You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
![]() |
|
Rossiello F, Jurk D, Passos JF and d'Adda di Fagagna F: Telomere dysfunction in ageing and age-related diseases. Nat Cell Biol. 24:135–147. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
de Magalhães JP: Cellular senescence in normal physiology. Science. 384:1300–1301. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Kowald A, Passos JF and Kirkwood TBL: On the evolution of cellular senescence. Aging Cell. 19:e132702020. View Article : Google Scholar : PubMed/NCBI | |
|
Varela-Eirín M and Demaria M: Cellular senescence. Curr Biol. 32:R448–R452. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Afsar B and Afsar RE: Hypertension and cellular senescence. Biogerontology. 24:457–478. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Roger L, Tomas F and Gire V: Mechanisms and regulation of cellular senescence. Int J Mol Sci. 22:131732021. View Article : Google Scholar : PubMed/NCBI | |
|
Devarbhavi H, Asrani SK, Arab JP, Nartey YA, Pose E and Kamath PS: Global burden of liver disease: 2023 Update. J Hepatol. 79:516–537. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Zeng Q, Gong Y, Zhu N, Shi Y, Zhang C and Qin L: Lipids and lipid metabolism in cellular senescence: Emerging targets for age-related diseases. Ageing Res Rev. 97:1022942024. View Article : Google Scholar : PubMed/NCBI | |
|
Park J and Shin DW: Senotherapeutics and their molecular mechanism for improving aging. Biomol Ther (Seoul). 30:490–500. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Hayflick L and Moorhead PS: The serial cultivation of human diploid cell strains. Exp Cell Res. 25:585–621. 1961. View Article : Google Scholar : PubMed/NCBI | |
|
Reimann M, Lee S and Schmitt CA: Cellular senescence: Neither irreversible nor reversible. J Exp Med. 221:e202321362024. View Article : Google Scholar : PubMed/NCBI | |
|
Ahmad A, Braden A, Khan S, Xiao J and Khan MM: Crosstalk between the DNA damage response and cellular senescence drives aging and age-related diseases. Semin Immunopathol. 46:102024. View Article : Google Scholar : PubMed/NCBI | |
|
Basilicata MG, Sommella E, Scisciola L, Tortorella G, Malavolta M, Giordani C, Barbieri M, Campiglia P and Paolisso G: Multi-omics strategies to decode the molecular landscape of cellular senescence. Ageing Res Rev. 111:1028242025. View Article : Google Scholar : PubMed/NCBI | |
|
Tchkonia T, Zhu Y, van Deursen J, Campisi J and Kirkland JL: Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest. 123:966–972. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Gasek NS, Kuchel GA, Kirkland JL and Xu M: Strategies for targeting senescent cells in human disease. Nat Aging. 1:870–879. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Safwan-Zaiter H, Wagner N and Wagner KD: P16INK4A-More than a senescence marker. Life (Basel). 12:13322022.PubMed/NCBI | |
|
Ou HL and Schumacher B: DNA damage responses and p53 in the aging process. Blood. 131:488–495. 2018. View Article : Google Scholar | |
|
Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O, Bishop C, Campisi J, Collado M, Evangelou K, Ferbeyre G, et al: Cellular senescence: Defining a path forward. Cell. 179:813–827. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wang B, Han J, Elisseeff JH and Demaria M: The senescence-associated secretory phenotype and its physiological and pathological implications. Nat Rev Mol Cell Biol. 25:958–978. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Admasu TD, Rae M and Stolzing A: Dissecting primary and secondary senescence to enable new senotherapeutic strategies. Ageing Res Re. 70:1014122021. View Article : Google Scholar | |
|
Wissler Gerdes EO, Zhu Y, Tchkonia T and Kirkland JL: Discovery, development, and future application of senolytics: Theories and predictions. FEBS J. 287:2418–2427. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang L, Pitcher LE, Yousefzadeh MJ, Niedernhofer LJ, Robbins PD and Zhu Y: Cellular senescence: A key therapeutic target in aging and diseases. J Clin Invest. 132:e1584502022. View Article : Google Scholar : PubMed/NCBI | |
|
Espinosa De Ycaza AE, Søndergaard E, Morgan-Bathke M, Carranza Leon BG, Lytle KA, Ramos P, Kirkland JL, Tchkonia T and Jensen MD: Senescent cells in human adipose tissue: A cross-sectional study. Obesity (Silver Spring). 29:1320–1327. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Kirkland JL and Tchkonia T: Senolytic drugs: From discovery to translation. J Intern Med. 288:518–536. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Naseem S, Hussain T and Manzoor S: Interleukin-6: A promising cytokine to support liver regeneration and adaptive immunity in liver pathologies. Cytokine Growth Factor Rev. 39:36–45. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Widjaja AA, Chothani SP and Cook SA: Different roles of interleukin 6 and interleukin 11 in the liver: Implications for therapy. Hum Vaccin Immunother. 16:2357–2362. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Yamagishi R, Kamachi F, Nakamura M, Yamazaki S, Kamiya T, Takasugi M, Cheng Y, Nonaka Y, Yukawa-Muto Y, Thuy LTT, et al: Gasdermin D-mediated release of IL-33 from senescent hepatic stellate cells promotes obesity-associated hepatocellular carcinoma. Sci Immunol. 7:eabl72092022. View Article : Google Scholar : PubMed/NCBI | |
|
Luciano-Mateo F, Cabré N, Fernández-Arroyo S, Baiges-Gaya G, Hernández-Aguilera A, Rodríguez-Tomàs E, Muñoz-Pinedo C, Menéndez JA, Camps J and Joven J: Chemokine C-C motif ligand 2 overexpression drives tissue-specific metabolic responses in the liver and muscle of mice. Sci Rep. 10:119542020. View Article : Google Scholar : PubMed/NCBI | |
|
Xu L, Chen Y, Nagashimada M, Ni Y, Zhuge F, Chen G, Li H, Pan T, Yamashita T, Mukaida N, et al: CC chemokine ligand 3 deficiency ameliorates diet-induced steatohepatitis by regulating liver macrophage recruitment and M1/M2 status in mice. Metabolism. 125:1549142021. View Article : Google Scholar : PubMed/NCBI | |
|
Yu X, Chen Y, Cui L, Yang K, Wang X, Lei L, Zhang Y, Kong X, Lao W, Li Z, et al: CXCL8, CXCL9, CXCL10, and CXCL11 as biomarkers of liver injury caused by chronic hepatitis B. Front Microbiol. 13:10529172022. View Article : Google Scholar : PubMed/NCBI | |
|
Queck A, Bode H, Uschner FE, Brol MJ, Graf C, Schulz M, Jansen C, Praktiknjo M, Schierwagen R, Klein S, et al: Systemic MCP-1 levels derive mainly from injured liver and are associated with complications in cirrhosis. Front Immunol. 11:3542020. View Article : Google Scholar : PubMed/NCBI | |
|
Yan J, Hu B, Shi W, Wang X, Shen J, Chen Y, Huang H and Jin L: Gli2-regulated activation of hepatic stellate cells and liver fibrosis by TGF-β signaling. Am J Physiol Gastrointest Liver Physiol. 320:G720–G728. 2021. View Article : Google Scholar | |
|
Borkham-Kamphorst E and Weiskirchen R: The PDGF system and its antagonists in liver fibrosis. Cytokine Growth Factor Rev. 28:53–61. 2016. View Article : Google Scholar | |
|
Campana L, Esser H, Huch M and Forbes S: Liver regeneration and inflammation: From fundamental science to clinical applications. Nat Rev Mol Cell Biol. 22:608–624. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Wójcik M, Ramadori P, Blaschke M, Sultan S, Khan S, Malik IA, Naz N, Martius G, Ramadori G and Schultze FC: Immunodetection of cyclooxygenase-2 (COX-2) is restricted to tissue macrophages in normal rat liver and to recruited mononuclear phagocytes in liver injury and cholangiocarcinoma. Histochem Cell Biol. 137:217–233. 2012. View Article : Google Scholar : | |
|
Lichtinghagen R, Michels D, Haberkorn CI, Arndt B, Bahr M, Flemming P, Manns MP and Boeker KH: Matrix metalloproteinase (MMP)-2, MMP-7, and tissue inhibitor of metalloproteinase-1 are closely related to the fibroproliferative process in the liver during chronic hepatitis C. J Hepatol. 34:239–247. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Thiele M, Johansen S, Gudmann NS, Madsen B, Kjaergaard M, Nielsen MJ, Leeming DJ, Jacobsen S, Bendtsen F, Møller S, et al: Progressive alcohol-related liver fibrosis is characterised by imbalanced collagen formation and degradation. Aliment Pharmacol Ther. 54:1070–1080. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Morio B, Panthu B, Bassot A and Rieusset J: Role of mitochondria in liver metabolic health and diseases. Cell Calcium. 94:1023362021. View Article : Google Scholar : PubMed/NCBI | |
|
Matsumoto T, Wakefield L and Grompe M: The significance of polyploid hepatocytes during aging process. Cell Mol Gastroenterol Hepatol. 11:1347–1349. 2021. View Article : Google Scholar : | |
|
Bu W, Sun X, Xue X, Geng S, Yang T, Zhang J, Li Y, Feng C, Liu Q, Zhang X, et al: Early onset of pathological polyploidization and cellular senescence in hepatocytes lacking RAD51 creates a pro-fibrotic and pro-tumorigenic inflammatory microenvironment. Hepatology. 81:491–508. 2025. View Article : Google Scholar | |
|
Lin S, Nascimento EM, Gajera CR, Chen L, Neuhöfer P, Garbuzov A, Wang S and Artandi SE: Distributed hepatocytes expressing telomerase repopulate the liver in homeostasis and injury. Nature. 556:244–248. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Seo E, Kang H, Choi H, Choi W and Jun HS: Reactive oxygen species-induced changes in glucose and lipid metabolism contribute to the accumulation of cholesterol in the liver during aging. Aging Cell. 18:e128952019. View Article : Google Scholar : PubMed/NCBI | |
|
Kiourtis C, Terradas-Terradas M, Gee LM, May S, Georgakopoulou A, Collins AL, O'Sullivan ED, Baird DP, Hassan M, Shaw R, et al: Hepatocellular senescence induces multi-organ senescence and dysfunction via TGFβ. Nat Cell Biol. 26:2075–2083. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Aravinthan A, Shannon N, Heaney J, Hoare M, Marshall A and Alexander GJ: The senescent hepatocyte gene signature in chronic liver disease. Exp Gerontol. 60:37–45. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Trivedi P, Wang S and Friedman SL: The power of plasticity-metabolic regulation of hepatic stellate cells. Cell Metab. 33:242–257. 2021. View Article : Google Scholar | |
|
Dewidar B, Meyer C, Dooley S and Meindl-Beinker AN: TGF-β in hepatic stellate cell activation and liver fibrogenesis-updated 2019. Cells. 8:14192019. View Article : Google Scholar | |
|
Yang F, Li H, Li Y, Hao Y, Wang C, Jia P, Chen X, Ma S and Xiao Z: Crosstalk between hepatic stellate cells and surrounding cells in hepatic fibrosis. Int Immunopharmacol. 99:1080512021. View Article : Google Scholar : PubMed/NCBI | |
|
Yashaswini CN, Qin T, Bhattacharya D, Amor C, Lowe S, Lujambio A, Wang S and Friedman SL: Phenotypes and ontogeny of senescent hepatic stellate cells in metabolic dysfunction-associated steatohepatitis. J Hepatol. 81:207–217. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
McConnell MJ, Kostallari E, Ibrahim S and Iwakiri Y: The evolving role of liver sinusoidal endothelial cells in liver health and disease. Hepatology. 78:649–669. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Wan Y, Li X, Slevin E, Harrison K, Li T, Zhang Y, Klaunig JE, Wu C, Shetty AK, Dong XC and Meng F: Endothelial dysfunction in pathological processes of chronic liver disease during aging. FASEB J. 36:e221252022. View Article : Google Scholar | |
|
Hunt NJ, Kang SWS, Lockwood GP, Le Couteur DG and Cogger VC: Hallmarks of aging in the liver. Comput Struct Biotechnol J. 17:1151–1161. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Maeso-Díaz R, Ortega-Ribera M, Fernández-Iglesias A, Hide D, Muñoz L, Hessheimer AJ, Vila S, Francés R, Fondevila C, Albillos A, et al: Effects of aging on liver microcirculatory function and sinusoidal phenotype. Aging Cell. 17:e128292018. View Article : Google Scholar : PubMed/NCBI | |
|
Maeso-Díaz R, Ortega-Ribera M, Lafoz E, Lozano JJ, Baiges A, Francés R, Albillos A, Peralta C, García-Pagán JC, Bosch J, et al: Aging influences hepatic microvascular biology and liver fibrosis in advanced chronic liver disease. Aging Dis. 10:684–698. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Li P, He K, Li J, Liu Z and Gong J: The role of Kupffer cells in hepatic diseases. Mol Immunol. 85:222–229. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Yang W, Kim DM, Jiang W, Ai W, Pan Q, Rahman S, Cai JJ, Brashear WA, Sun Y and Guo S: Suppression of FOXO1 attenuates inflamm-aging and improves liver function during aging. Aging Cell. 22:e139682023. View Article : Google Scholar : PubMed/NCBI | |
|
Yao J, Li Y and Wang H: The roles of myeloid cells in aging-related liver diseases. Int J Biol Sci. 19:1564–1578. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Bird TG, Müller M, Boulter L, Vincent DF, Ridgway RA, Lopez-Guadamillas E, Lu WY, Jamieson T, Govaere O, Campbell AD, et al: TGFβ inhibition restores a regenerative response in acute liver injury by suppressing paracrine senescence. Sci Transl Med. 10:eaan12302018. View Article : Google Scholar | |
|
Fontana L, Zhao E, Amir M, Dong H, Tanaka K and Czaja MJ: Aging promotes the development of diet-induced murine steatohepatitis but not steatosis. Hepatology. 57:995–1004. 2013. View Article : Google Scholar | |
|
Trefts E, Gannon M and Wasserman DH: The liver. Curr Biol. 27:R1147–R1151. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Sanders FWB and Griffin JL: De novo lipogenesis in the liver in health and disease: More than just a shunting yard for glucose. Biol Rev Camb Philos Soc. 91:452–468. 2016. View Article : Google Scholar : | |
|
Ghosh-Choudhary S, Liu J and Finkel T: Metabolic regulation of cell fate and function. Trends Cell Biol. 30:201–212. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Andrews TS, Atif J, Liu JC, Perciani CT, Ma XZ, Thoeni C, Slyper M, Eraslan G, Segerstolpe A, Manuel J, et al: Single-cell, single-nucleus, and spatial RNA sequencing of the human liver identifies cholangiocyte and mesenchymal heterogeneity. Hepatol Commun. 6:821–840. 2022. View Article : Google Scholar | |
|
Horn P and Tacke F: Metabolic reprogramming in liver fibrosis. Cell Metab. 36:1439–1455. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Foglia B, Beltrà M, Sutti S and Cannito S: Metabolic reprogramming of HCC: A new microenvironment for immune responses. Int J Mol Sci. 24:74632023. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Q, Zhang X, Qi J, Tian X, Dovjak E, Zhang J, Du H, Zhang N, Zhao J, Zhang Y, et al: Comprehensive profiling of lipid metabolic reprogramming expands precision medicine for HCC. Hepatology. 81:1164–1180. 2025. View Article : Google Scholar | |
|
Qu H, Liu J, Zhang D, Xie R, Wang L and Hong: Glycolysis in chronic liver diseases: Mechanistic insights and therapeutic opportunities. Cells. 12:19302023. View Article : Google Scholar : PubMed/NCBI | |
|
Lin J, Rao D, Zhang M and Gao Q: Metabolic reprogramming in the tumor microenvironment of liver cancer. J Hematol Oncol. 17:62024. View Article : Google Scholar : PubMed/NCBI | |
|
Moreno-Fernandez ME, Giles DA, Oates JR, Chan CC, Damen MSMA, Doll JR, Stankiewicz TE, Chen X, Chetal K, Karns R, et al: PKM2-dependent metabolic skewing of hepatic Th17 cells regulates pathogenesis of non-alcoholic fatty liver disease. Cell Metab. 33:1187–1204.e9. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Rao J, Wang H, Ni M, Wang Z, Wang Z, Wei S, Liu M, Wang P, Qiu J, Zhang L, et al: FSTL1 promotes liver fibrosis by reprogramming macrophage function through modulating the intracellular function of PKM2. Gut. 71:2539–2550. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Martin DE, Torrance BL, Haynes L and Bartley JM: Targeting aging: Lessons learned from immunometabolism and cellular senescence. Front Immunol. 12:7147422021. View Article : Google Scholar : PubMed/NCBI | |
|
Semenovich DS, Andrianova NV, Zorova LD, Pevzner IB, Abramicheva PA, Elchaninov AV, Markova OV, Petrukhina AS, Zorov DB and Plotnikov EY: Fibrosis development linked to alterations in glucose and energy metabolism and prooxidant-antioxidant balance in experimental models of liver injury. Antioxidants (Basel). 12:16042023. View Article : Google Scholar : PubMed/NCBI | |
|
Harrington JS, Ryter SW, Plataki M, Price DR and Choi AMK: Mitochondria in health, disease, and aging. Physiol Rev. 103:2349–2422. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Guo Y, Guan T, Shafiq K, Yu Q, Jiao X, Na D, Li M, Zhang G and Kong J: Mitochondrial dysfunction in aging. Ageing Res Rev. 88:1019552023. View Article : Google Scholar : PubMed/NCBI | |
|
Amorim JA, Coppotelli G, Rolo AP, Palmeira CM, Ross JM and Sinclair DA: Mitochondrial and metabolic dysfunction in ageing and age-related diseases. Nat Rev Endocrinol. 18:243–258. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Mansouri A, Gattolliat CH and Asselah T: Mitochondrial dysfunction and signaling in chronic liver diseases. Gastroenterology. 155:629–647. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Tian XL, Li JQ, Wu DS, Li Q and Chen B: Mitochondrial dysfunction affects hepatic immune and metabolic remodeling in patients with hepatitis B virus-related acute-on-chronic liver failure. World J Gastroenterol. 30:881–900. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Xiang L, Shao Y and Chen Y: Mitochondrial dysfunction and mitochondrion-targeted therapeutics in liver diseases. J Drug Target. 29:1080–1093. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Reynolds JC, Lai RW, Woodhead JST, Joly JH, Mitchell CJ, Cameron-Smith D, Lu R, Cohen P, Graham NA, Benayoun BA, et al: MOTS-c is an exercise-induced mitochondrial-encoded regulator of age-dependent physical decline and muscle homeostasis. Nat Commun. 12:4702021. View Article : Google Scholar : PubMed/NCBI | |
|
López-Otín C, Blasco MA, Partridge L, Serrano M and Kroemer G: Hallmarks of aging: An expanding universe. Cell. 186:243–278. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Cavaliere G, Catapano A, Trinchese G, Cimmino F, Menale C, Petrella L and Mollica MP: Crosstalk between adipose tissue and hepatic mitochondria in the development of the inflammation and liver injury during ageing in high-fat diet fed rats. Int J Mol Sci. 24:29672023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang W, Wang C, Xu H and Gao Y: Aldehyde dehydrogenase, liver disease and cancer. Int J Biol Sci. 16:921–934. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Thoudam T, Gao H, Jiang Y, Huda N, Yang Z, Ma J and Liangpunsakul S: Mitochondrial quality control in alcohol-associated liver disease. Hepatol Commun. 8:e05342024. View Article : Google Scholar : PubMed/NCBI | |
|
Eid N, Ito Y, Horibe A and Otsuki Y: Ethanol-induced mitophagy in liver is associated with activation of the PINK1-Parkin pathway triggered by oxidative DNA damage. Histol Histopathol. 31:1143–1159. 2016.PubMed/NCBI | |
|
Hammoutene A, Biquard L, Lasselin J, Kheloufi M, Tanguy M, Vion AC, Mérian J, Colnot N, Loyer X, Tedgui A, et al: A defect in endothelial autophagy occurs in patients with non-alcoholic steatohepatitis and promotes inflammation and fibrosis. J Hepatol. 72:528–538. 2020. View Article : Google Scholar | |
|
Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, Rosen J, Eskelinen EL, Mizushima N, Ohsumi Y, et al: Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest. 112:1809–1820. 2023. View Article : Google Scholar | |
|
Cichoż-Lach H and Michalak A: Oxidative stress as a crucial factor in liver diseases. World J Gastroenterol. 20:8082–8091. 2014. View Article : Google Scholar | |
|
Lee J, Kim J, Lee R, Lee E, Choi TG, Lee AS, Yoon YI, Park GC, Namgoong JM, Lee SG and Tak E: Therapeutic strategies for liver diseases based on redox control systems. Biomed Pharmacother. 156:1137642022. View Article : Google Scholar : PubMed/NCBI | |
|
Hajam YA, Rani R, Ganie SY, Sheikh TA, Javaid D, Qadri SS, Pramodh S, Alsulimani A, Alkhanani MF, Harakeh S, et al: Oxidative stress in human pathology and aging: Molecular mechanisms and perspectives. Cells. 11:5522022. View Article : Google Scholar : PubMed/NCBI | |
|
Bárcena B, Salamanca A, Pintado C, Mazuecos L, Villar M, Moltó E, Bonzón-Kulichenko E, Vázquez J, Andrés A and Gallardo N: Aging induces hepatic oxidative stress and nuclear proteomic remodeling in liver from wistar rats. Antioxidants (Basel). 10:15352021. View Article : Google Scholar : PubMed/NCBI | |
|
Jung YS, Radhakrishnan K, Hammad S, Müller S, Müller J, Noh JR, Kim J, Lee IK, Cho SJ, Kim DK, et al: ERRγ-inducible FGF23 promotes alcoholic liver injury through enhancing CYP2E1 mediated hepatic oxidative stress. Redox Biol. 71:1031072024. View Article : Google Scholar | |
|
Jin J, Iakova P, Jiang Y, Medrano EE and Timchenko NA: The reduction of SIRT1 in livers of old mice leads to impaired body homeostasis and to inhibition of liver proliferation. Hepatology. 54:989–998. 2021. View Article : Google Scholar | |
|
Gressler AE, Leng H, Zinecker H and Simon AK: Proteostasis in T cell aging. Semin Immunol. 70:1018382023. View Article : Google Scholar : PubMed/NCBI | |
|
Hipp MS, Kasturi P and Hartl FU: The proteostasis network and its decline in ageing. Nat Rev Mol Cell Biol. 20:421–435. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Klaips CL, Jayaraj GG and Hartl FU: Pathways of cellular proteostasis in aging and disease. J Cell Biol. 217:51–63. 2018. View Article : Google Scholar : | |
|
Xia SW, Wang ZM, Sun SM, Su Y, Li ZH, Shao JJ, Tan SZ, Chen AP, Wang SJ, Zhang ZL and Zheng SZ: Endoplasmic reticulum stress and protein degradation in chronic liver disease. Pharmacol Res. 161:1052182020. View Article : Google Scholar : PubMed/NCBI | |
|
Wei S, Wang Q, Zhou H, Qiu J, Li C, Shi C, Zhou S, Liu R and Lu L: miR-455-3p alleviates hepatic stellate cell activation and liver fibrosis by suppressing HSF1 expression. Mol Ther Nucleic Acids. 16:758–769. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Tsao FHC, Barnes JN, Amessoudji A, Li Z and Meyer KC: Aging-related and gender specific albumin misfolding in Alzheimer's disease. J Alzheimers Dis Rep. 4:67–77. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Cuanalo-Contreras K, Schulz J, Mukherjee A, Park KW, Armijo E and Soto C: Extensive accumulation of misfolded protein aggregates during natural aging and senescence. Front Aging Neurosci. 14:10901092023. View Article : Google Scholar : PubMed/NCBI | |
|
Recillas-Targa F: Cancer epigenetics: An overview. Arch Med Res. 53:732–740. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Saul D and Kosinsky RL: Epigenetics of aging and aging-associated diseases. Int J Mol Sci. 22:4012021. View Article : Google Scholar : PubMed/NCBI | |
|
Murphy SK, Yang H, Moylan CA, Pang H, Dellinger A, Abdelmalek MF, Garrett ME, Ashley-Koch A, Suzuki A, Tillmann HL, et al: Relationship between methylome and transcriptome in patients with nonalcoholic fatty liver disease. Gastroenterology. 145:1076–1087. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Gallon J, Coto-Llerena M, Ercan C, Bianco G, Paradiso V, Nuciforo S, Taha-Melitz S, Meier MA, Boldanova T, Pérez-Del-Pulgar S, et al: Epigenetic priming in chronic liver disease impacts the transcriptional and genetic landscapes of hepatocellular carcinoma. Mol Oncol. 16:665–682. 2022. View Article : Google Scholar : | |
|
Liu YR, Wang JQ, Huang ZG, Chen RN, Cao X, Zhu DC, Yu HX, Wang XR, Zhou HY, Xia Q and Li J: Histone deacetylase-2: A potential regulator and therapeutic target in liver disease (review). Int J Mol Med. 48:1312021. View Article : Google Scholar : | |
|
Joanna F, van Grunsven LA, Mathieu V, Sarah S, Sarah D, Karin V, Tamara V and Vera R: Histone deacetylase inhibition and the regulation of cell growth with particular reference to liver pathobiology. J Cell Mol Med. 13:2990–3005. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Morral N, Liu S, Conteh AM, Chu X, Wang Y, Dong XC, Liu Y, Linnemann AK and Wan J: Aberrant gene expression induced by a high fat diet is linked to H3K9 acetylation in the promoter-proximal region. Biochim Biophys Acta Gene Regul Mech. 1864:1946912021. View Article : Google Scholar : PubMed/NCBI | |
|
Sun C, Fan JG and Qiao L: Potential epigenetic mechanism in non-alcoholic fatty liver disease. Int J Mol Sci. 16:5161–5179. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Suter MA, Chen A, Burdine MS, Choudhury M, Harris RA, Lane RH, Friedman JE, Grove KL, Tackett AJ and Aagaard KM: A maternal high-fat diet modulates fetal SIRT1 histone and protein deacetylase activity in nonhuman primates. FASEB J. 26:5106–5114. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Pazienza V, Borghesan M, Mazza T, Sheedfar F, Panebianco C, Williams R, Mazzoccoli G, Andriulli A, Nakanishi T and Vinciguerra M: SIRT1-metabolite binding histone macroH2A1.1 protects hepatocytes against lipid accumulation. Aging (Albany NY). 6:35–47. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Kriss CL, Gregory-Lott E, Storey AJ, Tackett AJ, Wahls WP and Stevens SM Jr: In vivo metabolic tracing demonstrates the site-specific contribution of hepatic ethanol metabolism to histone acetylation. Alcohol Clin Exp Res. 42:1909–1923. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Xiao Y, Hu Y and Liu S: Non-coding RNAs: A promising target for early metastasis intervention. Chin Med J (Engl). 136:2538–2550. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Dongiovanni P, Meroni M, Longo M, Fargion S and Fracanzani AL: miRNA signature in NAFLD: A turning point for a non-invasive diagnosis. Int J Mol Sci. 19:39662018. View Article : Google Scholar : PubMed/NCBI | |
|
Markovic J, Sharma AD and Balakrishnan A: MicroRNA-221: A fine tuner and potential biomarker of chronic liver injury. Cells. 9:17672020. View Article : Google Scholar : PubMed/NCBI | |
|
Sodum N, Kumar G, Bojja SL, Kumar N and Rao CM: Epigenetics in NAFLD/NASH: Targets and therapy. Pharmacol Res. 167:1054842021. View Article : Google Scholar : PubMed/NCBI | |
|
Maeso-Díaz R and Gracia-Sancho J: Aging and chronic liver disease. Semin Liver Dis. 40:373–384. 2020. View Article : Google Scholar | |
|
GBD 2019 Hepatitis B Collaborators: Global, regional, and national burden of hepatitis B, 1990-2019: A systematic analysis for the global burden of disease study 2019. Lancet Gastroenterol Hepatol. 7:796–829. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Z, Lin C, Mao X, Guo C, Suo C, Zhu D, Jiang W, Li Y, Fan J, Song C, et al: Changing prevalence of chronic hepatitis B virus infection in China between 1973 and 2021: A systematic literature review and meta-analysis of 3740 studies and 231 million people. Gut. 72:2354–2363. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Kondo Y, Tsukada K, Takeuchi T, Mitsui T, Iwano K, Masuko K, Itoh T, Tokita H, Okamoto H, Tsuda F, et al: High carrier rate after hepatitis B virus infection in the elderly. Hepatology. 18:768–774. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Bellon M and Nicot C: Telomere dynamics in immune senescence and exhaustion triggered by chronic viral infection. Viruses. 9:2892017. View Article : Google Scholar : PubMed/NCBI | |
|
Feng W, Yu D, Li B, Luo OY, Xu T, Cao Y and Ding Y: Paired assessment of liver telomere lengths in hepatocellular cancer is a reliable predictor of disease persistence. Biosci Rep. 37:BSR201606212017. View Article : Google Scholar : PubMed/NCBI | |
|
Tachtatzis PM, Marshall A, Arvinthan A, Verma S, Penrhyn-Lowe S, Mela M, Scarpini C, Davies SE, Coleman N and Alexander GJ: Chronic hepatitis B virus infection: The relation between hepatitis b antigen expression, telomere length, senescence, inflammation and fibrosis. PLoS One. 10:e01275112015. View Article : Google Scholar : PubMed/NCBI | |
|
Adelakun AA, Adediji IO, Idowu OJ, Jegede TF, Oluremi AS, Adepoju PO and Olaniyan OA: Prognostic significance of serum telomerase activity in the monitoring of hepatitis B viral infection. J Immunoassay Immunochem. 43:299–307. 2022. View Article : Google Scholar | |
|
Barnard A, Moch A and Saab S: Relationship between telomere maintenance and liver disease. Gut Liver. 13:11–15. 2019. View Article : Google Scholar : | |
|
Bolukbas C, Bolukbas FF, Kocyigit A, Aslan M, Selek S, Bitiren M and Ulukanligil M: Relationship between levels of DNA damage in lymphocytes and histopathological severity of chronic hepatitis C and various clinical forms of hepatitis B. J Gastroenterol Hepatol. 21:610–616. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Cao W, Wang S, Zhang L, Li X, Zhang Z, Xie Y and Li M: Epigenetic modification of hepatitis B virus infection and related hepatocellular carcinoma. Virulence. 15:24212312024. View Article : Google Scholar : PubMed/NCBI | |
|
Idrissi ME, Hachem H, Koering C, Merle P, Thénoz M, Mortreux F and Wattel E: HBx triggers either cellular senescence or cell proliferation depending on cellular phenotype. J Viral Hepat. 23:130–138. 2016. View Article : Google Scholar | |
|
Mastrodomenico M, Muselli M, Provvidenti L, Scatigna M, Bianchi S and Fabiani L: Long-term immune protection against HBV: Associated factors and determinants. Hum Vaccin Immunother. 17:2268–2272. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zeng Z, Li L, Chen Y, Wei H, Sun R and Tian Z: Interferon-γ facilitates hepatic antiviral T cell retention for the maintenance of liver-induced systemic tolerance. J Exp Med. 213:1079–1093. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Borgia M, Dal Bo M and Toffoli G: Role of virus-related chronic inflammation and mechanisms of cancer immune-suppression in pathogenesis and progression of hepatocellular carcinoma. Cancers (Basel). 13:43872021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou X, Yang F, Yang Y, Hu Y, Liu W, Huang C, Li S and Chen Z: HBV facilitated hepatocellular carcinoma cells proliferation by up-regulating angiogenin expression through IL-6. Cell Physiol Biochem. 46:461–470. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Kim JR and Kim CH: Association of a high activity of matrix metalloproteinase-9 to low levels of tissue inhibitors of metal-loproteinase-1 and -3 in human hepatitis B-viral hepatoma cells. Int J Biochem Cell Biol. 36:2293–2306. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Bekçibaşı M, Deveci Ö, Oğuz A, Bozkurt F, Dayan S and Çelen MK: Serum TNF-α, IL-1β, and IL-6 levels in chronic HBV-infected patients. Int J Clin Pract. 75:e142922021. View Article : Google Scholar | |
|
Rosenberg C, Bovin NV, Bram LV, Flyvbjerg E, Erlandsen M, Vorup-Jensen T and Petersen E: Age is an important determinant in humoral and T cell responses to immunization with hepatitis B surface antigen. Hum Vaccin Immunother. 9:1466–1476. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Eslam M, Sanyal AJ and George J; International Consensus Panel: MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology. 158:1999–2014.e1. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Noureddin M, Yates KP, Vaughn IA, Neuschwander-Tetri BA, Sanyal AJ, McCullough A, Merriman R, Hameed B, Doo E, Kleiner DE, et al: Clinical and histological determinants of nonalcoholic steatohepatitis and advanced fibrosis in elderly patients. Hepatology. 58:1644–1654. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Gao Y, Zhang W, Zeng LQ, Bai H, Li J, Zhou J, Zhou GY, Fang CW, Wang F and Qin XJ: Exercise and dietary intervention ameliorate high-fat diet-induced NAFLD and liver aging by inducing lipophagy. Redox Biol. 36:1016352020. View Article : Google Scholar : PubMed/NCBI | |
|
Dabravolski SA, Bezsonov EE and Orekhov AN: The role of mitochondria dysfunction and hepatic senescence in NAFLD development and progression. Biomed Pharmacother. 142:1120412021. View Article : Google Scholar : PubMed/NCBI | |
|
Baboota RK, Rawshani A, Bonnet L, Li X, Yang H, Mardinoglu A, Tchkonia T, Kirkland JL, Hoffmann A, Dietrich A, et al: BMP4 and Gremlin 1 regulate hepatic cell senescence during clinical progression of NAFLD/NASH. Nat Metab. 4:1007–1021. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Meijnikman AS, Herrema H, Scheithauer TPM, Kroon J, Nieuwdorp M and Groen AK: Evaluating causality of cellular senescence in non-alcoholic fatty liver disease. JHEP Rep. 3:1003012021. View Article : Google Scholar : PubMed/NCBI | |
|
Tomita K, Teratani T, Suzuki T, Oshikawa T, Yokoyama H, Shimamura K, Nishiyama K, Mataki N, Irie R, Minamino T, et al: p53/p66Shc-mediated signaling contributes to the progression of non-alcoholic steatohepatitis in humans and mice. J Hepatol. 57:837–843. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Bi H, Zhou B, Yang J, Lu Y, Mao F and Song Y: Whole-genome DNA methylation and gene expression profiling in the livers of mice with nonalcoholic steatohepatitis. Life Sci. 329:1219512023. View Article : Google Scholar : PubMed/NCBI | |
|
Sim BC, Kang YE, You SK, Lee SE, Nga HT, Lee HY, Nguyen TL, Moon JS, Tian J, Jang HJ, et al: Hepatic T-cell senescence and exhaustion are implicated in the progression of fatty liver disease in patients with type 2 diabetes and mouse model with nonalcoholic steatohepatitis. Cell Death Dis. 14:6182023. View Article : Google Scholar : PubMed/NCBI | |
|
Kazankov K, Møller HJ, Lange A, Birkebaek NH, Holland-Fischer P, Solvig J, Hørlyck A, Kristensen K, Rittig S, Handberg A, et al: The macrophage activation marker sCD163 is associated with changes in NAFLD and metabolic profile during lifestyle intervention in obese children. Pediatr Obes. 10:226–233. 2015. View Article : Google Scholar | |
|
Hernández-Évole H, Jiménez-Esquivel N, Pose E and Bataller R: Alcohol-associated liver disease: Epidemiology and management. Ann Hepatol. 29:1011622024. View Article : Google Scholar | |
|
Mackowiak B, Fu Y, Maccioni L and Gao B: Alcohol-associated liver disease. J Clin Invest. 134:e1763452024. View Article : Google Scholar : PubMed/NCBI | |
|
Åberg F, Jiang ZG, Cortez-Pinto H and Männistö V: Alcohol-associated liver disease-global epidemiology. Hepatology. 80:1307–1322. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Wan Y, McDaniel K, Wu N, Ramos-Lorenzo S, Glaser T, Venter J, Francis H, Kennedy L, Sato K, Zhou T, et al: Regulation of cellular senescence by miR-34a in alcoholic liver injury. Am J Pathol. 187:2788–2798. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Huda N, Kusumanchi P, Perez K, Jiang Y, Skill NJ, Sun Z, Ma J, Yang Z and Liangpunsakul S: Telomere length in patients with alcohol-associated liver disease: A brief report. J Investig Med. 70:1438–1441. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
So-Armah K, Freiberg M, Cheng D, Lim JK, Gnatienko N, Patts G, Doyle M, Fuster D, Lioznov D, Krupitsky E and Samet J: Liver fibrosis and accelerated immune dysfunction (immunosenescence) among HIV-infected Russians with heavy alcohol consumption-an observational cross-sectional study. BMC Gastroenterol. 20:12019. View Article : Google Scholar | |
|
Dou L, Shi X, He X and Gao Y: Macrophage phenotype and function in liver disorder. Front Immunol. 10:31122020. View Article : Google Scholar : PubMed/NCBI | |
|
Wan J, Benkdane M, Alons E, Lotersztajn S and Pavoine C: M2 kupffer cells promote hepatocyte senescence: An IL-6-dependent protective mechanism against alcoholic liver disease. Am J Pathol. 184:1763–1772. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Chedid A, Mendenhall CL, Moritz TE, French SW, Chen TS, Morgan TR, Roselle GA, Nemchausky BA, Tamburro CH, Schiff ER, et al: Cell-mediated hepatic injury in alcoholic liver disease. Veterans affairs cooperative study group 275. Gastroenterology. 105:254–266. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Suh YG and Jeong WI: Hepatic stellate cells and innate immunity in alcoholic liver disease. World J Gastroenterol. 17:2543–2551. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Parola M and Pinzani M: Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues. Mol Aspects Med. 65:37–55. 2019. View Article : Google Scholar | |
|
Roehlen N, Crouchet E and Baumert TF: Liver fibrosis: Mechanistic concepts and therapeutic perspectives. Cells. 9:8752020. View Article : Google Scholar : PubMed/NCBI | |
|
Feng F, Wu J, Chi Q, Wang S, Liu W, Yang L, Song G, Pan L, Xu K and Wang C: Lactylome analysis unveils lactylation-dependent mechanisms of stemness remodeling in the liver cancer stem cells. Adv Sci (Weinh). 11:e24059752024. View Article : Google Scholar : PubMed/NCBI | |
|
Cheemerla S and Balakrishnan M: Global epidemiology of chronic liver disease. Clin Liver Dis (Hoboken). 17:365–370. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Smith A, Baumgartner K and Bositis C: Cirrhosis: Diagnosis and management. Am Fam Physician. 100:759–770. 2019.PubMed/NCBI | |
|
Weiskirchen R, Weiskirchen S and Tacke F: Organ and tissue fibrosis: Molecular signals, cellular mechanisms and translational implications. Mol Aspects Med. 65:2–15. 2019. View Article : Google Scholar | |
|
Ghafouri-Fard S, Abak A, Talebi SF, Shoorei H, Branicki W, Taheri M and Akbari Dilmaghani N: Role of miRNA and lncRNAs in organ fibrosis and aging. Biomed Pharmacother. 143:1121322021. View Article : Google Scholar : PubMed/NCBI | |
|
Wijayasiri P, Astbury S, Kaye P, Oakley F, Alexander GJ, Kendall TJ and Aravinthan AD: Role of hepatocyte senescence in the activation of hepatic stellate cells and liver fibrosis progression. Cells. 11:22212022. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Adeniji NT, Fan W, Kunimoto K and Török NJ: Non-alcoholic fatty liver disease and liver fibrosis during aging. Aging Dis. 13:1239–1251. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou Y, Zhang H, Yao Y, Zhang X, Guan Y and Zheng F: CD4+ T cell activation and inflammation in NASH-related fibrosis. Front Immunol. 13:9674102022. View Article : Google Scholar | |
|
Ajith A, Merimi M, Arki MK, Hossein-Khannazer N, Najar M, Vosough M, Sokal EM and Najimi M: Immune regulation and therapeutic application of T regulatory cells in liver diseases. Front Immunol. 15:13710892024. View Article : Google Scholar : PubMed/NCBI | |
|
Wu NN, Wang L, Wang L, Xu X, Lopaschuk GD, Zhang Y and Ren J: Site-specific ubiquitination of VDAC1 restricts its oligomerization and mitochondrial DNA release in liver fibrosis. Exp Mol Med. 55:269–280. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
An P, Wei LL, Zhao S, Sverdlov DY, Vaid KA, Miyamoto M, Kuramitsu K, Lai M and Popov YV: Hepatocyte mitochondria-derived danger signals directly activate hepatic stellate cells and drive progression of liver fibrosis. Nat Commun. 11:23622020. View Article : Google Scholar : PubMed/NCBI | |
|
Calado RT, Regal JA, Kleiner DE, Schrump DS, Peterson NR, Pons V, Chanock SJ, Lansdorp PM and Young NS: A spectrum of severe familial liver disorders associate with telomerase mutations. PLoS One. 4:e79262009. View Article : Google Scholar : PubMed/NCBI | |
|
Laish I, Mari A, Mannasse B, Hadary R, Konikoff FM, Amiel A and Kitay-Cohen Y: Telomere length, aggregates, and capture in cirrhosis. Isr Med Assoc J. 20:295–299. 2018.PubMed/NCBI | |
|
Kim D, Li AA and Ahmed A: Leucocyte telomere shortening is associated with nonalcoholic fatty liver disease-related advanced fibrosis. Liver Int. 38:1839–1848. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Carulli L: Telomere shortening as genetic risk factor of liver cirrhosis. World J Gastroenterol. 21:379–383. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Nagaraju GP, Dariya B, Kasa P, Peela S and El-Rayes BF: Epigenetics in hepatocellular carcinoma. Semin Cancer Biol. 86:622–632. 2022. View Article : Google Scholar | |
|
Foglia B, Turato C and Cannito S: Hepatocellular carcinoma: Latest research in pathogenesis, detection and treatment. Int J Mol Sci. 24:122242023. View Article : Google Scholar : PubMed/NCBI | |
|
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.PubMed/NCBI | |
|
Sagnelli E, Macera M, Russo A, Coppola N and Sagnelli C: Epidemiological and etiological variations in hepatocellular carcinoma. Infection. 48:7–17. 2020. View Article : Google Scholar | |
|
Poon RT, Cheung TT, Kwok PC, Lee AS, Li TW, Loke KL, Chan SL, Cheung MT, Lai TW, Cheung CC, et al: Hong Kong consensus recommendations on the management of hepatocellular carcinoma. Liver Cancer. 4:51–69. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Liu P, Tang Q, Chen M, Chen W, Lu Y, Liu Z and He Z: Hepatocellular senescence: Immunosurveillance and future senescence-induced therapy in hepatocellular carcinoma. Front Oncol. 10:5899082020. View Article : Google Scholar : PubMed/NCBI | |
|
Li F, Huangyang P, Burrows M, Guo K, Riscal R, Godfrey J, Lee KE, Lin N, Lee P, Blair IA, et al: FBP1 loss disrupts liver metabolism and promotes tumorigenesis through a hepatic stellate cell senescence secretome. Nat Cell Biol. 22:728–739. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Huang Y, Yang X, Meng Y, Shao C, Liao J, Li F, Li R, Jing Y and Huang A: The hepatic senescence-associated secretory phenotype promotes hepatocarcinogenesis through Bcl3-dependent activation of macrophages. Cell Biosci. 11:1732021. View Article : Google Scholar : PubMed/NCBI | |
|
Ho TC, Wang EY, Yeh KH, Jeng YM, Horng JH, Wu LL, Chen YT, Huang HC, Hsu CL, Chen PJ, et al: Complement C1q mediates the expansion of periportal hepatic progenitor cells in senescence-associated inflammatory liver. Proc Natl Acad Sci USA. 117:6717–6725. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng C, Zheng L, Yoo JK, Guo H, Zhang Y, Guo X, Kang B, Hu R, Huang JY, Zhang Q, et al: Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell. 169:1342–1356.e16. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou W, Deng J, Chen Q, Li R, Xu X, Guan Y, Li W, Xiong X, Li H, Li J and Cai X: Expression of CD4+CD25+CD127Low regulatory T cells and cytokines in peripheral blood of patients with primary liver carcinoma. Int J Med Sci. 17:712–719. 2020. View Article : Google Scholar : | |
|
Schoenberg MB, Li X, Li X, Han Y, Hao J, Miksch RC, Koch D, Börner N, Beger NT, Bucher JN, et al: The predictive value of tumor infiltrating leukocytes in hepatocellular carcinoma: A systematic review and meta-analysis. Eur J Surg Oncol. 47:2561–2570. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang CY, Liu S and Yang M: Regulatory T cells and their associated factors in hepatocellular carcinoma development and therapy. World J Gastroenterol. 28:3346–3358. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Y, Cai Q, Zhu M, Rong J, Feng X and Wang K: Exploring the double-edged role of cellular senescence in chronic liver disease for new treatment approaches. Life Sci. 373:1236782025. View Article : Google Scholar : PubMed/NCBI | |
|
Guo X, Wen S, Wang J, Zeng X, Yu H, Chen Y, Zhu X and Xu L: Senolytic combination of dasatinib and quercetin attenuates renal damage in diabetic kidney disease. Phytomedicine. 130:1557052024. View Article : Google Scholar : PubMed/NCBI | |
|
Islam MT, Tuday E, Allen S, Kim J, Trott DW, Holland WL, Donato AJ and Lesniewski LA: Senolytic drugs, dasatinib and quercetin, attenuate adipose tissue inflammation, and ameliorate metabolic function in old age. Aging Cell. 22:e137672023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu Y, Tchkonia T, Pirtskhalava T, Gower AC, Ding H, Giorgadze N, Palmer AK, Ikeno Y, Hubbard GB, Lenburg M, et al: The Achilles' heel of senescent cells: From transcriptome to senolytic drugs. Aging Cell. 14:644–658. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Ogrodnik M, Miwa S, Tchkonia T, Tiniakos D, Wilson CL, Lahat A, Day CP, Burt A, Palmer A, Anstee QM, et al: Cellular senescence drives age-dependent hepatic steatosis. Nat Commun. 8:156912017. View Article : Google Scholar : PubMed/NCBI | |
|
Thadathil N, Selvarani R, Mohammed S, Nicklas EH, Tran AL, Kamal M, Luo W, Brown JL, Lawrence MM, Borowik AK, et al: Senolytic treatment reduces cell senescence and necroptosis in Sod1 knockout mice that is associated with reduced inflammation and hepatocellular carcinoma. Aging Cell. 21:e136762022. View Article : Google Scholar : PubMed/NCBI | |
|
Raffaele M, Kovacovicova K, Frohlich J, Lo Re O, Giallongo S, Oben JA, Faldyna M, Leva L, Giannone AG, Cabibi D and Vinciguerra M: Mild exacerbation of obesity- and age-dependent liver disease progression by senolytic cocktail dasatinib + quercetin. Cell Commun Signal. 19:442021. View Article : Google Scholar | |
|
Fan Y, Cheng J, Zeng H and Shao L: Senescent cell depletion through targeting BCL-family proteins and mitochondria. Front Physiol. 11:5936302020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao X, Ogunwobi OO and Liu C: Survivin inhibition is critical for Bcl-2 inhibitor-induced apoptosis in hepatocellular carcinoma cells. PLoS One. 6:e219802011. View Article : Google Scholar : PubMed/NCBI | |
|
Emiloju OE, Yin J, Koubek E, Reid JM, Borad MJ, Lou Y, Seetharam M, Edelman MJ, Sausville EA, Jiang Y, et al: Phase 1 trial of navitoclax and sorafenib in patients with relapsed or refractory solid tumors with hepatocellular carcinoma expansion cohort. Invest New Drugs. 42:127–135. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Gold NM, Ding Q, Yang Y, Pu S, Cao W, Ge X, Yang P, Okeke MN, Nisar A, Pan Y, et al: Therapeutic potential of nicotinamide and ABT263 in alcohol-associated liver disease through targeting cellular senescence. MedComm (2020). 6:e700862025. View Article : Google Scholar : PubMed/NCBI | |
|
Hikita H, Takehara T, Shimizu S, Kodama T, Shigekawa M, Iwase K, Hosui A, Miyagi T, Tatsumi T, Ishida H, et al: The Bcl-xL inhibitor, ABT-737, efficiently induces apoptosis and suppresses growth of hepatoma cells in combination with sorafenib. Hepatology. 52:1310–1321. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Tse C, Shoemaker AR, Adickes J, Anderson MG, Chen J, Jin S, Johnson EF, Marsh KC, Mitten MJ, Nimmer P, et al: ABT-263: A potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res. 68:3421–3428. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Leverson JD, Phillips DC, Mitten MJ, Boghaert ER, Diaz D, Tahir SK, Belmont LD, Nimmer P, Xiao Y, Ma XM, et al: Exploiting selective BCL-2 family inhibitors to dissect cell survival dependencies and define improved strategies for cancer therapy. Sci Transl Med. 7:279ra402015. View Article : Google Scholar : PubMed/NCBI | |
|
Cucarull B, Tutusaus A, Subías M, Stefanovic M, Hernáez-Alsina T, Boix L, Reig M, García de Frutos P, Marí M, Colell A, et al: Regorafenib alteration of the BCL-xL/MCL-1 ratio provides a therapeutic opportunity for BH3-mimetics in hepatocellular carcinoma models. Cancers (Basel). 12:3322020. View Article : Google Scholar : PubMed/NCBI | |
|
Bourgeois B and Madl T: Regulation of cellular senescence via the FOXO4-p53 axis. FEBS Lett. 592:2083–2097. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang C, Xie Y, Chen H, Lv L, Yao J, Zhang M, Xia K, Feng X, Li Y, Liang X, et al: FOXO4-DRI alleviates age-related testosterone secretion insufficiency by targeting senescent Leydig cells in aged mice. Aging (Albany NY). 12:1272–1284. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Dutta Gupta S, Bommaka MK and Banerjee A: Inhibiting protein-protein interactions of Hsp90 as a novel approach for targeting cancer. Eur J Med Chem. 178:48–63. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Leng AM, Liu T, Yang J, Cui JF, Li XH, Zhu YN, Xiong T, Zhang G and Chen Y: The apoptotic effect and associated signalling of HSP90 inhibitor 17-DMAG in hepatocellular carcinoma cells. Cell Biol Int. 36:893–899. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Hu D, Mo X, Luo J, Wang F, Huang C, Xie H and Jin L: 17-DMAG ameliorates neuroinflammation and BBB disruption via SOX5 mediated PI3K/Akt pathway after intracerebral hemorrhage in rats. Int Immunopharmacol. 123:1106982023. View Article : Google Scholar : PubMed/NCBI | |
|
Saber S, El-Fattah EEA, Abdelhamid AM, Mourad AAE, Hamouda MAM, Elrabat A, Zakaria S, Haleem AA, Mohamed SZ, Elgharabawy RM, et al: Innovative challenge for the inhibition of hepatocellular carcinoma progression by combined targeting of HSP90 and STAT3/HIF-1α signaling. Biomed Pharmacother. 158:1141962023. View Article : Google Scholar | |
|
Li L, Wang L, You QD and Xu XL: Heat shock protein 90 inhibitors: An update on achievements, challenges, and future directions. J Med Chem. 63:1798–1822. 2020. View Article : Google Scholar | |
|
Ambade A, Catalano D, Lim A, Kopoyan A, Shaffer SA and Mandrekar P: Inhibition of heat shock protein 90 alleviates steatosis and macrophage activation in murine alcoholic liver injury. J Hepatol. 61:903–911. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Goyal L, Wadlow RC, Blaszkowsky LS, Wolpin BM, Abrams TA, McCleary NJ, Sheehan S, Sundaram E, Karol MD, Chen J and Zhu AX: A phase I and pharmacokinetic study of ganetespib (STA-9090) in advanced hepatocellular carcinoma. Invest New Drugs. 33:128–137. 2015. View Article : Google Scholar | |
|
Saber S, Hasan AM, Mohammed OA, Saleh LA, Hashish AA, Alamri MMS, Al-Ameer AY, Alfaifi J, Senbel A, Aboregela AM, et al: Ganetespib (STA-9090) augments sorafenib efficacy via necroptosis induction in hepatocellular carcinoma: Implications from preclinical data for a novel therapeutic approach. Biomed Pharmacother. 164:1149182023. View Article : Google Scholar : PubMed/NCBI | |
|
Syed DN, Adhami VM, Khan N, Khan MI and Mukhtar H: Exploring the molecular targets of dietary flavonoid fisetin in cancer. Semin Cancer Biol. 40-41:130–140. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou ZS, Kong CF, Sun JR, Qu XK, Sun JH and Sun AT: Fisetin ameliorates alcohol-induced liver injury through regulating SIRT1 and SphK1 pathway. Am J Chin Med. 50:2171–2184. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Sundarraj K, Raghunath A, Panneerselvam L and Perumal E: Fisetin inhibits autophagy in HepG2 cells via PI3K/Akt/mTOR and AMPK pathway. Nutr Cancer. 73:2502–2514. 2021. View Article : Google Scholar | |
|
Chilvery S, Bansod S, Saifi MA and Godugu C: Piperlongumine attenuates bile duct ligation-induced liver fibrosis in mice via inhibition of TGF-β1/Smad and EMT pathways. Int Immunopharmacol. 88:1069092020. View Article : Google Scholar | |
|
Liu X, Wang Y, Zhang X, Gao Z, Zhang S, Shi P, Zhang X, Song L, Hendrickson H, Zhou D and Zheng G: Senolytic activity of piperlongumine analogues: Synthesis and biological evaluation. Bioorg Med Chem. 26:3925–3938. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Yakubo S, Abe H, Li Y, Kudo M, Kimura A, Wakabayashi T, Watanabe Y, Kimura N, Setsu T, Yokoo T, et al: Dasatinib and quercetin as senolytic drugs improve fat deposition and exhibit antifibrotic effects in the medaka metabolic dysfunction-associated steatotic liver disease model. Diseases. 12:3172024. View Article : Google Scholar : PubMed/NCBI | |
|
Song P, Duan JL, Ding J, Liu JJ, Fang ZQ, Xu H, Li ZW, Du W, Xu M, Ling YW, et al: Cellular senescence primes liver fibrosis regression through Notch-EZH2. MedComm (2020). 4:e3462023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang G, Zhan Y, Wang H and Li W: ABT-263 sensitizes TRAIL-resistant hepatocarcinoma cells by downregulating the Bcl-2 family of anti-apoptotic protein. Cancer Chemother Pharmacol. 69:799–805. 2012. View Article : Google Scholar | |
|
Ma B, Ju A, Zhang S, An Q, Xu S, Liu J, Yu L, Fu Y and Luo Y: Albumosomes formed by cytoplasmic pre-folding albumin maintain mitochondrial homeostasis and inhibit nonalcoholic fatty liver disease. Signal Transduct Target Ther. 8:2292023. View Article : Google Scholar : PubMed/NCBI | |
|
Abu-Elsaad NM, Serrya MS, El-Karef AM and Ibrahim TM: The heat shock protein 90 inhibitor, 17-AAG, attenuates thioacetamide induced liver fibrosis in mice. Pharmacol Rep. 68:275–282. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Abdelhamid AM, Saber S, Hamad RS, Abdel-Reheim MA, Ellethy AT, Amer MM, Abdel-Hamed MR, Mohamed EA, Ahmed SS, Elsisi HA, et al: STA-9090 in combination with a statin exerts enhanced protective effects in rats fed a high-fat diet and exposed to diethylnitrosamine and thioacetamide. Front Pharmacol. 15:14548292024. View Article : Google Scholar : PubMed/NCBI | |
|
Augello G, Emma MR, Cusimano A, Azzolina A, Mongiovì S, Puleio R, Cassata G, Gulino A, Belmonte B, Gramignoli R, et al: Targeting HSP90 with the small molecule inhibitor AUY922 (luminespib) as a treatment strategy against hepatocellular carcinoma. Int J Cancer. 144:2613–2624. 2019. View Article : Google Scholar | |
|
Zhang W, Xue H, Zhou C, Zheng Z, Xing M, Chu H, Li P, Zhang N, Dang Y and Xu X: 7-Aminocephalosporanic acid, a novel HSP90β inhibitor, attenuates HFD-induced hepatic steatosis. Biochem Biophys Res Commun. 622:184–191. 2022. View Article : Google Scholar | |
|
Di Micco R, Krizhanovsky V, Baker D and d'Adda di Fagagna F: Cellular senescence in ageing: From mechanisms to therapeutic opportunities. Nat Rev Mol Cell Biol. 22:75–95. 2021. View Article : Google Scholar : | |
|
Zhang L, Pitcher LE, Prahalad V, Niedernhofer LJ and Robbins PD: Targeting cellular senescence with senotherapeutics: Senolytics and senomorphics. FEBS J. 290:1362–1383. 2023. View Article : Google Scholar | |
|
Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, et al: Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature. 460:392–395. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Selvarani R, Mohammed S and Richardson A: Effect of rapamycin on aging and age-related diseases-past and future. Geroscience. 43:1135–1158. 2021. View Article : Google Scholar | |
|
Laberge RM, Sun Y, Orjalo AV, Patil CK, Freund A, Zhou L, Curran SC, Davalos AR, Wilson-Edell KA, Liu S, et al: MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat Cell Biol. 17:1049–1061. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Lee HS, Kim JY, Ro SW, Kim MS, Kim H and Joo DJ: Antitumor effect of low-dose of rapamycin in a transgenic mouse model of liver cancer. Yonsei Med J. 63:1007–1015. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Kang HG, Park H, Myong GE, Kim WJ, Mun CE, Kim CR, You CY, Kim SK, Park MS and Park SI: Beneficial effect of rapamycin on liver fibrosis in a mouse model (C57bl/6 mouse). Transplant Proc. 56:701–704. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Chao X, Williams SN and Ding WX: Role of mechanistic target of rapamycin in autophagy and alcohol-associated liver disease. Am J Physiol Cell Physiol. 323:C1100–C1111. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Ge C, Ma C, Cui J, Dong X, Sun L, Li Y and Yu A: Rapamycin suppresses inflammation and increases the interaction between p65 and IκBα in rapamycin-induced fatty livers. PLoS One. 18:e02818882023. View Article : Google Scholar | |
|
Umemura A, Park EJ, Taniguchi K, Lee JH, Shalapour S, Valasek MA, Aghajan M, Nakagawa H, Seki E, Hall MN and Karin M: Liver damage, inflammation, and enhanced tumorigenesis after persistent mTORC1 inhibition. Cell Metab. 20:133–144. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Pallet N and Legendre C: Adverse events associated with mTOR inhibitors. Expert Opin Drug Saf. 12:177–186. 2013. View Article : Google Scholar | |
|
Moiseeva O, Deschênes-Simard X, St-Germain E, Igelmann S, Huot G, Cadar AE, Bourdeau V, Pollak MN and Ferbeyre G: Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-κB activation. Aging Cell. 12:489–498. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Xu L, Wang X, Chen Y, Soong L, Chen Y, Cai J, Liang Y and Sun J: Metformin modulates T cell function and alleviates liver injury through bioenergetic regulation in viral hepatitis. Front Immunol. 12:6385752021. View Article : Google Scholar : PubMed/NCBI | |
|
Gkiourtzis N, Michou P, Moutafi M, Glava A, Cheirakis K, Christakopoulos A, Vouksinou E and Fotoulaki M: The benefit of metformin in the treatment of pediatric non-alcoholic fatty liver disease: A systematic review and meta-analysis of randomized controlled trials. Eur J Pediatr. 182:4795–4806. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Hunt NJ, Lockwood GP, Kang SWS, Pulpitel T, Clark X, Mao H, McCourt PAG, Cooney GJ, Wali JA, Le Couteur FH, et al: The effects of metformin on age-related changes in the liver sinusoidal endothelial cell. J Gerontol A Biol Sci Med Sci. 75:278–285. 2020. | |
|
Vacante F, Senesi P, Montesano A, Paini S, Luzi L and Terruzzi I: Metformin counteracts HCC progression and metastasis enhancing KLF6/p21 expression and downregulating the IGF axis. Int J Endocrinol. 2019:75701462019. View Article : Google Scholar : PubMed/NCBI | |
|
Antwi SO, Li Z, Mody K, Roberts LR and Patel T: Independent and joint use of statins and metformin by elderly patients with diabetes and overall survival following HCC diagnosis. J Clin Gastroenterol. 54:468–476. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Rauf A, Imran M, Butt MS, Nadeem M, Peters DG and Mubarak MS: Resveratrol as an anti-cancer agent: A review. Crit Rev Food Sci Nutr. 58:1428–1447. 2018. View Article : Google Scholar | |
|
Chen Q, Zhang H, Yang Y, Zhang S, Wang J, Zhang D and Yu H: Metformin attenuates UVA-induced skin photoaging by suppressing mitophagy and the PI3K/AKT/mTOR pathway. Int J Mol Sci. 23:69602022. View Article : Google Scholar : PubMed/NCBI | |
|
Li S, Han B, Li J, Lv Z, Jiang H, Liu Y, Yang X, Lu J and Zhang Z: Resveratrol alleviates liver fibrosis induced by long-term inorganic mercury exposure through activating the Sirt 1/PGC-1α signaling pathway. J Agric Food Chem. 72:15985–15997. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Chai R, Fu H, Zheng Z, Liu T, Ji S and Li G: Resveratrol inhibits proliferation and migration through SIRT1 mediated post-translational modification of PI3K/AKT signaling in hepatocellular carcinoma cells. Mol Med Rep. 16:8037–8044. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang B, Yin X and Sui S: Resveratrol inhibited the progression of human hepatocellular carcinoma by inducing autophagy via regulating p53 and the phosphoinositide 3-kinase/protein kinase B pathway. Oncol Re. 40:2758–2765. 2018. | |
|
Shaito A, Posadino AM, Younes N, Hasan H, Halabi S, Alhababi D, Al-Mohannadi A, Abdel-Rahman WM, Eid AH, Nasrallah GK and Pintus G: Potential adverse effects of resveratrol: A literature review. Int J Mol Sci. 21:20842020. View Article : Google Scholar : PubMed/NCBI | |
|
Pallauf K, Rimbach G, Rupp PM, Chin D and Wolf IM: Resveratrol and lifespan in model organisms. Curr Med Chem. 23:4639–4680. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Fu J, Deng W, Ge J, Fu S, Li P, Wu H, Wang J, Gao Y, Gao H and Wu T: Sirtuin 1 alleviates alcoholic liver disease by inhibiting HMGB1 acetylation and translocation. PeerJ. 11:e164802023. View Article : Google Scholar : PubMed/NCBI | |
|
Yamazaki Y, Usui I, Kanatani Y, Matsuya Y, Tsuneyama K, Fujisaka S, Bukhari A, Suzuki H, Senda S, Imanishi S, et al: Treatment with SRT1720, a SIRT1 activator, ameliorates fatty liver with reduced expression of lipogenic enzymes in MSG mice. Am J Physiol Endocrinol Metab. 297:E1179–E1186. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
He Y, Su Y, Duan C, Wang S, He W, Zhang Y, An X and He M: Emerging role of aging in the progression of NAFLD to HCC. Ageing Res Rev. 84:1018332023. View Article : Google Scholar | |
|
Rastegar M, Marjani HA, Yazdani Y, Shahbazi M, Golalipour M and Farazmandfar T: Investigating effect of rapamycin and metformin on angiogenesis in hepatocellular carcinoma cell line. Adv Pharm Bull. 8:63–68. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Smith FC, Stocker SL, Danta M, Carland JE, Kumar SS, Liu Z, Greenfield JR, Braithwaite HE, Cheng TS, Graham GG, et al: The safety and pharmacokinetics of metformin in patients with chronic liver disease. Aliment Pharmacol Ther. 51:565–575. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Sato Y, Qiu J, Hirose T, Miura T, Sato Y, Kohzuki M and Ito O: Metformin slows liver cyst formation and fibrosis in experimental model of polycystic liver disease. Am J Physiol Gastrointest Liver Physiol. 320:G464–G473. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
de Oliveira S, Houseright RA, Graves AL, Golenberg N, Korte BG, Miskolci V and Huttenlocher A: Metformin modulates innate immune-mediated inflammation and early progression of NAFLD-associated hepatocellular carcinoma in zebrafish. J Hepatol. 70:710–721. 2019. View Article : Google Scholar | |
|
He Y, Wang H, Lin S, Chen T, Chang D, Sun Y, Wang C, Liu Y, Lu Y, Song J, et al: Advanced effect of curcumin and resveratrol on mitigating hepatic steatosis in metabolic associated fatty liver disease via the PI3K/AKT/mTOR and HIF-1/VEGF cascade. Biomed Pharmacother. 165:1152792023. View Article : Google Scholar : PubMed/NCBI | |
|
Elmorsy EA, Elsisi HA, Alkhamiss AS, Alsoqih NS, Khodeir MM, Alsalloom AA, Almeman AA, Elghandour SR, Nadwa EH, Khalifa AK, et al: Activation of SIRT1 by SRT1720 alleviates dyslipidemia, improves insulin sensitivity and exhibits liver-protective effects in diabetic rats on a high-fat diet: New insights into the SIRT1/Nrf2/NFκB signaling pathway. Eur J Pharm Sci. 206:1070022025. View Article : Google Scholar | |
|
Al-Gayyar MMH, Bagalagel A, Noor AO, Almasri DM and Diri R: The therapeutic effects of nicotinamide in hepatocellular carcinoma through blocking IGF-1 and effecting the balance between Nrf2 and PKB. Biomed Pharmacother. 112:1086532019. View Article : Google Scholar : PubMed/NCBI | |
|
Evangelou K, Vasileiou PVS, Papaspyropoulos A, Hazapis O, Petty R, Demaria M and Gorgoulis VG: Cellular senescence and cardiovascular diseases: Moving to the 'heart' of the problem. Physiol Rev. 103:609–647. 2023. View Article : Google Scholar | |
|
Li X, Li C, Zhang W, Wang Y, Qian P and Huang H: Inflammation and aging: Signaling pathways and intervention therapies. Signal Transduct Target Ther. 8:2392023. View Article : Google Scholar : PubMed/NCBI | |
|
Baumann A, Hernández-Arriaga A, Brandt A, Sánchez V, Nier A, Jung F, Kehm R, Höhn A, Grune T, Frahm C, et al: Microbiota profiling in aging-associated inflammation and liver degeneration. Int J Med Microbiol. 311:1515002021. View Article : Google Scholar : PubMed/NCBI |