|
1
|
Libby P, Buring JE, Badimon L, Hansson GK,
Deanfield J, Bittencourt MS, Tokgözoğlu L and Lewis EF:
Atherosclerosis. Nat Rev Dis Primers. 5:562019. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Shi Y, Zhang H, Huang S, Yin L, Wang F,
Luo P and Huang H: Epigenetic regulation in cardiovascular disease:
Mechanisms and advances in clinical trials. Signal Transduct Target
Ther. 7:2002022. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Björkegren JLM and Lusis AJ:
Atherosclerosis: Recent developments. Cell. 185:1630–1645. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Zhang X, Wang W, Zhu W, Zhu W, Dong J,
Cheng Y, Yin Z and Shen F: Mechanisms and functions of long
Non-coding RNAs at multiple regulatory levels. Int J Mol Sci.
20:55732019. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Khyzha N, Alizada A, Wilson MD and Fish
JE: Epigenetics of atherosclerosis: Emerging mechanisms and
methods. Trends Mol Med. 23:332–347. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Raghubeer S: The influence of epigenetics
and inflammation on cardiometabolic risks. Semin Cell Dev Biol.
154:175–184. 2024. View Article : Google Scholar
|
|
7
|
Miguel V, Lamas S and Espinosa-Diez C:
Role of non-coding-RNAs in response to environmental stressors and
consequences on human health. Redox Biol. 37:1015802020. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Yang P, Rong X, Gao Z, Wang J and Liu Z:
Metabolic and epigenetic regulation of macrophage polarization in
atherosclerosis: Molecular mechanisms and targeted therapies.
Pharmacol Res. 212:1075882025. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Liu WW, Zheng SQ, Li T, Fei YF, Wang C,
Zhang S, Wang F, Jiang GM and Wang H: RNA modifications in cellular
metabolism: Implications for metabolism-targeted therapy and
immunotherapy. Signal Transduct Target Ther. 9:702024. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Ma B, Wang S, Wu W, Shan P, Chen Y, Meng
J, Xing L, Yun J, Hao L, Wang X, et al: Mechanisms of
circRNA/lncRNA-miRNA interactions and applications in disease and
drug research. Biomed Pharmacother. 162:1146722023. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Panni S, Lovering RC, Porras P and Orchard
S: Non-coding RNA regulatory networks. Biochim Biophys Acta Gene
Regul Mech. 1863:1944172020. View Article : Google Scholar
|
|
12
|
O'Brien J, Hayder H, Zayed Y and Peng C:
Overview of MicroRNA biogenesis, mechanisms of actions, and
circulation. Front Endocrinol (Lausanne). 9:4022018. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Mattick JS, Amaral PP, Carninci P,
Carpenter S, Chang HY, Chen LL, Chen R, Dean C, Dinger ME,
Fitzgerald KA, et al: Long non-coding RNAs: Definitions, functions,
challenges and recommendations. Nat Rev Mol Cell Biol. 24:430–447.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Sakshi S, Jayasuriya R, Ganesan K, Xu B
and Ramkumar KM: Role of circRNA-miRNA-mRNA interaction network in
diabetes and its associated complications. Mol Ther Nucleic Acids.
26:1291–1302. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Calabriso N, Massaro M, Scoditti E,
Carluccio C, Verri T and Carluccio MA: Epigenetic mechanisms in
vascular inflammation: Modulation of endothelial adhesion molecules
and Endothelium-leukocyte adhesion. Front Biosci (Landmark Ed).
28:1942023. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Qiu Y, Xu Q, Xie P, He C, Li Q, Yao X, Mao
Y, Wu X and Zhang T: Epigenetic modifications and emerging
therapeutic targets in cardiovascular aging and diseases. Pharmacol
Res. 211:1075462025. View Article : Google Scholar
|
|
17
|
Wu YL, Lin ZJ, Li CC, Lin X, Shan SK, Guo
B, Zheng MH, Li F, Yuan LQ and Li ZH: Epigenetic regulation in
metabolic diseases: Mechanisms and advances in clinical study.
Signal Transduct Target Ther. 8:982023. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Qi L, Xing J, Yuan Y and Lei M: Noncoding
RNAs in atherosclerosis: Regulation and therapeutic potential. Mol
Cell Biochem. 479:1279–1295. 2024. View Article : Google Scholar :
|
|
19
|
Xu S, Kamato D, Little PJ, Nakagawa S,
Pelisek J and Jin ZG: Targeting epigenetics and non-coding RNAs in
atherosclerosis: From mechanisms to therapeutics. Pharmacol Ther.
196:15–43. 2019. View Article : Google Scholar :
|
|
20
|
Le LTT and Nhu CXT: The role of long
Non-coding RNAs in cardiovascular diseases. Int J Mol Sci. 24:2023.
View Article : Google Scholar
|
|
21
|
Price NL, Rotllan N, Zhang X,
Canfrán-Duque A, Nottoli T, Suarez Y and Fernández-Hernando C:
Specific disruption of abca1 targeting largely mimics the effects
of miR-33 knockout on macrophage cholesterol efflux and
atherosclerotic plaque development. Circ Res. 124:874–880. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Yalcinkaya M and Tall AR: Genetic and
epigenetic regulation of inflammasomes: Role in atherosclerosis.
Atherosclerosis. 396:1185412024. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Jebari-Benslaiman S, Galicia-García U,
Larrea-Sebal A, Olaetxea JR, Alloza I, Vandenbroeck K,
Benito-Vicente A and Martín C: Pathophysiology of atherosclerosis.
Int J Mol Sci. 23:33462022. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Rafieian-Kopaei M, Setorki M, Doudi M,
Baradaran A and Nasri H: Atherosclerosis: Process, indicators, risk
factors and new hopes. Int J Prev Med. 5:927–946. 2014.PubMed/NCBI
|
|
25
|
Farahi L, Sinha SK and Lusis AJ: Roles of
macrophages in atherogenesis. Front Pharmacol. 12:7852202021.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Gui Y, Zheng H and Cao RY: Foam cells in
atherosclerosis: Novel insights into its origins, consequences, and
molecular mechanisms. Front Cardiovasc Med. 9:8459422022.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Johnson JL: Metalloproteinases in
atherosclerosis. Eur J Pharmacol. 816:93–106. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Matsuo M: ABCA1 and ABCG1 as potential
therapeutic targets for the prevention of atherosclerosis. J
Pharmacol Sci. 148:197–203. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Bäck M, Yurdagul A Jr, Tabas I, Öörni K
and Kovanen PT: Inflammation and its resolution in atherosclerosis:
Mediators and therapeutic opportunities. Nat Rev Cardiol.
16:389–406. 2019.PubMed/NCBI
|
|
30
|
Mehu M, Narasimhulu CA and Singla DK:
Inflammatory cells in atherosclerosis. Antioxidants (Basel).
11:2332022. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
He Z, Luo J, Lv M, Li Q, Ke W, Niu X and
Zhang Z: Characteristics and evaluation of atherosclerotic plaques:
An overview of state-of-the-art techniques. Front Neurol.
14:11592882023. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Xu S, Pelisek J and Jin ZG:
Atherosclerosis is an epigenetic disease. Trends Endocrinol Metab.
29:739–742. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Gagnidze K and Pfaff DW: Epigenetic
mechanisms: DNA methylation and histone protein modification.
Neuroscience in the 21st Century: From Basic to Clinical. Springer;
pp. 2677–2716. 2022, View Article : Google Scholar
|
|
34
|
Fujita N, Shimotake N, Ohki I, Chiba T,
Saya H, Shirakawa M and Nakao M: Mechanism of transcriptional
regulation by methyl-CpG binding protein MBD1. Mol Cell Biol.
20:5107–5118. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Buchmuller BC, Kosel B and Summerer D:
Complete profiling of Methyl-CpG-binding domains for combinations
of cytosine modifications at CpG dinucleotides reveals differential
read-out in normal and rett-associated states. Sci Rep.
10:40532020. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Wang S, Wang M, Ichino L, Boone BA, Zhong
Z, Papareddy RK, Lin EK, Yun J, Feng S and Jacobsen SE: MBD2
couples DNA methylation to transposable element silencing during
male gametogenesis. Nat Plants. 10:13–24. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Jia X, He X, Huang C, Li J, Dong Z and Liu
K: Protein translation: Biological processes and therapeutic
strategies for human diseases. Signal Transduct Target Ther.
9:442024. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Dai Y, Chen D and Xu T: DNA methylation
aberrant in atherosclerosis. Front Pharmacol. 13:8159772022.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Liu Y, Tian X, Liu S, Liu D, Li Y, Liu M,
Zhang X, Yan C and Han Y: DNA hypermethylation: A novel mechanism
of CREG gene suppression and atherosclerogenic endothelial
dysfunction. Redox Biol. 32:1014442020. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Tran N, Garcia T, Aniqa M, Ali S, Ally A
and Nauli SM: Endothelial nitric oxide synthase (eNOS) and the
cardiovascular system: In physiology and in disease states. Am J
Biomed Sci Res. 15:153–177. 2022.PubMed/NCBI
|
|
41
|
Sweet DR, Fan L, Hsieh PN and Jain MK:
Krüppel-like factors in vascular inflammation: Mechanistic insights
and therapeutic potential. Front Cardiovasc Med. 5:62018.
View Article : Google Scholar
|
|
42
|
Xiang T, Yang C, Deng Z, Sun D, Luo F and
Chen Y: Krüppel-like factors family in health and disease. MedComm
(2020). 5:e7232024. View Article : Google Scholar
|
|
43
|
Zhang Y, Mei J, Li J, Zhang Y, Zhou Q and
Xu F: DNA methylation in atherosclerosis: A new perspective. Evid
Based Complement Alternat Med. 2021:66236572021.PubMed/NCBI
|
|
44
|
Zaina S, Heyn H, Carmona FJ, Varol N,
Sayols S, Condom E, Ramírez-Ruz J, Gomez A, Gonçalves I, Moran S
and Esteller M: DNA methylation map of human atherosclerosis. Circ
Cardiovasc Genet. 7:692–700. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Tabaei S and Tabaee SS: DNA methylation
abnormalities in atherosclerosis. Artif Cells Nanomed Biotechnol.
47:2031–2041. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Xu S, Ilyas I, Little PJ, Li H, Kamato D,
Zheng X, Luo S, Li Z, Liu P, Han J, et al: Endothelial dysfunction
in atherosclerotic cardiovascular diseases and beyond: From
mechanism to pharmacotherapies. Pharmacol Rev. 73:924–967. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Cao Q, Wang X, Jia L, Mondal AK, Diallo A,
Hawkins GA, Das SK, Parks JS, Yu L, Shi H, et al: Inhibiting DNA
Methylation by 5-Aza-2′-deoxycytidine ameliorates atherosclerosis
through suppressing macrophage inflammation. Endocrinology.
155:4925–4938. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Zhang X, Rotllan N, Canfrán-Duque A, Sun
J, Toczek J, Moshnikova A, Malik S, Price NL, Araldi E, Zhong W, et
al: Targeted suppression of miRNA-33 using pHLIP improves
atherosclerosis regression. Circ Res. 131:77–90. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Jeong HY, Kang WS, Hong MH, Jeong HC, Shin
MG, Jeong MH, Kim YS and Ahn Y: 5-Azacytidine modulates interferon
regulatory factor 1 in macrophages to exert a cardioprotective
effect. Sci Rep. 5:157682015. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Huang K, Pokhrel A, Echesabal-Chen J,
Scott J, Bruce T, Jo H and Stamatikos A: Inhibiting MiR-33a-3p
expression fails to enhance ApoAI-Mediated cholesterol efflux in
Pro-inflammatory endothelial cells. Medicina (Kaunas). 61:3292025.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Zhu L, Liu Z, Cui Q, Guan G, Hui R, Wang
X, Wang J, Zhang Y and Zhu X: Epigenetic modification of CD4+ T
cells into Tregs by 5-azacytidine as cellular therapeutic for
atherosclerosis treatment. Cell Death Dis. 15:6892024. View Article : Google Scholar :
|
|
52
|
Miroshnikova VV, Panteleeva AA, Pobozheva
IA, Razgildina ND, Polyakova EA, Markov AV, Belyaeva OD, Berkovich
OA, Baranova EI, Nazarenko MS, et al: ABCA1 and ABCG1 DNA
methylation in epicardial adipose tissue of patients with coronary
artery disease. BMC Cardiovasc Disord. 21:5662021. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Rozhkova AV, Dmitrieva VG, Nosova EV,
Dergunov AD, Limborska SA and Dergunova LV: Genomic variants and
multi-level regulation of ABCA1, ABCG1, and SCARB1 expression in
atherogenesis. J Cardiovasc Dev Dis. 8:1702021.
|
|
54
|
Guay SP, Légaré C, Houde AA, Mathieu P,
Bossé Y and Bouchard L: Acetylsalicylic acid, aging and coronary
artery disease are associated with ABCA1 DNA methylation in men.
Clin Epigenetics. 6:142014. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Ma SC, Zhang HP, Kong FQ, Zhang H, Yang C,
He YY, Wang YH, Yang AN, Tian J, Yang XL, et al: Integration of
gene expression and DNA methylation profiles provides a molecular
subtype for risk assessment in atherosclerosis. Mol Med Rep.
13:4791–4799. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Lv YC, Tang YY, Zhang P, Wan W, Yao F, He
PP, Xie W, Mo ZC, Shi JF, Wu JF, et al: Histone methyltransferase
enhancer of zeste homolog 2-Mediated ABCA1 promoter DNA methylation
contributes to the progression of atherosclerosis. PLoS One.
11:e01572652016. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Holdt LM and Teupser D: Long noncoding RNA
ANRIL: Lnc-ing genetic variation at the chromosome 9p21 locus to
molecular mechanisms of atherosclerosis. Front Cardiovasc Med.
5:1452018. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Sallam T, Jones M, Thomas BJ, Wu X,
Gilliland T, Qian K, Eskin A, Casero D, Zhang Z, Sandhu J, et al:
Transcriptional regulation of macrophage cholesterol efflux and
atherogenesis by a long noncoding RNA. Nat Med. 24:304–312. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Griffin CT, Brennan J and Magnuson T: The
chromatin-remodeling enzyme BRG1 plays an essential role in
primitive erythropoiesis and vascular development. Development.
135:493–500. 2008. View Article : Google Scholar
|
|
60
|
Leisegang MS, Fork C, Josipovic I, Richter
FM, Preussner J, Hu J, Miller MJ, Epah J, Hofmann P, Günther S, et
al: Long noncoding RNA MANTIS facilitates endothelial angiogenic
function. Circulation. 136:65–79. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Yvan-Charvet L, Ranalletta M, Wang N, Han
S, Terasaka N, Li R, Welch C and Tall AR: Combined deficiency of
ABCA1 and ABCG1 promotes foam cell accumulation and accelerates
atherosclerosis in mice. J Clin Invest. 117:3900–3908.
2007.PubMed/NCBI
|
|
62
|
Lee HT, Oh S, Ro DH, Yoo H and Kwon YW:
The key role of DNA methylation and histone acetylation in
epigenetics of atherosclerosis. J Lipid Atheroscler. 9:419–434.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Davis FM and Gallagher KA: Epigenetic
mechanisms in Monocytes/macrophages regulate inflammation in
cardiometabolic and vascular disease. Arterioscler Thromb Vasc
Biol. 39:623–634. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Komal S, Han SN, Cui LG, Zhai MM, Zhou YJ,
Wang P, Shakeel M and Zhang LR: Epigenetic regulation of macrophage
polarization in cardiovascular diseases. Pharmaceuticals (Basel).
16:1412023. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Ortega R, Liu B and Persaud SJ: Effects of
miR-33 deficiency on metabolic and cardiovascular diseases:
Implications for therapeutic intervention. Int J Mol Sci.
24:107772023. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Lightbody RJ, Taylor JMW, Dempsie Y and
Graham A: MicroRNA sequences modulating inflammation and lipid
accumulation in macrophage 'foam' cells: Implications for
atherosclerosis. World J Cardiol. 12:303–333. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Zhang S, Li L, Wang J, Zhang T, Ye T, Wang
S, Xing D and Chen W: Recent advances in the regulation of ABCA1
and ABCG1 by lncRNAs. Clin Chim Acta. 516:100–110. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Zhang Z, Salisbury D and Sallam T: Long
noncoding RNAs in atherosclerosis: JACC review topic of the week. J
Am Coll Cardiol. 72:2380–2390. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Garratt H, Ashburn R, Sopić M, Nogara A,
Caporali A and Mitić T: Long non-coding RNA regulation of
epigenetics in vascular cells. Noncoding RNA. 7:622021.PubMed/NCBI
|
|
70
|
González-Suárez M and Aguilar-Arnal L:
Histone methylation: At the crossroad between circadian rhythms in
transcription and metabolism. Front Genet. 15:13430302024.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Fish JE, Yan MS, Matouk CC, St Bernard R,
Ho JJ, Gavryushova A, Srivastava D and Marsden PA: Hypoxic
repression of endothelial nitric-oxide synthase transcription is
coupled with eviction of promoter histones. J Biol Chem.
285:810–826. 2010. View Article : Google Scholar :
|
|
72
|
Bekkering S, Quintin J, Joosten LA, van
der Meer JW, Netea MG and Riksen NP: Oxidized Low-density
lipoprotein induces long-term proinflammatory cytokine production
and foam cell formation via epigenetic reprogramming of monocytes.
Arterioscler Thromb Vasc Biol. 34:1731–1738. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Scarpa A, Jung Y, Hamid A, Matzaraki V,
More T, Heinz A, Groh L, Bekkering S, Hiller K, Joosten LAB, et al:
Trained immunity induced by oxidized Low-density lipoprotein is
dependent on glutaminolysis. FASEB J. 39:e707742025. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Lee DY and Chiu JJ: Atherosclerosis and
flow: Roles of epigenetic modulation in vascular endothelium. J
Biomed Sci. 26:562019. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Tang H, Zeng Z, Shang C, Li Q and Liu J:
Epigenetic regulation in pathology of atherosclerosis: A novel
perspective. Front Genet. 12:8106892021. View Article : Google Scholar :
|
|
76
|
Lorton BM, Harijan RK, Burgos ES, Bonanno
JB, Almo SC and Shechter D: A binary arginine methylation switch on
histone H3 arginine 2 regulates its interaction with WDR5.
Biochemistry. 59:3696–3708. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Joh RI, Palmieri CM, Hill IT and Motamedi
M: Regulation of histone methylation by noncoding RNAs. Biochim
Biophys Acta. 1839:1385–1394. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Bure IV, Nemtsova MV and Kuznetsova EB:
Histone Modifications and Non-Coding RNAs: Mutual epigenetic
regulation and role in pathogenesis. Int J Mol Sci. 23:58012022.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Schober A, Nazari-Jahantigh M, Wei Y,
Bidzhekov K, Gremse F, Grommes J, Megens RT, Heyll K, Noels H,
Hristov M, et al: MicroRNA-126-5p promotes endothelial
proliferation and limits atherosclerosis by suppressing Dlk1. Nat
Med. 20:368–376. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Kim J, Lee H, Yi SJ and Kim K: Gene
regulation by histone-Modifying enzymes under hypoxic conditions: A
focus on histone methylation and acetylation. Exp Mol Med.
54:878–889. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Wang H and Helin K: Roles of H3K4
methylation in biology and disease. Trends Cell Biol. 35:115–128.
2025. View Article : Google Scholar
|
|
82
|
Greißel A, Culmes M, Burgkart R,
Zimmermann A, Eckstein HH, Zernecke A and Pelisek J: Histone
acetylation and methylation significantly change with severity of
atherosclerosis in human carotid plaques. Cardiovasc Pathol.
25:79–86. 2016. View Article : Google Scholar
|
|
83
|
Wei X, Yi X, Zhu XH and Jiang DS: Histone
methylation and vascular biology. Clin Epigenetics. 12:302020.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Wei Y, Nazari-Jahantigh M, Neth P, Weber C
and Schober A: MicroRNA-126, -145, and -155: A therapeutic triad in
atherosclerosis? Arterioscler Thromb Vasc Biol. 33:449–454. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Zhang B, Nguyen LXT, Zhao D, Frankhouser
DE, Wang H, Hoang DH, Qiao J, Abundis C, Brehove M, Su YL, et al:
Treatment-induced arteriolar revascularization and miR-126
enhancement in bone marrow niche protect leukemic stem cells in
AML. J Hematol Oncol. 14:1222021. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Laugesen A, Højfeldt JW and Helin K:
Molecular mechanisms directing PRC2 recruitment and H3K27
methylation. Mol Cell. 74:8–18. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Razeghian-Jahromi I, Karimi Akhormeh A and
Zibaeenezhad MJ: The role of ANRIL in atherosclerosis. Dis Markers.
2022:88596772022. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Kotake Y, Nakagawa T, Kitagawa K, Suzuki
S, Liu N, Kitagawa M and Xiong Y: Long non-coding RNA ANRIL is
required for the PRC2 recruitment to and silencing of p15(INK4B)
tumor suppressor gene. Oncogene. 30:1956–1962. 2011. View Article : Google Scholar
|
|
89
|
Kyriakou T, Pal A, Peden J, Gloyn A,
McCarthy M and Watkins H: ANRIL, The non coding RNA present in the
chromosome 9 CAD associated locus, has multiple splice variants and
a potential regulatory role in CDKN2B expression. Atherosclerosis.
207:e32009. View Article : Google Scholar
|
|
90
|
Thomas AA, Feng B and Chakrabarti S: ANRIL
regulates production of extracellular matrix proteins and
vasoactive factors in diabetic complications. Am J Physiol
Endocrinol Metab. 314:E191–E200. 2018. View Article : Google Scholar
|
|
91
|
Liu Y, Zhao Y, Feng P and Jiang H: PCSK9
inhibitor attenuates atherosclerosis by regulating
SNHG16/EZH2/TRAF5-mediated VSMC proliferation, migration, and foam
cell formation. Cell Biol Int. 47:1267–1280. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Kuo CL, Murphy AJ, Sayers S, Li R,
Yvan-Charvet L, Davis JZ, Krishnamurthy J, Liu Y, Puig O, Sharpless
NE, et al: Cdkn2a is an atherosclerosis modifier locus that
regulates monocyte/macrophage proliferation. Arterioscler Thromb
Vasc Biol. 31:2483–2492. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Fledderus J, Vanchin B, Rots MG and
Krenning G: The endothelium as a target for Anti-atherogenic
Therapy: A focus on the epigenetic enzymes EZH2 and SIRT1. J Pers
Med. 11:1032021. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Holdt LM, Beutner F, Scholz M, Gielen S,
Gäbel G, Bergert H, Schuler G, Thiery J and Teupser D: ANRIL
expression is associated with atherosclerosis risk at chromosome
9p21. Arterioscler Thromb Vasc Biol. 30:620–627. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Razeghian-Jahromi I, Zibaeenezhad MJ,
Karimi Akhormeh A and Dara M: Expression ratio of circular to
linear ANRIL in hypertensive patients with coronary artery disease.
Sci Rep. 12:18022022. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Holdt LM, Hoffmann S, Sass K, Langenberger
D, Scholz M, Krohn K, Finstermeier K, Stahringer A, Wilfert W,
Beutner F, et al: Alu elements in ANRIL non-coding RNA at
chromosome 9p21 modulate atherogenic cell functions through
trans-regulation of gene networks. PLoS Genet. 9:e10035882013.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Greißel A, Culmes M, Napieralski R, Wagner
E, Gebhard H, Schmitt M, Zimmermann A, Eckstein HH, Zernecke A and
Pelisek J: Alternation of histone and DNA methylation in human
atherosclerotic carotid plaques. Thromb Haemost. 114:390–402. 2015.
View Article : Google Scholar
|
|
98
|
Zhang S, Sun Y, Xiao Q, Niu M, Pan X and
Zhu X: Lnc_000048 promotes histone H3K4 methylation of MAP2K2 to
reduce plaque stability by recruiting KDM1A in carotid
atherosclerosis. Mol Neurobiol. 60:2572–2586. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Bannister AJ and Kouzarides T: Regulation
of chromatin by histone modifications. Cell Res. 21:381–395. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Gujral P, Mahajan V, Lissaman AC and
Ponnampalam AP: Histone acetylation and the role of histone
deacetylases in normal cyclic endometrium. Reprod Biol Endocrinol.
18:842020. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Luan Y, Liu H, Luan Y, Yang Y, Yang J and
Ren KD: New insight in HDACs: Potential therapeutic targets for the
treatment of atherosclerosis. Front Pharmacol. 13:8636772022.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Yucel N, Wang YX, Mai T, Porpiglia E, Lund
PJ, Markov G, Garcia BA, Bendall SC, Angelo M and Blau HM: Glucose
meta-bolism drives histone acetylation landscape transitions that
dictate muscle stem cell function. Cell Rep. 27:3939–3955.e6. 2019.
View Article : Google Scholar
|
|
103
|
Bompada P, Goncalves I, Wu C, Gao R, Sun
J, Mir BA, Luan C, Renström E, Groop L, Weng J, et al:
Epigenome-wide histone acetylation changes in peripheral blood
mononuclear cells in patients with type 2 Diabetes and
atherosclerotic disease. Biomedicines. 9:19082021. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Fang Z, Wang X, Sun X, Hu W and Miao QR:
The role of histone protein acetylation in regulating endothelial
function. Front Cell Dev Biol. 9:6724472021. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Wang Y, Miao X, Liu Y, Li F, Liu Q, Sun J
and Cai L: Dysregulation of histone acetyltransferases and
deacetylases in cardiovascular diseases. Oxid Med Cell Longev.
2014:6419792014. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Bu LL, Yuan HH, Xie LL, Guo MH, Liao DF
and Zheng XL: New dawn for atherosclerosis: Vascular endothelial
cell senescence and death. Int J Mol Sci. 24:151602023. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Yu J, Qiu Y, Yang J, Bian S, Chen G, Deng
M, Kang H and Huang L: DNMT1-PPARγ pathway in macrophages regulates
chronic inflammation and atherosclerosis development in mice. Sci
Rep. 6:300532016. View Article : Google Scholar
|
|
108
|
Aryal B, Rotllan N and Fernández-Hernando
C: Noncoding RNAs and atherosclerosis. Curr Atheroscler Rep.
16:4072014. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Yu XH, Deng WY, Chen JJ, Xu XD, Liu XX,
Chen L, Shi MW, Liu QX, Tao M and Ren K: LncRNA kcnq1ot1 promotes
lipid accumulation and accelerates atherosclerosis via functioning
as a ceRNA through the miR-452-3p/HDAC3/ABCA1 axis. Cell Death Dis.
11:10432020. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Yu B and Wang S: Angio-LncRs: LncRNAs that
regulate angiogenesis and vascular disease. Theranostics.
8:3654–3675. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Chen X, He Y, Fu W, Sahebkar A, Tan Y, Xu
S and Li H: Histone deacetylases (HDACs) and atherosclerosis: A
mechanistic and pharmacological review. Front Cell Dev Biol.
8:5810152020. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Zheng XX, Zhou T, Wang XA, Tong XH and
Ding JW: Histone deacetylases and atherosclerosis. Atherosclerosis.
240:355–366. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Hoeksema MA, Gijbels MJ, Van den Bossche
J, van der Velden S, Sijm A, Neele AE, Seijkens T, Stöger JL,
Meiler S, Boshuizen MC, et al: Targeting macrophage Histone
deacetylase 3 stabilizes atherosclerotic lesions. EMBO Mol Med.
6:1124–1132. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Asare Y, Campbell-James TA, Bokov Y, Yu
LL, Prestel M, El Bounkari O, Roth S, Megens RTA, Straub T, Thomas
K, et al: Histone Deacetylase 9 activates IKK to regulate
atherosclerotic plaque vulnerability. Circ Res. 127:811–823. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Jiang LP, Yu XH, Chen JZ, Hu M, Zhang YK,
Lin HL, Tang WY, He PP and Ouyang XP: Histone deacetylase 3: A
potential therapeutic target for atherosclerosis. Aging Dis.
13:773–786. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Lee DY, Lee CI, Lin TE, Lim SH, Zhou J,
Tseng YC, Chien S and Chiu JJ: Role of histone deacetylases in
transcription factor regulation and cell cycle modulation in
endothelial cells in response to disturbed flow. Proc Natl Acad Sci
USA. 109:1967–1972. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Ohashi A, Yasuda H, Kamiya T, Hara H and
Adachi T: CAPE increases the expression of SOD3 through epigenetics
in human retinal endothelial cells. J Clin Biochem Nutr. 61:6–13.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Leucker TM, Nomura Y, Kim JH, Bhatta A,
Wang V, Wecker A, Jandu S, Santhanam L, Berkowitz D, Romer L and
Pandey D: Cystathionine γ-lyase protects vascular endothelium: A
role for inhibition of histone deacetylase 6. Am J Physiol Heart
Circ Physiol. 312:H711–H720. 2017. View Article : Google Scholar
|
|
119
|
Zhang X, Lu J, Zhang Q, Luo Q and Liu B:
CircRNA RSF1 regulated ox-LDL induced vascular endothelial cells
proliferation, apoptosis and inflammation through modulating
miR-135b-5p/HDAC1 axis in atherosclerosis. Biol Res. 54:112021.
View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Tian FJ, An LN, Wang GK, Zhu JQ, Li Q,
Zhang YY, Zeng A, Zou J, Zhu RF, Han XS, et al: Elevated
microRNA-155 promotes foam cell formation by targeting HBP1 in
atherogenesis. Cardiovasc Res. 103:100–110. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Kovacic JC, Dimmeler S, Harvey RP, Finkel
T, Aikawa E, Krenning G and Baker AH: Endothelial to mesenchymal
transition in cardiovascular disease: JACC State-of-the-Art review.
J Am Coll Cardiol. 73:190–209. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Lecce L, Xu Y, V'Gangula B, Chandel N,
Pothula V, Caudrillier A, Santini MP, d'Escamard V, Ceholski DK,
Gorski PA, et al: Histone deacetylase 9 promotes
endothelial-mesenchymal transition and an unfavorable
atherosclerotic plaque phenotype. J Clin Invest. 131:e1311782021.
View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Han X, Han X, Wang Z, Shen J and Dong Q:
HDAC9 regulates ox-LDL-induced endothelial cell apoptosis by
participating in inflammatory reactions. Front Biosci (Landmark
Ed). 21:907–917. 2016. View
Article : Google Scholar : PubMed/NCBI
|
|
124
|
Cheng HP, Gong D, Zhao ZW, He PP, Yu XH,
Ye Q, Huang C, Zhang X, Chen LY, Xie W, et al: MicroRNA-182
promotes lipoprotein lipase expression and atherogenesisby
targeting histone deacetylase 9 in apolipoprotein E-knockout mice.
Circ J. 82:28–38. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Li F, Chen Y, He Z, Wang C and Wang X, Pan
G, Peng JY, Chen Q and Wang X: Hsa_circ_0001879 promotes the
progression of atherosclerosis by regulating the proliferation and
migration of oxidation of low density lipoprotein (ox-LDL)-induced
vascular endothelial cells via the miR-6873-5p-HDAC9 axis.
Bioengineered. 12:10420–10429. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Morrison AJ: Chromatin-remodeling links
metabolic signaling to gene expression. Mol Metab. 38:1009732020.
View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Liu H, Zhao Y, Zhao G, Deng Y, Chen YE and
Zhang J: SWI/SNF complex in vascular smooth muscle cells and its
implications in cardiovascular pathologies. Cells. 13:1682024.
View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Nodelman IM and Bowman GD: Biophysics of
chromatin remodeling. Annu Rev Biophys. 50:73–93. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Wanior M, Krämer A, Knapp S and Joerger
AC: Exploiting vulnerabilities of SWI/SNF chromatin remodelling
complexes for cancer therapy. Oncogene. 40:3637–3654. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Maassen A, Steciuk J, Wilga M, Szurmak J,
Garbicz D, Sarnowska E and Sarnowski TJ: SWI/SNF-type
complexes-transcription factor interplay: A key regulatory
interaction. Cell Mol Biol Lett. 30:302025. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Gatchalian J, Liao J, Maxwell MB and
Hargreaves DC: Control of Stimulus-dependent responses in
macrophages by SWI/SNF chromatin remodeling complexes. Trends
Immunol. 41:126–140. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Liao J, Ho J, Burns M, Dykhuizen EC and
Hargreaves DC: Collaboration between distinct SWI/SNF chromatin
remodeling complexes directs enhancer selection and activation of
macrophage inflammatory genes. Immunity. 57:1780–1795.e6. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Leisegang MS, Bibli SI, Günther S,
Pflüger-Müller B, Oo JA, Höper C, Seredinski S, Yekelchyk M,
Schmitz-Rixen T, Schürmann C, et al: Pleiotropic effects of laminar
flow and statins depend on the Krüppel-like factor-induced lncRNA
MANTIS. Eur Heart J. 40:2523–2533. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Chen Y, Liang R, Li Y, Jiang L, Ma D, Luo
Q and Song G: Chromatin accessibility: Biological functions,
molecular mechanisms and therapeutic application. Signal Transduct
Target Ther. 9:3402024. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Navickas SM, Giles KA, Brettingham-Moore
KH and Taberlay PC: The role of chromatin remodeler SMARCA4/BRG1 in
brain cancers: A potential therapeutic target. Oncogene.
42:2363–2373. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Bure IV and Nemtsova MV: Mutual regulation
of ncRNAs and chromatin remodeling complexes in normal and
pathological conditions. Int J Mol Sci. 24:78482023. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Han P and Chang CP: Long non-coding RNA
and chromatin remodeling. RNA Biol. 12:1094–1098. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Ruotsalainen AK, Kettunen S, Suoranta T,
Kaikkonen MU, Ylä-Herttuala S and Aherrahrou R: The mechanisms of
Chr.9p21.3 risk locus in coronary artery disease: Where are we
today? Am J Physiol Heart Circ Physiol. 328:H196–H208. 2025.
View Article : Google Scholar
|
|
139
|
Cunha WR, Martin de la Vega M, Rodrigues
de Barros P and Espinosa-Diez C: lncRNAs in vascular senescence and
microvascular remodeling. Am J Physiol Heart Circ Physiol.
328:H1238–H1252. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Gu J, Chen J, Yin Q, Dong M, Zhang Y, Chen
M, Chen X, Min J, He X, Tan Y, et al: lncRNA JPX-Enriched chromatin
microenvironment mediates vascular smooth muscle cell senescence
and promotes atherosclerosis. Arterioscler Thromb Vasc Biol.
44:156–176. 2024. View Article : Google Scholar
|
|
141
|
Farina FM, Weber C and Santovito D: The
emerging landscape of non-conventional RNA functions in
atherosclerosis. Atherosclerosis. 374:74–86. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Theofilis P, Sagris M, Oikonomou E,
Antonopoulos AS, Siasos G, Tsioufis C and Tousoulis D: Inflammatory
mechanisms contributing to endothelial dysfunction. Biomedicines.
9:7812021. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Tamargo IA, Baek KI, Kim Y, Park C and Jo
H: Flow-induced reprogramming of endothelial cells in
atherosclerosis. Nat Rev Cardiol. 20:738–753. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Zhu L, Jia L, Liu N, Wu R, Guan G, Hui R,
Xing Y, Zhang Y and Wang J: DNA Methyltransferase 3b accelerates
the process of atherosclerosis. Oxid Med Cell Longev.
2022:52493672022. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Tabas I and Bornfeldt KE: Intracellular
and intercellular aspects of macrophage immunometabolism in
atherosclerosis. Circ Res. 126:1209–1227. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Chen S, Saeed A, Liu Q, Jiang Q, Xu H,
Xiao GG, Rao L and Duo Y: Macrophages in immunoregulation and
therapeutics. Signal Transduct Target Ther. 8:2072023. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Madrigal-Matute J, Rotllan N, Aranda JF
and Fernández-Hernando C: MicroRNAs and atherosclerosis. Curr
Atheroscler Rep. 15:3222013. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Seneviratne AN, Cole JE, Goddard ME, Park
I, Mohri Z, Sansom S, Udalova I, Krams R and Monaco C: Low shear
stress induces M1 macrophage polarization in murine thin-cap
atherosclerotic plaques. J Mol Cell Cardiol. 89:168–172. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
149
|
Das S, Shah R, Dimmeler S, Freedman JE,
Holley C, Lee JM, Moore K, Musunuru K, Wang DZ, Xiao J, et al:
Noncoding RNAs in cardiovascular disease: Current knowledge, tools
and technologies for investigation, and future directions: A
scientific statement from the American heart association. Circ
Genom Precis Med. 13:e0000622020. View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Huang RS, Hu GQ, Lin B, Lin ZY and Sun CC:
MicroRNA-155 silencing enhances inflammatory response and lipid
uptake in oxidized low-density lipoprotein-stimulated human THP-1
macrophages. J Investig Med. 58:961–967. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
151
|
Chen T, Huang Z, Wang L, Wang Y, Wu F,
Meng S and Wang C: MicroRNA-125a-5p partly regulates the
inflammatory response, lipid uptake, and ORP9 expression in
oxLDL-stimulated monocyte/macrophages. Cardiovasc Res. 83:131–139.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
152
|
He Y, Huang C, Chen J and Shen W:
Caesalpinia sappan L. ethyl acetate extract regulated angiogenesis
in atherosclerosis by modulating the miR-126/VEGF signalling
pathway. Heliyon. 11:e421592025. View Article : Google Scholar : PubMed/NCBI
|
|
153
|
Chistiakov DA, Orekhov AN and Bobryshev
YV: The role of miR-126 in embryonic angiogenesis, adult vascular
homeostasis, and vascular repair and its alterations in
atherosclerotic disease. J Mol Cell Cardiol. 97:47–55. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
154
|
Fan Y, Lu H, Liang W, Hu W, Zhang J and
Chen YE: Krüppel-like factors and vascular wall homeostasis. J Mol
Cell Biol. 9:352–363. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
155
|
Dunn J, Qiu H, Kim S, Jjingo D, Hoffman R,
Kim CW, Jang I, Son DJ, Kim D, Pan C, et al: Flow-dependent
epigenetic DNA methylation regulates endothelial gene expression
and atherosclerosis. J Clin Invest. 124:3187–3199. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
156
|
Cao C, Zhang H, Zhao L, Zhou L, Zhang M,
Xu H, Han X, Li G, Yang X and Jiang Y: miR-125b targets DNMT3b and
mediates p53 DNA methylation involving in the vascular smooth
muscle cells proliferation induced by homocysteine. Exp Cell Res.
347:95–104. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
157
|
Zhang HP, Wang YH, Cao CJ, Yang XM, Ma SC,
Han XB, Yang XL, Yang AN, Tian J and Xu H: A regulatory circuit
involving miR-143 and DNMT3a mediates vascular smooth muscle cell
proliferation induced by homocysteine. Mol Med Rep. 13:483–490.
2016. View Article : Google Scholar
|
|
158
|
Skuratovskaia DA, Vulf MA, Komar A,
Kirienkova E and Litvinova LS: Epigenetic regulation as a promising
tool for treatment of atherosclerosis. Front Biosci (Schol Ed).
12:173–199. 2020. View
Article : Google Scholar : PubMed/NCBI
|
|
159
|
Moore KJ, Sheedy FJ and Fisher EA:
Macrophages in atherosclerosis: A dynamic balance. Nat Rev Immunol.
13:709–721. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
160
|
Ben-Yair R, Butty VL, Busby M, Qiu Y,
Levine SS, Goren A, Boyer LA, Burns CG and Burns CE:
H3K27me3-mediated silencing of structural genes is required for
zebrafish heart regeneration. Development. 146:dev1786322019.
View Article : Google Scholar : PubMed/NCBI
|
|
161
|
Morrison AM, Sullivan AE and Aday AW:
Atherosclerotic disease: Pathogenesis and approaches to management.
Med Clin North Am. 107:793–805. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
162
|
Skuratovskaia D, Vulf M, Komar A,
Kirienkova E and Litvinova L: Promising directions in
atherosclerosis treatment based on epigenetic regulation using
MicroRNAs and long noncoding rNAs. Biomolecules. 9:2262019.
View Article : Google Scholar : PubMed/NCBI
|
|
163
|
Frikeche J, Clavert A, Delaunay J, Brissot
E, Grégoire M, Gaugler B and Mohty M: Impact of the hypomethylating
agent 5-azacytidine on dendritic cells function. Exp Hematol.
39:1056–1063. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
164
|
Kelly TK, De Carvalho DD and Jones PA:
Epigenetic modifications as therapeutic targets. Nat Biotechnol.
28:1069–1078. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
165
|
Dabravolski SA, Sukhorukov VN, Kalmykov
VA, Grechko AV, Shakhpazyan NK and Orekhov AN: The role of KLF2 in
the regulation of atherosclerosis development and potential use of
KLF2-targeted therapy. Biomedicines. 10:2542022. View Article : Google Scholar : PubMed/NCBI
|
|
166
|
Jiang YZ, Jiménez JM, Ou K, McCormick ME,
Zhang LD and Davies PF: Hemodynamic disturbed flow induces
differential DNA methylation of endothelial Kruppel-Like Factor 4
promoter in vitro and in vivo. Circ Res. 115:32–43. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
167
|
Panduga S, Vasishta S, Subramani R,
Vincent S, Mutalik S and Joshi MB: Epidrugs in the clinical
management of atherosclerosis: Mechanisms, challenges and promises.
Eur J Pharmacol. 980:1768272024. View Article : Google Scholar : PubMed/NCBI
|
|
168
|
Zhang L, Xia C, Yang Y, Sun F, Zhang Y,
Wang H, Liu R and Yuan M: DNA methylation and histone
post-translational modifications in atherosclerosis and a novel
perspective for epigenetic therapy. Cell Commun Signal. 21:3442023.
View Article : Google Scholar : PubMed/NCBI
|
|
169
|
Li X, Qi H, Cui W, Wang Z, Fu X, Li T, Ma
H, Yang Y and Yu T: Recent advances in targeted delivery of
non-coding RNA-based therapeutics for atherosclerosis. Mol Ther.
30:3118–3132. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
170
|
Rayner KJ, Suárez Y, Dávalos A, Parathath
S, Fitzgerald ML, Tamehiro N, Fisher EA, Moore KJ and
Fernández-Hernando C: MiR-33 contributes to the regulation of
cholesterol homeostasis. Science. 328:1570–1573. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
171
|
Andreou I, Sun X, Stone PH, Edelman ER and
Feinberg MW: miRNAs in atherosclerotic plaque initiation,
progression, and rupture. Trends Mol Med. 21:307–318. 2015.
View Article : Google Scholar : PubMed/NCBI
|