboring IncF plasmids from community-associated Escherichia coli strains in the United States. Antimicrob Agents Chemother. 59:3002–3007. 2015. View Article : Google Scholar :

9 

Song S, Yang S, Zheng R, Yin D, Cao Y, Wang Y, Qiao L, Bai R, Wang S, Yin W, et al: Adaptive evolution of carbapenem-resistant hypervirulent Klebsiella pneumoniae in the urinary tract of a single patient. Proc Natl Acad Sci USA. 121:e24004461212024. View Article : Google Scholar : PubMed/NCBI

10 

Zhang J, Xu Y, Wang M, Li X, Liu Z, Kuang D, Deng Z, Ou HY and Qu J: Mobilizable plasmids drive the spread of antimicrobial resistance genes and virulence genes in Klebsiella pneumoniae. Genome Med. 15:1062023. View Article : Google Scholar : PubMed/NCBI

11 

Emamalipour M, Seidi K, Zununi Vahed S, Jahanban-Esfahlan A, Jaymand M, Majdi H, Amoozgar Z, Chitkushev LT, Javaheri T, Jahanban-Esfahlan R and Zare P: Horizontal gene transfer: From evolutionary flexibility to disease progression. Front Cell Dev Biol. 8:2292020. View Article : Google Scholar : PubMed/NCBI

12 

Tang Y, Zhang J, Guan J, Liang W, Petassi MT, Zhang Y, Jiang X, Wang M, Wu W, Ou HY and Peters JE: Transposition with Tn3-family elements occurs through interaction with the host β-sliding clamp processivity factor. Nucleic Acids Res. 52:10416–10430. 2024. View Article : Google Scholar : PubMed/NCBI

13 

Jiang J, Wang L, Hu Y, Chen X, Li P, Zhang J, Zhang Y, Su J, Xu X, Xiao Y, et al: Global emergence of carbapenem-resistant hypervirulent Klebsiella pneumoniae driven by an IncFIIK34 KPC-2 plasmid. EBioMedicine. 113:1056272025. View Article : Google Scholar

14 

Lu Y, Chen F, Zhao Q, Cao Q, Chen R, Pan H, Wang Y, Huang H, Huang R, Liu Q, et al: Modulation of MRSA virulence gene expression by the wall teichoic acid enzyme TarO. Nat Commun. 14:15942023. View Article : Google Scholar : PubMed/NCBI

15 

Finlay BB and Falkow S: Common themes in microbial pathogenicity revisited. Microbiol Mol Biol Rev. 61:136–169. 1997.PubMed/NCBI

16 

Glazier VE: EFG1, everyone's favorite gene in Candida albicans: A comprehensive literature review. Front Cell Infect Microbiol. 12:8552292022. View Article : Google Scholar : PubMed/NCBI

17 

GBD 2021 Antimicrobial Resistance Collaborators: Global burden of bacterial antimicrobial resistance 1990-2021: A systematic analysis with forecasts to 2050. Lancet. 404:1199–1226. 2024. View Article : Google Scholar : PubMed/NCBI

18 

Ponde NO, Lortal L, Ramage G, Naglik JR and Richardson JP: Candida albicans biofilms and polymicrobial interactions. Crit Rev Microbiol. 47:91–111. 2021. View Article : Google Scholar : PubMed/NCBI

19 

Addetia A, Piccoli L, Case JB, Park YJ, Beltramello M, Guarino B, Dang H, de Melo GD, Pinto D, Sprouse K, et al: Neutralization, effector function and immune imprinting of Omicron variants. Nature. 621:592–601. 2023. View Article : Google Scholar : PubMed/NCBI

20 

Louwen R, Staals RH, Endtz HP, van Baarlen P and van der Oost J: The role of CRISPR-Cas systems in virulence of pathogenic bacteria. Microbiol Mol Biol Rev. 78:74–88. 2024. View Article : Google Scholar

21 

Kushwaha SK, Bhavesh NLS, Abdella B, Lahiri C and Marathe SA: The phylogenomics of CRISPR-Cas system and revelation of its features in Salmonella. Sci Rep. 10:211562020. View Article : Google Scholar : PubMed/NCBI

22 

Sampson TR, Napier BA, Schroeder MR, Louwen R, Zhao J, Chin CY, Ratner HK, Llewellyn AC, Jones CL, Laroui H, et al: A CRISPR-Cas system enhances envelope integrity mediating antibiotic resistance and inflammasome evasion. Proc Natl Acad Sci USA. 111:11163–11168. 2014. View Article : Google Scholar : PubMed/NCBI

23 

Haghighatpanah M and Mojtahedi A: Characterization of antibiotic resistance and virulence factors of Escherichia coli strains isolated from Iranian inpatients with urinary tract infections. Infect Drug Resist. 12:2747–2754. 2019. View Article : Google Scholar : PubMed/NCBI

24 

Speziale P and Pietrocola G: The multivalent role of fibronectin-binding proteins A and B (FnBPA and FnBPB) of Staphylococcus aureus in host infections. Front Microbiol. 11:20542020. View Article : Google Scholar : PubMed/NCBI

25 

Claes J, Liesenborghs L, Peetermans M, Veloso TR, Missiakas D, Schneewind O, Mancini S, Entenza JM, Hoylaerts MF, Heying R, et al: Clumping factor A, von Willebrand factor-binding protein and von Willebrand factor anchor Staphylococcus aureus to the vessel wall. J Thromb Haemost. 15:1009–1019. 2017. View Article : Google Scholar : PubMed/NCBI

26 

Cavalcante PA, Prata MMG, Medeiros PHQS, Alves da Silva AV, Quetz JS, Reyes MAV, Rodrigues TS, Santos AKS, Ribeiro SA, Veras HN, et al: Intestinal cell migration damage induced by enteropathogenic Escherichia coli strains. Braz J Med Biol Res. 51:e74232018. View Article : Google Scholar : PubMed/NCBI

27 

Yang D, Yang Y, Qiao P, Jiang F, Zhang X, Zhao Z, Cai T, Li G and Cai W: Genomic island-encoded histidine kinase and response regulator coordinate mannose utilization with virulence in Enterohemorrhagic Escherichia coli. mBio. 14:e03152222023. View Article : Google Scholar : PubMed/NCBI

28 

Chun YY, Tan KS, Yu L, Pang M, Wong MHM, Nakamoto R, Chua WZ, Huee-Ping Wong A, Lew ZZR, Ong HH, et al: Influence of glycan structure on the colonization of Streptococcus pneumoniae on human respiratory epithelial cells. Proc Natl Acad Sci USA. 120:e22135841202023. View Article : Google Scholar : PubMed/NCBI

29 

Korshoj LE and Kielian T: Bacterial single-cell RNA sequencing captures biofilm transcriptional heterogeneity and differential responses to immune pressure. Nat Commun. 15:101842024. View Article : Google Scholar : PubMed/NCBI

30 

Cheng H, Ji Z, Wang Y, Li S, Tang T, Wang F, Peng C, Wu X, Cheng Y, Liu Z, et al: Mycobacterium tuberculosis produces D-serine under hypoxia to limit CD8+ T cell-dependent immunity in mice. Nat Microbiol. 9:1856–1872. 2024. View Article : Google Scholar : PubMed/NCBI

31 

Gao S, Wu F, Gurcha SS, Batt SM, Besra GS, Rao Z and Zhang L: Structural analysis of phosphoribosyltransferase-mediated cell wall precursor synthesis in Mycobacterium tuberculosis. Nat Microbiol. 9:976–987. 2024. View Article : Google Scholar : PubMed/NCBI

32 

Marrakchi H, Lanéelle MA and Daffé M: Mycolic acids: Structures, biosynthesis, and beyond. Chem Biol. 21:67–85. 2014. View Article : Google Scholar : PubMed/NCBI

33 

Schnappinger D, Ehrt S, Voskuil MI, Liu Y, Mangan JA, Monahan IM, Dolganov G, Efron B, Butcher PD, Nathan C and Schoolnik GK: Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J Exp Med. 198:693–704. 2003. View Article : Google Scholar : PubMed/NCBI

34 

Liu Y, Li H, Dai D, He J and Liang Z: Gene regulatory mechanism of Mycobacterium tuberculosis during dormancy. Curr Issues Mol Biol. 46:5825–5844. 2024. View Article : Google Scholar : PubMed/NCBI

35 

Peng Q, Tang X, Dong W, Sun N and Yuan W: A review of biofilm formation of Staphylococcus aureus and its regulation mechanism. Antibiotics (Basel). 12:122022. View Article : Google Scholar

36 

Le S, Wei L, Wang J, Tian F, Yang Q, Zhao J, Zhong Z, Liu J, He X, Zhong Q, et al: Bacteriophage protein Dap1 regulates evasion of antiphage immunity and Pseudomonas aeruginosa virulence impacting phage therapy in mice. Nat Microbiol. 9:1828–1841. 2024. View Article : Google Scholar : PubMed/NCBI

37 

Chauhan RP and Gordon ML: An overview of influenza A virus genes, protein functions, and replication cycle highlighting important updates. Virus Genes. 58:255–269. 2022. View Article : Google Scholar : PubMed/NCBI

38 

Emert-Sedlak LA, Tice CM, Shi H, Alvarado JJ, Shu ST, Reitz AB and Smithgall TE: PROTAC-mediated degradation of HIV-1 Nef efficiently restores cell-surface CD4 and MHC-I expression and blocks HIV-1 replication. Cell Chem Biol. 31:658–668.e14. 2024. View Article : Google Scholar : PubMed/NCBI

39 

Patel A, Kumar S, Lai L, Chakravarthy C, Valanparambil R, Reddy ES, Gottimukkala K, Bajpai P, Raju DR, Edara VV, et al: Molecular basis of SARS-CoV-2 Omicron variant evasion from shared neutralizing antibody response. Structure. 31:801–811.e5. 2023. View Article : Google Scholar : PubMed/NCBI

40 

Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J, Abfalterer W, Hengartner N, Giorgi EE, Bhattacharya T, Foley B, et al: Tracking changes in SARS-CoV-2 spike: Evidence that D614G increases infectivity of the COVID-19 virus. Cell. 182:812–827.e19. 2020. View Article : Google Scholar : PubMed/NCBI

41 

Zhang Z, Wang Q, Nguyen HT, Chen HC, Chiu TJ, Smith AB III and Sodroski JG: Alterations in gp120 glycans or the gp41 fusion peptide-proximal region modulate the stability of the human immunodeficiency virus (HIV-1) envelope glycoprotein pretriggered conformation. J Virol. 97:e00592232023. View Article : Google Scholar : PubMed/NCBI

42 

Xie Z, Lin YC, Steichen JM, Ozorowski G, Kratochvil S, Ray R, Torres JL, Liguori A, Kalyuzhniy O, Wang X, et al: mRNA-LNP HIV-1 trimer boosters elicit precursors to broad neutralizing antibodies. Science. 384:eadk05822024. View Article : Google Scholar : PubMed/NCBI

43 

Fu L, Weiskopf EN, Akkermans O, Swanson NA, Cheng S, Schwartz TU and Görlich D: HIV-1 capsids enter the FG phase of nuclear pores like a transport receptor. Nature. 626:843–851. 2024. View Article : Google Scholar : PubMed/NCBI

44 

Bennett AL and Henderson R: HIV-1 envelope conformation, allostery, and dynamics. Viruses. 13:8522021. View Article : Google Scholar : PubMed/NCBI

45 

Qian G, Zhang Y, Liu Y, Li M, Xin B, Jiang W, Han W, Wang Y, Tang X, Li L, et al: Glutamylation of an HIV-1 protein inhibits the immune response by hijacking STING. Cell Rep. 42:1124422023. View Article : Google Scholar : PubMed/NCBI

46 

Luo Z, Miranda HA, Burke KN, Spurrier MA, Berry M, Stover EL, Spreng RL, Waitt G, Soderblom EJ, Macintyre AN, et al: Vaccination with antigenically complex hemagglutinin mixtures confers broad protection from influenza disease. Sci Transl Med. 16:eadj46852024. View Article : Google Scholar : PubMed/NCBI

47 

Na TY, Ka NL, Rhee H, Kyeong D, Kim MH, Seong JK, Park YN and Lee MO: Interaction of hepatitis B virus X protein with PARP1 results in inhibition of DNA repair in hepatocellular carcinoma. Oncogene. 35:5435–5445. 2016. View Article : Google Scholar : PubMed/NCBI

48 

Frost JR, Olanubi O, Cheng SKH, Soriano A, Crisostomo L, Lopez A and Pelka P: The interaction of adenovirus E1A with the mammalian protein Ku70/XRCC6. Virology. 500:11–21. 2017. View Article : Google Scholar

49 

Radko S, Koleva M, James KM, Jung R, Mymryk JS and Pelka P: Adenovirus E1A targets the DREF nuclear factor to regulate virus gene expression, DNA replication, and growth. J Virol. 88:13469–13481. 2014. View Article : Google Scholar : PubMed/NCBI

50 

Zhang Y, Yin Q, Ni M, Liu T, Wang C, Song C, Liao L, Xing H, Jiang S, Shao Y, et al: Dynamics of HIV-1 quasispecies diversity of participants on long-term antiretroviral therapy based on intrahost single-nucleotide variations. Int J Infect Dis. 104:306–314. 2021. View Article : Google Scholar : PubMed/NCBI

51 

Liu Y, Jia L, Su B, Li H, Li Z, Han J, Zhang Y, Zhang T, Li T, Wu H, et al: The genetic diversity of HIV-1 quasispecies within primary infected individuals. AIDS Res Hum Retroviruses. 36:440–449. 2020. View Article : Google Scholar

52 

Li Y, Liu X, Fujinaga K, Gross JD and Frankel AD: Enhanced NF-κB activation via HIV-1 Tat-TRAF6 cross-talk. Sci Adv. 10:eadi41622024. View Article : Google Scholar

53 

Ding X, Liu J, Jiang T and Wu A: Transmission restriction and genomic evolution co-shape the genetic diversity patterns of influenza A virus. Virol Sin. 39:525–536. 2024. View Article : Google Scholar : PubMed/NCBI

54 

Liang SH, Sircaik S, Dainis J, Kakade P, Penumutchu S, McDonough LD, Chen YH, Frazer C, Schille TB, Allert S, et al: The hyphal-specific toxin candidalysin promotes fungal gut commensalism. Nature. 627:620–627. 2024. View Article : Google Scholar : PubMed/NCBI

55 

Lin L, Wang M, Zeng J, Mao Y, Qin R, Deng J, Ouyang X, Hou X, Sun C, Wang Y, et al: Sequence variation of Candida albicans Sap2 enhances fungal pathogenicity via complement evasion and macrophage M2-like phenotype induction. Adv Sci (Weinh). 10:e22067132023. View Article : Google Scholar : PubMed/NCBI

56 

Klis FM and Brul S: Adaptations of the secretome of Candida albicans in response to host-related environmental conditions. Eukaryot Cell. 14:1165–1172. 2015. View Article : Google Scholar : PubMed/NCBI

57 

Zhang TY, Chen YQ, Tan JC, Zhou JA, Chen WN, Jiang T, Zha JY, Zeng XK, Li BW, Wei LQ, et al: Global fungal-host interactome mapping identifies host targets of candidalysin. Nat Commun. 15:17572024. View Article : Google Scholar : PubMed/NCBI

58 

Brown SM, Campbell LT and Lodge JK: Cryptococcus neoformans, a fungus under stress. Curr Opin Microbiol. 10:320–325. 2007. View Article : Google Scholar : PubMed/NCBI

59 

O'Meara TR, Xu W, Selvig KM, O'Meara MJ, Mitchell AP and Alspaugh JA: The Cryptococcus neoformans Rim101 transcription factor directly regulates genes required for adaptation to the host. Mol Cell Biol. 34:673–684. 2014. View Article : Google Scholar :

60 

Luo Y, Liu F, Deng L, Xu J, Kong Q, Shi Y and Sang H: Innate and adaptive immune responses induced by Aspergillus fumigatus conidia and hyphae. Curr Microbiol. 80:282022. View Article : Google Scholar : PubMed/NCBI

61 

Carrion Sde J, Leal SM Jr, Ghannoum MA, Aimanianda V, Latgé JP and Pearlman E: The RodA hydrophobin on Aspergillus fumigatus spores masks dectin-1- and dectin-2-dependent responses and enhances fungal survival in vivo. J Immunol. 191:2581–2588. 2013. View Article : Google Scholar : PubMed/NCBI

62 

Kim SH, Iyer KR, Pardeshi L, Muñoz JF, Robbins N, Cuomo CA, Wong KH and Cowen LE: Genetic analysis of Candida auris implicates hsp90 in morphogenesis and Azole tolerance and Cdr1 in Azole resistance. mBio. 10:e02529–18. 2019.PubMed/NCBI

63 

Nobile CJ, Andes DR, Nett JE, Smith FJ, Yue F, Phan QT, Edwards JE, Filler SG and Mitchell AP: Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLoS Pathog. 2:e632006. View Article : Google Scholar : PubMed/NCBI

64 

Fanning S, Xu W, Solis N, Woolford CA, Filler SG and Mitchell AP: Divergent targets of Candida albicans biofilm regulator Bcr1 in vitro and in vivo. Eukaryot Cell. 11:896–904. 2012. View Article : Google Scholar : PubMed/NCBI

65 

McCall AD, Pathirana RU, Prabhakar A, Cullen PJ and Edgerton M: Candida albicans biofilm development is governed by cooperative attachment and adhesion maintenance proteins. NPJ Biofilms Microbiomes. 5:212019. View Article : Google Scholar : PubMed/NCBI

66 

Judan Cruz KG, Alfonso ED, Fernando SID and Watanabe K: Candida albicans biofilm inhibition by ethnobotanicals and ethnobotanically-synthesized gold nanoparticles. Front Microbiol. 12:6651132021. View Article : Google Scholar : PubMed/NCBI

67 

Kumar R, Rojas IG and Edgerton M: Candida albicans Sap6 Initiates Oral mucosal inflammation via the protease activated receptor PAR2. Front Immunol. 13:9127482022. View Article : Google Scholar : PubMed/NCBI

68 

Iwasawa MT, Miyachi H, Wakabayashi S, Sugihira T, Aoyama R, Nakagawa S, Katayama Y, Yoneyama M, Hara H, Iwakura Y, et al: Epidermal clearance of Candida albicans is mediated by IL-17 but independent of fungal innate immune receptors. Int Immunol. 34:409–420. 2022. View Article : Google Scholar : PubMed/NCBI

69 

Hoang TNM, Cseresnyés Z, Hartung S, Blickensdorf M, Saffer C, Rennert K, Mosig AS, von Lilienfeld-Toal M and Figge MT: Invasive aspergillosis-on-chip: A quantitative treatment study of human Aspergillus fumigatus infection. Biomaterials. 283:1214202022. View Article : Google Scholar : PubMed/NCBI

70 

Liu H, Shetty AC, Ibrahim AS, Filler SG and Bruno VM: Novel host pathways govern epithelial cell invasion of Aspergillus fumigatus. Microbiol Spectr. 11:e00084232023. View Article : Google Scholar : PubMed/NCBI

71 

Luptáková D, Patil RH, Dobiáš R, Stevens DA, Pluháček T, Palyzová A, Káňová M, Navrátil M, Vrba Z, Hubáček P, et al: Siderophore-based noninvasive differentiation of Aspergillus fumigatus colonization and invasion in pulmonary aspergillosis. Microbiol Spectr. 11:e04068222023. View Article : Google Scholar : PubMed/NCBI

72 

Zhang Y, Wei W, Wen H, Cheng Z, Mi Z, Zhang J, Liu X and Fan X: Targeting multidrug-recalcitrant Pseudomonas aeruginosa biofilms: Combined-enzyme treatment enhances antibiotic efficacy. Antimicrob Agents Chemother. 67:e01358222023. View Article : Google Scholar : PubMed/NCBI

73 

Kowalski CH, Morelli KA, Schultz D, Nadell CD and Cramer RA: Fungal biofilm architecture produces hypoxic microenvironments that drive antifungal resistance. Proc Natl Acad Sci USA. 117:22473–22483. 2020. View Article : Google Scholar : PubMed/NCBI

74 

Bing J, Guan Z, Zheng T, Zhang Z, Fan S, Ennis CL, Nobile CJ and Huang G: Clinical isolates of Candida auris with enhanced adherence and biofilm formation due to genomic amplification of ALS4. PLoS Pathog. 19:e10112392023. View Article : Google Scholar : PubMed/NCBI

75 

Ji X, Krüger H, Wang Y, Feßler AT, Wang Y, Schwarz S and Wu C: Tn 560, a novel Tn 554 family transposon from porcine methicillin-resistant staphylococcus aureus ST398, carries a multiresistance gene cluster comprising a novel spc gene variant and the genes lsa(E) and lnu(B). Antimicrob Agents Chemother. 66:e01947212022. View Article : Google Scholar

76 

Sharafutdinov I, Harrer A, Müsken M, Rottner K, Sticht H, Täger C, Naumann M, Tegtmeyer N and Backert S: Cortactin-dependent control of Par1b-regulated epithelial cell polarity in Helicobacter infection. Cell Insight. 3:1001612024. View Article : Google Scholar : PubMed/NCBI

77 

Lockhart SR, Etienne KA, Vallabhaneni S, Farooqi J, Chowdhary A, Govender NP, Colombo AL, Calvo B, Cuomo CA, Desjardins CA, et al: Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin Infect Dis. 64:134–140. 2017. View Article : Google Scholar :

78 

Chowdhary A, Sharma C and Meis JF: Candida auris: A rapidly emerging cause of hospital-acquired multidrug-resistant fungal infections globally. PLoS Pathog. 13:e10062902017. View Article : Google Scholar : PubMed/NCBI

79 

Chadwick BJ, Ristow LC, Xie X, Krysan DJ and Lin X: Discovery of CO2 tolerance genes associated with virulence in the fungal pathogen Cryptococcus neoformans. Nat Microbiol. 9:2684–2695. 2024. View Article : Google Scholar : PubMed/NCBI

80 

Kadooka C, Tanaka Y, Hira D and Oka T: Identification of a putative α-galactoside β-(1→3)-galactosyltransferase involved in the biosynthesis of galactomannan side chain of glucuronoxylomannogalactan in Cryptococcus neoformans. Front Microbiol. 15:13903712024. View Article : Google Scholar

81 

Rhodes J, Desjardins CA, Sykes SM, Beale MA, Vanhove M, Sakthikumar S, Chen Y, Gujja S, Saif S, Chowdhary A, et al: Traci ng genetic excha nge a nd biogeog raphy of Cryptococcus neoformans var. grubii at the global population level. Genetics. 207:327–346. 2017. View Article : Google Scholar : PubMed/NCBI

82 

Billmyre RB, Craig CJ, Lyon JW, Reichardt C, Kuhn AM, Eickbush MT and Zanders SE: Landscape of essential growth and fluconazole-resistance genes in the human fungal pathogen Cryptococcus neoformans. PLoS Boil. 23:e30031842025. View Article : Google Scholar

83 

Coelho MA, David-Palma M, Shea T, Bowers K, McGinley-Smith S, Mohammad AW, Gnirke A, Yurkov AM, Nowrousian M, Sun S, et al: Comparative genomics of Cryptococcus and Kwoniella reveals pathogenesis evolution and contrasting karyotype dynamics via intercentromeric recombination or chromosome fusion. bioRxiv [Preprint]: 2023.12.27.573464. 2024.

84 

Liang X, Wang B, Dong Q, Li L, Rollins JA, Zhang R and Sun G: Pathogenic adaptations of Colletotrichum fungi revealed by genome wide gene family evolutionary analyses. PLoS One. 13:e01963032018. View Article : Google Scholar : PubMed/NCBI

85 

Pei S, Song Z, Yang W, He W, Ou X, Zhao B, He P, Zhou Y, Xia H, Wang S, et al: The catalogue of Mycobacterium tuberculosis mutations associated with drug resistance to 12 drugs in China from a nationwide survey: A genomic analysis. Lancet Microbe. 5:1008992024. View Article : Google Scholar

86 

Rahlwes KC, Dias BRS, Campos PC, Alvarez-Arguedas S and Shiloh MU: Pathogenicity and virulence of Mycobacterium tuberculosis. Virulence. 14:21504492023. View Article : Google Scholar :

87 

Liu X, Yang M, Xu P, Du M, Li S, Shi J, Li Q, Yuan J and Pang Y: Kynurenine-AhR reduces T-cell infiltration and induces a delayed T-cell immune response by suppressing the STAT1-CXCL9/CXCL10 axis in tuberculosis. Cell Mol Immunol. 21:1426–1440. 2024. View Article : Google Scholar : PubMed/NCBI

88 

Zhang S, Dogan B, Guo C, Herlekar D, Stewart K, Scherl EJ and Simpson KW: Short chain fatty acids modulate the growth and virulence of pathosymbiont Escherichia coli and host response. Antibiotics (Basel). 9:4622020. View Article : Google Scholar : PubMed/NCBI

89 

He Y, Liang B, Mai J, Lan F, Xiong Z, Liu X, Yang K, Liu X, Liu S, Zhao Z, et al: Distribution of disinfectant resistant genes in mcr-1-carrying Escherichia coli isolated from children in southern China. Microb Pathog. 198:1071142025. View Article : Google Scholar

90 

Kadry AA, El-Antrawy MA and El-Ganiny AM: Management of clinical infections of Escherichia coli by new β-lactam/β-lactamase inhibitor combinations. Iran J Microbiol. 14:466–474. 2022.

91 

Adegoke AA, Madu CE, Reddy P, Fatunla OK, Stenström TA and Okoh AI: Virulence and antibiotic resistance genes in enterococcus from wastewater for reuse and their health impact. Microorganisms. 13:10452025. View Article : Google Scholar : PubMed/NCBI

92 

Lamas A, Regal P, Vázquez B, Cepeda A and Franco CM: Short chain fatty acids commonly produced by gut microbiota influence Salmonella enterica motility, biofilm formation, and gene expression. Antibiotics (Basel). 8:4652019.

93 

Ballesteros-Monrreal MG, Arenas-Hernández MMP, Barrios-Villa E, Juarez J, Álvarez-Ainza ML, Taboada P, De la Rosa-López R, Bolado-Martínez E and Valencia D: Bacterial morphotypes as important trait for uropathogenic E. coli diagnostic; a virulence-phenotype-phylogeny study. Microorganisms. 9:23812021. View Article : Google Scholar : PubMed/NCBI

94 

Watanabe Y, Haneda T, Kimishima A, Kuwae A, Suga T, Suzuki T, Iwabuchi Y, Honsho M, Honma S, Iwatsuki M, et al: PurA is the main target of aurodox, a type III secretion system inhibitor. Proc Natl Acad Sci USA. 121:e23223631212024. View Article : Google Scholar : PubMed/NCBI

95 

Gobert AP, Hawkins CV, Williams KJ, Snyder LA, Barry DP, Asim M, Allaman MM, McNamara KM, Delgado AG, Wang Y, et al: Hypusination in intestinal epithelial cells protects mice from infectious colitis. Gut Microbes. 16:24388282024. View Article : Google Scholar : PubMed/NCBI

96 

Wang ST, Kuo CJ, Huang CW, Lee TM, Chen JW and Chen CS: OmpR coordinates the expression of virulence factors of Enterohemorrhagic Escherichia coli in the alimentary tract of Caenorhabditis elegans. Mol Microbiol. 116:168–183. 2021. View Article : Google Scholar : PubMed/NCBI

97 

Crofts AA, Giovanetti SM, Rubin EJ, Poly FM, Gutiérrez RL, Talaat KR, Porter CK, Riddle MS, DeNearing B, Brubaker J, et al: Enterotoxigenic E. coli virulence gene regulation in human infections. Proc Natl Acad Sci USA. 115:E8968–E8976. 2018. View Article : Google Scholar : PubMed/NCBI

98 

Liu B and Sun B: Rsp promotes the transcription of virulence factors in an agr-independent manner in Staphylococcus aureus. Emerg Microbes Infect. 9:796–812. 2020. View Article : Google Scholar : PubMed/NCBI

99 

Freiberg JA, Reyes Ruiz VM, Gimza BD, Murdoch CC, Green ER, Curry JM, Cassat JE and Skaar EP: Restriction of arginine induces antibiotic tolerance in Staphylococcus aureus. Nat Commun. 15:67342024. View Article : Google Scholar : PubMed/NCBI

100 

Lu Y, Cai WJ, Ren Z and Han P: The role of staphylococcal biofilm on the surface of implants in orthopedic infection. Microorganisms. 10:19092022. View Article : Google Scholar : PubMed/NCBI

101 

Li H, Li C, Shi C, Alharbi M, Cui H and Lin L: Phosphoproteomics analysis reveals the anti-bacterial and anti-virulence mechanism of eugenol against Staphylococcus aureus and its application in meat products. Int J Food Microbiol. 414:1106212024. View Article : Google Scholar : PubMed/NCBI

102 

Tan L, Li SR, Jiang B, Hu XM and Li S: Therapeutic targeting of the Staphylococcus aureus accessory gene regulator (agr) system. Front Microbiol. 9:552018. View Article : Google Scholar : PubMed/NCBI

103 

Ghaioumy R, Tabatabaeifar F, Mozafarinia K, Mianroodi AA, Isaei E, Morones-Ramírez JR, Afshari SAK and Kalantar-Neyestanaki D: Biofilm formation and molecular analysis of intercellular adhesion gene cluster (icaABCD) among Staphylococcus aureus strains isolated from children with adenoiditis. Iran J Microbiol. 13:458–463. 2021.PubMed/NCBI

104 

Lee S, Kim S, Lee H, Ha J, Lee J, Choi Y, Oh H, Yoon Y and Choi KH: icaA gene of Staphylococcus aureus responds to NaCl, leading to increased biofilm formation. J Food Prot. 81:412–416. 2018. View Article : Google Scholar : PubMed/NCBI

105 

Lister JL and Horswill AR: Staphylococcus aureus biofilms: Recent developments in biofilm dispersal. Front Cell Infect Microbiol. 4:1782014. View Article : Google Scholar

106 

Burian M, Plange J, Schmitt L, Kaschke A, Marquardt Y, Huth L, Baron JM, Hornef MW, Wolz C and Yazdi AS: Adaptation of Staphylococcus aureus to the human skin environment identified using an ex vivo tissue model. Front Microbiol. 12:7289892021. View Article : Google Scholar : PubMed/NCBI

107 

Karimzadeh R and Ghassab RK: Identification of nuc nuclease and sea enterotoxin genes in Staphylococcus aureus isolates from nasal mucosa of burn hospital staff: A cross-sectional study. New Microbes New Infect. 47:1009922022. View Article : Google Scholar : PubMed/NCBI

108 

Heng P, Liu J, Song Z, Wu C, Yu X and He Y: Rapid detection of Staphylococcus aureus using a novel multienzyme isothermal rapid amplification technique. Front Microbiol. 13:10277852022. View Article : Google Scholar : PubMed/NCBI

109 

Hodille E, Plesa A, Bourrelly E, Belmont L, Badiou C, Lina G and Dumitrescu O: Staphylococcal panton-valentine leucocidin and gamma haemolysin target and lyse mature bone marrow leucocytes. Toxins (Basel). 12:7252020. View Article : Google Scholar : PubMed/NCBI

110 

El Haddad L and Moineau S: Characterization of a novel panton-valentine leukocidin (PVL)-encoding staphylococcal phage and its naturally PVL-lacking variant. Appl Environ Microbiol. 79:2828–2832. 2013. View Article : Google Scholar : PubMed/NCBI

111 

Ibrahim RA, Berhe N, Mekuria Z, Seyoum ET, Balada-Llasat JM, Abebe T, Mariam SH, Tsige E, Fentaw Dinku S and Wang SH: Antimicrobial resistance and virulence gene profile of clinical Staphylococcus aureus: A multi-center study from ethiopia. Infect Drug Resist. 16:4835–4844. 2023. View Article : Google Scholar : PubMed/NCBI

112 

Li Q, Dou L, Zhang Y, Luo L, Yang H, Wen K, Yu X, Shen J and Wang Z: A comprehensive review on the detection of Staphylococcus aureus enterotoxins in food samples. Compr Rev Food Sci Food Saf. 23:e132642024. View Article : Google Scholar : PubMed/NCBI

113 

Haghi F, Zeighami H, Hajiloo Z, Torabi N and Derakhshan S: High frequency of enterotoxin encoding genes of Staphylococcus aureus isolated from food and clinical samples. J Health Popul Nutr. 40:272021. View Article : Google Scholar : PubMed/NCBI

114 

Lauzardo M and Peloquin CA: Tuberculosis therapy for 2016 and beyond. Expert Opin Pharmacother. 17:1859–1872. 2016. View Article : Google Scholar : PubMed/NCBI

115 

Jamieson FB, Guthrie JL, Neemuchwala A, Lastovetska O, Melano RG and Mehaffy C: Profiling of rpoB mutations and MICs for rifampin and rifabutin in Mycobacterium tuberculosis. J Clin Microbiol. 52:2157–2162. 2014. View Article : Google Scholar : PubMed/NCBI

116 

Li MC, Wang XY, Xiao TY, Lin SQ, Liu HC, Qian C, Xu D, Li GL, Zhao XQ, Liu ZG, et al: rpoB mutations are associated with variable levels of rifampin and rifabutin resistance in Mycobacterium tuberculosis. Infect Drug Resist. 15:6853–6861. 2022. View Article : Google Scholar : PubMed/NCBI

117 

Takahashi-Kanemitsu A, Lu M, Knight CT, Yamamoto T, Hayashi T, Mii Y, Ooki T, Kikuchi I, Kikuchi A, Barker N, et al: The Helicobacter pylori CagA oncoprotein disrupts Wnt/PCP signaling and promotes hyperproliferation of pyloric gland base cells. Sci Signal. 16:eabp90202023. View Article : Google Scholar : PubMed/NCBI

118 

Son YS, Kwon YH, Lee MS, Kwon O, Jeong YJ, Mun SJ, Jeon S, Park JH, Han MH, Bae JS, et al: Helicobacter pylori VacA-induced mitochondrial damage in the gastric pit cells of the antrum and therapeutic rescue. Biomaterials. 314:1228422025. View Article : Google Scholar

119 

Schubert JP, Tay A, Lee KHC, Leong LEX, Rayner CK, Warner MS, Roberts-Thomson IC, Costello SP and Bryant RV: Genomic analysis of Helicobacter pylori in Australia: Antimicrobial resistance, phylogenetic patterns, and virulence factors. J Gastroenterol Hepatol. 39:1869–1875. 2024. View Article : Google Scholar : PubMed/NCBI

120 

Sedaghat H, Moniri R, Jamali R, Arj A, Razavi Zadeh M, Moosavi SG, Rezaei M and Pourbabaee M: Prevalence of Helicobacter pylori vacA, cagA, cagE, iceA, babA2, and oipA genotypes in patients with upper gastrointestinal diseases. Iran J Microbiol. 6:14–21. 2014.PubMed/NCBI

121 

Garlasco J, Beqiraj I, Bolla C, Marino EMI, Zanelli C, Gualco C, Rocchetti A and Gianino MM: Impact of septic episodes caused by Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa in a tertiary hospital: Clinical and economic considerations in years 2018-2020. J Infect Public Health. 16:475–482. 2023. View Article : Google Scholar : PubMed/NCBI

122 

Pu D, Zhao J, Chang K, Zhuo X and Cao B: 'Superbugs' with hypervirulence and carbapenem resistance in Klebsiella pneumoniae: The rise of such emerging nosocomial pathogens in China. Sci Bull (Beijing). 68:2658–2670. 2023. View Article : Google Scholar : PubMed/NCBI

123 

Shoja S, Ansari M, Bengar S, Rafiei A, Shamseddin J and Alizade H: Bacteriological characteristics of hypervirulent Klebsiella pneumoniae rmpA gene (hvKp-rmpA)-harboring strains in the south of Iran. Iran J Microbiol. 14:475–483. 2022.

124 

Wang Q, Wang R, Wang S, Zhang A, Duan Q, Sun S, Jin L, Wang X, Zhang Y, Wang C, et al: Expansion and transmission dynamics of high risk carbapenem-resistant Klebsiella pneumoniae subclones in China: An epidemiological, spatial, genomic analysis. Drug Resist Updat. 74:1010832024. View Article : Google Scholar : PubMed/NCBI

125 

Jia X, Gong X, Wu D, Duan C, Liu L, Zou D and Wang Y: Genomic characteristics of a colistin- and tigecycline-resistant Klebsiella pneumoniae strain isolated before the widespread use of these two antibiotics in China. Int J Antimicrob Agents. 63:1070372024. View Article : Google Scholar

126 

Dell'Annunziata F, Dell'Aversana C, Doti N, Donadio G, Dal Piaz F, Izzo V, De Filippis A, Galdiero M, Altucci L, Boccia G, et al: Outer membrane vesicles derived from Klebsiella pneumoniae are a driving force for horizontal gene transfer. Int J Mol Sci. 22:87322021. View Article : Google Scholar : PubMed/NCBI

127 

Wu C, Huang Y, Zhou P, Gao H, Wang B, Zhao H, Zhang J, Wang L, Zhou Y and Yu F: Emergence of hypervirulent and carbapenem-resistant Klebsiella pneumoniae from 2014-2021 in central and eastern China: A molecular, biological, and epidemiological study. BMC Microbiol. 24:4652024. View Article : Google Scholar

128 

Arato V, Raso MM, Gasperini G, Berlanda Scorza F and Micoli F: Prophylaxis and treatment against Klebsiella pneumoniae: Current insights on this emerging anti-microbial resistant global threat. Int J Mol Sci. 22:40422021. View Article : Google Scholar : PubMed/NCBI

129 

Barnes CO, Jette CA, Abernathy ME, Dam KMA, Esswein SR, Gristick HB, Malyutin AG, Sharaf NG, Huey-Tubman KE, Lee YE, et al: SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature. 588:682–687. 2020. View Article : Google Scholar : PubMed/NCBI

130 

Xu Y, Wu C, Cao X, Gu C, Liu H, Jiang M, Wang X, Yuan Q, Wu K, Liu J, et al: Structural and biochemical mechanism for increased infectivity and immune evasion of Omicron BA.2 variant compared to BA.1 and their possible mouse origins. Cell Res. 32:609–620. 2022. View Article : Google Scholar : PubMed/NCBI

131 

Suzuki R, Yamasoba D, Kimura I, Wang L, Kishimoto M, Ito J, Morioka Y, Nao N, Nasser H, Uriu K, et al: Attenuated fusogenicity and pathogenicity of SARS-CoV-2 Omicron variant. Nature. 603:700–705. 2022. View Article : Google Scholar : PubMed/NCBI

132 

Uriu K, Ito J, Kosugi Y, Tanaka YL, Mugita Y, Guo Z, Hinay AA Jr, Putri O, Kim Y, Shimizu R, et al: Transmissibility, infectivity, and immune evasion of the SARS-CoV-2 BA.2.86 variant. Lancet Infect Dis. 23:e460–e461. 2023. View Article : Google Scholar : PubMed/NCBI

133 

Bdeir N, Lüddecke T, Maaß H, Schmelz S, Rand U, Jacobsen H, Metzdorf K, Kulkarni U, Cossmann A, Stankov MV, et al: Reverse mutational scanning of SARS-CoV-2 spike BA.2.86 identifies epitopes contributing to immune escape from polyclonal sera. Nat Commun. 16:8092025. View Article : Google Scholar : PubMed/NCBI

134 

Su J, Shen S, Hu Y, Chen S, Cheng L, Cai Y, Wei W, Wang Y, Rui Y and Yu XF: SARS-CoV-2 ORF3a inhibits cGAS-STING-mediated autophagy flux and antiviral function. J Med Virol. 95:e281752023. View Article : Google Scholar

135 

Miao G, Zhao H, Li Y, Ji M, Chen Y, Shi Y, Bi Y, Wang P and Zhang H: ORF3a of the COVID-19 virus SARS-CoV-2 blocks HOPS complex-mediated assembly of the SNARE complex required for autolysosome formation. Dev Cell. 56:427–442.e5. 2021. View Article : Google Scholar : PubMed/NCBI

136 

Chen Z, Tsui JLH, Gutierrez B, Busch Moreno S, du Plessis L, Deng X, Cai J, Bajaj S, Suchard MA, Pybus OG, et al: COVID-19 pandemic interventions reshaped the global dispersal of seasonal influenza viruses. Science. 386:eadq30032024. View Article : Google Scholar : PubMed/NCBI

137 

Lederhofer J, Tsybovsky Y, Nguyen L, Raab JE, Creanga A, Stephens T, Gillespie RA, Syeda HZ, Fisher BE, Skertic M, et al: Protective human monoclonal antibodies target conserved sites of vulnerability on the underside of influenza virus neuraminidase. Immunity. 57:574–586.e7. 2024. View Article : Google Scholar : PubMed/NCBI

138 

Wang M, Gao Y, Shen C, Yang W, Peng Q, Cheng J, Shen HM, Yang Y, Gao GF and Shi Y: A human monoclonal antibody targeting the monomeric N6 neuraminidase confers protection against avian H5N6 influenza virus infection. Nat Commun. 15:88712024. View Article : Google Scholar : PubMed/NCBI

139 

Liao LE, Kowal S, Cardenas DA and Beauchemin CAA: Exploring virus release as a bottleneck for the spread of influenza A virus infection in vitro and the implications for antiviral therapy with neuraminidase inhibitors. PLoS One. 12:e01836212017. View Article : Google Scholar : PubMed/NCBI

140 

Zhang M, Liu M, Chen H, Qiu T, Jin X, Fu W, Teng Q, Zhao C, Xu J, Li Z and Zhang X: PB2 residue 473 contributes to the mammalian virulence of H7N9 avian influenza virus by modulating viral polymerase activity via ANP32A. J Virol. 98:e01944232024. View Article : Google Scholar : PubMed/NCBI

141 

Günl F, Krischuns T, Schreiber JA, Henschel L, Wahrenburg M, Drexler HCA, Leidel SA, Cojocaru V, Seebohm G, Mellmann A, et al: The ubiquitination landscape of the influenza A virus polymerase. Nat Commun. 14:7872023. View Article : Google Scholar : PubMed/NCBI

142 

Wang P, Meng Z, Deng K, Gao Z and Cai J: Vpr driving DNA methylation variation of CD4 + T cells in HIV-1 infection. Virol J. 21:972024. View Article : Google Scholar

143 

Biradar S, Agarwal Y, Das A, Shu ST, Samal J, Ho S, Kelly N, Mahesh D, Teredesai S, Castronova I, et al: Nef defect attenuates HIV viremia and immune dysregulation in the bone marrow-liver-thymus-spleen (BLTS) humanized mouse model. Virology. 598:1101922024. View Article : Google Scholar : PubMed/NCBI

144 

Schenck JK, Clarkson-Paredes C, Pushkarsky T, Wang Y, Miller RH and Bukrinsky MI: Nef mediates neuroimmune response, myelin impairment, and neuronal injury in EcoHIV-infected mice. Life Sci Alliance. 8:e2024028792024. View Article : Google Scholar : PubMed/NCBI

145 

Shu J, Ma X, Zhang Y, Zou J, Yuan Z and Yi Z: NS5-independent Ablation of STAT2 by Zika virus to antagonize interferon signalling. Emerg Microbes Infect. 10:1609–1625. 2021. View Article : Google Scholar : PubMed/NCBI

146 

Lebeau G, Hoareau M, Rivière S, El Safadi D, Da Silva CR, Krejbich-Trotot P and Viranaicken W: Cell cycle and mitosis progression during ZIKA virus infection: The viral non-structural protein NS5 as a master regulator of the APC/cyclosome? Biochimie. 221:75–80. 2024. View Article : Google Scholar : PubMed/NCBI

147 

Ma ZH and Xing L: Neurovirulence of Zika virus-encoded proteins. Arch Virol. 170:1502025. View Article : Google Scholar : PubMed/NCBI

148 

Ren W, Fu C, Zhang Y, Ju X, Jiang X, Song J, Gong M, Li Z, Fan W, Yao J and Ding Q: Zika virus NS5 protein inhibits type I interferon signaling via CRL3 E3 ubiquitin ligase-mediated degradation of STAT2. Proc Natl Acad Sci USA. 121:e24032351212024. View Article : Google Scholar :

149 

Ruedas JB, Arnold CE, Palacios G and Connor JH: Growth-adaptive mutations in the Ebola virus makona glycoprotein alter different steps in the virus entry pathway. J Virol. 92:e00820–18. 2018. View Article : Google Scholar : PubMed/NCBI

150 

Ilinykh PA, Huang K, Gunn BM, Kuzmina NA, Kedarinath K, Jurado-Cobena E, Zhou F, Subramani C, Hyde MA, Velazquez JV, et al: Antibodies targeting the glycan cap of Ebola virus glycoprotein are potent inducers of the complement system. Commun Biol. 7:8712024. View Article : Google Scholar : PubMed/NCBI

151 

Byrne PO, Fisher BE, Ambrozak DR, Blade EG, Tsybovsky Y, Graham BS, McLellan JS and Loomis RJ: Structural basis for antibody recognition of vulnerable epitopes on Nipah virus F protein. Nat Commun. 14:14942023. View Article : Google Scholar : PubMed/NCBI

152 

Xu K, Chan YP, Bradel-Tretheway B, Akyol-Ataman Z, Zhu Y, Dutta S, Yan L, Feng Y, Wang LF, Skiniotis G, et al: Crystal structure of the pre-fusion nipah virus fusion glycoprotein reveals a novel hexamer-of-trimers assembly. PLoS Pathog. 11:e10053222015. View Article : Google Scholar : PubMed/NCBI

153 

Luo G, Zhang J, Wang T, Cui H, Bai Y, Luo J, Zhang J, Zhang M, Di L, Yuan Y, et al: A human commensal-pathogenic fungus suppresses host immunity via targeting TBK1. Cell Host Microbe. 32:1536–1551.e6. 2024. View Article : Google Scholar : PubMed/NCBI

154 

Naglik JR, Challacombe SJ and Hube B: Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev. 67:400–428. 2003. View Article : Google Scholar : PubMed/NCBI

155 

Staib P, Kretschmar M, Nichterlein T, Hof H and Morschhäuser J: Differential activation of a Candida albicans virulence gene family during infection. Proc Natl Acad Sci USA. 97:6102–6107. 2000. View Article : Google Scholar : PubMed/NCBI

156 

Staib P, Kretschmar M, Nichterlein T, Hof H and Morschhäuser J: Transcriptional regulators Cph1p and Efg1p mediate activation of the Candida albicans virulence gene SAP5 during infection. Infect Immun. 70:921–927. 2002. View Article : Google Scholar : PubMed/NCBI

157 

Singh DK, Németh T, Papp A, Tóth R, Lukácsi S, Heidingsfeld O, Dostal J, Vágvölgyi C, Bajtay Z, Józsi M, et al: Functional characterization of secreted aspartyl proteases in Candida parapsilosis. mSphere. 4:e00484–19. 2019. View Article : Google Scholar : PubMed/NCBI

158 

Nobile CJ and Mitchell AP: Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Bcr1p. Curr Boil. 15:1150–1155. 2005. View Article : Google Scholar

159 

Latgé JP and Chamilos G: Aspergillus fumigatus and aspergillosis in 2019. Clin Microbiol Rev. 33:e00140–18. 2019. View Article : Google Scholar : PubMed/NCBI

160 

Fréalle E, Aliouat-Denis CM, Delhaes L, Hot D and Dei-Cas E: Transcriptomic insights into the oxidative response of stress-exposed Aspergillus fumigatus. Curr Pharm Des. 19:3713–3737. 2013. View Article : Google Scholar : PubMed/NCBI

161 

Gupta L, Sen P, Bhattacharya AK and Vijayaraghavan P: Isoeugenol affects expression pattern of conidial hydrophobin gene RodA and transcriptional regulators MedA and SomA responsible for adherence and biofilm formation in Aspergillus fumigatus. Arch Microbiol. 204:2142022. View Article : Google Scholar : PubMed/NCBI

162 

Tian S, Wu Y, Li H, Rong C, Wu N, Chu Y, Jiang N, Zhang J and Shang H: Evolutionary accumulation of FKS1 mutations from clinical echinocandin-resistant Candida auris. Emerg Microbes Infect. 13:23775842024. View Article : Google Scholar : PubMed/NCBI

163 

Kiyohara M, Miyazaki T, Okamoto M, Hirayama T, Makimura K, Chibana H, Nakada N, Ito Y, Sumiyoshi M, Ashizawa N, et al: Evaluation of a novel FKS1 R1354H mutation associated with caspofungin resistance in Candida auris using the CRISPR-Cas9 system. J Fungi (Basel). 9:5292023. View Article : Google Scholar : PubMed/NCBI

164 

Muñoz JF, Gade L, Chow NA, Loparev VN, Juieng P, Berkow EL, Farrer RA, Litvintseva AP and Cuomo CA: Genomic insights into multidrug-resistance, mating and virulence in Candida auris and related emerging species. Nat Commun. 9:53462018. View Article : Google Scholar : PubMed/NCBI

165 

Han B, Feng C, Jiang Y, Ye C, Wei Y, Liu J and Zeng Z: Mobile genetic elements encoding antibiotic resistance genes and virulence genes in Klebsiella pneumoniae: Important pathways for the acquisition of virulence and resistance. Front Microbiol. 16:15291572025. View Article : Google Scholar : PubMed/NCBI

166 

Yang JX, Ma GN, Li YT, Shi YP and Liang GW: Resistance and virulence genes characteristic of a south Asia Clade (I) Candida auris strain isolated from blood in Beijing. Clinics (Sao Paulo). 79:1004972024. View Article : Google Scholar : PubMed/NCBI

167 

Singh SD, Robbins N, Zaas AK, Schell WA, Perfect JR and Cowen LE: Hsp90 governs echinocandin resistance in the pathogenic yeast Candida albicans via calcineurin. PLoS Pathog. 5:e10005322009. View Article : Google Scholar : PubMed/NCBI

168 

Zhang J, Liu W, Tan J, Sun Y, Wan Z and Li R: Antifungal activity of geldanamycin alone or in combination with fluconazole against Candida species. Mycopathologia. 175:273–279. 2013. View Article : Google Scholar : PubMed/NCBI

169 

Yin W, Wang Y, Liu L and He J: Biofilms: The microbial 'protective clothing' in extreme environments. Int J Mol Sci. 20:34232019. View Article : Google Scholar

170 

Xu M, Yu S, Li P, Chen Y, Chen Y, Pan J, Deng X and Hu H: Tailored multilayer nanoparticles against resistant P. aeruginosa by disrupting the thickened mucus, dense biofilm and hyperinflammation. J Control Release. 378:588–604. 2025. View Article : Google Scholar

171 

Rahmat Ullah S, Irum S, Mahnoor I, Ismatullah H, Mumtaz M, Andleeb S, Rahman A and Jamal M: Exploring the resistome, virulome, and mobilome of multidrug-resistant Klebsiella pneumoniae isolates: Deciphering the molecular basis of carbapenem resistance. BMC Genomics. 25:4082024. View Article : Google Scholar : PubMed/NCBI

172 

Du FL, Huang QS, Wei DD, Mei YF, Long D, Liao WJ, Wan LG, Liu Y and Zhang W: Prevalence of carbapenem-resistant Klebsiella pneumoniae co-harboring blaKPC-carrying plasmid and pLVPK-Like virulence plasmid in bloodstream infections. Front Cell Infect Microbiol. 10:5566542021. View Article : Google Scholar : PubMed/NCBI

173 

Otarigho B and Falade MO: Computational screening of approved drugs for inhibition of the antibiotic resistance gene mecA in methicillin-resistant Staphylococcus aureus (MRSA) strains. BioTech (Basel). 12:252023. View Article : Google Scholar

174 

Nikolic P and Mudgil P: The cell wall, cell membrane and virulence factors of Staphylococcus aureus and their role in antibiotic resistance. Microorganisms. 11:2592023. View Article : Google Scholar

175 

Sully EK, Malachowa N, Elmore BO, Alexander SM, Femling JK, Gray BM, DeLeo FR, Otto M, Cheung AL, Edwards BS, et al: Selective chemical inhibition of agr quorum sensing in Staphylococcus aureus promotes host defense with minimal impact on resistance. PLoS Pathog. 10:e10041742014. View Article : Google Scholar

176 

Zhou S, Liu B, Zheng D, Chen L and Yang J: VFDB 2025: An integrated resource for exploring anti-virulence compounds. Nucleic Acids Res. 53(D1): D871–D877. 2025. View Article : Google Scholar

177 

Abd El-Aleam RH, George RF, Georgey HH and Abdel-Rahman HM: Bacterial virulence factors: A target for heterocyclic compounds to combat bacterial resistance. RSC Adv. 11:36459–36482. 2021. View Article : Google Scholar

178 

Goldsmith JA, Dewar V, Hermand P, Blais N and McLellan JS: Structural basis for binding of neutralizing antibodies to Clostridioides difficile binary toxin. J Bacterial. 205:e00456222023. View Article : Google Scholar

179 

Mangal P, Jha RK, Jain M, Singh AK and Muthukumaran J: Identification and prioritization of promising lead molecules from Syzygium aromaticum against sortase C from Streptococcus pyogenes: An in silico investigation. J Biomol Struct Dyn. 41:5418–5435. 2023. View Article : Google Scholar

180 

Aljarallah KM: Conventional and alternative treatment approaches for Clostridium difficile infection. Int J Health Sci (Qassim). 11:1–10. 2017.

181 

Hussack G and Tanha J: Toxin-specific antibodies for the treatment of Clostridium difficile: Current status and future perspectives. Toxins (Basel). 2:998–1018. 2010. View Article : Google Scholar

182 

Lux J, Portmann H, Sánchez García L, Erhardt M, Holivololona L, Laloli L, Licheri MF, Gallay C, Hoepner R, Croucher NJ, et al: Klebsiella pneumoniae peptide hijacks a Streptococcus pneumoniae permease to subvert pneumococcal growth and colonization. Commun Boil. 7:4252024. View Article : Google Scholar

183 

Gao W, Liu J, Wang X, Li J, Zhang X, Ye H, Li J, Dong X, Liu B, Wang C, et al: Simplified Helicobacter pylori therapy for patients with penicillin allergy: A randomised controlled trial of vonoprazan-tetracycline dual therapy. Gut. 73:1414–1420. 2024. View Article : Google Scholar

184 

Gerding DN, Johnson S, Rupnik M and Aktories K: Clostridium difficile binary toxin CDT: Mechanism, epidemiology, and potential clinical importance. Gut Microbes. 5:15–27. 2014. View Article : Google Scholar

185 

Yamaguchi M, Terao Y, Mori Y, Hamada S and Kawabata S: PfbA, a novel plasmin- and fibronectin-binding protein of Streptococcus pneumoniae, contributes to fibronectin-dependent adhesion and antiphagocytosis. J Biol Chem. 283:36272–36279. 2008. View Article : Google Scholar

186 

Zhou D, Zhang Z, Qiu B, Zhang D, Xie S, Huang K and Li X: Ultrasound-activated persistent luminescence imaging and bacteria-triggered drug release for Helicobacter pylori infection theranostics. ACS Appl Mater Interfaces. 14:26418–26430. 2022. View Article : Google Scholar : PubMed/NCBI

187 

Zhu YJ, Zhang Y, Wang TY, Zhao JT, Zhao Z, Zhu JR and Lan CH: High dose PPI-amoxicillin dual therapy for the treatment of Helicobacter pylori infection: A systematic review with meta-analysis. Therap Adv Gastroenterol. 13:17562848209371152020. View Article : Google Scholar : PubMed/NCBI

188 

Barakat SH, Hanafy HM, Guimei M, Elsawy EH and Khalil AFM: Different regimens for eradication of Helicobacter pylori infection in children: A randomized controlled trial. Eur J Pediatr. 184:132024. View Article : Google Scholar : PubMed/NCBI

189 

Thi MTT, Wibowo D and Rehm BHA: Pseudomonas aeruginosa biofilms. Int J Mol Sci. 21:86712020. View Article : Google Scholar : PubMed/NCBI

190 

Kamel NA, Tohamy ST, Alshahrani MY and Aboshanab KM: Evaluation of fortimicin antibiotic combinations against MDR Pseudomonas aeruginosa and resistome analysis of a whole genome sequenced pan-drug resistant isolate. BMC Microbiol. 24:1642024. View Article : Google Scholar :

191 

Lamppa JW and Griswold KE: Alginate lyase exhibits catalysis-independent biofilm dispersion and antibiotic synergy. Antimicrob Agents Chemother. 57:137–145. 2013. View Article : Google Scholar :

192 

Pleszczyńska M, Wiater A, Janczarek M and Szczodrak J: (1→3)-α-D-Glucan hydrolases in dental biofilm prevention and control: A review. Int J Biol Macromol. 79:761–778. 2015. View Article : Google Scholar

193 

Majhi A, Adhikary R, Bhattacharyya A, Mahanti S and Bishayi B: Levofloxacin-ceftriaxone combination attenuates lung inflammation in a mouse model of bacteremic pneumonia caused by multidrug-resistant Streptococcus pneumoniae via inhibition of cytolytic activities of pneumolysin and autolysin. Antimicrob Agents Chemother. 58:5164–5180. 2014. View Article : Google Scholar : PubMed/NCBI

194 

Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT and Veesler D: Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 181:281–292.e6. 2020. View Article : Google Scholar : PubMed/NCBI

195 

Cipriani G, Helmersen K, Mazzon RR, Wagner G, Aamot HV and Ferreira FA: Evaluation of whole-genome sequencing protocols for detection of antimicrobial resistance, virulence factors and mobile genetic elements in antimicrobial-resistant bacteria. J Med Microbiol. 74:0019902025. View Article : Google Scholar : PubMed/NCBI

196 

Szoboszlay M, Schramm L, Pinzauti D, Scerri J, Sandionigi A and Biazzo M: Nanopore is preferable over illumina for 16S amplicon sequencing of the gut microbiota when species-level taxonomic classification, accurate estimation of richness, or focus on rare taxa is required. Microorganisms. 11:8042023. View Article : Google Scholar : PubMed/NCBI

197 

Liu L, Chen A, Li Y, Mulder J, Heyn H and Xu X: Spatiotemporal omics for biology and medicine. Cell. 187:4488–4519. 2024. View Article : Google Scholar : PubMed/NCBI

198 

Li Y, Yang KD, Kong DC and Ye JF: Advances in phage display based nano immunosensors for cholera toxin. Front Immunol. 14:12243972023. View Article : Google Scholar : PubMed/NCBI

199 

Kim Y, Lee D, Seo Y, Jung HG, Jang JW, Park D, Kim I, Kim J, Lee G, Hwang KS, et al: Caco-2 cell-derived biomimetic electrochemical biosensor for cholera toxin detection. Biosens Bioelectron. 226:1151052023. View Article : Google Scholar : PubMed/NCBI

200 

Saha A and Dixit NM: Pre-existing resistance in the latent reservoir can compromise VRC01 therapy during chronic HIV-1 infection. PLoS Comput Biol. 16:e10084342020. View Article : Google Scholar : PubMed/NCBI

201 

Mohammadipour S, Tavakkoli H, Fatemi SN, Sharifi A and Mahmoudi P: Designing a multi-epitope universal vaccine for concurrent infections of SARS-CoV-2 and influenza viruses using an immunoinformatics approach. BMC Infect Dis. 25:6882025. View Article : Google Scholar : PubMed/NCBI

202 

Lewitus E, Hoang J, Li Y, Bai H and Rolland M: Optimal sequence-based design for multi-antigen HIV-1 vaccines using minimally distant antigens. PLoS Comput Biol. 18:e10106242022. View Article : Google Scholar : PubMed/NCBI

203 

Pierce CG, Chaturvedi AK, Lazzell AL, Powell AT, Saville SP, McHardy SF and Lopez-Ribot JL: A novel small molecule inhibitor of Candida albicans biofilm formation, filamentation and virulence with low potential for the development of resistance. NPJ Biofilms Microbiomes. 1:150122015. View Article : Google Scholar : PubMed/NCBI

204 

Jacobs SE, Zagaliotis P and Walsh TJ: Novel antifungal agents in clinical trials. F1000Res. 10:5072021. View Article : Google Scholar

205 

Khan MM, Ernst O, Manes NP, Oyler BL, Fraser IDC, Goodlett DR and Nita-Lazar A: Multi-omics strategies uncover host-pathogen interactions. ACS Infect Dis. 5:493–505. 2019. View Article : Google Scholar : PubMed/NCBI

206 

Qin T, Dai Z, Xu X, Zhang Z, You X, Sun H, Liu M and Zhu H: Nanosuspension as an efficient carrier for improved ocular permeation of voriconazole. Curr Pharm Biotechnol. 22:245–253. 2021. View Article : Google Scholar

207 

Andrade LM, Rocha KAD, De Sá FAP, Marreto RN, Lima EM, Gratieri T and Taveira SF: Voriconazole-loaded nanostructured lipid carriers for ocular drug delivery. Cornea. 35:866–871. 2016. View Article : Google Scholar : PubMed/NCBI

208 

Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, et al: Highly accurate protein structure prediction with AlphaFold. Nature. 596:583–589. 2021. View Article : Google Scholar : PubMed/NCBI

209 

Goyette-Desjardins G, Calzas C, Shiao TC, Neubauer A, Kempker J, Roy R, Gottschalk M and Segura M: Protection against streptococcus suis serotype 2 infection using a capsular polysaccharide glycoconjugate vaccine. Infect Immun. 84:2059–2075. 2016. View Article : Google Scholar : PubMed/NCBI

210 

Stacey HL, Rosen J, Peterson JT, Williams-Diaz A, Gakhar V, Sterling TM, Acosta CJ, Nolan KM, Li J, Pedley A, et al: Safety and immunogenicity of 15-valent pneumococcal conjugate vaccine (PCV-15) compared to PCV-13 in healthy older adults. Hum Vaccin Immunother. 15:530–539. 2019. View Article : Google Scholar : PubMed/NCBI

211 

Helaine S, Cheverton AM, Watson KG, Faure LM, Matthews SA and Holden DW: Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science. 343:204–208. 2014. View Article : Google Scholar : PubMed/NCBI

212 

Gencay YE, Jasinskytė D, Robert C, Semsey S, Martínez V, Petersen AQ, Brunner K, de Santiago Torio A, Salazar A, Turcu IC, et al: Engineered phage with antibacterial CRISPR-Cas selectively reduce E. coli burden in mice. Nat Biotechnol. 42:265–274. 2024. View Article : Google Scholar

213 

Scheaffer SM, Lee D, Whitener B, Ying B, Wu K, Liang CY, Jani H, Martin P, Amato NJ, Avena LE, et al: Bivalent SARS-CoV-2 mRNA vaccines increase breadth of neutralization and protect against the BA.5 Omicron variant in mice. Nat Med. 29:247–257. 2023. View Article : Google Scholar

214 

Yang J, He X, Shi H, He C, Lei H, He H, Yang L, Wang W, Shen G, Yang J, et al: Recombinant XBB.1.5 boosters induce robust neutralization against KP.2- and KP.3-included JN.1 sublineages. Signal Transduct Target Ther. 10:472025. View Article : Google Scholar : PubMed/NCBI

215 

Edwards JE Jr, Schwartz MM, Schmidt CS, Sobel JD, Nyirjesy P, Schodel F, Marchus E, Lizakowski M, DeMontigny EA, Hoeg J, et al: A fungal immunotherapeutic vaccine (NDV-3A) for treatment of recurrent vulvovaginal candidiasis-A phase 2 randomized, double-blind, placebo-controlled trial. Clin Infect Dis. 66:1928–1936. 2018. View Article : Google Scholar : PubMed/NCBI

216 

Collins FS and Varmus H: A new initiative on precision medicine. N Engl J Med. 372:793–795. 2015. View Article : Google Scholar : PubMed/NCBI

217 

Naithani N, Sinha S, Misra P, Vasudevan B and Sahu R: Precision medicine: Concept and tools. Med J Armed Forces India. 77:249–257. 2021. View Article : Google Scholar : PubMed/NCBI

218 

Johnson KB, Wei WQ, Weeraratne D, Frisse ME, Misulis K, Rhee K, Zhao J and Snowdon JL: Precision medicine, AI, and the future of personalized health care. Clin Transl Sci. 14:86–93. 2021. View Article : Google Scholar :

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Chen Y, Wu X, Xu C, Huang J, Zhang L, Qiu P, Zheng D, Chen W and Zhang S: Pathogen virulence genes: Advances, challenges and future directions in infectious disease research (Review). Int J Mol Med 56: 173, 2025.
APA
Chen, Y., Wu, X., Xu, C., Huang, J., Zhang, L., Qiu, P. ... Zhang, S. (2025). Pathogen virulence genes: Advances, challenges and future directions in infectious disease research (Review). International Journal of Molecular Medicine, 56, 173. https://doi.org/10.3892/ijmm.2025.5614
MLA
Chen, Y., Wu, X., Xu, C., Huang, J., Zhang, L., Qiu, P., Zheng, D., Chen, W., Zhang, S."Pathogen virulence genes: Advances, challenges and future directions in infectious disease research (Review)". International Journal of Molecular Medicine 56.5 (2025): 173.
Chicago
Chen, Y., Wu, X., Xu, C., Huang, J., Zhang, L., Qiu, P., Zheng, D., Chen, W., Zhang, S."Pathogen virulence genes: Advances, challenges and future directions in infectious disease research (Review)". International Journal of Molecular Medicine 56, no. 5 (2025): 173. https://doi.org/10.3892/ijmm.2025.5614
Copy and paste a formatted citation
x
Spandidos Publications style
Chen Y, Wu X, Xu C, Huang J, Zhang L, Qiu P, Zheng D, Chen W and Zhang S: Pathogen virulence genes: Advances, challenges and future directions in infectious disease research (Review). Int J Mol Med 56: 173, 2025.
APA
Chen, Y., Wu, X., Xu, C., Huang, J., Zhang, L., Qiu, P. ... Zhang, S. (2025). Pathogen virulence genes: Advances, challenges and future directions in infectious disease research (Review). International Journal of Molecular Medicine, 56, 173. https://doi.org/10.3892/ijmm.2025.5614
MLA
Chen, Y., Wu, X., Xu, C., Huang, J., Zhang, L., Qiu, P., Zheng, D., Chen, W., Zhang, S."Pathogen virulence genes: Advances, challenges and future directions in infectious disease research (Review)". International Journal of Molecular Medicine 56.5 (2025): 173.
Chicago
Chen, Y., Wu, X., Xu, C., Huang, J., Zhang, L., Qiu, P., Zheng, D., Chen, W., Zhang, S."Pathogen virulence genes: Advances, challenges and future directions in infectious disease research (Review)". International Journal of Molecular Medicine 56, no. 5 (2025): 173. https://doi.org/10.3892/ijmm.2025.5614
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team