You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
![]() |
|
Xin Yu J, Hubbard-Lucey VM and Tang J: Immuno-oncology drug development goes global. Nat Rev Drug Discov. 18:899–900. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Sanmamed MF and Chen L: A paradigm shift in cancer immunotherapy: From enhancement to normalization. Cell. 175:313–326. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Xin Yu J, Hubbard-Lucey VM and Tang J: The global pipeline of cell therapies for cancer. Nat Rev Drug Discov. 18:821–822. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Yagi Y, Kanemasa Y, Sasaki Y, Goto S, Yamamura Y, Masuda Y, Fujita K, Ishimine K, Hayashi Y, Mino M, et al: Early failure is still a poor prognostic factor in patients with relapsed or refractory large B-cell lymphoma in the era of CAR T-cell therapy. J Clin Exp Hematop. 64:107–118. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Shumilov E, Scholz JK, Seib M, Mazzeo P, Wurm-Kuczera R, Vucinic V, Holtick U, Boyadzhiev H, Melchardt T, Hölscher AS, et al: Outcomes of bispecific antibody therapy after CAR T-cell failure in relapsed/refractory large B-cell lymphoma. Blood Adv. 9:3955–3966. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Manfredi F, Cianciotti BC, Potenza A, Tassi E, Noviello M, Biondi A, Ciceri F, Bonini C and Ruggiero E: TCR redirected T cells for cancer treatment: Achievements, hurdles, and goals. Front Immunol. 11:16892020. View Article : Google Scholar : PubMed/NCBI | |
|
Drewniak-Świtalska M, Fortuna P and Krzystek-Korpacka M: Negative immune checkpoint inhibitors. Pharmaceutics. 17:7132025. View Article : Google Scholar : | |
|
Safarzadeh Kozani P, Naseri A, Mirarefin SMJ, Salem F, Nikbakht M, Evazi Bakhshi S and Safarzadeh Kozani P: Nanobody-based CAR-T cells for cancer immunotherapy. Biomark Res. 10:242022. View Article : Google Scholar : PubMed/NCBI | |
|
Sun W, Xie J, Lin H, Mi S, Li Z, Hua F and Hu Z: A combined strategy improves the solubility of aggregation-prone single-chain variable fragment antibodies. Protein Expr Purif. 83:21–29. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
de Aguiar RB, da Silva TA, Costa BA, Machado MFM, Yamada RY, Braggion C, Perez KR, Mori MAS, Oliveira V and de Moraes JZ: Generation and functional characterization of a single-chain variable fragment (scFv) of the anti-FGF2 3F12E7 monoclonal antibody. Sci Rep. 11:14322021. View Article : Google Scholar : PubMed/NCBI | |
|
Koch-Nolte F: Nanobody-based heavy chain antibodies and chimeric antibodies. Immunol Rev. 328:466–472. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Ingram JR, Schmidt FI and Ploegh HL: Exploiting nanobodies' singular traits. Annu Rev Immunol. 36:695–715. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
De Meyer T, Muyldermans S and Depicker A: Nanobody-based products as research and diagnostic tools. Trends Biotechnol. 32:263–270. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Natarajan V, Gopalakrishnan R, Matta H, Choi S, Gong S, Jeronimo A, Keerthipati PS, Morales A, Venkatesh H and Chaudhary PM: A fast and sensitive luciferase-based assay for antibody engineering and design of chimeric antigen receptors. Sci Rep. 10:23182020. View Article : Google Scholar : PubMed/NCBI | |
|
Guo S and Xi X: Nanobody-enhanced chimeric antigen receptor T-cell therapy: Overcoming barriers in solid tumors with VHH and VNAR-based constructs. Biomark Res. 13:412025. View Article : Google Scholar : PubMed/NCBI | |
|
Yoo JW: Management of adverse events in young adults and children with acute B-cell lymphoblastic leukemia receiving anti-CD19 chimeric antigen receptor (CAR) T-cell therapy. Blood Res. 58(S1): S20–S28. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Qi Y, Liu H, Li X, Shi Y, Mu J, Li J, Wang Y and Deng Q: Blinatumomab as salvage therapy in patients with relapsed/refractory B-ALL who have failed/progressed after anti-CD19-CAR T therapy. Ann Med. 55:22308882023. View Article : Google Scholar : PubMed/NCBI | |
|
Bouchkouj N, Kasamon YL, de Claro RA, George B, Lin X, Lee S, Blumenthal GM, Bryan W, McKee AE and Pazdur R: FDA approval summary: Axicabtagene ciloleucel for relapsed or refractory large B-cell lymphoma. Clin Cancer Res. 25:1702–1708. 2019. View Article : Google Scholar | |
|
Fischer JW and Bhattarai N: CAR-T cell therapy: Mechanism, management, and mitigation of inflammatory toxicities. Front Immunol. 12:6930162021. View Article : Google Scholar : PubMed/NCBI | |
|
Miller JF: Immunological function of the thymus. Lancet. 2:748–749. 1961. View Article : Google Scholar : PubMed/NCBI | |
|
Miller JF: Analysis of the thymus influence in leukaemogenesis. Nature. 191:248–249. 1961. View Article : Google Scholar : PubMed/NCBI | |
|
Taniguchi T, Matsui H, Fujita T, Takaoka C, Kashima N, Yoshimoto R and Hamuro J: Structure and expression of a cloned cDNA for human interleukin-2. Nature. 302:305–310. 1983. View Article : Google Scholar : PubMed/NCBI | |
|
Klaus SJ, Pinchuk LM, Ochs HD, Law CL, Fanslow WC, Armitage RJ and Clark EA: Costimulation through CD28 enhances T cell-dependent B cell activation via CD40-CD40L interaction. J Immunol. 152:5643–5652. 1994. View Article : Google Scholar : PubMed/NCBI | |
|
Mousset CM, Hobo W, Woestenenk R, Preijers F, Dolstra H and van der Waart AB: Comprehensive phenotyping of T cells using flow cytometry. Cytometry A. 95:647–654. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Eshhar Z, Waks T, Gross G and Schindler DG: Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci USA. 90:720–724. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Han D, Xu Z, Zhuang Y, Ye Z and Qian Q: Current progress in CAR-T cell therapy for hematological malignancies. J Cancer. 12:326–334. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Hong M, Clubb JD and Chen YY: Engineering CAR-T cells for next-generation cancer therapy. Cancer Cell. 38:473–488. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Eshhar Z, Waks T and Gross G: The emergence of T-bodies/CAR T cells. Cancer J. 20:123–126. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Finney HM, Akbar AN and Lawson AD: Activation of resting human primary T cells with chimeric receptors: Costimulation from CD28, inducible costimulator, CD134, and CD137 in series with signals from the TCR zeta chain. J Immunol. 172:104–113. 2004. View Article : Google Scholar | |
|
Imai C, Mihara K, Andreansky M, Nicholson IC, Pui CH, Geiger TL and Campana D: Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia. 18:676–684. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
van der Stegen SJ, Hamieh M and Sadelain M: The pharmacology of second-generation chimeric antigen receptors. Nat Rev Drug Discov. 14:499–509. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Milone MC, Fish JD, Carpenito C, Carroll RG, Binder GK, Teachey D, Samanta M, Lakhal M, Gloss B, Danet-Desnoyers G, et al: Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol Ther. 17:1453–1464. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Park JH, Rivière I, Gonen M, Wang X, Sénéchal B, Curran KJ, Sauter C, Wang Y, Santomasso B, Mead E, et al: Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med. 378:449–459. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Porter DL, Levine BL, Kalos M, Bagg A and June CH: Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 365:725–733. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Zhong XS, Matsushita M, Plotkin J, Riviere I and Sadelain M: Chimeric antigen receptors combining 4-1BB and CD28 signaling domains augment PI3kinase/AKT/Bcl-XL activation and CD8+ T cell-mediated tumor eradication. Mol Ther. 18:413–420. 2010. View Article : Google Scholar | |
|
Pulè MA, Straathof KC, Dotti G, Heslop HE, Rooney CM and Brenner MK: A chimeric T cell antigen receptor that augments cytokine release and supports clonal expansion of primary human T cells. Mol Ther. 12:933–941. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
George P, Dasyam N, Giunti G, Mester B, Bauer E, Andrews B, Perera T, Ostapowicz T, Frampton C, Li P, et al: Third-generation anti-CD19 chimeric antigen receptor T-cells incorporating a TLR2 domain for relapsed or refractory B-cell lymphoma: A phase I clinical trial protocol (ENABLE). BMJ Open. 10:e0346292020. View Article : Google Scholar : PubMed/NCBI | |
|
Schultz L: Chimeric antigen receptor T cell therapy for pediatric B-ALL: Narrowing the gap between early and long-term outcomes. Front Immunol. 11:19852020. View Article : Google Scholar : PubMed/NCBI | |
|
Ramos CA, Rouce R, Robertson CS, Reyna A, Narala N, Vyas G, Mehta B, Zhang H, Dakhova O, Carrum G, et al: In vivo fate and activity of second-versus third-generation CD19-Specific CAR-T cells in B cell non-hodgkin's lymphomas. Mol Ther. 26:2727–2737. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Pietrobon V, Todd LA, Goswami A, Stefanson O, Yang Z and Marincola F: Improving CAR T-cell persistence. Int J Mol Sci. 22:108282021. View Article : Google Scholar : PubMed/NCBI | |
|
Wagner J, Wickman E, DeRenzo C and Gottschalk S: CAR T cell therapy for solid tumors: Bright future or dark reality? Mol Ther. 28:2320–2339. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Chin DS, Lim CSY, Nordin F, Arifin N and Jun TG: Antibody-dependent cell-mediated cytotoxicity through natural killer (NK) cells: Unlocking NK cells for future immunotherapy. Curr Pharm Biotechnol. 23:552–578. 2022. View Article : Google Scholar | |
|
Yasuda K, Nakanishi K and Tsutsui H: Interleukin-18 in health and disease. Int J Mol Sci. 20:6492019. View Article : Google Scholar : PubMed/NCBI | |
|
Ruixin S, Yifan L, Chuanlong W, Min Z, Hong L, Guoxiu D, Zhengyang L, Yansha S, Yiwei D, Jingwen S, et al: Expressing IL-15/IL-18 and CXCR2 improve infiltration and survival of EGFRvIII-targeting CAR-T cells in breast cancer. Biochem Pharmacol. 212:1155362023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang M, Wen B, Anton OM, Yao Z, Dubois S, Ju W, Sato N, DiLillo DJ, Bamford RN, Ravetch JV and Waldmann TA: IL-15 enhanced antibody-dependent cellular cytotoxicity mediated by NK cells and macrophages. Proc Natl Acad Sci USA. 115:E10915–E10924. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Etxebeste-Mitxeltorena M, Del Rincón-Loza I and Martín-Antonio B: Tumor secretome to adoptive cellular immunotherapy: Reduce me before I make you my partner. Front Immunol. 12:7178502021. View Article : Google Scholar : PubMed/NCBI | |
|
Xu Y, Zhang M, Ramos CA, Durett A, Liu E, Dakhova O, Liu H, Creighton CJ, Gee AP, Heslop HE, et al: Closely related T-memory stem cells correlate with in vivo expansion of CAR. CD19-T cells and are preserved by IL-7 and IL-15. Blood. 123:3750–3759. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang X, Lv X and Song Y: Short-term culture with IL-2 is beneficial for potent memory chimeric antigen receptor T cell production. Biochem Biophys Res Commun. 495:1833–1838. 2018. View Article : Google Scholar | |
|
Santomasso B, Bachier C, Westin J, Rezvani K and Shpall EJ: The other side of CAR T-cell therapy: Cytokine release syndrome, neurologic toxicity, and financial Burden. Am Soc Clin Oncol Educ Book. 39:433–444. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Guercio M, Manni S, Boffa I, Caruso S, Di Cecca S, Sinibaldi M, Abbaszadeh Z, Camera A, Ciccone R, Polito VA, et al: Inclusion of the inducible caspase 9 suicide gene in CAR construct increases safety of CAR.CD19 T cell therapy in B-cell malignancies. Front Immunol. 12:7556392021. View Article : Google Scholar : PubMed/NCBI | |
|
Diaconu I, Ballard B, Zhang M, Chen Y, West J, Dotti G and Savoldo B: Inducible caspase-9 selectively modulates the toxicities of CD19-specific chimeric antigen receptor-modified T cells. Mol Ther. 25:580–592. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
No authors listed. FDA okays second CAR-T for Kite. Nat Biotechnol. 38:10122020. View Article : Google Scholar : PubMed/NCBI | |
|
Galli S, Melidis L, Flynn SM, Varshney D, Simeone A, Spiegel J, Madden SK, Tannahill D and Balasubramanian S: DNA G-quadruplex recognition in vitro and in live cells by a structure-specific nanobody. J Am Chem Soc. 144:23096–23103. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Majzner RG and Mackall CL: Clinical lessons learned from the first leg of the CAR T cell journey. Nat Med. 25:1341–1355. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Strohl WR and Naso M: Bispecific T-cell redirection versus chimeric antigen receptor (CAR)-T cells as approaches to kill cancer cells. Antibodies (Basel). 8:2019.PubMed/NCBI | |
|
Fujiwara K, Masutani M, Tachibana M and Okada N: Impact of scFv structure in chimeric antigen receptor on receptor expression efficiency and antigen recognition properties. Biochem Biophys Res Commun. 527:350–357. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Shah NN and Fry TJ: Mechanisms of resistance to CAR T cell therapy. Nat Rev Clin Oncol. 16:372–385. 2019.PubMed/NCBI | |
|
Gorovits B and Koren E: Immunogenicity of chimeric antigen receptor T-cell therapeutics. BioDrugs. 33:275–284. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wagner DL, Fritsche E, Pulsipher MA, Ahmed N, Hamieh M, Hegde M, Ruella M, Savoldo B, Shah NN, Turtle CJ, et al: Immunogenicity of CAR T cells in cancer therapy. Nat Rev Clin Oncol. 18:379–393. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Long AH, Haso WM, Shern JF, Wanhainen KM, Murgai M, Ingaramo M, Smith JP, Walker AJ, Kohler ME, Venkateshwara VR, et al: 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med. 21:581–590. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Sotillo E, Barrett DM, Black KL, Bagashev A, Oldridge D, Wu G, Sussman R, Lanauze C, Ruella M, Gazzara MR, et al: Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov. 5:1282–1295. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Liu W, Zou H, Guo L, Zhou Z, Xie Y, Guo H, Wei G, Zhang K, Yin H, Wei S and Chi J: Coordinating oncogenesis and immune evasion: KPNA2, GOLM1, and TK1 as novel CAR T-cell targets in lung adenocarcinoma. Eur J Med Res. 30:7652025. View Article : Google Scholar : PubMed/NCBI | |
|
Yan K and Xiao Z: Enhancing the antitumor activity of CD19/BCMA CAR-T cells in vitro with a PD1IL7R chimeric switch receptor. Cell Immunol. 415-416:1050012025. View Article : Google Scholar : PubMed/NCBI | |
|
Miller BR, Demarest SJ, Lugovskoy A, Huang F, Wu X, Snyder WB, Croner LJ, Wang N, Amatucci A, Michaelson JS and Glaser SM: Stability engineering of scFvs for the development of bispecific and multivalent antibodies. Protein Eng Des Sel. 23:549–557. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Jensen MC and Riddell SR: Design and implementation of adoptive therapy with chimeric antigen receptor-modified T cells. Immunol Rev. 257:127–144. 2014. View Article : Google Scholar : | |
|
Zhang K, Geddie ML, Kohli N, Kornaga T, Kirpotin DB, Jiao Y, Rennard R, Drummond DC, Nielsen UB, Xu L and Lugovskoy AA: Comprehensive optimization of a single-chain variable domain antibody fragment as a targeting ligand for a cytotoxic nanoparticle. MAbs. 7:42–52. 2015. View Article : Google Scholar : | |
|
Broussau S, Lytvyn V, Simoneau M, Guilbault C, Leclerc M, Nazemi-Moghaddam N, Coulombe N, Elahi SM, McComb S and Gilbert R: Packaging cells for lentiviral vectors generated using the cumate and coumermycin gene induction systems and nanowell single-cell cloning. Mol Ther Methods Clin Dev. 29:40–57. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Okuma A: Generation of CAR-T cells by lentiviral transduction. Methods Mol Biol. 2312:3–14. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Ajina A and Maher J: Strategies to address chimeric antigen receptor tonic signaling. Mol Cancer Ther. 17:1795–1815. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Gil D and Schrum AG: Strategies to stabilize compact folding and minimize aggregation of antibody-based fragments. Adv Biosci Biotechnol. 4:73–84. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Jayaraman J, Mellody MP, Hou AJ, Desai RP, Fung AW, Pham AHT, Chen YY and Zhao W: CAR-T design: Elements and their synergistic function. EBioMedicine. 58:1029312020. View Article : Google Scholar : PubMed/NCBI | |
|
Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB, Bendahman N and Hamers R: Naturally occurring antibodies devoid of light chains. Nature. 363:446–448. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Muyldermans S: Nanobodies: Natural single-domain antibodies. Annu Rev Biochem. 82:775–797. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Greenberg AS, Avila D, Hughes M, Hughes A, McKinney EC and Flajnik MF: A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks. Nature. 374:168–173. 1995. View Article : Google Scholar : PubMed/NCBI | |
|
Misson Mindrebo L, Liu H, Ozorowski G, Tran Q, Woehl J, Khalek I, Smith JM, Barman S, Zhao F, Keating C, et al: Fully synthetic platform to rapidly generate tetravalent bispecific nanobody-based immunoglobulins. Proc Natl Acad Sci USA. 120:e22166121202023. View Article : Google Scholar : PubMed/NCBI | |
|
Kunz P, Ortale A, Mücke N, Zinner K and Hoheisel JD: Nanobody stability engineering by employing the ΔTm shift; a comparison with apparent rate constants of heat-induced aggregation. Protein Eng Des Sel. 32:241–249. 2019.PubMed/NCBI | |
|
Debie P, Lafont C, Defrise M, Hansen I, van Willigen DM, van Leeuwen FWB, Gijsbers R, D'Huyvetter M, Devoogdt N, Lahoutte T, et al: Size and affinity kinetics of nanobodies influence targeting and penetration of solid tumours. J Control Release. 317:34–42. 2020. View Article : Google Scholar | |
|
Vincke C, Loris R, Saerens D, Martinez-Rodriguez S, Muyldermans S and Conrath K: General strategy to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold. J Biol Chem. 284:3273–3284. 2009. View Article : Google Scholar | |
|
Rahbarizadeh F, Ahmadvand D and Moghimi SM: CAR T-cell bioengineering: Single variable domain of heavy chain antibody targeted CARs. Adv Drug Deliv Rev. 141:41–46. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Honegger A: Engineering Antibodies for Stability and Efficient Folding. Handbook of Experimental Pharmacology. Chernajovsky Y and Nissim A: 181. Springer; Berlin, Heidelberg: pp. 47–68. 2008, View Article : Google Scholar | |
|
Jovčevska I and Muyldermans S: The therapeutic potential of nanobodies. BioDrugs. 34:11–26. 2020. View Article : Google Scholar | |
|
Chanier T and Chames P: Nanobody engineering: Toward next generation immunotherapies and immunoimaging of cancer. Antibodies (Basel). 8:132019. View Article : Google Scholar : PubMed/NCBI | |
|
Malavasi F, Deaglio S, Funaro A, Ferrero E, Horenstein AL, Ortolan E, Vaisitti T and Aydin S: Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol Rev. 88:841–886. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Lonial S, Weiss BM, Usmani SZ, Singhal S, Chari A, Bahlis NJ, Belch A, Krishnan A, Vescio RA, Mateos MV, et al: Daratumumab monotherapy in patients with treatment-refractory multiple myeloma (SIRIUS): An open-label, randomised, phase 2 trial. Lancet. 387:1551–1560. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
van de Donk N, Richardson PG and Malavasi F: CD38 antibodies in multiple myeloma: Back to the future. Blood. 131:13–29. 2018. View Article : Google Scholar | |
|
Li T, Qi S, Unger M, Hou YN, Deng QW, Liu J, Lam CMC, Wang XW, Xin D, Zhang P, et al: Immuno-targeting the multi-functional CD38 using nanobody. Sci Rep. 6:270552016. View Article : Google Scholar | |
|
An N, Hou YN, Zhang QX, Li T, Zhang QL, Fang C, Chen H, Lee HC, Zhao YJ and Du X: Anti-multiple myeloma activity of nanobody-based anti-CD38 chimeric antigen receptor T cells. Mol Pharm. 15:4577–4588. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Schriewer L, Schütze K, Petry K, Hambach J, Fumey W, Koenigsdorf J, Baum N, Menzel S, Rissiek B, Riecken K, et al: Nanobody-based CD38-specific heavy chain antibodies induce killing of multiple myeloma and other hematological malignancies. Theranostics. 10:2645–2658. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Hambach J, Riecken K, Cichutek S, Schütze K, Albrecht B, Petry K, Röckendorf JL, Baum N, Kröger N, Hansen T, et al: Targeting CD38-expressing multiple myeloma and burkitt lymphoma cells in vitro with nanobody-based chimeric antigen receptors (Nb-CARs). Cells. 9:3212020. View Article : Google Scholar : PubMed/NCBI | |
|
Tseng YH, Ho HL, Lai CR, Luo YH, Tseng YC, Whang-Peng J, Lin YH, Chou TY and Chen YM: PD-L1 expression of tumor cells, macrophages, and immune cells in non-small cell lung cancer patients with malignant pleural effusion. J Thorac Oncol. 13:447–453. 2018. View Article : Google Scholar | |
|
Ingram JR, Dougan M, Rashidian M, Knoll M, Keliher EJ, Garrett S, Garforth S, Blomberg OS, Espinosa C, Bhan A, et al: PD-L1 is an activation-independent marker of brown adipocytes. Nat Commun. 8:6472017. View Article : Google Scholar : PubMed/NCBI | |
|
Li D, English H, Hong J, Liang T, Merlino G, Day CP and Ho M: A novel PD-L1-targeted shark V(NAR) single-domain-based CAR-T cell strategy for treating breast cancer and liver cancer. Mol Ther Oncolytics. 24:849–863. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
De Munter S, Van Parys A, Bral L, Ingels J, Goetgeluk G, Bonte S, Pille M, Billiet L, Weening K, Verhee A, et al: Rapid and effective generation of nanobody based CARs using PCR and gibson assembly. Int J Mol Sci. 21:8832020. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Ao K, Bao F, Cheng Y, Hao Y, Zhang H, Fu S, Xu J and Wu Q: Development of a bispecific nanobody targeting CD20 on B-cell lymphoma cells and CD3 on T cells. Vaccines (Basel). 10:13352022. View Article : Google Scholar : PubMed/NCBI | |
|
Banihashemi SR, Hosseini AZ, Rahbarizadeh F and Ahmadvand D: Development of specific nanobodies (VHH) for CD19 immuno-targeting of human B-lymphocytes. Iran J Basic Med Sci. 21:455–464. 2018.PubMed/NCBI | |
|
Wang H, Wang L, Li Y, Li G, Zhang X, Jiang D, Zhang Y, Liu L, Chu Y and Xu G: Nanobody-armed T cells endow CAR-T cells with cytotoxicity against lymphoma cells. Cancer Cell Int. 21:4502021. View Article : Google Scholar : PubMed/NCBI | |
|
Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, Bader P, Verneris MR, Stefanski HE, Myers GD, et al: Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 378:439–448. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Carpenter RO, Evbuomwan MO, Pittaluga S, Rose JJ, Raffeld M, Yang S, Gress RE, Hakim FT and Kochenderfer JN: B-cell maturation antigen is a promising target for adoptive T-cell therapy of multiple myeloma. Clin Cancer Res. 19:2048–2060. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Han L, Zhou J, Zhou K, Zhu X, Zhao L, Fang B, Yin Q, Wei X, Zhou H, Li L, et al: Safety and efficacy of CAR-T cell targeting BCMA in patients with multiple myeloma coinfected with chronic hepatitis B virus. J Immunother Cancer. 8:e0009272020. View Article : Google Scholar : PubMed/NCBI | |
|
Mei H, Li C, Jiang H, Zhao X, Huang Z, Jin D, Guo T, Kou H, Liu L, Tang L, et al: A bispecific CAR-T cell therapy targeting BCMA and CD38 in relapsed or refractory multiple myeloma. J Hematol Oncol. 14:1612021. View Article : Google Scholar : PubMed/NCBI | |
|
Wei L, Xiao X, Jing X, Zheng Y, Sun X, Bai W, Li M, Luo M and Xiao Y: Case report: Summary of multiple CAR-T expansions in anti-BCMA/GPRC5D bispecific CAR-T cell therapy for multiple myeloma. Front Immunol. 16:16077782025. View Article : Google Scholar : PubMed/NCBI | |
|
Slaney CY, Kershaw MH and Darcy PK: Trafficking of T cells into tumors. Cancer Res. 74:7168–7174. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Wu X, Giobbie-Hurder A, Liao X, Lawrence D, McDermott D, Zhou J, Rodig S and Hodi FS: VEGF neutralization plus CTLA-4 blockade alters soluble and cellular factors associated with enhancing lymphocyte infiltration and humoral recognition in melanoma. Cancer Immunol Res. 4:858–868. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Chen DS and Hurwitz H: Combinations of bevacizumab with cancer immunotherapy. Cancer J. 24:193–204. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Chinnasamy D, Yu Z, Theoret MR, Zhao Y, Shrimali RK, Morgan RA, Feldman SA, Restifo NP and Rosenberg SA: Gene therapy using genetically modified lymphocytes targeting VEGFR-2 inhibits the growth of vascularized syngenic tumors in mice. J Clin Invest. 120:3953–3968. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Spratlin JL, Cohen RB, Eadens M, Gore L, Camidge DR, Diab S, Leong S, O'Bryant C, Chow LQ, Serkova NJ, et al: Phase I pharmacologic and biologic study of ramucirumab (IMC-1121B), a fully human immunoglobulin G1 monoclonal antibody targeting the vascular endothelial growth factor receptor-2. J Clin Oncol. 28:780–787. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Fukumura D, Kloepper J, Amoozgar Z, Duda DG and Jain RK: Enhancing cancer immunotherapy using antiangiogenics: Opportunities and challenges. Nat Rev Clin Oncol. 15:325–340. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Ma L, Gu K, Zhang CH, Chen XT, Jiang Y, Melcher K, Zhang J, Wang M and Xu HE: Generation and characterization of a human nanobody against VEGFR-2. Acta Pharmacol Sin. 37:857–864. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Rydén L, Jirström K, Bendahl PO, Fernö M, Nordenskjöld B, Stål O, Thorstenson S, Jönsson PE and Landberg G: Tumor-specific expression of vascular endothelial growth factor receptor 2 but not vascular endothelial growth factor or human epidermal growth factor receptor 2 is associated with impaired response to adjuvant tamoxifen in premenopausal breast cancer. J Clin Oncol. 23:4695–4704. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Hajari Taheri F, Hassani M, Sharifzadeh Z, Behdani M, Arashkia A and Abolhassani M: T cell engineered with a novel nanobody-based chimeric antigen receptor against VEGFR2 as a candidate for tumor immunotherapy. IUBMB Life. 71:1259–1267. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Sharifzadeh Z, Rahbarizadeh F, Shokrgozar MA, Ahmadvand D, Mahboudi F, Jamnani FR and Moghimi SM: Genetically engineered T cells bearing chimeric nanoconstructed receptors harboring TAG-72-specific camelid single domain antibodies as targeting agents. Cancer Lett. 334:237–244. 2013. View Article : Google Scholar | |
|
Jamnani FR, Rahbarizadeh F, Shokrgozar MA, Mahboudi F, Ahmadvand D, Sharifzadeh Z, Parhamifar L and Moghimi SM: T cells expressing VHH-directed oligoclonal chimeric HER2 antigen receptors: towards tumor-directed oligoclonal T cell therapy. Biochim Biophys Acta. 1840:378–386. 2014. View Article : Google Scholar | |
|
Vitti Gambim V, Laufer-Amorim R, Fonseca Alves RH, Grieco V and Fonseca-Alves CE: A comparative meta-analysis and in silico analysis of differentially expressed genes and proteins in canine and human bladder cancer. Front Vet Sci. 7:5589782020. View Article : Google Scholar : PubMed/NCBI | |
|
Sharifi J, Khirehgesh MR, Safari F and Akbari B: EGFR and anti-EGFR nanobodies: Review and update. J Drug Target. 29:387–402. 2021. View Article : Google Scholar | |
|
McComb S, Nguyen T, Shepherd A, Henry KA, Bloemberg D, Marcil A, Maclean S, Zafer A, Gilbert R, Gadoury C, et al: Programmable attenuation of antigenic sensitivity for a nanobody-based EGFR chimeric antigen receptor through hinge domain truncation. Front Immunol. 13:8648682022. View Article : Google Scholar : PubMed/NCBI | |
|
Hosking MP, Shirinbak S, Omilusik K, Chandra S, Kaneko MK, Gentile A, Yamamoto S, Shrestha B, Grant J, Boyett M, et al: Preferential tumor targeting of HER2 by iPSC-derived CAR T cells engineered to overcome multiple barriers to solid tumor efficacy. Cell Stem Cell. 32:1087–1101.e4. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Bakhtiari SH, Rahbarizadeh F, Hasannia S, Ahmadvand D, Iri-Sofla FJ and Rasaee MJ: Anti-MUC1 nanobody can redirect T-body cytotoxic effector function. Hybridoma (Larchmt). 28:85–92. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
You F, Jiang L, Zhang B, Lu Q, Zhou Q, Liao X, Wu H, Du K, Zhu Y, Meng H, et al: Phase 1 clinical trial demonstrated that MUC1 positive metastatic seminal vesicle cancer can be effectively eradicated by modified Anti-MUC1 chimeric antigen receptor transduced T cells. Sci China Life Sci. 59:386–397. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Supimon K, Sangsuwannukul T, Sujjitjoon J, Chieochansin T, Junking M and Yenchitsomanus PT: Cytotoxic activity of anti-mucin 1 chimeric antigen receptor T cells expressing PD-1-CD28 switch receptor against cholangiocarcinoma cells. Cytotherapy. 25:148–161. 2023. View Article : Google Scholar | |
|
Ishikawa Y, Tanaka N, Murakami K, Uchiyama T, Kumaki S, Tsuchiya S, Kugoh H, Oshimura M, Calos MP and Sugamura K: Phage phiC31 integrase-mediated genomic integration of the common cytokine receptor gamma chain in human T-cell lines. J Gene Med. 8:646–653. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Rath P, Kramer P, Biggs D, Preece C, Hortin N, Diaz R, Perez-Alcantara M, Li X, Bolard A, Beer N, et al: Optimizing approaches for targeted integration of transgenic cassettes by integrase-mediated cassette exchange in mouse and human stem cells. Stem Cells. 43:sxae0922025. View Article : Google Scholar : PubMed/NCBI | |
|
Li M, Choo B, Wong ZM, Filmus J and Buick RN: Expression of OCI-5/glypican 3 during intestinal morphogenesis: Regulation by cell shape in intestinal epithelial cells. Exp Cell Res. 235:3–12. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Arbabi-Ghahroudi M, Tanha J and MacKenzie R: Isolation of monoclonal antibody fragments from phage display libraries. Methods Mol Biol. 502:341–364. 2009. View Article : Google Scholar | |
|
Zhou L, Li Y, Zheng D, Zheng Y, Cui Y, Qin L, Tang Z, Peng D, Wu Q, Long Y, et al: Bispecific CAR-T cells targeting FAP and GPC3 have the potential to treat hepatocellular carcinoma. Mol Ther Oncol. 32:2008172024. View Article : Google Scholar : PubMed/NCBI | |
|
Li N, Fu H, Hewitt SM, Dimitrov DS and Ho M: Therapeutically targeting glypican-2 via single-domain antibody-based chimeric antigen receptors and immunotoxins in neuroblastoma. Proc Natl Acad Sci USA. 114:E6623–E6631. 2017.PubMed/NCBI | |
|
Astrof S, Crowley D, George EL, Fukuda T, Sekiguchi K, Hanahan D and Hynes RO: Direct test of potential roles of EIIIA and EIIIB alternatively spliced segments of fibronectin in physiological and tumor angiogenesis. Mol Cell Biol. 24:8662–8670. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Efthymiou G, Saint A, Ruff M, Rekad Z, Ciais D and Van Obberghen-Schilling E: Shaping Up the tumor microenvironment with cellular fibronectin. Front Oncol. 10:6412020. View Article : Google Scholar : PubMed/NCBI | |
|
Ma W, Wang Y, Zhang R, Yang F, Zhang D, Huang M, Zhang L, Dorsey JF, Binder ZA, O'Rourke DM, et al: Targeting PAK4 to reprogram the vascular microenvironment and improve CAR-T immunotherapy for glioblastoma. Nat Cancer. 2:83–97. 2021. View Article : Google Scholar | |
|
Lutz EA, Jailkhani N, Momin N, Huang Y, Sheen A, Kang BH, Wittrup KD and Hynes RO: Intratumoral nanobody-IL-2 fusions that bind the tumor extracellular matrix suppress solid tumor growth in mice. PNAS Nexus. 1:pgac2442022. View Article : Google Scholar | |
|
Xie YJ, Dougan M, Jailkhani N, Ingram J, Fang T, Kummer L, Momin N, Pishesha N, Rickelt S, Hynes RO and Ploegh H: Nanobody-based CAR T cells that target the tumor microenvironment inhibit the growth of solid tumors in immunocompetent mice. Proc Natl Acad Sci USA. 116:7624–7631. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Alon-Zchut G, Zalk R, Huynh TT, Zalutsky MR, Weizmann Y, Zarivach R and Papo N: Structural analysis of nanobody interactions with their prostate-specific membrane antigen binding epitopes. Int J Biol Macromol. 320(Pt 1): 1456932025. View Article : Google Scholar : PubMed/NCBI | |
|
Chatalic KL, Veldhoven-Zweistra J, Bolkestein M, Hoeben S, Koning GA, Boerman OC, de Jong M and van Weerden WM: A novel 111in-labeled anti-prostate-specific membrane antigen nanobody for targeted SPECT/CT imaging of prostate cancer. J Nucl Med. 56:1094–1099. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Georgiev T, Principi L, Galbiati A, Gilardoni E, Neri D and Cazzamalli S: Targeted interleukin-2 enhances the in vivo anti-cancer activity of Pluvicto™. Eur J Nucl Med Mol Imaging. 51:2332–2337. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Hassani M, Hajari Taheri F, Sharifzadeh Z, Arashkia A, Hadjati J, van Weerden WM, Abdoli S, Modarressi MH and Abolhassani M: Engineered jurkat cells for targeting prostate-specific membrane antigen on prostate cancer cells by nanobody-based chimeric antigen receptor. Iran Biomed J. 24:81–88. 2020. View Article : Google Scholar : | |
|
Ullah K, Addai Peprah F, Yu F and Shi H: The application of prostate specific membrane antigen in CART-cell therapy for treatment of prostate carcinoma (Review). Oncol Rep. 40:3136–3143. 2018.PubMed/NCBI | |
|
Khaleghi S, Rahbarizadeh F, Ahmadvand D, Rasaee MJ and Pognonec P: A caspase 8-based suicide switch induces apoptosis in nanobody-directed chimeric receptor expressing T cells. Int J Hematol. 95:434–444. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Liu C, Wang Q, Li L, Gao F, Zhang Y and Zhu Y: The peptide-based bispecific CAR T cells target EGFR and tumor stroma for effective cancer therapy. Int J Pharm. 663:1245582024. View Article : Google Scholar : PubMed/NCBI | |
|
De Munter S, Ingels J, Goetgeluk G, Bonte S, Pille M, Weening K, Kerre T, Abken H and Vandekerckhove B: Nanobody based dual specific CARs. Int J Mol Sci. 19:4032018. View Article : Google Scholar : PubMed/NCBI | |
|
Xia B, Lin K, Wang X, Chen F, Zhou M, Li Y, Lin Y, Qiao Y, Li R, Zhang W, et al: Nanobody-derived bispecific CAR-T cell therapy enhances the anti-tumor efficacy of T cell lymphoma treatment. Mol Ther Oncolytics. 30:86–102. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Xu J, Chen LJ, Yang SS, Sun Y, Wu W, Liu YF, Xu J, Zhuang Y, Zhang W, Weng XQ, et al: Exploratory trial of a biepitopic CAR T-targeting B cell maturation antigen in relapsed/refractory multiple myeloma. Proc Natl Acad Sci USA. 116:9543–9551. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Meeus F, Funeh CN, Awad RM, Zeven K, Autaers D, De Becker A, Van Riet I, Goyvaerts C, Tuyaerts S, Neyns B, et al: Preclinical evaluation of antigen-sensitive B7-H3-targeting nanobody-based CAR-T cells in glioblastoma cautions for on-target, off-tumor toxicity. J Immunother Cancer. 12:e0091102024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang H, Arulraj T, Anbari S and Popel AS: Quantitative systems pharmacology modeling of macrophage-targeted therapy combined with PD-L1 inhibition in advanced NSCLC. Clin Transl Sci. 17:e138112024. View Article : Google Scholar : PubMed/NCBI | |
|
Xie YJ, Dougan M, Ingram JR, Pishesha N, Fang T, Momin N and Ploegh HL: Improved antitumor efficacy of chimeric antigen receptor T cells that secrete single-domain antibody fragments. Cancer Immunol Res. 8:518–529. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Lebrec H, Maier CC, Maki K, Ponce R, Shenton J and Green S: Nonclinical safety assessment of engineered T cell therapies. Regul Toxicol Pharmacol. 127:1050642021. View Article : Google Scholar : PubMed/NCBI | |
|
Kegler A, Koristka S, Bergmann R, Berndt N, Arndt C, Feldmann A, Hoffmann A, Bornhäuser M, Schmitz M and Bachmann MP: T cells engrafted with a UniCAR 28/z outperform UniCAR BB/z-transduced T cells in the face of regulatory T cell-mediated immunosuppression. Oncoimmunology. 8:e16216762019. View Article : Google Scholar : PubMed/NCBI | |
|
Albert S, Arndt C, Feldmann A, Bergmann R, Bachmann D, Koristka S, Ludwig F, Ziller-Walter P, Kegler A, Gärtner S, et al: A novel nanobody-based target module for retargeting of T lymphocytes to EGFR-expressing cancer cells via the modular UniCAR platform. Oncoimmunology. 6:e12872462017. View Article : Google Scholar : PubMed/NCBI | |
|
Albert S, Arndt C, Koristka S, Berndt N, Bergmann R, Feldmann A, Schmitz M, Pietzsch J, Steinbach J and Bachmann M: From mono- to bivalent: Improving theranostic properties of target modules for redirection of UniCAR T cells against EGFR-expressing tumor cells in vitro and in vivo. Oncotarget. 9:25597–25616. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Berdeja JG, Madduri D, Usmani SZ, Jakubowiak A, Agha M, Cohen AD, Stewart AK, Hari P, Htut M, Lesokhin A, et al: Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): A phase 1b/2 open-label study. Lancet. 398:314–324. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Munshi NC, Anderson LD Jr, Shah N, Madduri D, Berdeja J, Lonial S, Raje N, Lin Y, Siegel D, Oriol A, et al: Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N Engl J Med. 384:705–716. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Raje N, Berdeja J, Lin Y, Siegel D, Jagannath S, Madduri D, Liedtke M, Rosenblatt J, Maus MV, Turka A, et al: Anti-BCMA CAR T-Cell Therapy bb2121 in relapsed or refractory multiple myeloma. N Engl J Med. 380:1726–1737. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao WH, Liu J, Wang BY, Chen YX, Cao XM, Yang Y, Zhang YL, Wang FX, Zhang PY, Lei B, et al: A phase 1, open-label study of LCAR-B38M, a chimeric antigen receptor T cell therapy directed against B cell maturation antigen, in patients with relapsed or refractory multiple myeloma. J Hematol Oncol. 11:1412018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao WH, Wang BY, Chen LJ, Fu WJ, Xu J, Liu J, Jin SW, Chen YX, Cao XM, Yang Y, et al: Four-year follow-up of LCAR-B38M in relapsed or refractory multiple myeloma: A phase 1, single-arm, open-label, multicenter study in China (LEGEND-2). J Hematol Oncol. 15:862022. View Article : Google Scholar | |
|
Kamdar M, Solomon SR, Arnason J, Johnston PB, Glass B, Bachanova V, Ibrahimi S, Mielke S, Mutsaers P, Hernandez-Ilizaliturri F, et al: Lisocabtagene maraleucel versus standard of care with salvage chemotherapy followed by autologous stem cell transplantation as second-line treatment in patients with relapsed or refractory large B-cell lymphoma (TRANSFORM): Results from an interim analysis of an open-label, randomised, phase 3 trial. Lancet. 399:2294–2308. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Locke FL, Miklos DB, Jacobson CA, Perales MA, Kersten MJ, Oluwole OO, Ghobadi A, Rapoport AP, McGuirk J, Pagel JM, et al: Axicabtagene ciloleucel as second-line therapy for large B-cell lymphoma. N Engl J Med. 386:640–654. 2022. View Article : Google Scholar | |
|
Gazeau N, Liang EC, Wu QV, Voutsinas JM, Barba P, Iacoboni G, Kwon M, Ortega JLR, López-Corral L, Hernani R, et al: Anakinra for refractory cytokine release syndrome or immune effector cell-associated neurotoxicity syndrome after chimeric antigen receptor T cell therapy. Transplant Cell Ther. 29:430–437. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Sborov DW, Pawlyn C, Ishida T, Huang JSY, Benjamin R, Iida S, Popat R, Kuroda J, Pianko MJ, Ramakrishnan A, et al: Evaluation of cytokine release syndrome (CRS) in patients with relapsed or refractory multiple myeloma (RRMM) receiving step-up priming doses and longer dosing intervals of elranatamab: MagnetisMM-9. J Clin Oncol. 42:75222024. View Article : Google Scholar | |
|
Martin T, Usmani SZ, Berdeja JG, Agha M, Cohen AD, Hari P, Avigan D, Deol A, Htut M, Lesokhin A, et al: Ciltacabtagene autoleucel, an anti-B-cell maturation antigen chimeric antigen receptor T-cell therapy, for relapsed/refractory multiple myeloma: CARTITUDE-1 2-year follow-up. J Clin Oncol. 41:1265–1274. 2023. View Article : Google Scholar | |
|
Han L, Gao Q, Zhou K, Zhou J, Yin Q, Fang B, Zhu XH, Zhang J, Bao C and Song Y: The clinical study of anti-BCMA CAR-T with single-domain antibody as antigen binding domain. J Clin Oncol. 39:80252021. View Article : Google Scholar | |
|
Wu A, Zhang T, Yu H, Cao Y, Zhang R, Shao R, Liu B, Chen L, Xu K, Chen W, et al: Mechanisms underlying resistance to CAR-T cell therapy and strategies for enhancement. Cytokine Growth Factor Rev. 83:66–76. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Kearl TJ, Furqan F and Shah NN: CAR T-cell therapy for B-cell lymphomas: Outcomes and resistance mechanisms. Cancer Metastasis Rev. 44:122024. View Article : Google Scholar : PubMed/NCBI | |
|
Safarzadeh Kozani P, Safarzadeh Kozani P and Rahbarizadeh F: Humanization of the antigen-recognition domain does not impinge on the antigen-binding, cytokine secretion, and antitumor reactivity of humanized nanobody-based CD19-redirected CAR-T cells. J Transl Med. 22:6792024. View Article : Google Scholar : PubMed/NCBI | |
|
Nasiri F, Safarzadeh Kozani P and Rahbarizadeh F: T-cells engineered with a novel VHH-based chimeric antigen receptor against CD19 exhibit comparable tumoricidal efficacy to their FMC63-based counterparts. Front Immunol. 14:10638382023. View Article : Google Scholar : PubMed/NCBI | |
|
Krol VE, Bansal A, Kethamreddy M, Ellinghuysen JR, Vail DJ, Lucien-Matteoni F, Dong H, Park SS and Pandey MK: Synthesis and in vitro evaluation of a scandium-44 radiolabeled nanobody as a PD-L1 PET imaging probe. Pharmaceutics. 17:7962025. View Article : Google Scholar : PubMed/NCBI | |
|
Bolzati C and Spolaore B: Enzymatic methods for the site-specific radiolabeling of targeting proteins. Molecules. 26:34922021. View Article : Google Scholar : PubMed/NCBI | |
|
Hanke L, Sheward DJ, Pankow A, Vidakovics LP, Karl V, Kim C, Urgard E, Smith NL, Astorga-Wells J, Ekström S, et al: Multivariate mining of an alpaca immune repertoire identifies potent cross-neutralizing SARS-CoV-2 nanobodies. Sci Adv. 8:eabm02202022. View Article : Google Scholar : PubMed/NCBI | |
|
Takeuchi T, Kawanishi M, Nakanishi M, Yamasaki H and Tanaka Y: Phase II/III results of a trial of anti-tumor necrosis factor multivalent NANOBODY compound ozoralizumab in patients with rheumatoid arthritis. Arthritis Rheumatol. 74:1776–1785. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Yuen D, Feeney OM, Noi L, Shengule S, McLeod VM, Reitano P, Tsegay S, Hufton R, Houston ZH, Fletcher NL, et al: Nanobody-mediated cellular uptake maximizes the potency of polylysine dendrimers while preserving solid tumor penetration. ACS Nano. 19:6044–6057. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Olkowski CP, Basuli F, Fernandes B, Ghaemi B, Shi J, Zhang HH, Farber JM, Escorcia FE, Choyke PL and Jacobson O: Comparative kidney uptake of nanobody-based PET tracers labeled with various fluorine-18-labeled prosthetic groups. Mol Pharm. 22:533–543. 2025. View Article : Google Scholar | |
|
Chen Y, Xiong T, Peng Q, Du J, Sun W, Fan J and Peng X: Self-reporting photodynamic nanobody conjugate for precise and sustainable large-volume tumor treatment. Nat Commun. 15:69352024. View Article : Google Scholar : PubMed/NCBI | |
|
Heremans J, Maximilian Awad R, Bridoux J, Ertveldt T, Caveliers V, Madder A, Hoogenboom R, Devoogdt N, Ballet S, Hernot S, et al: Sustained release of a human PD-L1 single-domain antibody using peptide-based hydrogels. Eur J Pharm Biopharm. 196:1141832024. View Article : Google Scholar : PubMed/NCBI | |
|
Schubert ML, Schmitt A, Hückelhoven-Krauss A, Neuber B, Kunz A, Waldhoff P, Vonficht D, Yousefian S, Jopp-Saile L, Wang L, et al: Treatment of adult ALL patients with third-generation CD19-directed CAR T cells: Results of a pivotal trial. J Hematol Oncol. 16:792023. View Article : Google Scholar : PubMed/NCBI | |
|
Ren Q, Zu Y, Su H, Lu Q, Xiang B, Luo Y, Zhang J and Song Y: Single VHH-directed BCMA CAR-NK cells for multiple myeloma. Exp Hematol Oncol. 12:982023. View Article : Google Scholar : PubMed/NCBI | |
|
Sadeghi A, Behdani M, Muyldermans S, Habibi-Anbouhi M and Kazemi-Lomedasht F: Development of a mono-specific anti-VEGF bivalent nanobody with extended plasma half-life for treatment of pathologic neovascularization. Drug Test Anal. 12:92–100. 2020. View Article : Google Scholar | |
|
Budi HS, Ahmad FN, Achmad H, Ansari MJ, Mikhailova MV, Suksatan W, Chupradit S, Shomali N and Marofi F: Human epidermal growth factor receptor 2 (HER2)-specific chimeric antigen receptor (CAR) for tumor immunotherapy; recent progress. Stem Cell Res Ther. 13:402022. View Article : Google Scholar : PubMed/NCBI | |
|
Li H, Zhong D, Luo H, Shi W, Xie S, Qiang H, Zhu L, Gao L, Liu J, Sun S, et al: Nanobody-based CAR T cells targeting intracellular tumor antigens. Biomed Pharmacother. 156:1139192022. View Article : Google Scholar : PubMed/NCBI | |
|
Heitzeneder S, Bosse KR, Zhu Z, Zhelev D, Majzner RG, Radosevich MT, Dhingra S, Sotillo E, Buongervino S, Pascual-Pasto G, et al: GPC2-CAR T cells tuned for low antigen density mediate potent activity against neuroblastoma without toxicity. Cancer Cell. 40:53–69.e9. 2022. View Article : Google Scholar : | |
|
Mailankody S, Jakubowiak AJ, Htut M, Costa LJ, Lee K, Ganguly S, Kaufman JL, Siegel DSD, Bensinger W, Cota M, et al: Orvacabtagene autoleucel (orva-cel), a B-cell maturation antigen (BCMA)-directed CAR T cell therapy for patients (pts) with relapsed/refractory multiple myeloma (RRMM): Update of the phase 1/2 EVOLVE study (NCT03430011). J Clin Oncol. 38:85042020. View Article : Google Scholar |