|
1
|
Kratzer TB, Jemal A, Miller KD, Nash S,
Wiggins C, Redwood D, Smith R and Siegel RL: Cancer statistics for
American Indian and Alaska Native individuals, 2022: Including
increasing disparities in early onset colorectal cancer. CA Cancer
J Clin. 73:120–146. 2023.
|
|
2
|
Kuderer NM, Desai A, Lustberg MB and Lyman
GH: Mitigating acute chemotherapy-associated adverse events in
patients with cancer. Nat Rev Clin Oncol. 19:681–697. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Ruffin AT, Li H, Vujanovic L, Zandberg DP,
Ferris RL and Bruno TC: Improving head and neck cancer therapies by
immunomodulation of the tumour microenvironment. Nat Rev Cancer.
23:173–188. 2023. View Article : Google Scholar :
|
|
4
|
Kist de Ruijter L, van de Donk PP,
Hooiveld-Noeken JS, Giesen D, Elias SG, Lub-de Hooge MN, Oosting
SF, Jalving M, Timens W, Brouwers AH, et al: Whole-body
CD8+ T cell visualization before and during cancer
immunotherapy: A phase 1/2 trial. Nat Med. 28:2601–2610. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Adey A, Burton JN, Kitzman JO, Hiatt JB,
Lewis AP, Martin BK, Qiu R, Lee C and Shendure J: The
haplotype-resolved genome and epigenome of the aneuploid HeLa
cancer cell line. Nature. 500:207–211. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Gey GO, Coffman WD and Kubicek MT: Tissue
culture studies of the proliferative capacity of cervical carcinoma
and normal epithelium. Cancer Res. 12:264–265. 1952.
|
|
7
|
Sekiya S, Kaiho T, Shirotake S, Iwasawa H,
Inaba N, Kawata M, Higaki K, Ishige H, Takamizawa H,
Minamihisamatsu M and Kuwata T: Establishment and properties of a
human choriocarcinoma cell line of ovarian origin. In Vitro.
19:489–494. 1983. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Keydar I, Chen L, Karby S, Weiss FR,
Delarea J, Radu M, Chaitcik S and Brenner HJ: Establishment and
characterization of a cell line of human breast carcinoma origin.
Eur J Cancer (1965). 15:659–670. 1979. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Machida S, Ishioka T, Takashima K,
Fukushima M, Ishikawa Y and Kudo H: Establishment of a human rectal
cancer cell line producing carcinoembryonic antigen. Gan.
68:775–780. 1977.PubMed/NCBI
|
|
10
|
Akagi T and Kimoto T: Establishment and
characteristics of a human pancreatic cancer cell line (HCG-25).
Acta Pathol Jpn. 27:51–58. 1977.PubMed/NCBI
|
|
11
|
Koochekpour S, Maresh GA, Katner A,
Parker-Johnson K, Lee TJ, Hebert FE, Kao YS, Skinner J and Rayford
W: Establishment and characterization of a primary
androgen-responsive African-American prostate cancer cell line,
E006AA. Prostate. 60:141–152. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Weber KL, Pathak S, Multani AS and Price
JE: Characterization of a renal cell carcinoma cell line derived
from a human bone metastasis and establishment of an experimental
nude mouse model. J Urol. 168:774–779. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Russell PJ, Jelbart M, Wills E, Singh S,
Wass J, Wotherspoon J and Raghavan D: Establishment and
characterization of a new human bladder cancer cell line showing
features of squamous and glandular differentiation. Int J Cancer.
41:74–82. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Jakubowicz-Gil J, Paduch R, Gawron A and
Kandefer-Szerszeń M: The effect of heat shock, cisplatin, etoposide
and quercetin on Hsp27 expression in human normal and tumour cells.
Folia Histochem Cytobiol. 40:31–35. 2002.PubMed/NCBI
|
|
15
|
Pai JH, Xu W, Sims CE and Allbritton NL:
Microtable arrays for culture and isolation of cell colonies. Anal
Bioanal Chem. 398:2595–2604. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Ho VHB, Müller KH, Barcza A, Chen R and
Slater NKH: Generation and manipulation of magnetic multicellular
spheroids. Biomaterials. 31:3095–3102. 2010. View Article : Google Scholar
|
|
17
|
Wang T, Wang X, Zheng X, Guo Z, Mohsin A,
Zhuang Y and Wang G: Overexpression of SLC2A1, ALDOC, and PFKFB4 in
the glycolysis pathway drives strong drug resistance in 3D HeLa
tumor cell spheroids. Biotechnol J. 19:e24001632024. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Chen T, Wen Y, Song X, Zhang Z, Zhu J,
Tian X, Zeng S and Li J: Rationally designed
β-cyclodextrin-crosslinked polyacrylamide hydrogels for cell
spheroid formation and 3D tumor model construction. Carbohydr
Polym. 339:1222532024. View Article : Google Scholar
|
|
19
|
Schuth S, Le Blanc S, Krieger TG, Jabs J,
Schenk M, Giese NA, Büchler MW, Eils R, Conrad C and Strobel O:
Patient-specific modeling of stroma-mediated chemoresistance of
pancreatic cancer using a three-dimensional organoid-fibroblast
co-culture system. J Exp Clin Cancer Res. 41:3122022. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Brancato V, Oliveira JM, Correlo VM, Reis
RL and Kundu SC: Could 3D models of cancer enhance drug screening?
Biomaterials. 232:1197442020. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Liebs S, Eder T, Klauschen F, Schütte M,
Yaspo ML, Keilholz U, Tinhofer I, Kidess-Sigal E and Braunholz D:
Applicability of liquid biopsies to represent the mutational
profile of tumor tissue from different cancer entities. Oncogene.
40:5204–5212. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Contartese D, Salamanna F, Veronesi F and
Fini M: Relevance of humanized three-dimensional tumor tissue
models: A descriptive systematic literature review. Cell Mol Life
Sci. 77:3913–3944. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Kallinowski F, Zander R, Hoeckel M and
Vaupel P: Tumor tissue oxygenation as evaluated by
computerized-pO2-histography. Int J Radiat Oncol Biol Phys.
19:953–961. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Shi R, Radulovich N, Ng C, Liu N, Notsuda
H, Cabanero M, Martins-Filho SN, Raghavan V, Li Q, Mer AS, et al:
Organoid cultures as preclinical models of non-small cell lung
cancer. Clin Cancer Res. 26:1162–1174. 2020. View Article : Google Scholar
|
|
25
|
Cattaneo CM, Dijkstra KK, Fanchi LF,
Kelderman S, Kaing S, van Rooij N, van den Brink S, Schumacher TN
and Voest EE: Tumor organoid-T-cell coculture systems. Nat Protoc.
15:15–39. 2020. View Article : Google Scholar
|
|
26
|
Xu H, Lyu X, Yi M, Zhao W, Song Y and Wu
K: Organoid technology and applications in cancer research. J
Hematol Oncol. 11:1162018. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
van de Wetering M, Francies HE, Francis
JM, Bounova G, Iorio F, Pronk A, van Houdt W, van Gorp J,
Taylor-Weiner A, Kester L, et al: Prospective derivation of a
living organoid biobank of colorectal cancer patients. Cell.
161:933–945. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Drost J and Clevers H: Organoids in cancer
research. Nat Rev Cancer. 18:407–418. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Zhang Y, Houchen CW and Li M:
Patient-derived organoid pharmacotyping guides precision medicine
for pancreatic cancer. Clin Cancer Res. 28:3176–3178. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Wang R, Mao Y, Wang W, Zhou X, Wang W, Gao
S, Li J, Wen L, Fu W and Tang F: Systematic evaluation of
colorectal cancer organoid system by single-cell RNA-Seq analysis.
Genome Biol. 23:1062022. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Kim SC, Park JW, Seo HY, Kim M, Park JH,
Kim GH, Lee JO, Shin YK, Bae JM, Koo BK, et al: Multifocal organoid
capturing of colon cancer reveals pervasive intratumoral
heterogenous drug responses. Adv Sci (Weinh). 9:e21033602022.
View Article : Google Scholar
|
|
32
|
Chen G, Gong T, Wang Z, Wang Z, Lin X,
Chen S, Sun C, Zhao W, Kong Y, Ai H, et al: Colorectal cancer
organoid models uncover oxaliplatin-resistant mechanisms at single
cell resolution. Cell Oncol (Dordr). 45:1155–1167. 2022.PubMed/NCBI
|
|
33
|
Zeng Y, Yin L, Zhou J, Zeng R, Xiao Y,
Black AR, Hu T, Singh PK, Yin F, Batra SK, et al: MARK2 regulates
chemotherapeutic responses through class IIa HDAC-YAP axis in
pancreatic cancer. Oncogene. 41:3859–3875. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Toshimitsu K, Takano A, Fujii M, Togasaki
K, Matano M, Takahashi S, Kanai T and Sato T: Organoid screening
reveals epigenetic vulnerabilities in human colorectal cancer. Nat
Chem Biol. 18:605–614. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Tong Y, Cheng PSW, Or CS, Yue SSK, Siu HC,
Ho SL, Law SYK, Tsui WY, Chan D, Ma S, et al: Escape from cell-cell
and cell-matrix adhesion dependence underscores disease progression
in gastric cancer organoid models. Gut. 72:242–255. 2023.
View Article : Google Scholar
|
|
36
|
Grossman JE, Muthuswamy L, Huang L,
Akshinthala D, Perea S, Gonzalez RS, Tsai LL, Cohen J, Bockorny B,
Bullock AJ, et al: Organoid sensitivity correlates with therapeutic
response in patients with pancreatic cancer. Clin Cancer Res.
28:708–718. 2022. View Article : Google Scholar :
|
|
37
|
Kawai S, Nakano K, Tamai K, Fujii E,
Yamada M, Komoda H, Sakumoto H, Natori O and Suzuki M: Generation
of a lung squamous cell carcinoma three-dimensional culture model
with keratinizing structures. Sci Rep. 11:243052021. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Ramamoorthy P, Thomas SM, Kaushik G,
Subramaniam D, Chastain KM, Dhar A, Tawfik O, Kasi A, Sun W,
Ramalingam S, et al: Metastatic tumor-in-a-dish, a novel
multicellular organoid to study lung colonization and predict
therapeutic response. Cancer Res. 79:1681–1695. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Kawasaki K, Toshimitsu K, Matano M, Fujita
M, Fujii M, Togasaki K, Ebisudani T, Shimokawa M, Takano A,
Takahashi S, et al: An organoid biobank of neuroendocrine neoplasms
enables genotype-phenotype mapping. Cell. 183:1420–1435.e21. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Goudar VS, Koduri MP, Ta YN, Chen Y, Chu
LA, Lu LS and Tseng FG: Impact of a desmoplastic tumor
microenvironment for colon cancer drug sensitivity: A study with 3D
chimeric tumor spheroids. ACS Appl Mater Interfaces.
13:48478–48491. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Tran E, Shi T, Li X, Chowdhury AY, Jiang
D, Liu Y, Wang H, Yan C, Wallace WD, Lu R, et al: Development of
human alveolar epithelial cell models to study distal lung biology
and disease. iScience. 25:1037802022. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Sun L, Yang H, Wang Y, Zhang X, Jin B, Xie
F, Jin Y, Pang Y, Zhao H, Lu X, et al: Application of a 3D
bioprinted hepatocellular carcinoma cell model in antitumor drug
research. Front Oncol. 10:8782020. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Li J, Fang K, Choppavarapu L, Yang K, Yang
Y, Wang J, Cao R, Jatoi I and Jin VX: Hi-C profiling of cancer
spheroids identifies 3D-growth-specific chromatin interactions in
breast cancer endocrine resistance. Clin Epigenetics. 13:1752021.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Monberg ME, Geiger H, Lee JJ, Sharma R,
Semaan A, Bernard V, Wong J, Wang F, Liang S, Swartzlander DB, et
al: Occult polyclonality of preclinical pancreatic cancer models
drives in vitro evolution. Nat Commun. 13:36522022. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Xu H, Jiao D, Liu A and Wu K: Tumor
organoids: Applications in cancer modeling and potentials in
precision medicine. J Hematol Oncol. 15:582022. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Wilson HV: A new method by which sponges
may be artificially reared. Science. 25:912–915. 1907. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Raghavan S, Mehta P, Xie Y, Lei YL and
Mehta G: Ovarian cancer stem cells and macrophages reciprocally
interact through the WNT pathway to promote pro-tumoral and
malignant phenotypes in 3D engineered microenvironments. J
Immunother Cancer. 7:1902019. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Wolint P, Bopp A, Woloszyk A, Tian Y,
Evrova O, Hilbe M, Giovanoli P, Calcagni M, Hoerstrup SP, Buschmann
J and Emmert MY: Cellular self-assembly into 3D microtissues
enhances the angiogenic activity and functional neovascularization
capacity of human cardiopoietic stem cells. Angiogenesis. 22:37–52.
2019. View Article : Google Scholar
|
|
49
|
Thakur G, Bok EY, Kim SB, Jo CH, Oh SJ,
Baek JC, Park JE, Kang YH, Lee SL, Kumar R and Rho GJ:
Scaffold-free 3D culturing enhance pluripotency, immunomodulatory
factors, and differentiation potential of Wharton's
jelly-mesenchymal stem cells. Eur J Cell Biol. 101:1512452022.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Cho CY, Chiang TH, Hsieh LH, Yang WY, Hsu
HH, Yeh CK, Huang CC and Huang JH: Development of a novel hanging
drop platform for engineering controllable 3D microenvironments.
Front Cell Dev Biol. 8:3272020. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Guan Z, Jia S, Zhu Z, Zhang M and Yang CJ:
Facile and rapid generation of large-scale microcollagen gel array
for long-term single-cell 3D culture and cell proliferation
heterogeneity analysis. Anal Chem. 86:2789–2797. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Pageau SC, Sazonova OV, Wong JY, Soto AM
and Sonnenschein C: The effect of stromal components on the
modulation of the phenotype of human bronchial epithelial cells in
3D culture. Biomaterials. 32:7169–7180. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Quarni W, Dutta R, Green R, Katiri S,
Patel B, Mohapatra SS and Mohapatra S: Mithramycin A inhibits
colorectal cancer growth by targeting cancer stem cells. Sci Rep.
9:152022019. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Xiao W, Wang S, Zhang R, Sohrabi A, Yu Q,
Liu S, Ehsanipour A, Liang J, Bierman RD, Nathanson DA and Seidlits
SK: Bioengineered scaffolds for 3D culture demonstrate
extracellular matrix-mediated mechanisms of chemotherapy resistance
in glioblastoma. Matrix Biol. 85-86:128–146. 2020. View Article : Google Scholar
|
|
55
|
Xu J, Shamul JG, Staten NA, White AM,
Jiang B and He X: Bioinspired 3D culture in nanoliter hyaluronic
acid-rich core-shell hydrogel microcapsules isolates highly
pluripotent human iPSCs. Small. 17:e21022192021. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Luca AC, Mersch S, Deenen R, Schmidt S,
Messner I, Schäfer KL, Baldus SE, Huckenbeck W, Piekorz RP, Knoefel
WT, et al: Impact of the 3D microenvironment on phenotype, gene
expression, and EGFR inhibition of colorectal cancer cell lines.
PLoS One. 8:e596892013. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Weigelt B, Lo AT, Park CC, Gray JW and
Bissell MJ: HER2 signaling pathway activation and response of
breast cancer cells to HER2-targeting agents is dependent strongly
on the 3D microenvironment. Breast Cancer Res Treat. 122:35–43.
2010. View Article : Google Scholar :
|
|
58
|
Yao H, Li T, Wu Z, Tao Q, Shi J, Liu L and
Zhao Y: Superlarge living hyaline cartilage graft contributed by
the scale-changed porous 3D culture system for joint defect repair.
Biomed Mater. 17:0641012022. View Article : Google Scholar
|
|
59
|
Xu X, Feng Q, Ma X, Deng Y, Zhang K, Ooi
HS, Yang B, Zhang ZY, Feng B and Bian L: Dynamic gelatin-based
hydrogels promote the proliferation and self-renewal of embryonic
stem cells in long-term 3D culture. Biomaterials. 289:1218022022.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Fong EL, Lamhamedi-Cherradi SE, Burdett E,
Ramamoorthy V, Lazar AJ, Kasper FK, Farach-Carson MC, Vishwamitra
D, Demicco EG, Menegaz BA, et al: Modeling Ewing sarcoma tumors in
vitro with 3D scaffolds. Proc Natl Acad Sci USA. 110:6500–6505.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Keate RL, Tropp J, Collins CP, Ware HOT,
Petty AJ II, Ameer GA, Sun C and Rivnay J: 3D-printed electroactive
hydrogel architectures with Sub-100 µm resolution promote myoblast
viability. Macromol Biosci. 22:e22001032022. View Article : Google Scholar
|
|
62
|
Nishimura SN, Hokazono N, Taki Y, Motoda
H, Morita Y, Yamamoto K, Higashi N and Koga T: Photocleavable
peptide-poly(2-hydroxyethyl methacrylate) hybrid graft copolymer
via postpolymerization modification by click chemistry to modulate
the cell affinities of 2D and 3D materials. ACS Appl Mater
Interfaces. 11:24577–24587. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Svozilová H, Plichta Z, Proks V, Studená
R, Baloun J, Doubek M, Pospíšilová Š and Horák D: RGDS-modified
superporous poly(2-hydroxyethyl methacrylate)-based scaffolds as 3D
in vitro leukemia model. Int J Mol Sci. 22:23762021. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Jiang X, Li X, Fei X, Shen J, Chen J, Guo
M and Li Y: Endometrial membrane organoids from human embryonic
stem cell combined with the 3D Matrigel for endometrium
regeneration in asherman syndrome. Bioact Mater. 6:3935–3946.
2021.PubMed/NCBI
|
|
65
|
Zhang Z, Gao S, Hu YN, Chen X, Cheng C, Fu
XL, Zhang SS, Wang XL, Che YW, Zhang C and Chai RJ: Ti3
C2 Tx MXene composite 3D hydrogel potentiates
mTOR signaling to promote the generation of functional hair cells
in cochlea organoids. Adv Sci (Weinh). 9:e22035572022. View Article : Google Scholar
|
|
66
|
Sato T, Vries RG, Snippert HJ, van de
Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters
PJ and Clevers H: Single Lgr5 stem cells build crypt-villus
structures in vitro without a mesenchymal niche. Nature.
459:262–265. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Soto-Gutierrez A, Navarro-Alvarez N, Yagi
H, Nahmias Y, Yarmush ML and Kobayashi N: Engineering of an hepatic
organoid to develop liver assist devices. Cell Transplant.
19:815–822. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Ramachandran SD, Schirmer K, Münst B,
Heinz S, Ghafoory S, Wölfl S, Simon-Keller K, Marx A, Øie CI, Ebert
MP, et al: In vitro generation of functional liver organoid-like
structures using adult human cells. PLoS One. 10:e01393452015.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Magro-Lopez E, Palmer C, Manso J, Liste I
and Zambrano A: Effects of lung and airway epithelial maturation
cocktail on the structure of lung bud organoids. Stem Cell Res
Ther. 9:1862018. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Chen YW, Huang SX, de Carvalho ALRT, Ho
SH, Islam MN, Volpi S, Notarangelo LD, Ciancanelli M, Casanova JL,
Bhattacharya J, et al: A three-dimensional model of human lung
development and disease from pluripotent stem cells. Nat Cell Biol.
19:542–549. 2017. View Article : Google Scholar
|
|
71
|
Jung YH, Choi DH, Park K, Lee SB, Kim J,
Kim H, Jeong HW, Yang JH, Kim JA, Chung S and Min BS: Drug
screening by uniform patient derived colorectal cancer
hydro-organoids. Biomaterials. 276:1210042021. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Xie BY and Wu AW: Organoid culture of
isolated cells from patient-derived tissues with colorectal cancer.
Chin Med J (Engl). 129:2469–2475. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Zeng L, Liao Q, Zhao Q, Jiang S, Yang X,
Tang H, He Q, Yang X, Fang S, He J, et al: Raltitrexed as a
synergistic hyperthermia chemotherapy drug screened in
patient-derived colorectal cancer organoids. Cancer Biol Med.
18:750–762. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Miao X, Wang C, Chai C, Tang H, Hu J, Zhao
Z, Luo W, Zhang H, Zhu K, Zhou W and Xu H: Establishment of gastric
cancer organoid and its application in individualized therapy.
Oncol Lett. 24:4472022. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Schlaermann P, Toelle B, Berger H, Schmidt
SC, Glanemann M, Ordemann J, Bartfeld S, Mollenkopf HJ and Meyer
TF: A novel human gastric primary cell culture system for modelling
Helicobacter pylori infection in vitro. Gut. 65:202–213. 2016.
View Article : Google Scholar
|
|
76
|
Cherne MD, Sidar B, Sebrell TA, Sanchez
HS, Heaton K, Kassama FJ, Roe MM, Gentry AB, Chang CB, Walk ST, et
al: A synthetic hydrogel, vitroGel® ORGANOID-3, improves
immune cell-epithelial interactions in a tissue chip co-culture
model of human gastric organoids and dendritic cells. Front
Pharmacol. 12:7078912021. View Article : Google Scholar
|
|
77
|
Noguchi TK and Kurisaki A: Formation of
stomach tissue by organoid culture using mouse embryonic stem
cells. Methods Mol Biol. 1597:217–228. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Wedeken L, Luo A, Tremblay JR, Rawson J,
Jin L, Gao D, Quijano J and Ku HT: Adult murine pancreatic
progenitors require epidermal growth factor and nicotinamide for
self-renewal and differentiation in a serum- and conditioned
medium-free culture. Stem Cells Dev. 26:599–607. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Soltanian A, Ghezelayagh Z, Mazidi Z,
Halvaei M, Mardpour S, Ashtiani MK, Hajizadeh-Saffar E, Tahamtani Y
and Baharvand H: Generation of functional human pancreatic
organoids by transplants of embryonic stem cell derivatives in a
3D-printed tissue trapper. J Cell Physiol. 234:9564–9576. 2019.
View Article : Google Scholar
|
|
80
|
Molnár R, Madácsy T, Varga Á, Németh M,
Katona X, Görög M, Molnár B, Fanczal J, Rakonczay Z Jr, Hegyi P, et
al: Mouse pancreatic ductal organoid culture as a relevant model to
study exocrine pancreatic ion secretion. Lab Invest. 100:84–97.
2020. View Article : Google Scholar
|
|
81
|
Calderon-Gierszal EL and Prins GS:
Directed differentiation of human embryonic stem cells into
prostate organoids in vitro and its perturbation by low-dose
bisphenol A exposure. PLoS One. 10:e01332382015. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Cheaito K, Bahmad HF, Hadadeh O, Msheik H,
Monzer A, Ballout F, Dagher C, Telvizian T, Saheb N, Tawil A, et
al: Establishment and characterization of prostate organoids from
treatment-naïve patients with prostate cancer. Oncol Lett.
23:62022. View Article : Google Scholar
|
|
83
|
Choo N, Ramm S, Luu J, Winter JM, Selth
LA, Dwyer AR, Frydenberg M, Grummet J, Sandhu S, Hickey TE, et al:
High-throughput imaging assay for drug screening of 3D prostate
cancer organoids. SLAS Discov. 26:1107–1124. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Van Hemelryk A, Mout L, Erkens-Schulze S,
French PJ, van Weerden WM and van Royen ME: Modeling prostate
cancer treatment responses in the organoid era: 3D environment
impacts drug testing. Biomolecules. 11:15722021. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Ma L, Li J, Nie Q, Zhang Q, Liu S, Ge D
and You Z: Organoid culture of human prostate cancer cell lines
LNCaP and C4-2B. Am J Clin Exp Urol. 5:25–33. 2017.PubMed/NCBI
|
|
86
|
Facioli R, Lojudice FH, Anauate AC,
Maquigussa E, Nishiura JL, Heilberg IP, Sogayar MC and Boim MA:
Kidney organoids generated from erythroid progenitors cells of
patients with autosomal dominant polycystic kidney disease. PLoS
One. 16:e02521562021. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Velagapudi C, Nilsson RP, Lee MJ, Burns
HS, Ricono JM, Arar M, Barnes VL, Abboud HE and Barnes JL:
Reciprocal induction of simple organogenesis by mouse kidney
progenitor cells in three-dimensional co-culture. Am J Pathol.
180:819–830. 2012. View Article : Google Scholar :
|
|
88
|
Wang X, Sun L, Maffini MV, Soto A,
Sonnenschein C and Kaplan DL: A complex 3D human tissue culture
system based on mammary stromal cells and silk scaffolds for
modeling breast morphogenesis and function. Biomaterials.
31:3920–3929. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Polo ML, Arnoni MV, Riggio M, Wargon V,
Lanari C and Novaro V: Responsiveness to PI3K and MEK inhibitors in
breast cancer. Use of a 3D culture system to study pathways related
to hormone independence in mice. PLoS One. 5:e107862010. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Hachey SJ, Hatch CJ, Gaebler D, Forsythe
AG, Ewald ML, Chopra AL, Chen Z, Thapa K, Hodanu M, Fang JS and
Hughes CCW: Methods for processing and analyzing images of
vascularized micro-organ and tumor systems. Front Bioeng
Biotechnol. 13:15850032025. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Schmid KF, Zeinali S, Moser SK, Dubey C,
Schneider S, Deng H, Haefliger S, Marti TM and Guenat OT: Assessing
the metastatic potential of circulating tumor cells using an
organ-on-chip model. Front Bioeng Biotechnol. 12:14578842024.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Maulana TI, Teufel C, Cipriano M, Roosz J,
Lazarevski L, van den Hil FE, Scheller L, Orlova V, Koch A, Hudecek
M, et al: Breast cancer-on-chip for patient-specific efficacy and
safety testing of CAR-T cells. Cell Stem Cell. 31:989–1002.e9.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Zhou G, Lin X, Li H, Sun W, Li W, Zhang Q,
Bian F and Lin J: Assessment of drug treatment response using
primary human colon cancer cell spheroids cultivated in a
microfluidic mixer chip. Biosens Bioelectron. 269:1169442025.
View Article : Google Scholar
|
|
94
|
Huang B, Wei X, Chen K, Wang L and Xu M:
Bioprinting of hydrogel beads to engineer pancreatic tumor-stroma
microtissues for drug screening. Int J Bioprint. 9:6762023.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Wang P, Sun L, Li C, Jin B, Yang H, Wu B
and Mao Y: Study on drug screening multicellular model for
colorectal cancer constructed by three-dimensional bioprinting
technology. Int J Bioprint. 9:6942023. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Mazzaglia C, Sheng Y, Rodrigues LN, Lei
IM, Shields JD and Huang YYS: Deployable extrusion bioprinting of
compartmental tumoroids with cancer associated fibroblasts for
immune cell interactions. Biofabrication. 15:0250052023. View Article : Google Scholar
|
|
97
|
Horder H, Böhringer D, Endrizzi N,
Hildebrand LS, Cianciosi A, Stecher S, Dusi F, Schweinitzer S,
Watzling M, Groll J, et al: Cancer cell migration depends on
adjacent ASC and adipose spheroids in a 3D bioprinted breast cancer
model. Biofabrication. 16:0350312024. View Article : Google Scholar
|
|
98
|
Ning L, Shim J, Tomov ML, Liu R, Mehta R,
Mingee A, Hwang B, Jin L, Mantalaris A, Xu C, et al: A 3D
bioprinted in vitro model of neuroblastoma recapitulates dynamic
tumor-endothelial cell interactions contributing to solid tumor
aggressive behavior. Adv Sci (Weinh). 9:e22002442022. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Choi YM, Na D, Yoon G, Kim J, Min S, Yi
HG, Cho SJ, Cho JH, Lee C and Jang J: Prediction of patient drug
response via 3d bioprinted gastric cancer model utilized
patient-derived tissue laden tissue-specific bioink. Adv Sci
(Weinh). 12:e24117692025. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Barbosa MAG, Xavier CPR, Pereira RF,
Petrikaitė V and Vasconcelos MH: 3D cell culture models as
recapitulators of the tumor microenvironment for the screening of
anti-cancer drugs. Cancers. 14:1902021. View Article : Google Scholar
|
|
101
|
Geevarghese R, Somasekharan LT, Bhatt A,
Kasoju N and Nair RP: Development and evaluation of a
multicomponent bioink consisting of alginate, gelatin,
diethylaminoethyl cellulose and collagen peptide for 3D bioprinting
of tissue construct for drug screening application. Int J Biol
Macromol. 207:278–288. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Karlsson H, Fryknäs M, Larsson R and
Nygren P: Loss of cancer drug activity in colon cancer HCT-116
cells during spheroid formation in a new 3-D spheroid cell culture
system. Exp Cell Res. 318:1577–1585. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Fallica B, Maffei JS, Villa S, Makin G and
Zaman M: Alteration of cellular behavior and response to PI3K
pathway inhibition by culture in 3D collagen gels. PLoS One.
7:e480242012. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Ramaiahgari SC, den Braver MW, Herpers B,
Terpstra V, Commandeur JN, van de Water B and Price LS: A 3D in
vitro model of differentiated HepG2 cell spheroids with improved
liver-like properties for repeated dose high-throughput toxicity
studies. Arch Toxicol. 88:1083–1095. 2014.PubMed/NCBI
|
|
105
|
Hua Y, Gorshkov K, Yang Y, Wang W, Zhang N
and Hughes DP: Slow down to stay alive: HER4 protects against
cellular stress and confers chemoresistance in neuroblastoma.
Cancer. 118:5140–5154. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Breslin S and O'Driscoll L: The relevance
of using 3D cell cultures, in addition to 2D monolayer cultures,
when evaluating breast cancer drug sensitivity and resistance.
Oncotarget. 7:45745–45756. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
de la Puente P, Muz B, Gilson RC, Azab F,
Luderer M, King J, Achilefu S, Vij R and Azab AK: 3D
tissue-engineered bone marrow as a novel model to study
pathophysiology and drug resistance in multiple myeloma.
Biomaterials. 73:70–84. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Lamanuzzi A, Saltarella I, Frassanito MA,
Ribatti D, Melaccio A, Desantis V, Solimando AG, Ria R and Vacca A:
Thrombopoietin promotes angiogenesis and disease progression in
patients with multiple myeloma. Am J Pathol. 191:748–758. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Cucè M, Gallo Cantafio ME, Siciliano MA,
Riillo C, Caracciolo D, Scionti F, Staropoli N, Zuccalà V, Maltese
L, Di Vito A, et al: Trabectedin triggers direct and NK-mediated
cytotoxicity in multiple myeloma. J Hematol Oncol. 12:322019.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Storch K, Eke I, Borgmann K, Krause M,
Richter C, Becker K, Schröck E and Cordes N: Three-dimensional cell
growth confers radioresistance by chromatin density modification.
Cancer Res. 70:3925–3934. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Skardal A, Devarasetty M, Rodman C, Atala
A and Soker S: Liver-tumor hybrid organoids for modeling tumor
growth and drug response in vitro. Ann Biomed Eng. 43:2361–2373.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Loessner D, Stok KS, Lutolf MP, Hutmacher
DW, Clements JA and Rizzi SC: Bioengineered 3D platform to explore
cell-ECM interactions and drug resistance of epithelial ovarian
cancer cells. Biomaterials. 31:8494–8506. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Doublier S, Belisario DC, Polimeni M,
Annaratone L, Riganti C, Allia E, Ghigo D, Bosia A and Sapino A:
HIF-1 activation induces doxorubicin resistance in MCF7 3-D
spheroids via P-glycoprotein expression: A potential model of the
chemo-resistance of invasive micropapillary carcinoma of the
breast. BMC Cancer. 12:42012. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Takahashi Y, Hori Y, Yamamoto T, Urashima
T, Ohara Y and Tanaka H: 3D spheroid cultures improve the metabolic
gene expression profiles of HepaRG cells. Biosci Rep.
35:e002082015. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Fischbach C, Kong HJ, Hsiong SX,
Evangelista MB, Yuen W and Mooney DJ: Cancer cell angiogenic
capability is regulated by 3D culture and integrin engagement. Proc
Natl Acad Sci USA. 106:399–404. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Tanaka C, Furihata K, Naganuma S,
Ogasawara M, Yoshioka R, Taniguchi H, Furihata M and Taniuchi K:
Establishment of a mouse model of pancreatic cancer using human
pancreatic cancer cell line S2-013-derived organoid. Hum Cell.
35:735–744. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Forsythe S, Mehta N, Devarasetty M,
Sivakumar H, Gmeiner W, Soker S, Votanopoulos K and Skardal A:
Development of a colorectal cancer 3D micro-tumor construct
platform from cell lines and patient tumor biospecimens for
standard-of-care and experimental drug screening. Ann Biomed Eng.
48:940–952. 2020. View Article : Google Scholar
|
|
118
|
Pickl M and Ries CH: Comparison of 3D and
2D tumor models reveals enhanced HER2 activation in 3D associated
with an increased response to trastuzumab. Oncogene. 28:461–468.
2009. View Article : Google Scholar
|
|
119
|
Swain SM, Shastry M and Hamilton E:
Targeting HER2-positive breast cancer: Advances and future
directions. Nat Rev Drug Discov. 22:101–126. 2023. View Article : Google Scholar
|
|
120
|
Rubin I and Yarden Y: The basic biology of
HER2. Ann Oncol. 12(Suppl 1): S3–S8. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Yarden Y and Sliwkowski MX: Untangling the
ErbB signalling network. Nat Rev Mol Cell Biol. 2:127–137. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Lovitt CJ, Shelper TB and Avery VM:
Evaluation of chemotherapeutics in a three-dimensional breast
cancer model. J Cancer Res Clin Oncol. 141:951–959. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Dhiman HK, Ray AR and Panda AK:
Three-dimensional chitosan scaffold-based MCF-7 cell culture for
the determination of the cytotoxicity of tamoxifen. Biomaterials.
26:979–986. 2005. View Article : Google Scholar
|
|
124
|
Choi JW, Lee SY and Lee DW: A cancer
spheroid array chip for selecting effective drug. Micromachines
(Basel). 10:6882019. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Mazzocchi A, Dominijanni A and Soker S:
Pleural effusion aspirate for use in 3D lung cancer modeling and
chemotherapy screening. Methods Mol Biol. 2394:471–483. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Wu Q, Wei X, Pan Y, Zou Y, Hu N and Wang
P: Bionic 3D spheroids biosensor chips for high-throughput and
dynamic drug screening. Biomed Microdevices. 20:822018. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Li YF, Gao Y, Liang BW, Cao XQ, Sun ZJ, Yu
JH, Liu ZD and Han Y: Patient-derived organoids of non-small cells
lung cancer and their application for drug screening. Neoplasma.
67:430–437. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Takai A, Fako V, Dang H, Forgues M, Yu Z,
Budhu A and Wang XW: Three-dimensional organotypic culture models
of human hepatocellular carcinoma. Sci Rep. 6:211742016. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Vincent-Chong VK and Seshadri M:
Development and radiation response assessment in A novel syngeneic
mouse model of tongue cancer: 2D culture, 3D organoids and
orthotopic allografts. Cancers (Basel). 12:5792020. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Wei Y, Amend B, Todenhöfer T, Lipke N,
Aicher WK, Fend F, Stenzl A and Harland N: Urinary tract tumor
organoids reveal eminent differences in drug sensitivities when
compared to 2-dimensional culture systems. Int J Mol Sci.
23:63052022. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Chitcholtan K, Sykes PH and Evans JJ: The
resistance of intracellular mediators to doxorubicin and cisplatin
are distinct in 3D and 2D endometrial cancer. J Transl Med.
10:382012. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Wen Z, Liao Q, Hu Y, You L, Zhou L and
Zhao Y: A spheroid-based 3-D culture model for pancreatic cancer
drug testing, using the acid phosphatase assay. Braz J Med Biol
Res. 46:634–642. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Phan NLC, Pham KD, Le Minh P, Nguyen MTT,
Kim NP, Truong KD and Van Pham P: Hopea odorata extract can
efficiently kill breast cancer cells and cancer stem-like cells in
three-dimensional culture more than in monolayer cell culture. Adv
Exp Med Biol. 1292:145–155. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Sahai E, Astsaturov I, Cukierman E,
DeNardo DG, Egeblad M, Evans RM, Fearon D, Greten FR, Hingorani SR,
Hunter T, et al: A framework for advancing our understanding of
cancer-associated fibroblasts. Nat Rev Cancer. 20:174–186. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Park D, Sahai E and Rullan A: SnapShot:
Cancer-associated fibroblasts. Cell. 181:486–486.e1. 2020.
View Article : Google Scholar : PubMed/NCBI
|