Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
November-2025 Volume 56 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2025 Volume 56 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Ferroptosis and head and neck cancer: Mechanisms and therapeutic perspectives (Review)

  • Authors:
    • Chenglin Kang
    • Xiaomei Li
    • Xudong Wei
  • View Affiliations / Copyright

    Affiliations: The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu 730000, P.R. China, Department of Otolaryngology, The Second People's Hospital of Gansu Province, Lanzhou, Gansu 730000, P.R. China
    Copyright: © Kang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 184
    |
    Published online on: September 3, 2025
       https://doi.org/10.3892/ijmm.2025.5625
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Head and neck cancer (HNC) is a common malignant disease in otorhinolaryngology; however, its pathogenesis remains to be fully elucidated. Currently, the treatment for HNC mainly comprises surgery assisted by other methods, including radiotherapy, chemotherapy and immunotherapy. After surgical treatment, the laryngeal function, and swallowing and breathing abilities of patients can be affected to a certain extent, and the loss of vocal ability can cause daily communication obstacles and affect the physical and mental health of patients. HNC recurrence makes retreatment challenging. Ferroptosis is a type of iron‑dependent regulated cell death caused by plasma membrane rupture and lipid peroxidation, and its occurrence is related to HNC. The present review aimed to describe the organelles that influence ferroptosis, the factors that activate and inhibit ferroptosis, and the role of ferroptosis in the pathogenesis, treatment and prognosis of HNC.
View Figures

Figure 1

Effects of different organelles on
ferroptosis. TCA cycle, tricarboxylic acid cycle; mtROS,
mitochondrial reactive oxygen species; mtDNA, mitochondrial DNA;
PUFA, polyunsaturated fatty acid; CoQ, coenzyme Q; ER, endoplasmic
reticulum; MUFA, monounsaturated fatty acid; ARF1, ADP ribosylation
factor 1; ROS, reactive oxygen species; NO, nitric oxide.

Figure 2

Activation pathways for ferroptosis.
Synthesis and peroxidation of PUFA-PLs, iron metabolism and
mitochondrial metabolism are major prerequisites for ferroptosis.
TF, transferrin; TFR1, transferrin receptor 1; STEAP3, six
transmembrane epithelial antigens of prostate 3; TRPML1, transient
receptor potential mucolipin 1; DMT1, divalent metal transporter 1;
LIP, labile iron pool; ROS, reactive oxygen species; PUFA,
polyunsaturated fatty acid; ACSL4, acyl coenzyme A synthetase long
chain family member 4; CoA, coenzyme A; LPCAT3,
lysophosphatidylcholine acyltransferase 3; ALOX, arachidonate
lipoxygenase; PUFA-PLs, PUFA-containing phospholipids; PUFA-PL-OOH,
phospholipid hydroperoxides.

Figure 3

Inhibitory systems of ferroptosis.
GPX4 reduces ROS accumulation. GPX4 is expressed mainly in the
cytoplasm and mitochondria, FSP1 is expressed mainly in the plasma
membrane, while DHODH is expressed mainly in mitochondria. GSH,
glutathione; GSSG, oxidized glutathione; GPX4, glutathione
peroxidase 4; LOOH, lipid hydroperoxide; LOH, lipid alcohols;
PLOOH, phospholipid hydroperoxides; PLOH, phospholipid alcohols;
ROS, reactive oxygen species; CoQ10, coenzyme Q10; DHODH,
dihydroorotate dehydrogenase; CoQH2, ubiquinone; FSP1, ferroptosis
suppressor protein 1; GCH1, GTP cyclohydrolase 1; BH4,
tetrahydrobiopterin; SLC25A22, solute carrier family 25 member 22;
SFA, saturated fatty acid; SCD1, stearoyl-CoA desaturase 1; MUFA,
monounsaturated fatty acid; ACSL3, acyl coenzyme A synthetase long
chain family member 3; MBOAT, membrane-bound O-acyltransferase
domain-containing.

Figure 4

Ferroptosis in HNC: Mechanisms and
treatment. TFR, transferrin receptor; HPV, human papillomavirus;
G6PD, glucose-6-phosphate dehydrogenase; FTH1, ferritin heavy
chain; DDIT4, DNA damage-inducible transcript 4; ROS, reactive
oxygen species; TRIB3, tribbles pseudokinase 3; LPO, lipid
peroxidation; ACSL4, acyl coenzyme A synthetase long chain family
member 4; GPX4, glutathione peroxidase 4; HNC, head and neck
cancer.

Figure 5

Regulation of ferroptosis by immune
cells in HNC. IFN-γ, interferon γ; ACSL4, acyl coenzyme A
synthetase long chain family member 4; GPX4, glutathione peroxidase
4; DC, dendritic cell; NK, natural killer; Treg, regulatory T; HNC,
head and neck cancer.
View References

1 

Chow LQM: Head and neck cancer. N Engl J Med. 382:60–72. 2020. View Article : Google Scholar

2 

Swiecicki PL, Yilmaz E, Rosenberg AJ, Fujisawa T, Bruce JY, Meng C, Wozniak M, Zhao Y, Mihm M, Kaplan J, et al: Phase II trial of enfortumab vedotin in patients with previously treated advanced head and neck cancer. J Clin Oncol. 43:578–588. 2025. View Article : Google Scholar

3 

Machiels JP, René Leemans C, Golusinski W, Grau C, Licitra L and Gregoire V: Squamous cell carcinoma of the oral cavity, larynx, oropharynx and hypopharynx: EHNS-ESMO-ESTRO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 31:1462–1475. 2020. View Article : Google Scholar : PubMed/NCBI

4 

Ruffin AT, Li H, Vujanovic L, Zandberg DP, Ferris RL and Bruno TC: Improving head and neck cancer therapies by immunomodulation of the tumour microenvironment. Nat Rev Cancer. 23:173–188. 2023. View Article : Google Scholar :

5 

Hashim D, Genden E, Posner M, Hashibe M and Boffetta P: Head and neck cancer prevention: From primary prevention to impact of clinicians on reducing burden. Ann Oncol. 30:744–756. 2019. View Article : Google Scholar :

6 

Castelli J, Thariat J, Benezery K, Hasbini A, Gery B, Berger A, Liem X, Guihard S, Chapet S, Thureau S, et al: Weekly adaptive radiotherapy vs. standard Intensity-modulated radiotherapy for improving salivary function in patients with head and neck cancer: A phase 3 randomized clinical trial. JAMA Oncol. 9:1056–1064. 2023. View Article : Google Scholar : PubMed/NCBI

7 

Budach V and Tinhofer I: Novel prognostic clinical factors and biomarkers for outcome prediction in head and neck cancer: A systematic review. Lancet Oncol. 20:e313–e326. 2019. View Article : Google Scholar : PubMed/NCBI

8 

Chen X, Kang R, Kroemer G and Tang D: Broadening horizons: The role of ferroptosis in cancer. Nat Rev Clin Oncol. 18:280–296. 2021. View Article : Google Scholar

9 

Zhou Q, Meng Y, Li D, Yao L, Le J, Liu Y, Sun Y, Zeng F, Chen X and Deng G: Ferroptosis in cancer: From molecular mechanisms to therapeutic strategies. Signal Transduct Target Ther. 9:552024. View Article : Google Scholar : PubMed/NCBI

10 

Lei G, Zhuang L and Gan B: The roles of ferroptosis in cancer: Tumor suppression, tumor microenvironment, and therapeutic interventions. Cancer Cell. 42:513–534. 2024. View Article : Google Scholar : PubMed/NCBI

11 

Lei G, Zhuang L and Gan B: Targeting ferroptosis as a vulnerability in cancer. Nat Rev Cancer. 22:381–396. 2022. View Article : Google Scholar

12 

Mou Y, Wang J, Wu J, He D, Zhang C, Duan C and Li B: Ferroptosis, a new form of cell death: Opportunities and challenges in cancer. J Hematol Oncol. 12:342019. View Article : Google Scholar : PubMed/NCBI

13 

Jiang X, Stockwell BR and Conrad M: Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 22:266–282. 2021. View Article : Google Scholar : PubMed/NCBI

14 

Stockwell BR: Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell. 185:2401–2421. 2022. View Article : Google Scholar : PubMed/NCBI

15 

Peng F, Liao M, Qin R, Zhu S, Peng C, Fu L, Chen Y and Han B: Regulated cell death (RCD) in cancer: Key pathways and targeted therapies. Signal Transduct Target Ther. 7:2862022. View Article : Google Scholar : PubMed/NCBI

16 

Diao J, Jia Y, Dai E, Liu J, Kang R, Tang D, Han L, Zhong Y and Meng L: Ferroptotic therapy in cancer: Benefits, side effects, and risks. Mol Cancer. 23:892024. View Article : Google Scholar : PubMed/NCBI

17 

Brown AR, Hirschhorn T and Stockwell BR: Ferroptosis-disease perils and therapeutic promise. Science. 386:848–849. 2024. View Article : Google Scholar : PubMed/NCBI

18 

Li FJ, Long HZ, Zhou ZW, Luo HY, Xu SG and Gao LC: System Xc-/GSH/GPX4 axis: An important antioxidant system for the ferroptosis in drug-resistant solid tumor therapy. Front Pharmacol. 13:9102922022. View Article : Google Scholar

19 

Ursini F and Maiorino M: Lipid peroxidation and ferroptosis: The role of GSH and GPx4. Free Radic Biol Med. 152:175–185. 2020. View Article : Google Scholar : PubMed/NCBI

20 

Zhu WW, Liu Y, Yu Z and Wang HQ: SLC7A11-mediated cell death mechanism in cancer: A comparative study of disulfidptosis and ferroptosis. Front Cell Dev Biol. 13:15594232025. View Article : Google Scholar : PubMed/NCBI

21 

Zheng J and Conrad M: Ferroptosis: When metabolism meets cell death. Physiol Rev. 105:651–706. 2025. View Article : Google Scholar

22 

Tang D, Chen X, Kang R and Kroemer G: Ferroptosis: Molecular mechanisms and health implications. Cell Res. 31:107–125. 2021. View Article : Google Scholar

23 

Teng Y, Gao L, Mäkitie AA, Florek E, Czarnywojtek A, Saba NF and Ferlito A: Iron, Ferroptosis, and head and neck cancer. Int J Mol Sci. 24:151272023. View Article : Google Scholar :

24 

Yang M, Guo R, Chen X, Song G and Zhang F: Advances in the study of regulators of ferroptosis in head and neck squamous cell carcinoma (review). Int J Mol Med. 51:452023. View Article : Google Scholar :

25 

Song A, Wu L, Zhang BX, Yang QC, Liu YT, Li H, Mao L, Xiong D, Yu HJ and Sun ZJ: Glutamine inhibition combined with CD47 blockade enhances radiotherapy-induced ferroptosis in head and neck squamous cell carcinoma. Cancer Lett. 588:2167272024. View Article : Google Scholar : PubMed/NCBI

26 

Allevato MM, Trinh S, Koshizuka K, Nachmanson D, Nguyen TC, Yokoyama Y, Wu X, Andres A, Wang Z, Watrous J, et al: A genome-wide CRISPR screen reveals that antagonism of glutamine metabolism sensitizes head and neck squamous cell carcinoma to ferroptotic cell death. Cancer Lett. 598:2170892024. View Article : Google Scholar : PubMed/NCBI

27 

Noh JK, Lee MK, Lee Y, Bae M, Min S, Kong M, Lee JW, Kim SI, Lee YC, Ko SG, et al: Targeting ferroptosis for improved radiotherapy outcomes in HPV-negative head and neck squamous cell carcinoma. Mol Oncol. 19:540–557. 2025. View Article : Google Scholar

28 

Li M, Jin S, Zhang Z, Ma H and Yang X: Interleukin-6 facilitates tumor progression by inducing ferroptosis resistance in head and neck squamous cell carcinoma. Cancer Lett. 527:28–40. 2022. View Article : Google Scholar

29 

Yang J and Gu Z: Ferroptosis in head and neck squamous cell carcinoma: From pathogenesis to treatment. Front Pharmacol. 15:12834652024. View Article : Google Scholar : PubMed/NCBI

30 

Yuan J and Ofengeim D: A guide to cell death pathways. Nat Rev Mol Cell Biol. 25:379–395. 2024. View Article : Google Scholar

31 

Tang D and Kroemer G: Peroxisome: The new player in ferroptosis. Signal Transduct Target Ther. 5:2732020. View Article : Google Scholar : PubMed/NCBI

32 

Wang H, Fleishman JS, Cheng S, Wang W, Wu F and Wang Y and Wang Y: Epigenetic modification of ferroptosis by non-coding RNAs in cancer drug resistance. Mol Cancer. 23:1772024. View Article : Google Scholar : PubMed/NCBI

33 

Dixon SJ and Olzmann JA: The cell biology of ferroptosis. Nat Rev Mol Cell Biol. 25:424–442. 2024. View Article : Google Scholar : PubMed/NCBI

34 

Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI

35 

Sun S, Shen J, Jiang J, Wang F and Min J: Targeting ferroptosis opens new avenues for the development of novel therapeutics. Signal Transduct Target Ther. 8:3722023. View Article : Google Scholar : PubMed/NCBI

36 

Jiang X, Peng Q, Peng M, Oyang L, Wang H, Liu Q, Xu X, Wu N, Tan S, Yang W, et al: Cellular metabolism: A key player in cancer ferroptosis. Cancer Commun (Lond). 44:185–204. 2024. View Article : Google Scholar : PubMed/NCBI

37 

Tong X, Tang R, Xiao M, Xu J, Wang W, Zhang B, Liu J, Yu X and Shi S: Targeting cell death pathways for cancer therapy: Recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research. J Hematol Oncol. 15:1742022. View Article : Google Scholar : PubMed/NCBI

38 

Chen X, Kang R, Kroemer G and Tang D: Organelle-specific regulation of ferroptosis. Cell Death Differ. 28:2843–2856. 2021. View Article : Google Scholar :

39 

Chen F, Kang R, Tang D and Liu J: Ferroptosis: Principles and significance in health and disease. J Hematol Oncol. 17:412024. View Article : Google Scholar :

40 

Dogan SA, Giacchin G, Zito E and Viscomi C: Redox signaling and stress in inherited myopathies. Antioxid Redox Signal. 37:301–323. 2022. View Article : Google Scholar : PubMed/NCBI

41 

Wang Y, Zhang R, Wang A, Wang X, Wang X, Zhang J, Liu G, Huang K, Liu B, Hu Y, et al: COPB1 deficiency triggers osteoporosis with elevated iron stores by inducing osteoblast ferroptosis. J Orthop Translat. 51:312–328. 2025. View Article : Google Scholar : PubMed/NCBI

42 

Chen J, Liu D, Lei L, Liu T, Pan S, Wang H, Liu Y, Qiao Y, Liu Z and Feng Q: CNPY2 aggravates renal tubular cell ferroptosis in diabetic nephropathy by regulating PERK/ATF4/CHAC1 pathway and MAM integrity. Adv Sci (Weinh). 12:e24164412025. View Article : Google Scholar : PubMed/NCBI

43 

Loopmans S, Rohlenova K, van Brussel T, Stockmans I, Moermans K, Peredo N, Carmeliet P, Lambrechts D, Stegen S and Carmeliet G: The pentose phosphate pathway controls oxidative protein folding and prevents ferroptosis in chondrocytes. Nat Metab. 7:182–195. 2025. View Article : Google Scholar : PubMed/NCBI

44 

Deng X, Liu T, Zhu Y, Chen J, Song Z, Shi Z and Chen H: Ca & Mn dual-ion hybrid nanostimulator boosting anti-tumor immunity via ferroptosis and innate immunity awakening. Bioact Mater. 33:483–496. 2024.

45 

Li Q and Gan B: Uncovering the IL-1β-PCAF-NNT axis: A new player in ferroptosis and tumor immune evasion. Cancer Commun (Lond). 43:1048–1050. 2023. View Article : Google Scholar : PubMed/NCBI

46 

Lee J and Roh JL: Ferroptosis induction via targeting metabolic alterations in head and neck cancer. Crit Rev Oncol Hematol. 181:1038872023. View Article : Google Scholar

47 

Liu Y, Lu S, Wu LL, Yang L, Yang L and Wang J: The diversified role of mitochondria in ferroptosis in cancer. Cell Death Dis. 14:5192023. View Article : Google Scholar : PubMed/NCBI

48 

Meng X, Peng X, Ouyang W, Li H, Na R, Zhou W, You X, Li Y, Pu X, Zhang K, et al: Musashi-2 deficiency triggers colorectal cancer ferroptosis by downregulating the MAPK signaling cascade to inhibit HSPB1 phosphorylation. Biol Proced Online. 25:322023. View Article : Google Scholar : PubMed/NCBI

49 

Seo I, Kim SW, Hyun J, Kim YJ, Park HS, Yoon JK and Bhang SH: Enhancing viability and angiogenic efficacy of mesenchymal stem cells via HSP90α and HSP27 regulation based on ROS stimulation for wound healing. Bioeng Transl Med. 8:e105602023. View Article : Google Scholar

50 

Liu B, Chen Z, Li Z, Zhao X, Zhang W, Zhang A, Wen L, Wang X, Zhou S and Qian D: Hsp90α promotes chemoresistance in pancreatic cancer by regulating Keap1-Nrf2 axis and inhibiting ferroptosis. Acta Biochim Biophys Sin (Shanghai). 57:295–309. 2024. View Article : Google Scholar

51 

Ao Q, Hu H and Huang Y: Ferroptosis and endoplasmic reticulum stress in rheumatoid arthritis. Front Immunol. 15:14388032024. View Article : Google Scholar :

52 

Long H, Zhu W, Wei L and Zhao J: Iron homeostasis imbalance and ferroptosis in brain diseases. MedComm (2020). 4:e2982023. View Article : Google Scholar : PubMed/NCBI

53 

Feng F, He S, Li X, He J and Luo L: Mitochondria-mediated ferroptosis in diseases therapy: From molecular mechanisms to implications. Aging Dis. 15:714–738. 2024. View Article : Google Scholar :

54 

Harrington JS, Ryter SW, Plataki M, Price DR and Choi AMK: Mitochondria in health, disease, and aging. Physiol Rev. 103:2349–2422. 2023. View Article : Google Scholar : PubMed/NCBI

55 

Li J, Jia YC, Ding YX, Bai J, Cao F and Li F: The crosstalk between ferroptosis and mitochondrial dynamic regulatory networks. Int J Biol Sci. 19:2756–2771. 2023. View Article : Google Scholar : PubMed/NCBI

56 

Liao P, Wang W, Wang W, Kryczek I, Li X, Bian Y, Sell A, Wei S, Grove S, Johnson JK, et al: CD8+ T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4. Cancer Cell. 40:365–378.e366. 2022. View Article : Google Scholar :

57 

Bock FJ and Tait SWG: Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol. 21:85–100. 2020. View Article : Google Scholar

58 

Ahola S and Langer T: Ferroptosis in mitochondrial cardiomyopathy. Trends Cell Biol. 34:150–160. 2024. View Article : Google Scholar

59 

Lyamzaev KG, Panteleeva AA, Simonyan RA, Avetisyan AV and Chernyak BV: mitochondrial lipid peroxidation is responsible for ferroptosis. Cells. 12:6112023. View Article : Google Scholar :

60 

Jelinek A, Heyder L, Daude M, Plessner M, Krippner S, Grosse R, Diederich WE and Culmsee C: Mitochondrial rescue prevents glutathione peroxidase-dependent ferroptosis. Free Radic Biol Med. 117:45–57. 2018. View Article : Google Scholar : PubMed/NCBI

61 

Wang Z, Tang S, Cai L, Wang Q, Pan D, Dong Y, Zhou H, Li J, Ji N, Zeng X, et al: DRP1 inhibition-mediated mitochondrial elongation abolishes cancer stemness, enhances glutaminolysis, and drives ferroptosis in oral squamous cell carcinoma. Br J Cancer. 130:1744–1757. 2024. View Article : Google Scholar :

62 

Saimoto Y, Kusakabe D, Morimoto K, Matsuoka Y, Kozakura E, Kato N, Tsunematsu K, Umeno T, Kiyotani T, Matsumoto S, et al: Lysosomal lipid peroxidation contributes to ferroptosis induction via lysosomal membrane permeabilization. Nat Commun. 16:35542025. View Article : Google Scholar : PubMed/NCBI

63 

Zhang Y, Li M, Guo Y, Liu S and Tao Y: The organelle-specific regulations and epigenetic regulators in ferroptosis. Front Pharmacol. 13:9055012022. View Article : Google Scholar : PubMed/NCBI

64 

Qiu B, Zandkarimi F, Bezjian CT, Reznik E, Soni RK, Gu W, Jiang X and Stockwell BR: Phospholipids with two polyunsaturated fatty acyl tails promote ferroptosis. Cell. 187:1177–1190.e18. 2024. View Article : Google Scholar :

65 

Zhao L, Zhou X, Xie F and Zhang L, Yan H, Huang J, Zhang C, Zhou F, Chen J and Zhang L: Ferroptosis in cancer and cancer immunotherapy. Cancer Commun (Lond). 42:88–116. 2022. View Article : Google Scholar :

66 

Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A, et al: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 13:91–98. 2017. View Article : Google Scholar :

67 

Tang R, Xu J, Zhang B, Liu J, Liang C, Hua J, Meng Q, Yu X and Shi S: Ferroptosis, necroptosis, and pyroptosis in anticancer immunity. J Hematol Oncol. 13:1102020. View Article : Google Scholar : PubMed/NCBI

68 

Gan B: ACSL4, PUFA, and ferroptosis: New arsenal in anti-tumor immunity. Signal Transduct Target Ther. 7:1282022. View Article : Google Scholar :

69 

Xu X, Xu XD, Ma MQ, Liang Y, Cai YB, Zhu ZX, Xu T, Zhu L and Ren K: The mechanisms of ferroptosis and its role in atherosclerosis. Biomed Pharmacother. 171:1161122024. View Article : Google Scholar

70 

Dai E, Chen X, Linkermann A, Jiang X, Kang R, Kagan VE, Bayir H, Yang WS, Garcia-Saez AJ, Ioannou MS, et al: A guideline on the molecular ecosystem regulating ferroptosis. Nat Cell Biol. 26:1447–1457. 2024. View Article : Google Scholar : PubMed/NCBI

71 

Quan J, Bode AM and Luo X: ACSL family: The regulatory mechanisms and therapeutic implications in cancer. Eur J Pharmacol. 909:1743972021. View Article : Google Scholar : PubMed/NCBI

72 

Deng W, Zhao J, Wang X, Li D, Wang M, Zheng X, Wang R, Guo Q, Zhao P, Yan H, Shen L, et al: Role of ferroptosis mediated by abnormal membrane structure in DEHP-induced reproductive injury. Free Radic Biol Med. 235:150–161. 2025. View Article : Google Scholar : PubMed/NCBI

73 

Shahtout JL, Eshima H, Ferrara PJ, Maschek JA, Cox JE, Drummond MJ and Funai K: Inhibition of the skeletal muscle Lands cycle ameliorates weakness induced by physical inactivity. J Cachexia Sarcopenia Muscle. 15:319–330. 2024. View Article : Google Scholar :

74 

Crielaard BJ, Lammers T and Rivella S: Targeting iron metabolism in drug discovery and delivery. Nat Rev Drug Discov. 16:400–423. 2017. View Article : Google Scholar :

75 

Ru Q, Li Y, Chen L, Wu Y, Min J and Wang F: Iron homeostasis and ferroptosis in human diseases: Mechanisms and therapeutic prospects. Signal Transduct Target Ther. 9:2712024. View Article : Google Scholar : PubMed/NCBI

76 

Yuan C, Ma Z, Xie J, Li W, Su L, Zhang G, Xu J, Wu Y, Zhang M and Liu W: The role of cell death in SARS-CoV-2 infection. Signal Transduct Target Ther. 8:3572023. View Article : Google Scholar : PubMed/NCBI

77 

Yin J, Zhan J, Hu Q, Huang S and Lin W: Fluorescent probes for ferroptosis bioimaging: Advances, challenges, and prospects. Chem Soc Rev. 52:2011–2030. 2023. View Article : Google Scholar : PubMed/NCBI

78 

Lee J and Roh JL: Lipid metabolism in ferroptosis: Unraveling key mechanisms and therapeutic potential in cancer. Biochim Biophys Acta Rev Cancer. 1880:1892582025. View Article : Google Scholar : PubMed/NCBI

79 

Liu Y, Wan Y, Jiang Y, Zhang L and Cheng W: GPX4: The hub of lipid oxidation, ferroptosis, disease and treatment. Biochim Biophys Acta Rev Cancer. 1878:1888902023. View Article : Google Scholar

80 

Yan HF, Zou T, Tuo QZ, Xu S, Li H, Belaidi AA and Lei P: Ferroptosis: Mechanisms and links with diseases. Signal Transduct Target Ther. 6:492021. View Article : Google Scholar : PubMed/NCBI

81 

Alvarez SW, Sviderskiy VO, Terzi EM, Papagiannakopoulos T, Moreira AL, Adams S, Sabatini DM, Birsoy K and Possemato R: NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature. 551:639–643. 2017. View Article : Google Scholar

82 

Zhao P, Yin S, Qiu Y, Sun C and Yu H: Ferroptosis and pyroptosis are connected through autophagy: A new perspective of overcoming drug resistance. Mol Cancer. 24:232025. View Article : Google Scholar : PubMed/NCBI

83 

Yang Y, Jiang B, Shi L, Wang L, Yang Y, Li Y, Zhang Y, Zhu Z, Zhang X and Liu X: The potential of natural herbal plants in the treatment and prevention of non-small cell lung cancer: An encounter between ferroptosis and mitophagy. J Ethnopharmacol. 346:1195552025. View Article : Google Scholar

84 

Zhang X, Hu Y, Wang B and Yang S: Ferroptosis: Iron-mediated cell death linked to disease pathogenesis. J Biomed Res. 38:413–435. 2024. View Article : Google Scholar : PubMed/NCBI

85 

Yao X, Zhang Y, Hao J, Duan HQ, Zhao CX, Sun C, Li B, Fan BY, Wang X, Li WX, et al: Deferoxamine promotes recovery of traumatic spinal cord injury by inhibiting ferroptosis. Neural Regen Res. 14:532–541. 2019. View Article : Google Scholar :

86 

Bi G, Liang J, Bian Y, Shan G, Huang Y, Lu T, Zhang H, Jin X, Chen Z, Zhao M, et al: Polyamine-mediated ferroptosis amplification acts as a targetable vulnerability in cancer. Nat Commun. 15:24612024. View Article : Google Scholar : PubMed/NCBI

87 

Xiao Y, Xu Z, Cheng Y, Huang R, Xie Y, Tsai HI, Zha H, Xi L, Wang K, Cheng X, et al: Fe3+-binding transferrin nanovesicles encapsulating sorafenib induce ferroptosis in hepatocellular carcinoma. Biomater Res. 27:632023. View Article : Google Scholar

88 

Yong Y, Yan L, Wei J, Feng C, Yu L, Wu J, Guo M, Fan D, Yu C, Qin D, et al: A novel ferroptosis inhibitor, Thonningianin A, improves Alzheimer's disease by activating GPX4. Theranostics. 14:6161–6184. 2024. View Article : Google Scholar : PubMed/NCBI

89 

Xia J, Si H, Yao W, Li C, Yang G, Tian Y and Hao C: Research progress on the mechanism of ferroptosis and its clinical application. Exp Cell Res. 409:1129322021. View Article : Google Scholar : PubMed/NCBI

90 

Liu Z, Zhang H, Hong G, Bi X, Hu J, Zhang T, An Y, Guo N, Dong F, Xiao Y, et al: Inhibition of Gpx4-mediated ferroptosis alleviates cisplatin-induced hearing loss in C57BL/6 mice. Mol Ther. 32:1387–1406. 2024. View Article : Google Scholar : PubMed/NCBI

91 

Liu D, Cheng X, Wu H, Song H, Bu Y, Wang J, Zhang X, Yan C and Han Y: CREG1 attenuates doxorubicin-induced cardiotoxicity by inhibiting the ferroptosis of cardiomyocytes. Redox Biol. 75:1032932024. View Article : Google Scholar : PubMed/NCBI

92 

Wang D, Li X, Jiao D, Cai Y, Qian L, Shen Y, Lu Y, Zhou Y, Fu B, Sun R, et al: LCN2 secreted by tissue-infiltrating neutrophils induces the ferroptosis and wasting of adipose and muscle tissues in lung cancer cachexia. J Hematol Oncol. 16:302023. View Article : Google Scholar : PubMed/NCBI

93 

Luo Z, Zheng Q, Ye S, Li Y, Chen J, Fan C, Chen J, Lei Y, Liao Q and Xi Y: HMGA2 alleviates ferroptosis by promoting GPX4 expression in pancreatic cancer cells. Cell Death Dis. 15:2202024. View Article : Google Scholar : PubMed/NCBI

94 

Wu F, Song C, Yin H, Chen R, Huang G, Zhang J, Chen H, Lin L, Yin J, Xie L and Liu W: Metal phenolic networks-driven bufalin homodimeric prodrug nano-coassemblies for ferroptosis-augmented tumor therapy. J Control Release. 383:1138142025. View Article : Google Scholar : PubMed/NCBI

95 

Qiu Y, Mo C, Xu S, Chen L, Ye W, Kang Y, Chen G and Zhu T: Research progress on perioperative blood-brain barrier damage and its potential mechanism. Front Cell Dev Biol. 11:11740432023. View Article : Google Scholar : PubMed/NCBI

96 

Hassannia B, Vandenabeele P and Vanden Berghe T: Targeting ferroptosis to iron out cancer. Cancer Cell. 35:830–849. 2019. View Article : Google Scholar : PubMed/NCBI

97 

Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB, et al: Regulation of ferroptotic cancer cell death by GPX4. Cell. 156:317–331. 2014. View Article : Google Scholar : PubMed/NCBI

98 

Woo JH, Shimoni Y, Yang WS, Subramaniam P, Iyer A, Nicoletti P, Rodríguez Martínez M, López G, Mattioli M, Realubit R, et al: Elucidating compound mechanism of action by network perturbation analysis. Cell. 162:441–451. 2015. View Article : Google Scholar : PubMed/NCBI

99 

Tuo QZ, Masaldan S, Southon A, Mawal C, Ayton S, Bush AI, Lei P and Belaidi AA: Characterization of selenium compounds for Anti-ferroptotic activity in neuronal cells and after cerebral ischemia-reperfusion injury. Neurotherapeutics. 18:2682–2691. 2021. View Article : Google Scholar : PubMed/NCBI

100 

Cheu JW, Lee D, Li Q, Goh CC, Bao MH, Yuen VW, Zhang MS, Yang C, Chan CY, Tse AP, et al: Ferroptosis Suppressor Protein 1 inhibition promotes tumor ferroptosis and anti-tumor immune responses in liver cancer. Cell Mol Gastroenterol Hepatol. 16:133–159. 2023. View Article : Google Scholar : PubMed/NCBI

101 

Mao C, Liu X, Zhang Y, Lei G, Yan Y, Lee H, Koppula P, Wu S, Zhuang L, Fang B, et al: DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature. 593:586–590. 2021. View Article : Google Scholar : PubMed/NCBI

102 

Hai Y, Fan R, Zhao T, Lin R, Zhuang J, Deng A, Meng S, Hou Z and Wei G: A novel mitochondria-targeting DHODH inhibitor induces robust ferroptosis and alleviates immune suppression. Pharmacol Res. 202:1071152024. View Article : Google Scholar : PubMed/NCBI

103 

Cederfjäll E, Sahin G, Kirik D and Björklund T: Design of a single AAV vector for coexpression of TH and GCH1 to establish continuous DOPA synthesis in a rat model of Parkinson's disease. Mol Ther. 20:1315–1326. 2012. View Article : Google Scholar : PubMed/NCBI

104 

Carnicer R, Duglan D, Ziberna K, Recalde A, Reilly S, Simon JN, Mafrici S, Arya R, Roselló-Lletí E, Chuaiphichai S, et al: BH4 increases nNOS activity and preserves left ventricular function in diabetes. Circ Res. 128:585–601. 2021. View Article : Google Scholar : PubMed/NCBI

105 

Liang D, Feng Y, Zandkarimi F, Wang H, Zhang Z, Kim J, Cai Y, Gu W, Stockwell BR and Jiang X: Ferroptosis surveillance independent of GPX4 and differentially regulated by sex hormones. Cell. 186:2748–2764.e22. 2023. View Article : Google Scholar : PubMed/NCBI

106 

Liang C, Zhang X, Yang M and Dong X: Recent progress in ferroptosis inducers for cancer therapy. Adv Mater. 31:e19041972019. View Article : Google Scholar : PubMed/NCBI

107 

Wang L, Liu Y, Du T, Yang H, Lei L, Guo M, Ding HF, Zhang J, Wang H, Chen X and Yan C: ATF3 promotes erastin-induced ferroptosis by suppressing system Xc. Cell Death Differ. 27:662–675. 2020. View Article : Google Scholar

108 

Fennell D: Cancer-cell death ironed out. Nature. 572:314–315. 2019. View Article : Google Scholar : PubMed/NCBI

109 

Mishima E and Conrad M: Nonmetabolic role for CKB in ferroptosis. Nat Cell Biol. 25:633–634. 2023. View Article : Google Scholar : PubMed/NCBI

110 

Stockwell BR, Jiang X and Gu W: Emerging mechanisms and disease relevance of ferroptosis. Trends Cell Biol. 30:478–490. 2020. View Article : Google Scholar : PubMed/NCBI

111 

Nakamura T, Hipp C, Santos Dias Mourão A, Borggräfe J, Aldrovandi M, Henkelmann B, Wanninger J, Mishima E, Lytton E, Emler D, et al: Phase separation of FSP1 promotes ferroptosis. Nature. 619:371–377. 2023. View Article : Google Scholar : PubMed/NCBI

112 

Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, Roberts MA, Tong B, Maimone TJ, Zoncu R, et al: The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 575:688–692. 2019. View Article : Google Scholar : PubMed/NCBI

113 

Wang Y, Lilienfeldt N and Hekimi S: Understanding coenzyme Q. Physiol Rev. 104:1533–1610. 2024. View Article : Google Scholar : PubMed/NCBI

114 

Mishima E, Nakamura T, Zheng J, Zhang W, Mourão ASD, Sennhenn P and Conrad M: DHODH inhibitors sensitize to ferroptosis by FSP1 inhibition. Nature. 619:E9–E18. 2023. View Article : Google Scholar : PubMed/NCBI

115 

Liang D, Deng L and Jiang X: A new checkpoint against ferroptosis. Cell Res. 30:3–4. 2020. View Article : Google Scholar :

116 

Garcia-Bermudez J and Birsoy K: A mitochondrial gatekeeper that helps cells escape death by ferroptosis. Nature. 593:514–515. 2021. View Article : Google Scholar : PubMed/NCBI

117 

Vasan K, Werner M and Chandel NS: Mitochondrial metabolism as a target for cancer therapy. Cell Metab. 32:341–352. 2020. View Article : Google Scholar : PubMed/NCBI

118 

Mao C, Lei G, Zhuang L and Gan B: Phospholipase iPLA2β acts as a guardian against ferroptosis. Cancer Commun (Lond). 41:1082–1085. 2021. View Article : Google Scholar : PubMed/NCBI

119 

Xiang H, Lyu Q, Chen S, Ouyang J, Xiao D, Liu Q, Long H, Zheng X, Yang X and Lu H: PACS2/CPT1A/DHODH signaling promotes cardiomyocyte ferroptosis in diabetic cardiomyopathy. Cardiovasc Diabetol. 23:4322024. View Article : Google Scholar : PubMed/NCBI

120 

Wu MF, Peng X, Zhang MC, Guo H and Xie HT: Ferroptosis and PANoptosis under hypoxia pivoting on the crosstalk between DHODH and GPX4 in corneal epithelium. Free Radic Biol Med. 228:173–182. 2025. View Article : Google Scholar : PubMed/NCBI

121 

Zhang L, Rao F, Zhang K, Khandrika S, Das M, Vaingankar SM, Bao X, Rana BK, Smith DW, Wessel J, et al: Discovery of common human genetic variants of GTP cyclohydrolase 1 (GCH1) governing nitric oxide, autonomic activity, and cardiovascular risk. J Clin Invest. 117:2658–2671. 2007. View Article : Google Scholar : PubMed/NCBI

122 

Jiang Y, Zhao J, Li R, Liu Y, Zhou L, Wang C, Lv C, Gao L and Cui D: CircLRFN5 inhibits the progression of glioblastoma via PRRX2/GCH1 mediated ferroptosis. J Exp Clin Cancer Res. 41:3072022. View Article : Google Scholar : PubMed/NCBI

123 

Nishizawa H, Yamanaka M and Igarashi K: Ferroptosis: Regulation by competition between NRF2 and BACH1 and propagation of the death signal. FEBS J. 290:1688–1704. 2023. View Article : Google Scholar

124 

Kraft VAN, Bezjian CT, Pfeiffer S, Ringelstetter L, Müller C, Zandkarimi F, Merl-Pham J, Bao X, Anastasov N, Kössl J, et al: GTP Cyclohydrolase 1/Tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent Sci. 6:41–53. 2020. View Article : Google Scholar : PubMed/NCBI

125 

Pope LE and Dixon SJ: Regulation of ferroptosis by lipid metabolism. Trends Cell Biol. 33:1077–1087. 2023. View Article : Google Scholar : PubMed/NCBI

126 

Papsdorf K, Miklas JW, Hosseini A, Cabruja M, Morrow CS, Savini M, Yu Y, Silva-García CG, Haseley NR, Murphy LM, et al: Lipid droplets and peroxisomes are co-regulated to drive lifespan extension in response to mono-unsaturated fatty acids. Nat Cell Biol. 25:672–684. 2023. View Article : Google Scholar : PubMed/NCBI

127 

Mori H, Peterson SK, Simmermon RC, Overmyer KA, Nishii A, Paulsson E, Li Z, Jen A, Uranga RM, Maung JN, et al: Scd1 and monounsaturated lipids are required for autophagy and survival of adipocytes. Mol Metab. 83:1019162024. View Article : Google Scholar : PubMed/NCBI

128 

Zhang XD, Liu ZY, Wang MS, Guo YX, Wang XK, Luo K, Huang S and Li RF: Mechanisms and regulations of ferroptosis. Front Immunol. 14:12694512023. View Article : Google Scholar : PubMed/NCBI

129 

Li S, Zhang G, Hu J, Tian Y and Fu X: Ferroptosis at the nexus of metabolism and metabolic diseases. Theranostics. 14:5826–5852. 2024. View Article : Google Scholar : PubMed/NCBI

130 

Rodencal J, Kim N, He A, Li VL, Lange M, He J, Tarangelo A, Schafer ZT, Olzmann JA, Long JZ, et al: Sensitization of cancer cells to ferroptosis coincident with cell cycle arrest. Cell Chem Biol. 31:234–248.e13. 2024. View Article : Google Scholar :

131 

Arnér ESJ and Schmidt EE: Unresolved questions regarding cellular cysteine sources and their possible relationships to ferroptosis. Adv Cancer Res. 162:1–44. 2024. View Article : Google Scholar : PubMed/NCBI

132 

Zhou Q, Meng Y, Le J, Sun Y, Dian Y, Yao L, Xiong Y, Zeng F, Chen X and Deng G: Ferroptosis: Mechanisms and therapeutic targets. MedComm (2020). 5:e700102024. View Article : Google Scholar : PubMed/NCBI

133 

Bhat KP, Vijay J, Vilas CK, Asundi J, Zou J, Lau T, Cai X, Ahmed M, Kabza M, Weng J, et al: CRISPR activation screens identify the SWI/SNF ATPases as suppressors of ferroptosis. Cell Rep. 43:1143452024. View Article : Google Scholar : PubMed/NCBI

134 

Riegman M, Sagie L, Galed C, Levin T, Steinberg N, Dixon SJ, Wiesner U, Bradbury MS, Niethammer P, Zaritsky A and Overholtzer M: Ferroptosis occurs through an osmotic mechanism and propagates independently of cell rupture. Nat Cell Biol. 22:1042–1048. 2020. View Article : Google Scholar : PubMed/NCBI

135 

Pedrera L, Espiritu RA, Ros U, Weber J, Schmitt A, Stroh J, Hailfinger S, von Karstedt S and García-Sáez AJ: Ferroptotic pores induce Ca2+ fluxes and ESCRT-III activation to modulate cell death kinetics. Cell Death Differ. 28:1644–1657. 2021. View Article : Google Scholar

136 

Veglia Tranchese R, Battista S, Cerchia L and Fedele M: Ferroptosis in cancer: Epigenetic control and therapeutic opportunities. Biomolecules. 14:14432024. View Article : Google Scholar : PubMed/NCBI

137 

Han Y, Gao X, Wu N, Jin Y, Zhou H, Wang W, Liu H, Chu Y, Cao J, Jiang M, et al: Long noncoding RNA LINC00239 inhibits ferroptosis in colorectal cancer by binding to Keap1 to stabilize Nrf2. Cell Death Dis. 13:7422022. View Article : Google Scholar : PubMed/NCBI

138 

Tao Q and Li Y, Zhang W, Zhang M, Li X, Jin H, Zheng J and Li Y: Long non-coding RNA ZFAS1 promotes ferroptosis by regulating the miR-185-5p/SLC25A28 axis in clear cell renal cell carcinoma. Int J Biol Macromol. 304:1406022025. View Article : Google Scholar : PubMed/NCBI

139 

Liu Y, Li L, Yang Z, Wen D and Hu Z: Circular RNA circACAP2 suppresses ferroptosis of cervical cancer during malignant progression by miR-193a-5p/GPX4. J Oncol. 2022:52288742022.PubMed/NCBI

140 

Chen SJ, Zhang J, Zhou T, Rao SS, Li Q, Xiao LY, Wei ST and Zhang HF: Epigenetically upregulated NSUN2 confers ferroptosis resistance in endometrial cancer via m5C modification of SLC7A11 mRNA. Redox Biol. 69:1029752024. View Article : Google Scholar

141 

Sultana A and Rana S: Mechanisms underlying obesity-malignancy connection: A systematic narrative review. J Physiol Biochem. 81:403–439. 2025. View Article : Google Scholar : PubMed/NCBI

142 

Zhang X, Tang B, Luo J, Yang Y, Weng Q, Fang S, Zhao Z, Tu J, Chen M and Ji J: Cuproptosis, ferroptosis and PANoptosis in tumor immune microenvironment remodeling and immunotherapy: Culprits or new hope. Mol Cancer. 23:2552024. View Article : Google Scholar : PubMed/NCBI

143 

He F, Chen Z, Deng W, Zhan T, Huang X, Zheng Y and Yang H: Development and validation of a novel ferroptosis-related gene signature for predicting prognosis and immune microenvironment in head and neck squamous cell carcinoma. Int Immunopharmacol. 98:1077892021. View Article : Google Scholar : PubMed/NCBI

144 

Qi YL, Wang HR, Chen LL, Duan YT, Yang SY and Zhu HL: Recent advances in small-molecule fluorescent probes for studying ferroptosis. Chem Soc Rev. 51:7752–7778. 2022. View Article : Google Scholar : PubMed/NCBI

145 

Shi JX, Zhang ZC, Yin HZ, Piao XJ, Liu CH, Liu QJ, Zhang JC, Zhou WX, Liu FC, Yang F, et al: RNA m6A modification in ferroptosis: Implications for advancing tumor immunotherapy. Mol Cancer. 23:2132024. View Article : Google Scholar : PubMed/NCBI

146 

Ma L, Chen C, Zhao C, Li T, Ma L, Jiang J, Duan Z, Si Q, Chuang TH, Xiang R and Luo Y: Targeting carnitine palmitoyl transferase 1A (CPT1A) induces ferroptosis and synergizes with immunotherapy in lung cancer. Signal Transduct Target Ther. 9:642024. View Article : Google Scholar : PubMed/NCBI

147 

Bao X, Luo X, Bai X, Lv Y, Weng X, Zhang S, Leng Y, Huang J, Dai X, Wang Y, et al: Cigarette tar mediates macrophage ferroptosis in atherosclerosis through the hepcidin/FPN/SLC7A11 signaling pathway. Free Radic Biol Med. 201:76–88. 2023. View Article : Google Scholar : PubMed/NCBI

148 

Dai C, Kong B, Qin T, Xiao Z, Fang J, Gong Y, Zhu J, Liu Q, Fu H, Meng H, et al: Inhibition of ferroptosis reduces susceptibility to frequent excessive alcohol consumption-induced atrial fibrillation. Toxicology. 465:1530552022. View Article : Google Scholar

149 

Lenoci D, Serafini MS, Lucchetta M, Cavalieri S, Brakenhoff RH, Hoebers F, Scheckenbach K, Poli T, Licitra L and De Cecco L: Ferroptosis-related gene signatures: Prognostic role in HPV-positive oropharyngeal squamous cell carcinoma. Cancers (Basel). 17:5302025. View Article : Google Scholar : PubMed/NCBI

150 

Hémon A, Louandre C, Lailler C, Godin C, Bottelin M, Morel V, François C, Galmiche A and Saidak Z: SLC7A11 as a biomarker and therapeutic target in HPV-positive head and neck squamous cell carcinoma. Biochem Biophys Res Commun. 533:1083–1087. 2020. View Article : Google Scholar : PubMed/NCBI

151 

Zhou P, Peng X, Zhang K, Cheng J, Tang M, Shen L, Zhou Q, Li D and Yang L: HAT1/HDAC2 mediated ACSL4 acetylation confers radiosensitivity by inducing ferroptosis in nasopharyngeal carcinoma. Cell Death Dis. 16:1602025. View Article : Google Scholar : PubMed/NCBI

152 

Lee J, Seo Y and Roh JL: Emerging therapeutic strategies targeting GPX4-Mediated ferroptosis in head and neck cancer. Int J Mol Sci. 26:64522025. View Article : Google Scholar : PubMed/NCBI

153 

Liao Q, Yang J, Lu Z, Jiang Q, Gong Y, Liu L, Peng H, Wang Q, Zhang X and Liu Z: FTH1 indicates poor prognosis and promotes metastasis in head and neck squamous cell carcinoma. PeerJ. 11:e164932023. View Article : Google Scholar : PubMed/NCBI

154 

Zhang Z, Zhu H, Zhao C, Liu D, Luo J, Ying Y and Zhong Y: DDIT4 promotes malignancy of head and neck squamous cell carcinoma. Mol Carcinog. 62:332–347. 2023. View Article : Google Scholar

155 

Roh JL: Targeting ferroptosis suppressor protein 1 in cancer therapy: Implications and perspectives, with emphasis on head and neck cancer. Crit Rev Oncol Hematol. 202:1044402024. View Article : Google Scholar : PubMed/NCBI

156 

Lee J and Roh JL: Altered iron metabolism as a target for ferroptosis induction in head and neck cancer. Cell Oncol (Dordr). 46:801–810. 2023. View Article : Google Scholar : PubMed/NCBI

157 

Lee J, You JH and Roh JL: Poly(rC)-binding protein 1 represses ferritinophagy-mediated ferroptosis in head and neck cancer. Redox Biol. 51:1022762022. View Article : Google Scholar : PubMed/NCBI

158 

Roh JL, Kim EH, Jang H and Shin D: Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis. Redox Biol. 11:254–262. 2017. View Article : Google Scholar :

159 

Shin D, Kim EH, Lee J and Roh JL: Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer. Free Radic Biol Med. 129:454–462. 2018. View Article : Google Scholar : PubMed/NCBI

160 

Zhang Y, Swanda RV, Nie L, Liu X, Wang C, Lee H, Lei G, Mao C, Koppula P, Cheng W, et al: mTORC1 couples cyst(e)ine availability with GPX4 protein synthesis and ferroptosis regulation. Nat Commun. 12:15892021. View Article : Google Scholar : PubMed/NCBI

161 

Shin D, Lee J, You JH, Kim D and Roh JL: Dihydrolipoamide dehydrogenase regulates cystine deprivation-induced ferroptosis in head and neck cancer. Redox Biol. 30:1014182020. View Article : Google Scholar : PubMed/NCBI

162 

Chung CH, Lin CY, Chen CY, Hsueh CW, Chang YW, Wang CC, Chu PY, Tai SK and Yang MH: Ferroptosis signature shapes the immune profiles to enhance the response to immune checkpoint inhibitors in head and neck cancer. Adv Sci (Weinh). 10:e22045142023. View Article : Google Scholar : PubMed/NCBI

163 

Zhang X, Huang Z, Xie Z, Chen Y, Zheng Z, Wei X, Huang B, Shan Z, Liu J, Fan S, et al: Homocysteine induces oxidative stress and ferroptosis of nucleus pulposus via enhancing methylation of GPX4. Free Radic Biol Med. 160:552–565. 2020. View Article : Google Scholar : PubMed/NCBI

164 

Lee J and Roh JL: Induction of ferroptosis in head and neck cancer: A novel bridgehead for fighting cancer resilience. Cancer Lett. 546:2158542022. View Article : Google Scholar : PubMed/NCBI

165 

Lee J, You JH, Kim MS and Roh JL: Epigenetic reprogramming of epithelial-mesenchymal transition promotes ferroptosis of head and neck cancer. Redox Biol. 37:1016972020. View Article : Google Scholar : PubMed/NCBI

166 

Cai J, Yi M, Tan Y, Li X, Li G, Zeng Z, Xiong W and Xiang B: Natural product triptolide induces GSDME-mediated pyroptosis in head and neck cancer through suppressing mitochondrial hexokinase-ΙΙ. J Exp Clin Cancer Res. 40:1902021. View Article : Google Scholar

167 

Duan X, Chan C and Lin W: Nanoparticle-mediated immunogenic cell death enables and potentiates cancer immunotherapy. Angew Chem Int Ed Engl. 58:670–680. 2019. View Article : Google Scholar

168 

Wang W, Green M, Choi JE, Gijón M, Kennedy PD, Johnson JK, Liao P, Lang X, Kryczek I, Sell A, et al: CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature. 569:270–274. 2019. View Article : Google Scholar : PubMed/NCBI

169 

Stockwell BR and Jiang X: A physiological function for ferroptosis in tumor suppression by the immune system. Cell Metab. 30:14–15. 2019. View Article : Google Scholar : PubMed/NCBI

170 

Zhang C, Liu X, Jin S, Chen Y and Guo R: Ferroptosis in cancer therapy: A novel approach to reversing drug resistance. Mol Cancer. 21:472022. View Article : Google Scholar : PubMed/NCBI

171 

Yuan Z, Wang X, Qin B, Hu R, Miao R, Zhou Y, Wang L and Liu T: Targeting NQO1 induces ferroptosis and triggers anti-tumor immunity in immunotherapy-resistant KEAP1-deficient cancers. Drug Resist Updat. 77:1011602024. View Article : Google Scholar

172 

Ma X, Xiao L, Liu L, Ye L, Su P, Bi E, Wang Q, Yang M, Qian J and Yi Q: CD36-mediated ferroptosis dampens intratumoral CD8+ T cell effector function and impairs their antitumor ability. Cell Metab. 33:1001–1012.e1005. 2021. View Article : Google Scholar

173 

Lee J, You JH, Shin D and Roh JL: Inhibition of glutaredoxin 5 predisposes cisplatin-resistant head and neck cancer cells to ferroptosis. Theranostics. 10:7775–7786. 2020. View Article : Google Scholar : PubMed/NCBI

174 

Demuynck R, Efimova I, Naessens F and Krysko DV: Immunogenic ferroptosis and where to find it? J Immunother Cancer. 9:e0034302021. View Article : Google Scholar : PubMed/NCBI

175 

Wiernicki B, Maschalidi S, Pinney J, Adjemian S, Vanden Berghe T, Ravichandran KS and Vandenabeele P: Cancer cells dying from ferroptosis impede dendritic cell-mediated anti-tumor immunity. Nat Commun. 13:36762022. View Article : Google Scholar : PubMed/NCBI

176 

Zhang DD: Natural inhibitor found for cell death by ferroptosis. Nature. 626:269–270. 2024. View Article : Google Scholar : PubMed/NCBI

177 

Hadian K and Stockwell BR: SnapShot: Ferroptosis. Cell. 181:1188–1188.e1. 2020. View Article : Google Scholar : PubMed/NCBI

178 

Chen L, Lin W, Zhang H, Geng S, Le Z, Wan F, Huang Q, Chen H, Liu X, Lu JJ and Kong L: TRIB3 promotes malignancy of head and neck squamous cell carcinoma via inhibiting ferroptosis. Cell Death Dis. 15:1782024. View Article : Google Scholar : PubMed/NCBI

179 

Jia X, Tian J, Fu Y, Wang Y, Yang Y, Zhang M, Yang C and Liu Y: Identification of AURKA as a biomarker associated with cuproptosis and ferroptosis in HNSCC. Int J Mol Sci. 25:43722024. View Article : Google Scholar :

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Kang C, Li X and Wei X: Ferroptosis and head and neck cancer: Mechanisms and therapeutic perspectives (Review). Int J Mol Med 56: 184, 2025.
APA
Kang, C., Li, X., & Wei, X. (2025). Ferroptosis and head and neck cancer: Mechanisms and therapeutic perspectives (Review). International Journal of Molecular Medicine, 56, 184. https://doi.org/10.3892/ijmm.2025.5625
MLA
Kang, C., Li, X., Wei, X."Ferroptosis and head and neck cancer: Mechanisms and therapeutic perspectives (Review)". International Journal of Molecular Medicine 56.5 (2025): 184.
Chicago
Kang, C., Li, X., Wei, X."Ferroptosis and head and neck cancer: Mechanisms and therapeutic perspectives (Review)". International Journal of Molecular Medicine 56, no. 5 (2025): 184. https://doi.org/10.3892/ijmm.2025.5625
Copy and paste a formatted citation
x
Spandidos Publications style
Kang C, Li X and Wei X: Ferroptosis and head and neck cancer: Mechanisms and therapeutic perspectives (Review). Int J Mol Med 56: 184, 2025.
APA
Kang, C., Li, X., & Wei, X. (2025). Ferroptosis and head and neck cancer: Mechanisms and therapeutic perspectives (Review). International Journal of Molecular Medicine, 56, 184. https://doi.org/10.3892/ijmm.2025.5625
MLA
Kang, C., Li, X., Wei, X."Ferroptosis and head and neck cancer: Mechanisms and therapeutic perspectives (Review)". International Journal of Molecular Medicine 56.5 (2025): 184.
Chicago
Kang, C., Li, X., Wei, X."Ferroptosis and head and neck cancer: Mechanisms and therapeutic perspectives (Review)". International Journal of Molecular Medicine 56, no. 5 (2025): 184. https://doi.org/10.3892/ijmm.2025.5625
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team