Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
November-2025 Volume 56 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2025 Volume 56 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Application of nanobody‑based CAR‑T in tumor immunotherapy (Review)

  • Authors:
    • Hongjing Liu
    • Xueping Liu
    • Xuyan Zhou
    • Siliang Duan
    • Xin Huang
    • Hongxin Fei
    • Yali Kou
  • View Affiliations / Copyright

    Affiliations: Department of Basic Medical Science, Guangxi Health Science College, Nanning, Guangxi Zhuang Autonomous Region 530023, P.R. China, Department of Gastrointestinal and Anus Surgery, First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region 530023, P.R. China, Department of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545005, P.R. China, Department of Basic Medical Science, Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
    Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 187
    |
    Published online on: September 5, 2025
       https://doi.org/10.3892/ijmm.2025.5628
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Chimeric antigen receptor (CAR) T cell therapy is a type of cellular immunotherapy showing promising clinical effectiveness and high precision. CAR‑T cells express membrane receptors with high specificity, which enable them to identify certain target antigens generated by cancerous cells. The three primary structural elements of the CAR are the extracellular domain, transmembrane domain and cytoplasmic domain. Nanobodies are a type of antibody fragment derived from the variable domains of camelid heavy chain antibodies (VHH), which are the antigen‑specific binding domains. They have high clinical applicability due to their tiny size, excellent target affinity, adaptable functions and guaranteed stability. Structurally pre‑designed nanobodies were transduced in primary T lymphocytes, forming CAR‑T cells and these have been demonstrated to have inhibitory effects on hematologic malignancy or solid tumor cells/tissues both in vivo and in vitro. At present, a number of novel nanobody‑based modalities can include a single nanobody, a bi‑valent nanobody and multivalent nanobody CAR‑T cells with bispecific and multispecific characteristics, showing promising therapeutic efficacy that is similar to CAR‑T cells modulated with a single‑chain variable fragment. Intriguingly, CAR‑T cells targeting the B‑cell maturation antigen modified using an anti‑B‑cell maturation antigen single nanobody or bivalent nanobody have been shown to exhibit clinical efficacy comparable to scFv‑modulated CAR‑T cells. The application of nanobodies in CAR‑T therapy has been well established from laboratory‑based evidence to clinical application and they have great potential for developing advanced CAR‑T cells for more complex employment.
View Figures

Figure 1

Graphical representation of different
antibody structures. (A) The schematic figure of TCR. (B) The
schematic figure of CAR-T therapy. TCR, T cell receptor; CAR-T,
chimeric antigen receptor T cell; CD, cluster of
differentiation.

Figure 2

Two structures of antibodies are
shown. (A) The scFv and a conventional IgG antibody. (B) An HcAb
produced by llama, with an antigen-binding domain made up of a VHH
or nanobody. HcAb, heavy-chain antibody; VHH, camelid heavy chain
antibodies.

Figure 3

First-generation CARs comprised
exclusively the intracellular CD3ζ signaling molecule, without a
costimulatory domain. Second-generation CARs integrated the CD3ζ
signal together with the costimulatory domains 4-1BB or CD28 fused
with CD3ζ. Two distinct costimulatory domains, such as 4-1BB, CD28,
or OX40, were added to CARs in the third generation. The
fourth-generation CARs are distinguished by the incorporation of
the IL-12 cytokine secretion domain, commonly referred to as
TRUCKs. The fifth generation of CARs included an intracellular
domain, featuring the engineering of the IL-2 receptors IL-2Rβ
(β-chain) situated between 4-1BB/CD28 and CD3ζ, thereby enabling
the stimulation of the JAK-STAT pathway through the IL-2Rβ domain.
CAR, chimeric antigen receptor; CD, cluster of differentiation;
TRUCKs, T cells redirected for antigen-unrestricted
cytokine-initiated killing.

Figure 4

A brief diagram of CAR-T therapy
including manufacturing and administration. CAR-T, chimeric antigen
receptor T cell.

Figure 5

The schematic representation of
VHH-based advanced CARs includes nanoCAR,
bi-epitopic/specific/tandem CAR, cytokine-secreting CAR, SUPRA CAR
and the E5B9-tagged tumor-specific target module, which facilitates
the interaction between tumor cells and UniCAR via the
anti-E5B9/E7B6 region. VHH, camelid heavy chain antibodies CAR,
chimeric antigen receptor; SUPRA, split universal programmable.
View References

1 

Xin Yu J, Hubbard-Lucey VM and Tang J: Immuno-oncology drug development goes global. Nat Rev Drug Discov. 18:899–900. 2019. View Article : Google Scholar : PubMed/NCBI

2 

Sanmamed MF and Chen L: A paradigm shift in cancer immunotherapy: From enhancement to normalization. Cell. 175:313–326. 2018. View Article : Google Scholar : PubMed/NCBI

3 

Xin Yu J, Hubbard-Lucey VM and Tang J: The global pipeline of cell therapies for cancer. Nat Rev Drug Discov. 18:821–822. 2019. View Article : Google Scholar : PubMed/NCBI

4 

Yagi Y, Kanemasa Y, Sasaki Y, Goto S, Yamamura Y, Masuda Y, Fujita K, Ishimine K, Hayashi Y, Mino M, et al: Early failure is still a poor prognostic factor in patients with relapsed or refractory large B-cell lymphoma in the era of CAR T-cell therapy. J Clin Exp Hematop. 64:107–118. 2024. View Article : Google Scholar : PubMed/NCBI

5 

Shumilov E, Scholz JK, Seib M, Mazzeo P, Wurm-Kuczera R, Vucinic V, Holtick U, Boyadzhiev H, Melchardt T, Hölscher AS, et al: Outcomes of bispecific antibody therapy after CAR T-cell failure in relapsed/refractory large B-cell lymphoma. Blood Adv. 9:3955–3966. 2025. View Article : Google Scholar : PubMed/NCBI

6 

Manfredi F, Cianciotti BC, Potenza A, Tassi E, Noviello M, Biondi A, Ciceri F, Bonini C and Ruggiero E: TCR redirected T cells for cancer treatment: Achievements, hurdles, and goals. Front Immunol. 11:16892020. View Article : Google Scholar : PubMed/NCBI

7 

Drewniak-Świtalska M, Fortuna P and Krzystek-Korpacka M: Negative immune checkpoint inhibitors. Pharmaceutics. 17:7132025. View Article : Google Scholar :

8 

Safarzadeh Kozani P, Naseri A, Mirarefin SMJ, Salem F, Nikbakht M, Evazi Bakhshi S and Safarzadeh Kozani P: Nanobody-based CAR-T cells for cancer immunotherapy. Biomark Res. 10:242022. View Article : Google Scholar : PubMed/NCBI

9 

Sun W, Xie J, Lin H, Mi S, Li Z, Hua F and Hu Z: A combined strategy improves the solubility of aggregation-prone single-chain variable fragment antibodies. Protein Expr Purif. 83:21–29. 2012. View Article : Google Scholar : PubMed/NCBI

10 

de Aguiar RB, da Silva TA, Costa BA, Machado MFM, Yamada RY, Braggion C, Perez KR, Mori MAS, Oliveira V and de Moraes JZ: Generation and functional characterization of a single-chain variable fragment (scFv) of the anti-FGF2 3F12E7 monoclonal antibody. Sci Rep. 11:14322021. View Article : Google Scholar : PubMed/NCBI

11 

Koch-Nolte F: Nanobody-based heavy chain antibodies and chimeric antibodies. Immunol Rev. 328:466–472. 2024. View Article : Google Scholar : PubMed/NCBI

12 

Ingram JR, Schmidt FI and Ploegh HL: Exploiting nanobodies' singular traits. Annu Rev Immunol. 36:695–715. 2018. View Article : Google Scholar : PubMed/NCBI

13 

De Meyer T, Muyldermans S and Depicker A: Nanobody-based products as research and diagnostic tools. Trends Biotechnol. 32:263–270. 2014. View Article : Google Scholar : PubMed/NCBI

14 

Natarajan V, Gopalakrishnan R, Matta H, Choi S, Gong S, Jeronimo A, Keerthipati PS, Morales A, Venkatesh H and Chaudhary PM: A fast and sensitive luciferase-based assay for antibody engineering and design of chimeric antigen receptors. Sci Rep. 10:23182020. View Article : Google Scholar : PubMed/NCBI

15 

Guo S and Xi X: Nanobody-enhanced chimeric antigen receptor T-cell therapy: Overcoming barriers in solid tumors with VHH and VNAR-based constructs. Biomark Res. 13:412025. View Article : Google Scholar : PubMed/NCBI

16 

Yoo JW: Management of adverse events in young adults and children with acute B-cell lymphoblastic leukemia receiving anti-CD19 chimeric antigen receptor (CAR) T-cell therapy. Blood Res. 58(S1): S20–S28. 2023. View Article : Google Scholar : PubMed/NCBI

17 

Qi Y, Liu H, Li X, Shi Y, Mu J, Li J, Wang Y and Deng Q: Blinatumomab as salvage therapy in patients with relapsed/refractory B-ALL who have failed/progressed after anti-CD19-CAR T therapy. Ann Med. 55:22308882023. View Article : Google Scholar : PubMed/NCBI

18 

Bouchkouj N, Kasamon YL, de Claro RA, George B, Lin X, Lee S, Blumenthal GM, Bryan W, McKee AE and Pazdur R: FDA approval summary: Axicabtagene ciloleucel for relapsed or refractory large B-cell lymphoma. Clin Cancer Res. 25:1702–1708. 2019. View Article : Google Scholar

19 

Fischer JW and Bhattarai N: CAR-T cell therapy: Mechanism, management, and mitigation of inflammatory toxicities. Front Immunol. 12:6930162021. View Article : Google Scholar : PubMed/NCBI

20 

Miller JF: Immunological function of the thymus. Lancet. 2:748–749. 1961. View Article : Google Scholar : PubMed/NCBI

21 

Miller JF: Analysis of the thymus influence in leukaemogenesis. Nature. 191:248–249. 1961. View Article : Google Scholar : PubMed/NCBI

22 

Taniguchi T, Matsui H, Fujita T, Takaoka C, Kashima N, Yoshimoto R and Hamuro J: Structure and expression of a cloned cDNA for human interleukin-2. Nature. 302:305–310. 1983. View Article : Google Scholar : PubMed/NCBI

23 

Klaus SJ, Pinchuk LM, Ochs HD, Law CL, Fanslow WC, Armitage RJ and Clark EA: Costimulation through CD28 enhances T cell-dependent B cell activation via CD40-CD40L interaction. J Immunol. 152:5643–5652. 1994. View Article : Google Scholar : PubMed/NCBI

24 

Mousset CM, Hobo W, Woestenenk R, Preijers F, Dolstra H and van der Waart AB: Comprehensive phenotyping of T cells using flow cytometry. Cytometry A. 95:647–654. 2019. View Article : Google Scholar : PubMed/NCBI

25 

Eshhar Z, Waks T, Gross G and Schindler DG: Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci USA. 90:720–724. 1993. View Article : Google Scholar : PubMed/NCBI

26 

Han D, Xu Z, Zhuang Y, Ye Z and Qian Q: Current progress in CAR-T cell therapy for hematological malignancies. J Cancer. 12:326–334. 2021. View Article : Google Scholar : PubMed/NCBI

27 

Hong M, Clubb JD and Chen YY: Engineering CAR-T cells for next-generation cancer therapy. Cancer Cell. 38:473–488. 2020. View Article : Google Scholar : PubMed/NCBI

28 

Eshhar Z, Waks T and Gross G: The emergence of T-bodies/CAR T cells. Cancer J. 20:123–126. 2014. View Article : Google Scholar : PubMed/NCBI

29 

Finney HM, Akbar AN and Lawson AD: Activation of resting human primary T cells with chimeric receptors: Costimulation from CD28, inducible costimulator, CD134, and CD137 in series with signals from the TCR zeta chain. J Immunol. 172:104–113. 2004. View Article : Google Scholar

30 

Imai C, Mihara K, Andreansky M, Nicholson IC, Pui CH, Geiger TL and Campana D: Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia. 18:676–684. 2004. View Article : Google Scholar : PubMed/NCBI

31 

van der Stegen SJ, Hamieh M and Sadelain M: The pharmacology of second-generation chimeric antigen receptors. Nat Rev Drug Discov. 14:499–509. 2015. View Article : Google Scholar : PubMed/NCBI

32 

Milone MC, Fish JD, Carpenito C, Carroll RG, Binder GK, Teachey D, Samanta M, Lakhal M, Gloss B, Danet-Desnoyers G, et al: Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol Ther. 17:1453–1464. 2009. View Article : Google Scholar : PubMed/NCBI

33 

Park JH, Rivière I, Gonen M, Wang X, Sénéchal B, Curran KJ, Sauter C, Wang Y, Santomasso B, Mead E, et al: Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med. 378:449–459. 2018. View Article : Google Scholar : PubMed/NCBI

34 

Porter DL, Levine BL, Kalos M, Bagg A and June CH: Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 365:725–733. 2011. View Article : Google Scholar : PubMed/NCBI

35 

Zhong XS, Matsushita M, Plotkin J, Riviere I and Sadelain M: Chimeric antigen receptors combining 4-1BB and CD28 signaling domains augment PI3kinase/AKT/Bcl-XL activation and CD8+ T cell-mediated tumor eradication. Mol Ther. 18:413–420. 2010. View Article : Google Scholar

36 

Pulè MA, Straathof KC, Dotti G, Heslop HE, Rooney CM and Brenner MK: A chimeric T cell antigen receptor that augments cytokine release and supports clonal expansion of primary human T cells. Mol Ther. 12:933–941. 2005. View Article : Google Scholar : PubMed/NCBI

37 

George P, Dasyam N, Giunti G, Mester B, Bauer E, Andrews B, Perera T, Ostapowicz T, Frampton C, Li P, et al: Third-generation anti-CD19 chimeric antigen receptor T-cells incorporating a TLR2 domain for relapsed or refractory B-cell lymphoma: A phase I clinical trial protocol (ENABLE). BMJ Open. 10:e0346292020. View Article : Google Scholar : PubMed/NCBI

38 

Schultz L: Chimeric antigen receptor T cell therapy for pediatric B-ALL: Narrowing the gap between early and long-term outcomes. Front Immunol. 11:19852020. View Article : Google Scholar : PubMed/NCBI

39 

Ramos CA, Rouce R, Robertson CS, Reyna A, Narala N, Vyas G, Mehta B, Zhang H, Dakhova O, Carrum G, et al: In vivo fate and activity of second-versus third-generation CD19-Specific CAR-T cells in B cell non-hodgkin's lymphomas. Mol Ther. 26:2727–2737. 2018. View Article : Google Scholar : PubMed/NCBI

40 

Pietrobon V, Todd LA, Goswami A, Stefanson O, Yang Z and Marincola F: Improving CAR T-cell persistence. Int J Mol Sci. 22:108282021. View Article : Google Scholar : PubMed/NCBI

41 

Wagner J, Wickman E, DeRenzo C and Gottschalk S: CAR T cell therapy for solid tumors: Bright future or dark reality? Mol Ther. 28:2320–2339. 2020. View Article : Google Scholar : PubMed/NCBI

42 

Chin DS, Lim CSY, Nordin F, Arifin N and Jun TG: Antibody-dependent cell-mediated cytotoxicity through natural killer (NK) cells: Unlocking NK cells for future immunotherapy. Curr Pharm Biotechnol. 23:552–578. 2022. View Article : Google Scholar

43 

Yasuda K, Nakanishi K and Tsutsui H: Interleukin-18 in health and disease. Int J Mol Sci. 20:6492019. View Article : Google Scholar : PubMed/NCBI

44 

Ruixin S, Yifan L, Chuanlong W, Min Z, Hong L, Guoxiu D, Zhengyang L, Yansha S, Yiwei D, Jingwen S, et al: Expressing IL-15/IL-18 and CXCR2 improve infiltration and survival of EGFRvIII-targeting CAR-T cells in breast cancer. Biochem Pharmacol. 212:1155362023. View Article : Google Scholar : PubMed/NCBI

45 

Zhang M, Wen B, Anton OM, Yao Z, Dubois S, Ju W, Sato N, DiLillo DJ, Bamford RN, Ravetch JV and Waldmann TA: IL-15 enhanced antibody-dependent cellular cytotoxicity mediated by NK cells and macrophages. Proc Natl Acad Sci USA. 115:E10915–E10924. 2018. View Article : Google Scholar : PubMed/NCBI

46 

Etxebeste-Mitxeltorena M, Del Rincón-Loza I and Martín-Antonio B: Tumor secretome to adoptive cellular immunotherapy: Reduce me before I make you my partner. Front Immunol. 12:7178502021. View Article : Google Scholar : PubMed/NCBI

47 

Xu Y, Zhang M, Ramos CA, Durett A, Liu E, Dakhova O, Liu H, Creighton CJ, Gee AP, Heslop HE, et al: Closely related T-memory stem cells correlate with in vivo expansion of CAR. CD19-T cells and are preserved by IL-7 and IL-15. Blood. 123:3750–3759. 2014. View Article : Google Scholar : PubMed/NCBI

48 

Zhang X, Lv X and Song Y: Short-term culture with IL-2 is beneficial for potent memory chimeric antigen receptor T cell production. Biochem Biophys Res Commun. 495:1833–1838. 2018. View Article : Google Scholar

49 

Santomasso B, Bachier C, Westin J, Rezvani K and Shpall EJ: The other side of CAR T-cell therapy: Cytokine release syndrome, neurologic toxicity, and financial Burden. Am Soc Clin Oncol Educ Book. 39:433–444. 2019. View Article : Google Scholar : PubMed/NCBI

50 

Guercio M, Manni S, Boffa I, Caruso S, Di Cecca S, Sinibaldi M, Abbaszadeh Z, Camera A, Ciccone R, Polito VA, et al: Inclusion of the inducible caspase 9 suicide gene in CAR construct increases safety of CAR.CD19 T cell therapy in B-cell malignancies. Front Immunol. 12:7556392021. View Article : Google Scholar : PubMed/NCBI

51 

Diaconu I, Ballard B, Zhang M, Chen Y, West J, Dotti G and Savoldo B: Inducible caspase-9 selectively modulates the toxicities of CD19-specific chimeric antigen receptor-modified T cells. Mol Ther. 25:580–592. 2017. View Article : Google Scholar : PubMed/NCBI

52 

No authors listed. FDA okays second CAR-T for Kite. Nat Biotechnol. 38:10122020. View Article : Google Scholar : PubMed/NCBI

53 

Galli S, Melidis L, Flynn SM, Varshney D, Simeone A, Spiegel J, Madden SK, Tannahill D and Balasubramanian S: DNA G-quadruplex recognition in vitro and in live cells by a structure-specific nanobody. J Am Chem Soc. 144:23096–23103. 2022. View Article : Google Scholar : PubMed/NCBI

54 

Majzner RG and Mackall CL: Clinical lessons learned from the first leg of the CAR T cell journey. Nat Med. 25:1341–1355. 2019. View Article : Google Scholar : PubMed/NCBI

55 

Strohl WR and Naso M: Bispecific T-cell redirection versus chimeric antigen receptor (CAR)-T cells as approaches to kill cancer cells. Antibodies (Basel). 8:2019.PubMed/NCBI

56 

Fujiwara K, Masutani M, Tachibana M and Okada N: Impact of scFv structure in chimeric antigen receptor on receptor expression efficiency and antigen recognition properties. Biochem Biophys Res Commun. 527:350–357. 2020. View Article : Google Scholar : PubMed/NCBI

57 

Shah NN and Fry TJ: Mechanisms of resistance to CAR T cell therapy. Nat Rev Clin Oncol. 16:372–385. 2019.PubMed/NCBI

58 

Gorovits B and Koren E: Immunogenicity of chimeric antigen receptor T-cell therapeutics. BioDrugs. 33:275–284. 2019. View Article : Google Scholar : PubMed/NCBI

59 

Wagner DL, Fritsche E, Pulsipher MA, Ahmed N, Hamieh M, Hegde M, Ruella M, Savoldo B, Shah NN, Turtle CJ, et al: Immunogenicity of CAR T cells in cancer therapy. Nat Rev Clin Oncol. 18:379–393. 2021. View Article : Google Scholar : PubMed/NCBI

60 

Long AH, Haso WM, Shern JF, Wanhainen KM, Murgai M, Ingaramo M, Smith JP, Walker AJ, Kohler ME, Venkateshwara VR, et al: 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med. 21:581–590. 2015. View Article : Google Scholar : PubMed/NCBI

61 

Sotillo E, Barrett DM, Black KL, Bagashev A, Oldridge D, Wu G, Sussman R, Lanauze C, Ruella M, Gazzara MR, et al: Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov. 5:1282–1295. 2015. View Article : Google Scholar : PubMed/NCBI

62 

Liu W, Zou H, Guo L, Zhou Z, Xie Y, Guo H, Wei G, Zhang K, Yin H, Wei S and Chi J: Coordinating oncogenesis and immune evasion: KPNA2, GOLM1, and TK1 as novel CAR T-cell targets in lung adenocarcinoma. Eur J Med Res. 30:7652025. View Article : Google Scholar : PubMed/NCBI

63 

Yan K and Xiao Z: Enhancing the antitumor activity of CD19/BCMA CAR-T cells in vitro with a PD1IL7R chimeric switch receptor. Cell Immunol. 415-416:1050012025. View Article : Google Scholar : PubMed/NCBI

64 

Miller BR, Demarest SJ, Lugovskoy A, Huang F, Wu X, Snyder WB, Croner LJ, Wang N, Amatucci A, Michaelson JS and Glaser SM: Stability engineering of scFvs for the development of bispecific and multivalent antibodies. Protein Eng Des Sel. 23:549–557. 2010. View Article : Google Scholar : PubMed/NCBI

65 

Jensen MC and Riddell SR: Design and implementation of adoptive therapy with chimeric antigen receptor-modified T cells. Immunol Rev. 257:127–144. 2014. View Article : Google Scholar :

66 

Zhang K, Geddie ML, Kohli N, Kornaga T, Kirpotin DB, Jiao Y, Rennard R, Drummond DC, Nielsen UB, Xu L and Lugovskoy AA: Comprehensive optimization of a single-chain variable domain antibody fragment as a targeting ligand for a cytotoxic nanoparticle. MAbs. 7:42–52. 2015. View Article : Google Scholar :

67 

Broussau S, Lytvyn V, Simoneau M, Guilbault C, Leclerc M, Nazemi-Moghaddam N, Coulombe N, Elahi SM, McComb S and Gilbert R: Packaging cells for lentiviral vectors generated using the cumate and coumermycin gene induction systems and nanowell single-cell cloning. Mol Ther Methods Clin Dev. 29:40–57. 2023. View Article : Google Scholar : PubMed/NCBI

68 

Okuma A: Generation of CAR-T cells by lentiviral transduction. Methods Mol Biol. 2312:3–14. 2021. View Article : Google Scholar : PubMed/NCBI

69 

Ajina A and Maher J: Strategies to address chimeric antigen receptor tonic signaling. Mol Cancer Ther. 17:1795–1815. 2018. View Article : Google Scholar : PubMed/NCBI

70 

Gil D and Schrum AG: Strategies to stabilize compact folding and minimize aggregation of antibody-based fragments. Adv Biosci Biotechnol. 4:73–84. 2013. View Article : Google Scholar : PubMed/NCBI

71 

Jayaraman J, Mellody MP, Hou AJ, Desai RP, Fung AW, Pham AHT, Chen YY and Zhao W: CAR-T design: Elements and their synergistic function. EBioMedicine. 58:1029312020. View Article : Google Scholar : PubMed/NCBI

72 

Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB, Bendahman N and Hamers R: Naturally occurring antibodies devoid of light chains. Nature. 363:446–448. 1993. View Article : Google Scholar : PubMed/NCBI

73 

Muyldermans S: Nanobodies: Natural single-domain antibodies. Annu Rev Biochem. 82:775–797. 2013. View Article : Google Scholar : PubMed/NCBI

74 

Greenberg AS, Avila D, Hughes M, Hughes A, McKinney EC and Flajnik MF: A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks. Nature. 374:168–173. 1995. View Article : Google Scholar : PubMed/NCBI

75 

Misson Mindrebo L, Liu H, Ozorowski G, Tran Q, Woehl J, Khalek I, Smith JM, Barman S, Zhao F, Keating C, et al: Fully synthetic platform to rapidly generate tetravalent bispecific nanobody-based immunoglobulins. Proc Natl Acad Sci USA. 120:e22166121202023. View Article : Google Scholar : PubMed/NCBI

76 

Kunz P, Ortale A, Mücke N, Zinner K and Hoheisel JD: Nanobody stability engineering by employing the ΔTm shift; a comparison with apparent rate constants of heat-induced aggregation. Protein Eng Des Sel. 32:241–249. 2019.PubMed/NCBI

77 

Debie P, Lafont C, Defrise M, Hansen I, van Willigen DM, van Leeuwen FWB, Gijsbers R, D'Huyvetter M, Devoogdt N, Lahoutte T, et al: Size and affinity kinetics of nanobodies influence targeting and penetration of solid tumours. J Control Release. 317:34–42. 2020. View Article : Google Scholar

78 

Vincke C, Loris R, Saerens D, Martinez-Rodriguez S, Muyldermans S and Conrath K: General strategy to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold. J Biol Chem. 284:3273–3284. 2009. View Article : Google Scholar

79 

Rahbarizadeh F, Ahmadvand D and Moghimi SM: CAR T-cell bioengineering: Single variable domain of heavy chain antibody targeted CARs. Adv Drug Deliv Rev. 141:41–46. 2019. View Article : Google Scholar : PubMed/NCBI

80 

Honegger A: Engineering Antibodies for Stability and Efficient Folding. Handbook of Experimental Pharmacology. Chernajovsky Y and Nissim A: 181. Springer; Berlin, Heidelberg: pp. 47–68. 2008, View Article : Google Scholar

81 

Jovčevska I and Muyldermans S: The therapeutic potential of nanobodies. BioDrugs. 34:11–26. 2020. View Article : Google Scholar

82 

Chanier T and Chames P: Nanobody engineering: Toward next generation immunotherapies and immunoimaging of cancer. Antibodies (Basel). 8:132019. View Article : Google Scholar : PubMed/NCBI

83 

Malavasi F, Deaglio S, Funaro A, Ferrero E, Horenstein AL, Ortolan E, Vaisitti T and Aydin S: Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol Rev. 88:841–886. 2008. View Article : Google Scholar : PubMed/NCBI

84 

Lonial S, Weiss BM, Usmani SZ, Singhal S, Chari A, Bahlis NJ, Belch A, Krishnan A, Vescio RA, Mateos MV, et al: Daratumumab monotherapy in patients with treatment-refractory multiple myeloma (SIRIUS): An open-label, randomised, phase 2 trial. Lancet. 387:1551–1560. 2016. View Article : Google Scholar : PubMed/NCBI

85 

van de Donk N, Richardson PG and Malavasi F: CD38 antibodies in multiple myeloma: Back to the future. Blood. 131:13–29. 2018. View Article : Google Scholar

86 

Li T, Qi S, Unger M, Hou YN, Deng QW, Liu J, Lam CMC, Wang XW, Xin D, Zhang P, et al: Immuno-targeting the multi-functional CD38 using nanobody. Sci Rep. 6:270552016. View Article : Google Scholar

87 

An N, Hou YN, Zhang QX, Li T, Zhang QL, Fang C, Chen H, Lee HC, Zhao YJ and Du X: Anti-multiple myeloma activity of nanobody-based anti-CD38 chimeric antigen receptor T cells. Mol Pharm. 15:4577–4588. 2018. View Article : Google Scholar : PubMed/NCBI

88 

Schriewer L, Schütze K, Petry K, Hambach J, Fumey W, Koenigsdorf J, Baum N, Menzel S, Rissiek B, Riecken K, et al: Nanobody-based CD38-specific heavy chain antibodies induce killing of multiple myeloma and other hematological malignancies. Theranostics. 10:2645–2658. 2020. View Article : Google Scholar : PubMed/NCBI

89 

Hambach J, Riecken K, Cichutek S, Schütze K, Albrecht B, Petry K, Röckendorf JL, Baum N, Kröger N, Hansen T, et al: Targeting CD38-expressing multiple myeloma and burkitt lymphoma cells in vitro with nanobody-based chimeric antigen receptors (Nb-CARs). Cells. 9:3212020. View Article : Google Scholar : PubMed/NCBI

90 

Tseng YH, Ho HL, Lai CR, Luo YH, Tseng YC, Whang-Peng J, Lin YH, Chou TY and Chen YM: PD-L1 expression of tumor cells, macrophages, and immune cells in non-small cell lung cancer patients with malignant pleural effusion. J Thorac Oncol. 13:447–453. 2018. View Article : Google Scholar

91 

Ingram JR, Dougan M, Rashidian M, Knoll M, Keliher EJ, Garrett S, Garforth S, Blomberg OS, Espinosa C, Bhan A, et al: PD-L1 is an activation-independent marker of brown adipocytes. Nat Commun. 8:6472017. View Article : Google Scholar : PubMed/NCBI

92 

Li D, English H, Hong J, Liang T, Merlino G, Day CP and Ho M: A novel PD-L1-targeted shark V(NAR) single-domain-based CAR-T cell strategy for treating breast cancer and liver cancer. Mol Ther Oncolytics. 24:849–863. 2022. View Article : Google Scholar : PubMed/NCBI

93 

De Munter S, Van Parys A, Bral L, Ingels J, Goetgeluk G, Bonte S, Pille M, Billiet L, Weening K, Verhee A, et al: Rapid and effective generation of nanobody based CARs using PCR and gibson assembly. Int J Mol Sci. 21:8832020. View Article : Google Scholar : PubMed/NCBI

94 

Liu Y, Ao K, Bao F, Cheng Y, Hao Y, Zhang H, Fu S, Xu J and Wu Q: Development of a bispecific nanobody targeting CD20 on B-cell lymphoma cells and CD3 on T cells. Vaccines (Basel). 10:13352022. View Article : Google Scholar : PubMed/NCBI

95 

Banihashemi SR, Hosseini AZ, Rahbarizadeh F and Ahmadvand D: Development of specific nanobodies (VHH) for CD19 immuno-targeting of human B-lymphocytes. Iran J Basic Med Sci. 21:455–464. 2018.PubMed/NCBI

96 

Wang H, Wang L, Li Y, Li G, Zhang X, Jiang D, Zhang Y, Liu L, Chu Y and Xu G: Nanobody-armed T cells endow CAR-T cells with cytotoxicity against lymphoma cells. Cancer Cell Int. 21:4502021. View Article : Google Scholar : PubMed/NCBI

97 

Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, Bader P, Verneris MR, Stefanski HE, Myers GD, et al: Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 378:439–448. 2018. View Article : Google Scholar : PubMed/NCBI

98 

Carpenter RO, Evbuomwan MO, Pittaluga S, Rose JJ, Raffeld M, Yang S, Gress RE, Hakim FT and Kochenderfer JN: B-cell maturation antigen is a promising target for adoptive T-cell therapy of multiple myeloma. Clin Cancer Res. 19:2048–2060. 2013. View Article : Google Scholar : PubMed/NCBI

99 

Han L, Zhou J, Zhou K, Zhu X, Zhao L, Fang B, Yin Q, Wei X, Zhou H, Li L, et al: Safety and efficacy of CAR-T cell targeting BCMA in patients with multiple myeloma coinfected with chronic hepatitis B virus. J Immunother Cancer. 8:e0009272020. View Article : Google Scholar : PubMed/NCBI

100 

Mei H, Li C, Jiang H, Zhao X, Huang Z, Jin D, Guo T, Kou H, Liu L, Tang L, et al: A bispecific CAR-T cell therapy targeting BCMA and CD38 in relapsed or refractory multiple myeloma. J Hematol Oncol. 14:1612021. View Article : Google Scholar : PubMed/NCBI

101 

Wei L, Xiao X, Jing X, Zheng Y, Sun X, Bai W, Li M, Luo M and Xiao Y: Case report: Summary of multiple CAR-T expansions in anti-BCMA/GPRC5D bispecific CAR-T cell therapy for multiple myeloma. Front Immunol. 16:16077782025. View Article : Google Scholar : PubMed/NCBI

102 

Slaney CY, Kershaw MH and Darcy PK: Trafficking of T cells into tumors. Cancer Res. 74:7168–7174. 2014. View Article : Google Scholar : PubMed/NCBI

103 

Wu X, Giobbie-Hurder A, Liao X, Lawrence D, McDermott D, Zhou J, Rodig S and Hodi FS: VEGF neutralization plus CTLA-4 blockade alters soluble and cellular factors associated with enhancing lymphocyte infiltration and humoral recognition in melanoma. Cancer Immunol Res. 4:858–868. 2016. View Article : Google Scholar : PubMed/NCBI

104 

Chen DS and Hurwitz H: Combinations of bevacizumab with cancer immunotherapy. Cancer J. 24:193–204. 2018. View Article : Google Scholar : PubMed/NCBI

105 

Chinnasamy D, Yu Z, Theoret MR, Zhao Y, Shrimali RK, Morgan RA, Feldman SA, Restifo NP and Rosenberg SA: Gene therapy using genetically modified lymphocytes targeting VEGFR-2 inhibits the growth of vascularized syngenic tumors in mice. J Clin Invest. 120:3953–3968. 2010. View Article : Google Scholar : PubMed/NCBI

106 

Spratlin JL, Cohen RB, Eadens M, Gore L, Camidge DR, Diab S, Leong S, O'Bryant C, Chow LQ, Serkova NJ, et al: Phase I pharmacologic and biologic study of ramucirumab (IMC-1121B), a fully human immunoglobulin G1 monoclonal antibody targeting the vascular endothelial growth factor receptor-2. J Clin Oncol. 28:780–787. 2010. View Article : Google Scholar : PubMed/NCBI

107 

Fukumura D, Kloepper J, Amoozgar Z, Duda DG and Jain RK: Enhancing cancer immunotherapy using antiangiogenics: Opportunities and challenges. Nat Rev Clin Oncol. 15:325–340. 2018. View Article : Google Scholar : PubMed/NCBI

108 

Ma L, Gu K, Zhang CH, Chen XT, Jiang Y, Melcher K, Zhang J, Wang M and Xu HE: Generation and characterization of a human nanobody against VEGFR-2. Acta Pharmacol Sin. 37:857–864. 2016. View Article : Google Scholar : PubMed/NCBI

109 

Rydén L, Jirström K, Bendahl PO, Fernö M, Nordenskjöld B, Stål O, Thorstenson S, Jönsson PE and Landberg G: Tumor-specific expression of vascular endothelial growth factor receptor 2 but not vascular endothelial growth factor or human epidermal growth factor receptor 2 is associated with impaired response to adjuvant tamoxifen in premenopausal breast cancer. J Clin Oncol. 23:4695–4704. 2005. View Article : Google Scholar : PubMed/NCBI

110 

Hajari Taheri F, Hassani M, Sharifzadeh Z, Behdani M, Arashkia A and Abolhassani M: T cell engineered with a novel nanobody-based chimeric antigen receptor against VEGFR2 as a candidate for tumor immunotherapy. IUBMB Life. 71:1259–1267. 2019. View Article : Google Scholar : PubMed/NCBI

111 

Sharifzadeh Z, Rahbarizadeh F, Shokrgozar MA, Ahmadvand D, Mahboudi F, Jamnani FR and Moghimi SM: Genetically engineered T cells bearing chimeric nanoconstructed receptors harboring TAG-72-specific camelid single domain antibodies as targeting agents. Cancer Lett. 334:237–244. 2013. View Article : Google Scholar

112 

Jamnani FR, Rahbarizadeh F, Shokrgozar MA, Mahboudi F, Ahmadvand D, Sharifzadeh Z, Parhamifar L and Moghimi SM: T cells expressing VHH-directed oligoclonal chimeric HER2 antigen receptors: towards tumor-directed oligoclonal T cell therapy. Biochim Biophys Acta. 1840:378–386. 2014. View Article : Google Scholar

113 

Vitti Gambim V, Laufer-Amorim R, Fonseca Alves RH, Grieco V and Fonseca-Alves CE: A comparative meta-analysis and in silico analysis of differentially expressed genes and proteins in canine and human bladder cancer. Front Vet Sci. 7:5589782020. View Article : Google Scholar : PubMed/NCBI

114 

Sharifi J, Khirehgesh MR, Safari F and Akbari B: EGFR and anti-EGFR nanobodies: Review and update. J Drug Target. 29:387–402. 2021. View Article : Google Scholar

115 

McComb S, Nguyen T, Shepherd A, Henry KA, Bloemberg D, Marcil A, Maclean S, Zafer A, Gilbert R, Gadoury C, et al: Programmable attenuation of antigenic sensitivity for a nanobody-based EGFR chimeric antigen receptor through hinge domain truncation. Front Immunol. 13:8648682022. View Article : Google Scholar : PubMed/NCBI

116 

Hosking MP, Shirinbak S, Omilusik K, Chandra S, Kaneko MK, Gentile A, Yamamoto S, Shrestha B, Grant J, Boyett M, et al: Preferential tumor targeting of HER2 by iPSC-derived CAR T cells engineered to overcome multiple barriers to solid tumor efficacy. Cell Stem Cell. 32:1087–1101.e4. 2025. View Article : Google Scholar : PubMed/NCBI

117 

Bakhtiari SH, Rahbarizadeh F, Hasannia S, Ahmadvand D, Iri-Sofla FJ and Rasaee MJ: Anti-MUC1 nanobody can redirect T-body cytotoxic effector function. Hybridoma (Larchmt). 28:85–92. 2009. View Article : Google Scholar : PubMed/NCBI

118 

You F, Jiang L, Zhang B, Lu Q, Zhou Q, Liao X, Wu H, Du K, Zhu Y, Meng H, et al: Phase 1 clinical trial demonstrated that MUC1 positive metastatic seminal vesicle cancer can be effectively eradicated by modified Anti-MUC1 chimeric antigen receptor transduced T cells. Sci China Life Sci. 59:386–397. 2016. View Article : Google Scholar : PubMed/NCBI

119 

Supimon K, Sangsuwannukul T, Sujjitjoon J, Chieochansin T, Junking M and Yenchitsomanus PT: Cytotoxic activity of anti-mucin 1 chimeric antigen receptor T cells expressing PD-1-CD28 switch receptor against cholangiocarcinoma cells. Cytotherapy. 25:148–161. 2023. View Article : Google Scholar

120 

Ishikawa Y, Tanaka N, Murakami K, Uchiyama T, Kumaki S, Tsuchiya S, Kugoh H, Oshimura M, Calos MP and Sugamura K: Phage phiC31 integrase-mediated genomic integration of the common cytokine receptor gamma chain in human T-cell lines. J Gene Med. 8:646–653. 2006. View Article : Google Scholar : PubMed/NCBI

121 

Rath P, Kramer P, Biggs D, Preece C, Hortin N, Diaz R, Perez-Alcantara M, Li X, Bolard A, Beer N, et al: Optimizing approaches for targeted integration of transgenic cassettes by integrase-mediated cassette exchange in mouse and human stem cells. Stem Cells. 43:sxae0922025. View Article : Google Scholar : PubMed/NCBI

122 

Li M, Choo B, Wong ZM, Filmus J and Buick RN: Expression of OCI-5/glypican 3 during intestinal morphogenesis: Regulation by cell shape in intestinal epithelial cells. Exp Cell Res. 235:3–12. 1997. View Article : Google Scholar : PubMed/NCBI

123 

Arbabi-Ghahroudi M, Tanha J and MacKenzie R: Isolation of monoclonal antibody fragments from phage display libraries. Methods Mol Biol. 502:341–364. 2009. View Article : Google Scholar

124 

Zhou L, Li Y, Zheng D, Zheng Y, Cui Y, Qin L, Tang Z, Peng D, Wu Q, Long Y, et al: Bispecific CAR-T cells targeting FAP and GPC3 have the potential to treat hepatocellular carcinoma. Mol Ther Oncol. 32:2008172024. View Article : Google Scholar : PubMed/NCBI

125 

Li N, Fu H, Hewitt SM, Dimitrov DS and Ho M: Therapeutically targeting glypican-2 via single-domain antibody-based chimeric antigen receptors and immunotoxins in neuroblastoma. Proc Natl Acad Sci USA. 114:E6623–E6631. 2017.PubMed/NCBI

126 

Astrof S, Crowley D, George EL, Fukuda T, Sekiguchi K, Hanahan D and Hynes RO: Direct test of potential roles of EIIIA and EIIIB alternatively spliced segments of fibronectin in physiological and tumor angiogenesis. Mol Cell Biol. 24:8662–8670. 2004. View Article : Google Scholar : PubMed/NCBI

127 

Efthymiou G, Saint A, Ruff M, Rekad Z, Ciais D and Van Obberghen-Schilling E: Shaping Up the tumor microenvironment with cellular fibronectin. Front Oncol. 10:6412020. View Article : Google Scholar : PubMed/NCBI

128 

Ma W, Wang Y, Zhang R, Yang F, Zhang D, Huang M, Zhang L, Dorsey JF, Binder ZA, O'Rourke DM, et al: Targeting PAK4 to reprogram the vascular microenvironment and improve CAR-T immunotherapy for glioblastoma. Nat Cancer. 2:83–97. 2021. View Article : Google Scholar

129 

Lutz EA, Jailkhani N, Momin N, Huang Y, Sheen A, Kang BH, Wittrup KD and Hynes RO: Intratumoral nanobody-IL-2 fusions that bind the tumor extracellular matrix suppress solid tumor growth in mice. PNAS Nexus. 1:pgac2442022. View Article : Google Scholar

130 

Xie YJ, Dougan M, Jailkhani N, Ingram J, Fang T, Kummer L, Momin N, Pishesha N, Rickelt S, Hynes RO and Ploegh H: Nanobody-based CAR T cells that target the tumor microenvironment inhibit the growth of solid tumors in immunocompetent mice. Proc Natl Acad Sci USA. 116:7624–7631. 2019. View Article : Google Scholar : PubMed/NCBI

131 

Alon-Zchut G, Zalk R, Huynh TT, Zalutsky MR, Weizmann Y, Zarivach R and Papo N: Structural analysis of nanobody interactions with their prostate-specific membrane antigen binding epitopes. Int J Biol Macromol. 320(Pt 1): 1456932025. View Article : Google Scholar : PubMed/NCBI

132 

Chatalic KL, Veldhoven-Zweistra J, Bolkestein M, Hoeben S, Koning GA, Boerman OC, de Jong M and van Weerden WM: A novel 111in-labeled anti-prostate-specific membrane antigen nanobody for targeted SPECT/CT imaging of prostate cancer. J Nucl Med. 56:1094–1099. 2015. View Article : Google Scholar : PubMed/NCBI

133 

Georgiev T, Principi L, Galbiati A, Gilardoni E, Neri D and Cazzamalli S: Targeted interleukin-2 enhances the in vivo anti-cancer activity of Pluvicto™. Eur J Nucl Med Mol Imaging. 51:2332–2337. 2024. View Article : Google Scholar : PubMed/NCBI

134 

Hassani M, Hajari Taheri F, Sharifzadeh Z, Arashkia A, Hadjati J, van Weerden WM, Abdoli S, Modarressi MH and Abolhassani M: Engineered jurkat cells for targeting prostate-specific membrane antigen on prostate cancer cells by nanobody-based chimeric antigen receptor. Iran Biomed J. 24:81–88. 2020. View Article : Google Scholar :

135 

Ullah K, Addai Peprah F, Yu F and Shi H: The application of prostate specific membrane antigen in CART-cell therapy for treatment of prostate carcinoma (Review). Oncol Rep. 40:3136–3143. 2018.PubMed/NCBI

136 

Khaleghi S, Rahbarizadeh F, Ahmadvand D, Rasaee MJ and Pognonec P: A caspase 8-based suicide switch induces apoptosis in nanobody-directed chimeric receptor expressing T cells. Int J Hematol. 95:434–444. 2012. View Article : Google Scholar : PubMed/NCBI

137 

Liu C, Wang Q, Li L, Gao F, Zhang Y and Zhu Y: The peptide-based bispecific CAR T cells target EGFR and tumor stroma for effective cancer therapy. Int J Pharm. 663:1245582024. View Article : Google Scholar : PubMed/NCBI

138 

De Munter S, Ingels J, Goetgeluk G, Bonte S, Pille M, Weening K, Kerre T, Abken H and Vandekerckhove B: Nanobody based dual specific CARs. Int J Mol Sci. 19:4032018. View Article : Google Scholar : PubMed/NCBI

139 

Xia B, Lin K, Wang X, Chen F, Zhou M, Li Y, Lin Y, Qiao Y, Li R, Zhang W, et al: Nanobody-derived bispecific CAR-T cell therapy enhances the anti-tumor efficacy of T cell lymphoma treatment. Mol Ther Oncolytics. 30:86–102. 2023. View Article : Google Scholar : PubMed/NCBI

140 

Xu J, Chen LJ, Yang SS, Sun Y, Wu W, Liu YF, Xu J, Zhuang Y, Zhang W, Weng XQ, et al: Exploratory trial of a biepitopic CAR T-targeting B cell maturation antigen in relapsed/refractory multiple myeloma. Proc Natl Acad Sci USA. 116:9543–9551. 2019. View Article : Google Scholar : PubMed/NCBI

141 

Meeus F, Funeh CN, Awad RM, Zeven K, Autaers D, De Becker A, Van Riet I, Goyvaerts C, Tuyaerts S, Neyns B, et al: Preclinical evaluation of antigen-sensitive B7-H3-targeting nanobody-based CAR-T cells in glioblastoma cautions for on-target, off-tumor toxicity. J Immunother Cancer. 12:e0091102024. View Article : Google Scholar : PubMed/NCBI

142 

Wang H, Arulraj T, Anbari S and Popel AS: Quantitative systems pharmacology modeling of macrophage-targeted therapy combined with PD-L1 inhibition in advanced NSCLC. Clin Transl Sci. 17:e138112024. View Article : Google Scholar : PubMed/NCBI

143 

Xie YJ, Dougan M, Ingram JR, Pishesha N, Fang T, Momin N and Ploegh HL: Improved antitumor efficacy of chimeric antigen receptor T cells that secrete single-domain antibody fragments. Cancer Immunol Res. 8:518–529. 2020. View Article : Google Scholar : PubMed/NCBI

144 

Lebrec H, Maier CC, Maki K, Ponce R, Shenton J and Green S: Nonclinical safety assessment of engineered T cell therapies. Regul Toxicol Pharmacol. 127:1050642021. View Article : Google Scholar : PubMed/NCBI

145 

Kegler A, Koristka S, Bergmann R, Berndt N, Arndt C, Feldmann A, Hoffmann A, Bornhäuser M, Schmitz M and Bachmann MP: T cells engrafted with a UniCAR 28/z outperform UniCAR BB/z-transduced T cells in the face of regulatory T cell-mediated immunosuppression. Oncoimmunology. 8:e16216762019. View Article : Google Scholar : PubMed/NCBI

146 

Albert S, Arndt C, Feldmann A, Bergmann R, Bachmann D, Koristka S, Ludwig F, Ziller-Walter P, Kegler A, Gärtner S, et al: A novel nanobody-based target module for retargeting of T lymphocytes to EGFR-expressing cancer cells via the modular UniCAR platform. Oncoimmunology. 6:e12872462017. View Article : Google Scholar : PubMed/NCBI

147 

Albert S, Arndt C, Koristka S, Berndt N, Bergmann R, Feldmann A, Schmitz M, Pietzsch J, Steinbach J and Bachmann M: From mono- to bivalent: Improving theranostic properties of target modules for redirection of UniCAR T cells against EGFR-expressing tumor cells in vitro and in vivo. Oncotarget. 9:25597–25616. 2018. View Article : Google Scholar : PubMed/NCBI

148 

Berdeja JG, Madduri D, Usmani SZ, Jakubowiak A, Agha M, Cohen AD, Stewart AK, Hari P, Htut M, Lesokhin A, et al: Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): A phase 1b/2 open-label study. Lancet. 398:314–324. 2021. View Article : Google Scholar : PubMed/NCBI

149 

Munshi NC, Anderson LD Jr, Shah N, Madduri D, Berdeja J, Lonial S, Raje N, Lin Y, Siegel D, Oriol A, et al: Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N Engl J Med. 384:705–716. 2021. View Article : Google Scholar : PubMed/NCBI

150 

Raje N, Berdeja J, Lin Y, Siegel D, Jagannath S, Madduri D, Liedtke M, Rosenblatt J, Maus MV, Turka A, et al: Anti-BCMA CAR T-Cell Therapy bb2121 in relapsed or refractory multiple myeloma. N Engl J Med. 380:1726–1737. 2019. View Article : Google Scholar : PubMed/NCBI

151 

Zhao WH, Liu J, Wang BY, Chen YX, Cao XM, Yang Y, Zhang YL, Wang FX, Zhang PY, Lei B, et al: A phase 1, open-label study of LCAR-B38M, a chimeric antigen receptor T cell therapy directed against B cell maturation antigen, in patients with relapsed or refractory multiple myeloma. J Hematol Oncol. 11:1412018. View Article : Google Scholar : PubMed/NCBI

152 

Zhao WH, Wang BY, Chen LJ, Fu WJ, Xu J, Liu J, Jin SW, Chen YX, Cao XM, Yang Y, et al: Four-year follow-up of LCAR-B38M in relapsed or refractory multiple myeloma: A phase 1, single-arm, open-label, multicenter study in China (LEGEND-2). J Hematol Oncol. 15:862022. View Article : Google Scholar

153 

Kamdar M, Solomon SR, Arnason J, Johnston PB, Glass B, Bachanova V, Ibrahimi S, Mielke S, Mutsaers P, Hernandez-Ilizaliturri F, et al: Lisocabtagene maraleucel versus standard of care with salvage chemotherapy followed by autologous stem cell transplantation as second-line treatment in patients with relapsed or refractory large B-cell lymphoma (TRANSFORM): Results from an interim analysis of an open-label, randomised, phase 3 trial. Lancet. 399:2294–2308. 2022. View Article : Google Scholar : PubMed/NCBI

154 

Locke FL, Miklos DB, Jacobson CA, Perales MA, Kersten MJ, Oluwole OO, Ghobadi A, Rapoport AP, McGuirk J, Pagel JM, et al: Axicabtagene ciloleucel as second-line therapy for large B-cell lymphoma. N Engl J Med. 386:640–654. 2022. View Article : Google Scholar

155 

Gazeau N, Liang EC, Wu QV, Voutsinas JM, Barba P, Iacoboni G, Kwon M, Ortega JLR, López-Corral L, Hernani R, et al: Anakinra for refractory cytokine release syndrome or immune effector cell-associated neurotoxicity syndrome after chimeric antigen receptor T cell therapy. Transplant Cell Ther. 29:430–437. 2023. View Article : Google Scholar : PubMed/NCBI

156 

Sborov DW, Pawlyn C, Ishida T, Huang JSY, Benjamin R, Iida S, Popat R, Kuroda J, Pianko MJ, Ramakrishnan A, et al: Evaluation of cytokine release syndrome (CRS) in patients with relapsed or refractory multiple myeloma (RRMM) receiving step-up priming doses and longer dosing intervals of elranatamab: MagnetisMM-9. J Clin Oncol. 42:75222024. View Article : Google Scholar

157 

Martin T, Usmani SZ, Berdeja JG, Agha M, Cohen AD, Hari P, Avigan D, Deol A, Htut M, Lesokhin A, et al: Ciltacabtagene autoleucel, an anti-B-cell maturation antigen chimeric antigen receptor T-cell therapy, for relapsed/refractory multiple myeloma: CARTITUDE-1 2-year follow-up. J Clin Oncol. 41:1265–1274. 2023. View Article : Google Scholar

158 

Han L, Gao Q, Zhou K, Zhou J, Yin Q, Fang B, Zhu XH, Zhang J, Bao C and Song Y: The clinical study of anti-BCMA CAR-T with single-domain antibody as antigen binding domain. J Clin Oncol. 39:80252021. View Article : Google Scholar

159 

Wu A, Zhang T, Yu H, Cao Y, Zhang R, Shao R, Liu B, Chen L, Xu K, Chen W, et al: Mechanisms underlying resistance to CAR-T cell therapy and strategies for enhancement. Cytokine Growth Factor Rev. 83:66–76. 2025. View Article : Google Scholar : PubMed/NCBI

160 

Kearl TJ, Furqan F and Shah NN: CAR T-cell therapy for B-cell lymphomas: Outcomes and resistance mechanisms. Cancer Metastasis Rev. 44:122024. View Article : Google Scholar : PubMed/NCBI

161 

Safarzadeh Kozani P, Safarzadeh Kozani P and Rahbarizadeh F: Humanization of the antigen-recognition domain does not impinge on the antigen-binding, cytokine secretion, and antitumor reactivity of humanized nanobody-based CD19-redirected CAR-T cells. J Transl Med. 22:6792024. View Article : Google Scholar : PubMed/NCBI

162 

Nasiri F, Safarzadeh Kozani P and Rahbarizadeh F: T-cells engineered with a novel VHH-based chimeric antigen receptor against CD19 exhibit comparable tumoricidal efficacy to their FMC63-based counterparts. Front Immunol. 14:10638382023. View Article : Google Scholar : PubMed/NCBI

163 

Krol VE, Bansal A, Kethamreddy M, Ellinghuysen JR, Vail DJ, Lucien-Matteoni F, Dong H, Park SS and Pandey MK: Synthesis and in vitro evaluation of a scandium-44 radiolabeled nanobody as a PD-L1 PET imaging probe. Pharmaceutics. 17:7962025. View Article : Google Scholar : PubMed/NCBI

164 

Bolzati C and Spolaore B: Enzymatic methods for the site-specific radiolabeling of targeting proteins. Molecules. 26:34922021. View Article : Google Scholar : PubMed/NCBI

165 

Hanke L, Sheward DJ, Pankow A, Vidakovics LP, Karl V, Kim C, Urgard E, Smith NL, Astorga-Wells J, Ekström S, et al: Multivariate mining of an alpaca immune repertoire identifies potent cross-neutralizing SARS-CoV-2 nanobodies. Sci Adv. 8:eabm02202022. View Article : Google Scholar : PubMed/NCBI

166 

Takeuchi T, Kawanishi M, Nakanishi M, Yamasaki H and Tanaka Y: Phase II/III results of a trial of anti-tumor necrosis factor multivalent NANOBODY compound ozoralizumab in patients with rheumatoid arthritis. Arthritis Rheumatol. 74:1776–1785. 2022. View Article : Google Scholar : PubMed/NCBI

167 

Yuen D, Feeney OM, Noi L, Shengule S, McLeod VM, Reitano P, Tsegay S, Hufton R, Houston ZH, Fletcher NL, et al: Nanobody-mediated cellular uptake maximizes the potency of polylysine dendrimers while preserving solid tumor penetration. ACS Nano. 19:6044–6057. 2025. View Article : Google Scholar : PubMed/NCBI

168 

Olkowski CP, Basuli F, Fernandes B, Ghaemi B, Shi J, Zhang HH, Farber JM, Escorcia FE, Choyke PL and Jacobson O: Comparative kidney uptake of nanobody-based PET tracers labeled with various fluorine-18-labeled prosthetic groups. Mol Pharm. 22:533–543. 2025. View Article : Google Scholar

169 

Chen Y, Xiong T, Peng Q, Du J, Sun W, Fan J and Peng X: Self-reporting photodynamic nanobody conjugate for precise and sustainable large-volume tumor treatment. Nat Commun. 15:69352024. View Article : Google Scholar : PubMed/NCBI

170 

Heremans J, Maximilian Awad R, Bridoux J, Ertveldt T, Caveliers V, Madder A, Hoogenboom R, Devoogdt N, Ballet S, Hernot S, et al: Sustained release of a human PD-L1 single-domain antibody using peptide-based hydrogels. Eur J Pharm Biopharm. 196:1141832024. View Article : Google Scholar : PubMed/NCBI

171 

Schubert ML, Schmitt A, Hückelhoven-Krauss A, Neuber B, Kunz A, Waldhoff P, Vonficht D, Yousefian S, Jopp-Saile L, Wang L, et al: Treatment of adult ALL patients with third-generation CD19-directed CAR T cells: Results of a pivotal trial. J Hematol Oncol. 16:792023. View Article : Google Scholar : PubMed/NCBI

172 

Ren Q, Zu Y, Su H, Lu Q, Xiang B, Luo Y, Zhang J and Song Y: Single VHH-directed BCMA CAR-NK cells for multiple myeloma. Exp Hematol Oncol. 12:982023. View Article : Google Scholar : PubMed/NCBI

173 

Sadeghi A, Behdani M, Muyldermans S, Habibi-Anbouhi M and Kazemi-Lomedasht F: Development of a mono-specific anti-VEGF bivalent nanobody with extended plasma half-life for treatment of pathologic neovascularization. Drug Test Anal. 12:92–100. 2020. View Article : Google Scholar

174 

Budi HS, Ahmad FN, Achmad H, Ansari MJ, Mikhailova MV, Suksatan W, Chupradit S, Shomali N and Marofi F: Human epidermal growth factor receptor 2 (HER2)-specific chimeric antigen receptor (CAR) for tumor immunotherapy; recent progress. Stem Cell Res Ther. 13:402022. View Article : Google Scholar : PubMed/NCBI

175 

Li H, Zhong D, Luo H, Shi W, Xie S, Qiang H, Zhu L, Gao L, Liu J, Sun S, et al: Nanobody-based CAR T cells targeting intracellular tumor antigens. Biomed Pharmacother. 156:1139192022. View Article : Google Scholar : PubMed/NCBI

176 

Heitzeneder S, Bosse KR, Zhu Z, Zhelev D, Majzner RG, Radosevich MT, Dhingra S, Sotillo E, Buongervino S, Pascual-Pasto G, et al: GPC2-CAR T cells tuned for low antigen density mediate potent activity against neuroblastoma without toxicity. Cancer Cell. 40:53–69.e9. 2022. View Article : Google Scholar :

177 

Mailankody S, Jakubowiak AJ, Htut M, Costa LJ, Lee K, Ganguly S, Kaufman JL, Siegel DSD, Bensinger W, Cota M, et al: Orvacabtagene autoleucel (orva-cel), a B-cell maturation antigen (BCMA)-directed CAR T cell therapy for patients (pts) with relapsed/refractory multiple myeloma (RRMM): Update of the phase 1/2 EVOLVE study (NCT03430011). J Clin Oncol. 38:85042020. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Liu H, Liu X, Zhou X, Duan S, Huang X, Fei H and Kou Y: Application of nanobody‑based CAR‑T in tumor immunotherapy (Review). Int J Mol Med 56: 187, 2025.
APA
Liu, H., Liu, X., Zhou, X., Duan, S., Huang, X., Fei, H., & Kou, Y. (2025). Application of nanobody‑based CAR‑T in tumor immunotherapy (Review). International Journal of Molecular Medicine, 56, 187. https://doi.org/10.3892/ijmm.2025.5628
MLA
Liu, H., Liu, X., Zhou, X., Duan, S., Huang, X., Fei, H., Kou, Y."Application of nanobody‑based CAR‑T in tumor immunotherapy (Review)". International Journal of Molecular Medicine 56.5 (2025): 187.
Chicago
Liu, H., Liu, X., Zhou, X., Duan, S., Huang, X., Fei, H., Kou, Y."Application of nanobody‑based CAR‑T in tumor immunotherapy (Review)". International Journal of Molecular Medicine 56, no. 5 (2025): 187. https://doi.org/10.3892/ijmm.2025.5628
Copy and paste a formatted citation
x
Spandidos Publications style
Liu H, Liu X, Zhou X, Duan S, Huang X, Fei H and Kou Y: Application of nanobody‑based CAR‑T in tumor immunotherapy (Review). Int J Mol Med 56: 187, 2025.
APA
Liu, H., Liu, X., Zhou, X., Duan, S., Huang, X., Fei, H., & Kou, Y. (2025). Application of nanobody‑based CAR‑T in tumor immunotherapy (Review). International Journal of Molecular Medicine, 56, 187. https://doi.org/10.3892/ijmm.2025.5628
MLA
Liu, H., Liu, X., Zhou, X., Duan, S., Huang, X., Fei, H., Kou, Y."Application of nanobody‑based CAR‑T in tumor immunotherapy (Review)". International Journal of Molecular Medicine 56.5 (2025): 187.
Chicago
Liu, H., Liu, X., Zhou, X., Duan, S., Huang, X., Fei, H., Kou, Y."Application of nanobody‑based CAR‑T in tumor immunotherapy (Review)". International Journal of Molecular Medicine 56, no. 5 (2025): 187. https://doi.org/10.3892/ijmm.2025.5628
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team