Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
November-2025 Volume 56 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2025 Volume 56 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Purchase PDF
Review

Function of epigenetic modifications in wound healing and potential therapies (Review)

  • Authors:
    • Jing Cheng
    • Weiwei Qian
    • Fang Chen
    • Xingqin Liu
    • Min Fu
    • Wei Cao
    • Yue Zhou
  • View Affiliations / Copyright

    Affiliations: Emergency Department, Shangjinnanfu Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 611730, P.R. China, Party Committee Office, Shangjinnanfu Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 611730, P.R. China
  • Article Number: 190
    |
    Published online on: September 9, 2025
       https://doi.org/10.3892/ijmm.2025.5631
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Wound healing is a highly coordinated physiological process, which is essential for restoring the structural and functional integrity of damaged tissues. The present review explores the multifaceted roles of epigenetic modifications in wound healing and their potential as therapeutic targets. Epigenetic mechanisms, including DNA methylation, histone modifications, regulation by non‑coding RNAs (ncRNAs) and RNA methylation, influence the speed and quality of wound repair by regulating gene expression, cell function and intercellular signaling. During the hemostasis phase, DNA methylation of genes such as platelet endothelial aggregation receptor 1 can impact platelet function, while histone methylation and acetylation serve critical roles in modulating inflammation and fibroblast activation. ncRNAs, such as microRNAs and long ncRNAs, regulate cell proliferation, collagen deposition and scar formation. N6‑methyladenosine modifications, a type of RNA methylation, impact autophagy and fibrosis through their interaction with YTH domain family proteins. Key epigenetic regulators influence wound healing outcomes, providing valuable insights for the development of novel therapeutic strategies. However, challenges remain in translating these findings into clinical applications due to the complexity of epigenetic networks and the need for precise regulatory tools. Future research should focus on elucidating the cell‑specific and spatiotemporal regulatory mechanisms of epigenetic modifications in wound healing, and exploring their potential as therapeutic targets for reducing scar formation and preventing chronic wounds.
View Figures

Figure 1

Main epigenetic modifications and
their mechanism. Epigenetics studies heritable changes in gene
expression and cellular phenotypes that occur independently of DNA
sequence alterations. Key mechanisms include DNA methylation,
histone modifications (such as methylation and acetylation),
non-coding RNA functions (including competing endogenous RNAs), RNA
modifications (affecting stability and degradation), and processes
influencing translation efficiency, nucleocytoplasmic transport and
alternative splicing. These mechanisms collectively shape dynamic
epigenetic landscapes, influencing chromatin structure,
transcriptional accessibility, and cellular identity and function
in response to environmental cues.

Figure 2

Pathological mechanisms underlying
diabetic ulcer formation. Chronic hyperglycemia drives a
self-perpetuating cycle of tissue damage through several
interconnected pathways: i) Sustained hyperglycemia induces
microvascular and neuropathic impairments, leading to neurovascular
injury; ii) chronic inflammation, dysregulated epigenetically,
exacerbates tissue damage; iii) neurovascular injury compromises
perfusion and sensory feedback; iv) decreased immune function
impairs macrophage polarization and neutrophil extracellular trap
formation, facilitating persistent infections; and v) persistent
infections are promoted by biofilm formation in immunocompromised
tissue. Collectively, these processes establish a pathological
microenvironment resistant to standard therapies, contributing to
the 15–25% lifetime amputation risk in diabetic patients.
View References

1 

Baker P, Huang C, Radi R, Moll SB, Jules E and Arbiser JL: Skin barrier function: The interplay of physical, chemical, and immunologic properties. Cells. 12:27452023. View Article : Google Scholar : PubMed/NCBI

2 

Zhang C, Merana GR, Harris-Tryon T and Scharschmidt TC: Skin immunity: Dissecting the complex biology of our Body's outer barrier. Mucosal Immunol. 15:551–561. 2022. View Article : Google Scholar : PubMed/NCBI

3 

Hsu YC and Fuchs E: Building and Maintaining the Skin. Cold Spring Harb Perspect Biol. 14:a0408402022. View Article : Google Scholar : PubMed/NCBI

4 

Harris-Tryon TA and Grice EA: Microbiota and maintenance of skin barrier function. Science. 376:940–945. 2022. View Article : Google Scholar : PubMed/NCBI

5 

Woodby B, Penta K, Pecorelli A, Lila MA and Valacchi G: Skin Health from the inside out. Annu Rev Food Sci Technol. 11:235–254. 2020. View Article : Google Scholar : PubMed/NCBI

6 

Talbott HE, Mascharak S, Griffin M, Wan DC and Longaker MT: Wound healing, fibroblast heterogeneity, and fibrosis. Cell Stem Cell. 29:1161–1180. 2022. View Article : Google Scholar : PubMed/NCBI

7 

Uberoi A, McCready-Vangi A and Grice EA: The wound microbiota: Microbial mechanisms of impaired wound healing and infection. Nat Rev Microbiol. 22:507–521. 2024. View Article : Google Scholar : PubMed/NCBI

8 

Peña OA and Martin P: Cellular and molecular mechanisms of skin wound healing. Nat Rev Mol Cell Biol. 25:599–616. 2024. View Article : Google Scholar : PubMed/NCBI

9 

Smith J and Rai V: Novel factors regulating proliferation, migration, and differentiation of fibroblasts, keratinocytes, and vascular smooth muscle cells during wound healing. Biomedicines. 12:19392024. View Article : Google Scholar : PubMed/NCBI

10 

Jeschke MG, Wood FM, Middelkoop E, Bayat A, Teot L, Ogawa R and Gauglitz GG: Scars. Nat Rev Dis Primers. 9:642023. View Article : Google Scholar : PubMed/NCBI

11 

Yu FSX, Lee PSY, Yang L, Gao N, Zhang Y, Ljubimov AV, Yang E, Zhou Q and Xie L: The impact of sensory neuropathy and inflammation on epithelial wound healing in diabetic corneas. Prog Retin Eye Res. 89:1010392022. View Article : Google Scholar : PubMed/NCBI

12 

Canchy L, Kerob D, Demessant A and Amici JM: Wound healing and microbiome, an unexpected relationship. J Eur Acad Dermatol Venereol. 37 (Suppl 3):S7–S15. 2023. View Article : Google Scholar

13 

Lacina L, Kolář M, Pfeiferová L, Gál P and Smetana K: Wound healing: Insights into autoimmunity, ageing, and cancer ecosystems through inflammation and IL-6 modulation. Front Immunol. 15:14035702024. View Article : Google Scholar : PubMed/NCBI

14 

Wen Q, Liu D, Wang X, Zhang Y, Fang S, Qiu X and Chen Q: A systematic review of ozone therapy for treating chronically refractory wounds and ulcers. Int Wound J. 19:853–870. 2022. View Article : Google Scholar : PubMed/NCBI

15 

Liu Y, Liu Y, He W, Mu X, Wu X, Deng J and Nie X: Fibroblasts: Immunomodulatory factors in refractory diabetic wound healing. Front Immunol. 13:9182232022. View Article : Google Scholar : PubMed/NCBI

16 

Martinengo L, Olsson M, Bajpai R, Soljak M, Upton Z, Schmidtchen A, Car J and Järbrink K: Prevalence of chronic wounds in the general population: Systematic review and meta-analysis of observational studies. Ann Epidemiol. 29:8–15. 2019. View Article : Google Scholar : PubMed/NCBI

17 

Luo Y, Liu C, Li C, Jin M, Pi L and Jin Z: The incidence of lower extremity amputation and its associated risk factors in patients with diabetic foot ulcers: A meta-analysis. Int Wound J. 21:e149312024. View Article : Google Scholar : PubMed/NCBI

18 

Yao Y, Chen L and Qian Y: Age characteristics of patients with type 2 diabetic foot ulcers and predictive risk factors for lower limb amputation: A Population-based retrospective study. J Diabetes Res. 2024:23803372024. View Article : Google Scholar : PubMed/NCBI

19 

Kapp S, Miller C and Santamaria N: The quality of life of people who have chronic wounds and who self-treat. J Clin Nurs. 27:182–192. 2018. View Article : Google Scholar : PubMed/NCBI

20 

Yi SV: Epigenetics research in evolutionary biology: Perspectives on timescales and mechanisms. Mol Biol Evol. 41:msae1702024. View Article : Google Scholar : PubMed/NCBI

21 

Martin CL, Ghastine L, Lodge EK, Dhingra R and Ward-Caviness CK: Understanding health inequalities through the lens of social epigenetics. Annu Rev Public Health. 43:235–254. 2022. View Article : Google Scholar : PubMed/NCBI

22 

Peixoto P, Cartron PF, Serandour AA and Hervouet E: From 1957 to nowadays: A brief history of epigenetics. Int J Mol Sci. 21:75712020. View Article : Google Scholar : PubMed/NCBI

23 

Chen LL and Kim VN: Small and long non-coding RNAs: Past, present, and future. Cell. 187:6451–6485. 2024. View Article : Google Scholar : PubMed/NCBI

24 

Cedar H and Bergman Y: Linking DNA methylation and histone modification: Patterns and paradigms. Nat Rev Genet. 10:295–304. 2009. View Article : Google Scholar : PubMed/NCBI

25 

Wiener D and Schwartz S: The epitranscriptome beyond m6A. Nat Rev Genet. 22:119–131. 2021. View Article : Google Scholar : PubMed/NCBI

26 

Bates SE: Epigenetic therapies for cancer. N Engl J Med. 383:650–663. 2020. View Article : Google Scholar : PubMed/NCBI

27 

Hogg SJ, Beavis PA, Dawson MA and Johnstone RW: Targeting the epigenetic regulation of antitumour immunity. Nat Rev Drug Discov. 19:776–800. 2020. View Article : Google Scholar : PubMed/NCBI

28 

Plutzky J: Epigenetic therapeutics for cardiovascular disease: Writing, erasing, reading, and maybe forgetting. JAMA. 323:1557–1558. 2020. View Article : Google Scholar : PubMed/NCBI

29 

Nativio R, Lan Y, Donahue G, Sidoli S, Berson A, Srinivasan AR, Shcherbakova O, Amlie-Wolf A, Nie J, Cui X, et al: An integrated multi-omics approach identifies epigenetic alterations associated with Alzheimer's disease. Nat Genet. 52:1024–1035. 2020. View Article : Google Scholar : PubMed/NCBI

30 

Lucas MC and Novoa EM: Long-read sequencing in the era of epigenomics and epitranscriptomics. Nat Methods. 20:25–29. 2023. View Article : Google Scholar : PubMed/NCBI

31 

Zhang Q, Dong L, Gong S and Wang T: Unraveling the landscape of m6A RNA methylation in wound healing and scars. Cell Death Discov. 10:4582024. View Article : Google Scholar : PubMed/NCBI

32 

Singh K, Rustagi Y, Abouhashem AS, Tabasum S, Verma P, Hernandez E, Pal D, Khona DK, Mohanty SK, Kumar M, et al: Genome-wide DNA hypermethylation opposes healing in patients with chronic wounds by impairing epithelial-mesenchymal transition. J Clin Invest. 132:e1572792022. View Article : Google Scholar : PubMed/NCBI

33 

Luan A, Hu MS, Leavitt T, Brett EA, Wang KC, Longaker MT and Wan DC: Noncoding RNAs in wound healing: A new and vast frontier. Adv Wound Care (New Rochelle). 7:19–27. 2018. View Article : Google Scholar : PubMed/NCBI

34 

Luo G, Jing X, Yang S, Peng D, Dong J, Li L, Reinach PS and Yan D: DNA methylation regulates corneal epithelial wound healing by targeting miR-200a and CDKN2B. Invest Ophthalmol Vis Sci. 60:650–660. 2019. View Article : Google Scholar : PubMed/NCBI

35 

Zhou R, Wang Q, Zeng S, Liang Y and Wang D: METTL14-mediated N6-methyladenosine modification of Col17a1/Itgα6/Itgβ4 governs epidermal homeostasis. J Dermatol Sci. 112:138–147. 2023. View Article : Google Scholar : PubMed/NCBI

36 

Hong YK, Chang YH, Lin YC, Chen B, Guevara BEK and Hsu CK: Inflammation in wound healing and pathological scarring. Adv Wound Care (New Rochelle). 12:288–300. 2023. View Article : Google Scholar : PubMed/NCBI

37 

Stevenson AW, Melton PE, Moses EricK, Wallace HJ, Wood FM, Rea S, Danielsen PL, Alghamdi M, Hortin N, Borowczyk J, et al: A Methylome and Transcriptome analysis of normal human scar cells reveals a role for FOXF2 in scar maintenance. J Invest Dermatol. 142:1489–1498.e12. 2022. View Article : Google Scholar : PubMed/NCBI

38 

Lin CX, Chen ZJ, Peng QL, Xiang KR, Xiao DQ, Chen RX, Cui T, Huang YS and Liu HW: The m6A-methylated mRNA pattern and the activation of the Wnt signaling pathway under the hyper-m6A-modifying condition in the keloid. Front Cell Dev Biol. 10:9473372022. View Article : Google Scholar : PubMed/NCBI

39 

Su L and Han J: Non-coding RNAs in hypertrophic scars and keloids: Current research and clinical relevance: A review. Int J Biol Macromol. 256:1283342024. View Article : Google Scholar : PubMed/NCBI

40 

Tao Y, Zhang Q, Wang H, Yang X and Mu H: Alternative splicing and related RNA binding proteins in human health and disease. Signal Transduct Target Ther. 9:262024. View Article : Google Scholar : PubMed/NCBI

41 

Zhu ZM, Huo FC, Zhang J, Shan HJ and Pei DS: Crosstalk between m6A modification and alternative splicing during cancer progression. Clin Transl Med. 13:e14602023. View Article : Google Scholar : PubMed/NCBI

42 

Chen Y, Hong T, Wang S, Mo J, Tian T and Zhou X: Epigenetic modification of nucleic acids: From basic studies to medical applications. Chem Soc Rev. 46:2844–2872. 2017. View Article : Google Scholar : PubMed/NCBI

43 

Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, Weng X, Chen K, Shi H and He C: N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell. 161:1388–1399. 2015. View Article : Google Scholar : PubMed/NCBI

44 

Chen Y, Ren B, Yang J, Wang H, Yang G, Xu R, You L and Zhao Y: The role of histone methylation in the development of digestive cancers: A potential direction for cancer management. Signal Transduct Target Ther. 5:1432020. View Article : Google Scholar : PubMed/NCBI

45 

Lorzadeh A, Romero-Wolf M, Goel A and Jadhav U: Epigenetic regulation of intestinal stem cells and disease: A balancing Act of DNA and histone methylation. Gastroenterology. 160:2267–2282. 2021. View Article : Google Scholar : PubMed/NCBI

46 

Venkatesh S and Workman JL: Histone exchange, chromatin structure and the regulation of transcription. Nat Rev Mol Cell Biol. 16:178–189. 2015. View Article : Google Scholar : PubMed/NCBI

47 

Bannister AJ and Kouzarides T: Regulation of chromatin by histone modifications. Cell Res. 21:381–395. 2011. View Article : Google Scholar : PubMed/NCBI

48 

Li Z, Gadue P, Chen K, Jiao Y, Tuteja G, Schug J, Li W and Kaestner KH: Foxa2 and H2A.Z mediate nucleosome depletion during embryonic stem cell differentiation. Cell. 151:1608–1616. 2012. View Article : Google Scholar : PubMed/NCBI

49 

Jambhekar A, Dhall A and Shi Y: Roles and regulation of histone methylation in animal development. Nat Rev Mol Cell Biol. 20:625–641. 2019. View Article : Google Scholar : PubMed/NCBI

50 

Greer EL and Shi Y: Histone methylation: A dynamic mark in health, disease and inheritance. Nat Rev Genet. 13:343–357. 2012. View Article : Google Scholar : PubMed/NCBI

51 

Martin C and Zhang Y: The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol. 6:838–849. 2005. View Article : Google Scholar : PubMed/NCBI

52 

Lachner M and Jenuwein T: The many faces of histone lysine methylation. Curr Opin Cell Biol. 14:286–298. 2002. View Article : Google Scholar : PubMed/NCBI

53 

Klose RJ and Zhang Y: Regulation of histone methylation by demethylimination and demethylation. Nat Rev Mol Cell Biol. 8:307–318. 2007. View Article : Google Scholar : PubMed/NCBI

54 

Lin Z, Rong B, Lyu R, Zheng Y, Chen Y, Yan J, Wu M, Gao X, Tang F, Lan F and Tong MH: SETD1B-mediated broad H3K4me3 controls proper temporal patterns of gene expression critical for spermatid development. Cell Res. 35:345–361. 2025. View Article : Google Scholar : PubMed/NCBI

55 

Yuan F, He C, Gong X, Zeng G, Qin X, Deng Z, Shen X and Hu Y: H3K36me3 regulates subsets of photosynthesis genes in Sorghum bicolor potentially by counteracting H3K27me3 or H2A.Z. Plant Physiol Biochem. 223:1098312025. View Article : Google Scholar : PubMed/NCBI

56 

Chiang CY, Fan S, Zheng H, Guo W, Zheng Z, Sun Y, Zhong C, Zeng J, Li S, Zhang M, et al: Methylation of KRAS by SETD7 promotes KRAS degradation in non-small cell lung cancer. Cell Rep. 42:1130032023. View Article : Google Scholar : PubMed/NCBI

57 

Bichmann M, Prat Oriol N, Ercan-Herbst E, Schöndorf DC, Gomez Ramos B, Schwärzler V, Neu M, Schlüter A, Wang X, Jin L, et al: SETD7-mediated monomethylation is enriched on soluble Tau in Alzheimer's disease. Mol Neurodegener. 16:462021. View Article : Google Scholar : PubMed/NCBI

58 

Guo Y, Zhao S and Wang GG: Polycomb gene silencing mechanisms: PRC2 chromatin targeting, H3K27me3 ‘Readout’, and phase separation-based compaction. Trends Genet. 37:547–565. 2021. View Article : Google Scholar : PubMed/NCBI

59 

Klemm SL, Shipony Z and Greenleaf WJ: Chromatin accessibility and the regulatory epigenome. Nat Rev Genet. 20:207–220. 2019. View Article : Google Scholar : PubMed/NCBI

60 

Lawrence M, Daujat S and Schneider R: Lateral thinking: How histone modifications regulate gene expression. Trends Genet. 32:42–56. 2016. View Article : Google Scholar : PubMed/NCBI

61 

Michalak EM, Burr ML, Bannister AJ and Dawson MA: The roles of DNA, RNA and histone methylation in ageing and cancer. Nat Rev Mol Cell Biol. 20:573–589. 2019. View Article : Google Scholar : PubMed/NCBI

62 

Cali CP, Park DS and Lee EB: Targeted DNA methylation of neurodegenerative disease genes via homology directed repair. Nucleic Acids Res. 47:11609–11622. 2019.PubMed/NCBI

63 

Shi Y, Zhang H, Huang S, Yin L, Wang F, Luo P and Huang H: Epigenetic regulation in cardiovascular disease: Mechanisms and advances in clinical trials. Signal Transduct Target Ther. 7:2002022. View Article : Google Scholar : PubMed/NCBI

64 

Gujral P, Mahajan V, Lissaman AC and Ponnampalam AP: Histone acetylation and the role of histone deacetylases in normal cyclic endometrium. Reprod Biol Endocrinol. 18:842020. View Article : Google Scholar : PubMed/NCBI

65 

Shvedunova M and Akhtar A: Modulation of cellular processes by histone and non-histone protein acetylation. Nat Rev Mol Cell Biol. 23:329–349. 2022. View Article : Google Scholar : PubMed/NCBI

66 

Allfrey VG, Faulkner R and Mirsky AE: Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci USA. 51:786–794. 1964. View Article : Google Scholar : PubMed/NCBI

67 

Jaffe IZ: Histone Acetyltransferases in smooth muscle cell phenotype switching: Redundant no longer. Circulation. 145:1738–1740. 2022. View Article : Google Scholar : PubMed/NCBI

68 

Chen Q, Yang B, Liu X, Zhang XD, Zhang L and Liu T: Histone acetyltransferases CBP/p300 in tumorigenesis and CBP/p300 inhibitors as promising novel anticancer agents. Theranostics. 12:4935–4948. 2022. View Article : Google Scholar : PubMed/NCBI

69 

Yuan H and Marmorstein R: Histone acetyltransferases: Rising ancient counterparts to protein kinases. Biopolymers. 99:98–111. 2013. View Article : Google Scholar : PubMed/NCBI

70 

Yiew KH, Chatterjee TK, Hui DY and Weintraub NL: Histone deacetylases and cardiometabolic diseases. Arterioscler Thromb Vasc Biol. 35:1914–1919. 2015. View Article : Google Scholar : PubMed/NCBI

71 

Barneda-Zahonero B and Parra M: Histone deacetylases and cancer. Mol Oncol. 6:579–589. 2012. View Article : Google Scholar : PubMed/NCBI

72 

Seto E and Yoshida M: Erasers of histone acetylation: The histone deacetylase enzymes. Cold Spring Harb Perspect Biol. 6:a0187132014. View Article : Google Scholar : PubMed/NCBI

73 

Liebner T, Kilic S, Walter J, Aibara H, Narita T and Choudhary C: Acetylation of histones and non-histone proteins is not a mere consequence of ongoing transcription. Nat Commun. 15:49622024. View Article : Google Scholar : PubMed/NCBI

74 

Kurat CF, Lambert JP, Petschnigg J, Friesen H, Pawson T, Rosebrock A, Gingras AC, Fillingham J and Andrews B: Cell cycle-regulated oscillator coordinates core histone gene transcription through histone acetylation. Proc Natl Acad Sci USA. 111:14124–14129. 2014. View Article : Google Scholar : PubMed/NCBI

75 

Sutendra G, Kinnaird A, Dromparis P, Paulin R, Stenson TH, Haromy A, Hashimoto K, Zhang N, Flaim E and Michelakis ED: A nuclear pyruvate dehydrogenase complex is important for the generation of acetyl-CoA and histone acetylation. Cell. 158:84–97. 2014. View Article : Google Scholar : PubMed/NCBI

76 

Zhou W, Zhao T, Du J, Ji G, Li X, Ji S, Tian W, Wang X and Hao A: TIGAR promotes neural stem cell differentiation through acetyl-CoA-mediated histone acetylation. Cell Death Dis. 10:1982019. View Article : Google Scholar : PubMed/NCBI

77 

Kumar V, Thakur JK and Prasad M: Histone acetylation dynamics regulating plant development and stress responses. Cell Mol Life Sci. 78:4467–4486. 2021. View Article : Google Scholar : PubMed/NCBI

78 

Liu X, Guo C, Leng T, Fan Z, Mai J, Chen J, Xu J, Li Q, Jiang B, Sai K, et al: Differential regulation of H3K9/H3K14 acetylation by small molecules drives neuron-fate-induction of glioma cell. Cell Death Dis. 14:1422023. View Article : Google Scholar : PubMed/NCBI

79 

Cui M, Cheng C and Zhang L: High-throughput proteomics: A methodological mini-review. Lab Invest. 102:1170–1181. 2022. View Article : Google Scholar : PubMed/NCBI

80 

Sidoli S, Lopes M, Lund PJ, Goldman N, Fasolino M, Coradin M, Kulej K, Bhanu NV, Vahedi G and Garcia BA: A mass spectrometry-based assay using metabolic labeling to rapidly monitor chromatin accessibility of modified histone proteins. Sci Rep. 9:136132019. View Article : Google Scholar : PubMed/NCBI

81 

Yao W, Hu X and Wang X: Crossing epigenetic frontiers: The intersection of novel histone modifications and diseases. Signal Transduct Target Ther. 9:2322024. View Article : Google Scholar : PubMed/NCBI

82 

Moore LD, Le T and Fan G: DNA methylation and its basic function. Neuropsychopharmacology. 38:23–38. 2013. View Article : Google Scholar : PubMed/NCBI

83 

Almatarneh MH, Kayed GG, Abbad SSA, Alsunaidi ZHA, Al-Sheraideh MS and Zhao Y: Mechanistic study on DNA mutation of the cytosine methylation reaction at C5 position. Arabian J Chemistry. 15:1039562022. View Article : Google Scholar

84 

Li E and Zhang Y: DNA methylation in mammals. Cold Spring Harb Perspect Biol. 6:a0191332014. View Article : Google Scholar : PubMed/NCBI

85 

Meng H, Cao Y, Qin J, Song X, Zhang Q, Shi Y and Cao L: DNA methylation, its mediators and genome integrity. Int J Biol Sci. 11:604–617. 2015. View Article : Google Scholar : PubMed/NCBI

86 

Angeloni A and Bogdanovic O: Enhancer DNA methylation: Implications for gene regulation. Essays Biochem. 63:707–715. 2019. View Article : Google Scholar : PubMed/NCBI

87 

Feinberg AP, Cui H and Ohlsson R: DNA methylation and genomic imprinting: Insights from cancer into epigenetic mechanisms. Semin Cancer Biol. 12:389–398. 2002. View Article : Google Scholar : PubMed/NCBI

88 

Law JA and Jacobsen SE: Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet. 11:204–220. 2010. View Article : Google Scholar : PubMed/NCBI

89 

Yan R, Cheng X, Gu C, Xu Y, Long X, Zhai J, Sun F, Qian J, Du Y, Wang H, et al: Dynamics of DNA hydroxymethylation and methylation during mouse embryonic and germline development. Nat Genet. 55:130–143. 2023. View Article : Google Scholar : PubMed/NCBI

90 

Nishiyama A and Nakanishi M: Navigating the DNA methylation landscape of cancer. Trends Genet. 37:1012–1027. 2021. View Article : Google Scholar : PubMed/NCBI

91 

Kausar S, Abbas MN and Cui H: A review on the DNA methyltransferase family of insects: Aspect and prospects. Int J Biol Macromol. 186:289–302. 2021. View Article : Google Scholar : PubMed/NCBI

92 

Espada J, Ballestar E, Fraga MF, Villar-Garea A, Juarranz A, Stockert JC, Robertson KD, Fuks F and Esteller M: Human DNA methyltransferase 1 is required for maintenance of the histone H3 modification pattern. J Biol Chem. 279:37175–37184. 2004. View Article : Google Scholar : PubMed/NCBI

93 

Okano M, Bell DW, Haber DA and Li E: DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 99:247–257. 1999. View Article : Google Scholar : PubMed/NCBI

94 

Kohli RM and Zhang Y: TET enzymes, TDG and the dynamics of DNA demethylation. Nature. 502:472–479. 2013. View Article : Google Scholar : PubMed/NCBI

95 

Shi J, Xu J, Chen YE, Li JS, Cui Y, Shen L, Li JJ and Li W: The concurrence of DNA methylation and demethylation is associated with transcription regulation. Nat Commun. 12:52852021. View Article : Google Scholar : PubMed/NCBI

96 

Stefansson OA, Sigurpalsdottir BD, Rognvaldsson S, Halldorsson GH, Juliusson K, Sveinbjornsson G, Gunnarsson B, Beyter D, Jonsson H, Gudjonsson SA, et al: The correlation between CpG methylation and gene expression is driven by sequence variants. Nat Genet. 56:1624–1631. 2024. View Article : Google Scholar : PubMed/NCBI

97 

Ishidoya M, Fujita T, Tasaka S and Fujii H: Real-time MBDi-RPA using methyl-CpG binding protein 2: A real-time detection method for simple and rapid estimation of CpG methylation status. Anal Chim Acta. 1302:3424862024. View Article : Google Scholar : PubMed/NCBI

98 

Esteller M: CpG island hypermethylation and tumor suppressor genes: A booming present, a brighter future. Oncogene. 21:5427–5440. 2002. View Article : Google Scholar : PubMed/NCBI

99 

Cilleros-Portet A, Lesseur C, Marí S, Cosin-Tomas M, Lozano M, Irizar A, Burt A, García-Santisteban I, Garrido-Martín D, Escaramís G, et al: Potentially causal associations between placental DNA methylation and schizophrenia and other neuropsychiatric disorders. Nat Commun. 16:24312025. View Article : Google Scholar : PubMed/NCBI

100 

Hop PJ, Zwamborn RAJ, Hannon E, Shireby GL, Nabais MF, Walker EM, van Rheenen W, van Vugt JJFA, Dekker AM, Westeneng HJ, et al: Genome-wide study of DNA methylation shows alterations in metabolic, inflammatory, and cholesterol pathways in ALS. Sci Transl Med. 14:eabj02642022. View Article : Google Scholar : PubMed/NCBI

101 

Li X, Wang J, Wang L, Gao Y, Feng G, Li G, Zou J, Yu M, Li YF, Liu C, et al: Lipid metabolism dysfunction induced by age-dependent DNA methylation accelerates aging. Signal Transduct Target Ther. 7:1622022. View Article : Google Scholar : PubMed/NCBI

102 

McAllan L, Baranasic D, Villicaña S, Brown S, Zhang W, Lehne B, Adamo M, Jenkinson A, Elkalaawy M, Mohammadi B, et al: Integrative genomic analyses in adipocytes implicate DNA methylation in human obesity and diabetes. Nat Commun. 14:27842023. View Article : Google Scholar : PubMed/NCBI

103 

Yang Y, Chen Y, Xu S, Guo X, Jia G, Ping J, Shu X, Zhao T, Yuan F, Wang G, et al: Integrating muti-omics data to identify tissue-specific DNA methylation biomarkers for cancer risk. Nat Commun. 15:60712024. View Article : Google Scholar : PubMed/NCBI

104 

Eddy SR: Non-coding RNA genes and the modern RNA world. Nat Rev Genet. 2:919–929. 2001. View Article : Google Scholar : PubMed/NCBI

105 

Chauvier A and Walter NG: Regulation of bacterial gene expression by non-coding RNA: It is all about time! Cell Chem Biol. 31:71–85. 2024. View Article : Google Scholar : PubMed/NCBI

106 

Fierro C, Gatti V, La Banca V, De Domenico S, Scalera S, Corleone G, Fanciulli M, De Nicola F, Mauriello A, Montanaro M, et al: The long non-coding RNA NEAT1 is a ΔNp63 target gene modulating epidermal differentiation. Nat Commun. 14:37952023. View Article : Google Scholar : PubMed/NCBI

107 

Soutschek M and Schratt G: Non-coding RNA in the wiring and remodeling of neural circuits. Neuron. 111:2140–2154. 2023. View Article : Google Scholar : PubMed/NCBI

108 

Qi Y, Ding L, Zhang S, Yao S, Ong J, Li Y, Wu H and Du P: A plant immune protein enables broad antitumor response by rescuing microRNA deficiency. Cell. 185:1888–1904.e24. 2022. View Article : Google Scholar : PubMed/NCBI

109 

Nemeth K, Bayraktar R, Ferracin M and Calin GA: Non-coding RNAs in disease: From mechanisms to therapeutics. Nat Rev Genet. 25:211–232. 2024. View Article : Google Scholar : PubMed/NCBI

110 

Inamura K: Major tumor suppressor and oncogenic non-coding RNAs: Clinical relevance in lung cancer. Cells. 6:122017. View Article : Google Scholar : PubMed/NCBI

111 

Simon MD, Pinter SF, Fang R, Sarma K, Rutenberg-Schoenberg M, Bowman SK, Kesner BA, Maier VK, Kingston RE and Lee JT: High-resolution Xist binding maps reveal two-step spreading during X-chromosome inactivation. Nature. 504:465–469. 2013. View Article : Google Scholar : PubMed/NCBI

112 

Kwon Y and Chung YD: RNA-mediated regulation of chromatin structures. Genes Genomics. 42:609–617. 2020. View Article : Google Scholar : PubMed/NCBI

113 

Zhang X, Zuo X, Yang B, Li Z, Xue Y, Zhou Y, Huang J, Zhao X, Zhou J, Yan Y, et al: MicroRNA directly enhances mitochondrial translation during muscle differentiation. Cell. 158:607–619. 2014. View Article : Google Scholar : PubMed/NCBI

114 

Fabian MR, Sonenberg N and Filipowicz W: Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem. 79:351–379. 2010. View Article : Google Scholar : PubMed/NCBI

115 

Liu G, Kim J, Nguyen N, Zhou L and Dean A: Long noncoding RNA GATA2AS influences human erythropoiesis by transcription factor and chromatin landscape modulation. Blood. 143:2300–2313. 2024. View Article : Google Scholar : PubMed/NCBI

116 

Shivdasani RA: MicroRNAs: Regulators of gene expression and cell differentiation. Blood. 108:3646–3653. 2006. View Article : Google Scholar : PubMed/NCBI

117 

Gregory RI and Shiekhattar R: MicroRNA biogenesis and cancer. Cancer Res. 65:3509–3512. 2005. View Article : Google Scholar : PubMed/NCBI

118 

Filipowicz W, Jaskiewicz L, Kolb FA and Pillai RS: Post-transcriptional gene silencing by siRNAs and miRNAs. Curr Opin Struct Biol. 15:331–341. 2005. View Article : Google Scholar : PubMed/NCBI

119 

Zhou Y, Kong Y, Fan W, Tao T, Xiao Q, Li N and Zhu X: Principles of RNA methylation and their implications for biology and medicine. Biomed Pharmacother. 131:1107312020. View Article : Google Scholar : PubMed/NCBI

120 

He PC and He C: m6A RNA methylation: from mechanisms to therapeutic potential. EMBO J. 40:e1059772021. View Article : Google Scholar : PubMed/NCBI

121 

Yang Y, Hsu PJ, Chen YS and Yang YG: Dynamic transcriptomic m6A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Res. 28:616–624. 2018. View Article : Google Scholar : PubMed/NCBI

122 

Zhang W, Qian Y and Jia G: The detection and functions of RNA modification m6A based on m6A writers and erasers. J Biol Chem. 297:1009732021. View Article : Google Scholar : PubMed/NCBI

123 

Wang MK, Gao CC and Yang YG: Emerging roles of RNA methylation in development. Acc Chem Res. 56:3417–3427. 2023. View Article : Google Scholar : PubMed/NCBI

124 

Sun T, Xu Y, Xiang Y, Ou J, Soderblom EJ and Diao Y: Crosstalk between RNA m6A and DNA methylation regulates transposable element chromatin activation and cell fate in human pluripotent stem cells. Nat Genet. 55:1324–1335. 2023. View Article : Google Scholar : PubMed/NCBI

125 

Wang L, Hui H, Agrawal K, Kang Y, Li N, Tang R, Yuan J and Rana TM: m6A RNA methyltransferases METTL3/14 regulate immune responses to anti-PD-1 therapy. EMBO J. 39:e1045142020. View Article : Google Scholar : PubMed/NCBI

126 

Yang Y, Han W, Zhang A, Zhao M, Cong W, Jia Y, Wang D and Zhao R: Chronic corticosterone disrupts the circadian rhythm of CRH expression and m6A RNA methylation in the chicken hypothalamus. J Anim Sci Biotechnol. 13:292022. View Article : Google Scholar : PubMed/NCBI

127 

Zhao BS, Roundtree IA and He C: Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol. 18:31–42. 2017. View Article : Google Scholar : PubMed/NCBI

128 

Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia G, et al: N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 505:117–120. 2014. View Article : Google Scholar : PubMed/NCBI

129 

Li M, Ye J, Xia Y, Li M, Li G, Hu X, Su X, Wang D, Zhao X, Lu F, et al: METTL3 mediates chemoresistance by enhancing AML homing and engraftment via ITGA4. Leukemia. 36:2586–2595. 2022. View Article : Google Scholar : PubMed/NCBI

130 

Keller L, Xu W, Wang HX, Winblad B, Fratiglioni L and Graff C: The obesity related gene, FTO, interacts with APOE, and is associated with Alzheimer's disease risk: A prospective cohort study. J Alzheimers Dis. 23:461–469. 2011. View Article : Google Scholar : PubMed/NCBI

131 

Wang X, Wu R, Liu Y, Zhao Y, Bi Z, Yao Y, Liu Q, Shi H, Wang F and Wang Y: m6A mRNA methylation controls autophagy and adipogenesis by targeting Atg5 and Atg7. Autophagy. 16:1221–1235. 2020. View Article : Google Scholar : PubMed/NCBI

132 

Li X, Ma S, Deng Y, Yi P and Yu J: Targeting the RNA m6A modification for cancer immunotherapy. Mol Cancer. 21:762022. View Article : Google Scholar : PubMed/NCBI

133 

Pullmann R, Kim HH, Abdelmohsen K, Lal A, Martindale JL, Yang X and Gorospe M: Analysis of turnover and translation regulatory RNA-binding protein expression through binding to cognate mRNAs. Mol Cell Biol. 27:6265–6278. 2007. View Article : Google Scholar : PubMed/NCBI

134 

Masuda K, Kuwano Y, Nishida K and Rokutan K: General RBP expression in human tissues as a function of age. Ageing Res Rev. 11:423–431. 2012. View Article : Google Scholar : PubMed/NCBI

135 

Guo B, Dong R, Liang Y and Li M: Haemostatic materials for wound healing applications. Nat Rev Chem. 5:773–791. 2021. View Article : Google Scholar : PubMed/NCBI

136 

Brozovich FV, Nicholson CJ, Degen CV, Gao YZ, Aggarwal M and Morgan KG: Mechanisms of vascular smooth muscle contraction and the basis for pharmacologic treatment of smooth muscle disorders. Pharmacol Rev. 68:476–532. 2016. View Article : Google Scholar : PubMed/NCBI

137 

Ng F, Boucher S, Koh S, Sastry KSR, Chase L, Lakshmipathy U, Choong C, Yang Z, Vemuri MC, Rao MS and Tanavde V: PDGF, TGF-beta, and FGF signaling is important for differentiation and growth of mesenchymal stem cells (MSCs): Transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages. Blood. 112:295–307. 2008. View Article : Google Scholar : PubMed/NCBI

138 

Swieringa F, Spronk HMH, Heemskerk JWM and van der Meijden PEJ: Integrating platelet and coagulation activation in fibrin clot formation. Res Pract Thromb Haemost. 2:450–460. 2018. View Article : Google Scholar : PubMed/NCBI

139 

Sun J, Hua B, Livingston EW, Taves S, Johansen PB, Hoffman M, Ezban M, Monroe DM, Bateman TA and Monahan PE: Abnormal joint and bone wound healing in hemophilia mice is improved by extending factor IX activity after hemarthrosis. Blood. 129:2161–2171. 2017. View Article : Google Scholar : PubMed/NCBI

140 

Eming SA, Wynn TA and Martin P: Inflammation and metabolism in tissue repair and regeneration. Science. 356:1026–1030. 2017. View Article : Google Scholar : PubMed/NCBI

141 

de Oliveira S, Rosowski EE and Huttenlocher A: Neutrophil migration in infection and wound repair: Going forward in reverse. Nat Rev Immunol. 16:378–391. 2016. View Article : Google Scholar : PubMed/NCBI

142 

Papayannopoulos V: Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol. 18:134–147. 2018. View Article : Google Scholar : PubMed/NCBI

143 

Murray PJ and Wynn TA: Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 11:723–737. 2011. View Article : Google Scholar : PubMed/NCBI

144 

Pober JS and Sessa WC: Inflammation and the blood microvascular system. Cold Spring Harb Perspect Biol. 7:a0163452015. View Article : Google Scholar : PubMed/NCBI

145 

Patel S, Srivastava S, Singh MR and Singh D: Mechanistic insight into diabetic wounds: Pathogenesis, molecular targets and treatment strategies to pace wound healing. Biomed Pharmacother. 112:1086152019. View Article : Google Scholar : PubMed/NCBI

146 

Landén NX, Li D and Ståhle M: Transition from inflammation to proliferation: A critical step during wound healing. Cell Mol Life Sci. 73:3861–3885. 2016. View Article : Google Scholar : PubMed/NCBI

147 

Younesi FS, Miller AE, Barker TH, Rossi FMV and Hinz B: Fibroblast and myofibroblast activation in normal tissue repair and fibrosis. Nat Rev Mol Cell Biol. 25:617–638. 2024. View Article : Google Scholar : PubMed/NCBI

148 

Apte RS, Chen DS and Ferrara N: VEGF in signaling and disease: Beyond discovery and development. Cell. 176:1248–1264. 2019. View Article : Google Scholar : PubMed/NCBI

149 

Rousselle P, Braye F and Dayan G: Re-epithelialization of adult skin wounds: Cellular mechanisms and therapeutic strategies. Adv Drug Deliv Rev. 146:344–365. 2019. View Article : Google Scholar : PubMed/NCBI

150 

Usui ML, Mansbridge JN, Carter WG, Fujita M and Olerud JE: Keratinocyte migration, proliferation, and differentiation in chronic ulcers from patients with diabetes and normal wounds. J Histochem Cytochem. 56:687–696. 2008. View Article : Google Scholar : PubMed/NCBI

151 

Hattori N, Mochizuki S, Kishi K, Nakajima T, Takaishi H, D'Armiento J and Okada Y: MMP-13 plays a role in keratinocyte migration, angiogenesis, and contraction in mouse skin wound healing. Am J Pathol. 175:533–546. 2009. View Article : Google Scholar : PubMed/NCBI

152 

Dasari N, Jiang A, Skochdopole A, Chung J, Reece EM, Vorstenbosch J and Winocour S: Updates in diabetic wound healing, inflammation, and scarring. Semin Plast Surg. 35:153–158. 2021. View Article : Google Scholar : PubMed/NCBI

153 

Singh D, Rai V and Agrawal DK: Regulation of collagen I and collagen III in tissue injury and regeneration. Cardiol Cardiovasc Med. 7:5–16. 2023. View Article : Google Scholar : PubMed/NCBI

154 

Mescher AL: Macrophages and fibroblasts during inflammation and tissue repair in models of organ regeneration. Regeneration (Oxf). 4:39–53. 2017. View Article : Google Scholar : PubMed/NCBI

155 

Mathew-Steiner SS, Roy S and Sen CK: Collagen in wound healing. Bioengineering (Basel). 8:632021. View Article : Google Scholar : PubMed/NCBI

156 

Mishra T and Wairkar S: Pathogenesis, attenuation, and treatment strategies for keloid management. Tissue Cell. 94:1028002025. View Article : Google Scholar : PubMed/NCBI

157 

Mann CJ, Perdiguero E, Kharraz Y, Aguilar S, Pessina P, Serrano AL and Muñoz-Cánoves P: Aberrant repair and fibrosis development in skeletal muscle. Skelet Muscle. 1:212011. View Article : Google Scholar : PubMed/NCBI

158 

Avishai E, Yeghiazaryan K and Golubnitschaja O: Impaired wound healing: Facts and hypotheses for multi-professional considerations in predictive, preventive and personalised medicine. EPMA J. 8:23–33. 2017. View Article : Google Scholar : PubMed/NCBI

159 

Martin P, Pardo-Pastor C, Jenkins RG and Rosenblatt J: Imperfect wound healing sets the stage for chronic diseases. Science. 386:eadp2972024. View Article : Google Scholar

160 

Jiang H, Guo Y, Wang Q, Wang Y, Peng D, Fang Y, Yan L, Ruan Z, Zhang S, Zhao Y, et al: The dysfunction of complement and coagulation in diseases: The implications for the therapeutic interventions. MedComm (2020). 5:e7852024. View Article : Google Scholar : PubMed/NCBI

161 

Tomaiuolo M, Brass LF and Stalker TJ: Regulation of platelet activation and coagulation and its role in vascular injury and arterial thrombosis. Interv Cardiol Clin. 6:1–12. 2017.PubMed/NCBI

162 

Kapoor M and Appleton I: Wound healing: Abnormalities and future therapeutic targets. Curr Anaesthesia Crit Care. 16:88–93. 2005.

163 

Sim X, Poncz M, Gadue P and French DL: Understanding platelet generation from megakaryocytes: Implications for in vitro-derived platelets. Blood. 127:1227–1233. 2016. View Article : Google Scholar : PubMed/NCBI

164 

Stankiewicz MJ and Crispino JD: ETS2 and ERG promote megakaryopoiesis and synergize with alterations in GATA-1 to immortalize hematopoietic progenitor cells. Blood. 113:3337–3347. 2009. View Article : Google Scholar : PubMed/NCBI

165 

Jackers P, Szalai G, Moussa O and Watson DK: Ets-dependent regulation of target gene expression during megakaryopoiesis. J Biol Chem. 279:52183–52190. 2004. View Article : Google Scholar : PubMed/NCBI

166 

Heuston EF, Keller CA, Lichtenberg J, Giardine B, Anderson SM; NIH Intramural Sequencing Center, ; Hardison RC and Bodine DM: Establishment of regulatory elements during Erythro-megakaryopoiesis identifies hematopoietic lineage-commitment points. Epigenetics Chromatin. 11:222018. View Article : Google Scholar : PubMed/NCBI

167 

Izzi B, Gianfagna F, Yang WY, Cludts K, De Curtis A, Verhamme P, Di Castelnuovo A, Cerletti C, Donati MB, de Gaetano G, et al: Variation of PEAR1 DNA methylation influences platelet and leukocyte function. Clin Epigenetics. 11:1512019. View Article : Google Scholar : PubMed/NCBI

168 

Zhang R, Lu S, Yang X, Li M, Jia H, Liao J, Jing Q, Wu Y, Wang H, Xiao F, et al: miR-19a-3p downregulates tissue factor and functions as a potential therapeutic target for sepsis-induced disseminated intravascular coagulation. Biochem Pharmacol. 192:1146712021. View Article : Google Scholar : PubMed/NCBI

169 

Shi P, Tan A, Ma Y, Que L, Li C, Shao Y, Sun H, Li Y and Li J: miR-19a-3p enhances TGF-β1-induced cardiac fibroblast activation via targeting BAMBI. J Biomed Res. 39:171–183. 2024. View Article : Google Scholar : PubMed/NCBI

170 

Cánovas-Cervera I, Nacher-Sendra E, Osca-Verdegal R, Dolz-Andrés E, Beltrán-García J, Rodríguez-Gimillo M, Ferrando-Sánchez C, Carbonell N and García-Giménez JL: The intricate role of Non-coding RNAs in Sepsis-associated disseminated intravascular coagulation. Int J Mol Sci. 24:25822023. View Article : Google Scholar : PubMed/NCBI

171 

Wang G, Chai B and Yang L: MiR-128 and miR-125 regulate expression of coagulation Factor IX gene with nonsense mutation by repressing nonsense-mediated mRNA decay. Biomed Pharmacother. 80:331–337. 2016. View Article : Google Scholar : PubMed/NCBI

172 

Eming SA, Krieg T and Davidson JM: Inflammation in wound Repair: Molecular and cellular mechanisms. J Invest Dermatol. 127:514–525. 2007. View Article : Google Scholar : PubMed/NCBI

173 

Enzerink A and Vaheri A: Fibroblast activation in vascular inflammation. J Thromb Haemost. 9:619–626. 2011. View Article : Google Scholar : PubMed/NCBI

174 

Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, Ferrucci L, Gilroy DW, Fasano A, Miller GW, et al: Chronic inflammation in the etiology of disease across the life span. Nat Med. 25:1822–1832. 2019. View Article : Google Scholar : PubMed/NCBI

175 

Das UN: Infection, inflammation, and immunity in sepsis. Biomolecules. 13:13322023. View Article : Google Scholar : PubMed/NCBI

176 

Antar SA, Ashour NA, Marawan ME and Al-Karmalawy AA: Fibrosis: Types, effects, markers, mechanisms for disease progression, and its relation with oxidative stress, immunity, and inflammation. Int J Mol Sci. 24:40042023. View Article : Google Scholar : PubMed/NCBI

177 

Audu CO, Melvin WJ, Joshi AD, Wolf SJ, Moon JY, Davis FM, Barrett EC, Mangum KD, Deng H, Xing X, et al: Macrophage-specific inhibition of the histone demethylase JMJD3 decreases STING and pathologic inflammation in diabetic wound repair. Cell Mol Immunol. 19:1251–1262. 2022. View Article : Google Scholar : PubMed/NCBI

178 

Ariel A: JMJD3 regulates diabetic wound repair in a STINGy fashion. Cell Mol Immunol. 20:110–111. 2023. View Article : Google Scholar : PubMed/NCBI

179 

Jiang Y, Xiang C, Zhong F, Zhang Y, Wang L, Zhao Y, Wang J, Ding C, Jin L, He F and Wang H: Histone H3K27 methyltransferase EZH2 and demethylase JMJD3 regulate hepatic stellate cells activation and liver fibrosis. Theranostics. 11:361–378. 2021. View Article : Google Scholar : PubMed/NCBI

180 

Zhang X, Liu L, Yuan X, Wei Y and Wei X: JMJD3 in the regulation of human diseases. Protein Cell. 10:864–882. 2019. View Article : Google Scholar : PubMed/NCBI

181 

Nakka K, Hachmer S, Mokhtari Z, Kovac R, Bandukwala H, Bernard C, Li Y, Xie G, Liu C, Fallahi M, et al: JMJD3 activated hyaluronan synthesis drives muscle regeneration in an inflammatory environment. Science. 377:666–669. 2022. View Article : Google Scholar : PubMed/NCBI

182 

Kimball AS, Davis FM, denDekker A, Joshi AD, Schaller MA, Bermick J, Xing X, Burant CF, Obi AT, Nysz D, et al: The histone methyltransferase Setdb2 modulates macrophage phenotype and uric acid production in diabetic wound repair. Immunity. 51:258–271.e5. 2019. View Article : Google Scholar : PubMed/NCBI

183 

Xu B, Musai J, Tan YS, Hile GA, Swindell WR, Klein B, Qin JT, Sarkar MK, Gudjonsson JE and Kahlenberg JM: A critical role for IFN-β signaling for IFN-κ induction in keratinocytes. Front Lupus. 2:13597142024. View Article : Google Scholar : PubMed/NCBI

184 

Wolf SJ, Audu CO, Joshi A, denDekker A, Melvin WJ, Davis FM, Xing X, Wasikowski R, Tsoi LC, Kunkel SL, et al: IFN-κ is critical for normal wound repair and is decreased in diabetic wounds. JCI Insight. 7:e1527652022. View Article : Google Scholar : PubMed/NCBI

185 

Dong Z, Li S, Huang Y, Chen T, Ding Y and Tan Q: RNA N6-methyladenosine demethylase FTO promotes diabetic wound healing through TRIB3-mediated autophagy in an m6A-YTHDF2-dependent manner. Cell Death Dis. 16:2222025. View Article : Google Scholar : PubMed/NCBI

186 

Liang D, Lin WJ, Ren M, Qiu J, Yang C, Wang X, Li N, Zeng T, Sun K, You L, et al: m6A reader YTHDC1 modulates autophagy by targeting SQSTM1 in diabetic skin. Autophagy. 18:1318–1337. 2022. View Article : Google Scholar : PubMed/NCBI

187 

Dangwal S, Stratmann B, Bang C, Lorenzen JM, Kumarswamy R, Fiedler J, Falk CS, Scholz CJ, Thum T and Tschoepe D: Impairment of wound healing in patients with type 2 diabetes mellitus influences circulating MicroRNA patterns via inflammatory cytokines. Arterioscler Thromb Vasc Biol. 35:1480–1488. 2015. View Article : Google Scholar : PubMed/NCBI

188 

Li D, Peng H, Qu L, Sommar P, Wang A, Chu T, Li X, Bi X, Liu Q, Gallais Sérézal I, et al: miR-19a/b and miR-20a Promote Wound Healing by Regulating the Inflammatory Response of Keratinocytes. J Invest Dermatol. 141:659–671. 2021. View Article : Google Scholar : PubMed/NCBI

189 

Dawi J, Tumanyan K, Tomas K, Misakyan Y, Gargaloyan A, Gonzalez E, Hammi M, Tomas S and Venketaraman V: Diabetic foot ulcers: Pathophysiology, immune dysregulation, and emerging therapeutic strategies. Biomedicines. 13:10762025. View Article : Google Scholar : PubMed/NCBI

190 

Omotosho IA, Shamsuddin N, Zaman Huri H, Chong WL and Rehman IU: From control to cure: Insights into the synergy of glycemic and antibiotic management in modulating the severity and outcomes of diabetic foot ulcers. Int J Mol Sci. 26:69092025. View Article : Google Scholar : PubMed/NCBI

191 

Hu K, Liu L, Tang S, Zhang X, Chang H, Chen W, Fan T, Zhang L, Shen B and Zhang Q: MicroRNA-221-3p inhibits the inflammatory response of keratinocytes by regulating the DYRK1A/STAT3 signaling pathway to promote wound healing in diabetes. Commun Biol. 7:3002024. View Article : Google Scholar : PubMed/NCBI

192 

Hu J, Zhang L, Liechty C, Zgheib C, Hodges MM, Liechty KW and Xu J: Long noncoding RNA GAS5 regulates macrophage polarization and diabetic wound healing. J Invest Dermatol. 140:1629–1638. 2020. View Article : Google Scholar : PubMed/NCBI

193 

Kaszycki J and Kim M: Epigenetic regulation of transcription factors involved in NLRP3 inflammasome and NF-kB signaling pathways. Front Immunol. 16:15297562025. View Article : Google Scholar : PubMed/NCBI

194 

Zhang S, Meng Y, Zhou L, Qiu L, Wang H, Su D, Zhang B, Chan KM and Han J: Targeting epigenetic regulators for inflammation: Mechanisms and intervention therapy. MedComm (2020). 3:e1732022. View Article : Google Scholar : PubMed/NCBI

195 

Zhu X, Chen Z, Shen W, Huang G, Sedivy JM, Wang H and Ju Z: Inflammation, epigenetics, and metabolism converge to cell senescence and ageing: the regulation and intervention. Signal Transduct Target Ther. 6:2452021. View Article : Google Scholar : PubMed/NCBI

196 

Lee HW, Shin JH and Simons M: Flow goes forward and cells step backward: Endothelial migration. Exp Mol Med. 54:711–719. 2022. View Article : Google Scholar : PubMed/NCBI

197 

Piipponen M, Li D and Landén NX: The immune functions of keratinocytes in skin wound healing. Int J Mol Sci. 21:87902020. View Article : Google Scholar : PubMed/NCBI

198 

Cialdai F, Risaliti C and Monici M: Role of fibroblasts in wound healing and tissue remodeling on Earth and in space. Front Bioeng Biotechnol. 10:9583812022. View Article : Google Scholar : PubMed/NCBI

199 

Nguyễn-Thanh T, Kim D, Lee S, Kim W, Park SK and Kang KP: Inhibition of histone deacetylase 1 ameliorates renal tubulointerstitial fibrosis via modulation of inflammation and extracellular matrix gene transcription in mice. Int J Mol Med. 41:95–106. 2018.PubMed/NCBI

200 

Rutnam ZJ, Wight TN and Yang BB: miRNAs regulate expression and function of extracellular matrix molecules. Matrix Biol. 32:74–85. 2013. View Article : Google Scholar : PubMed/NCBI

201 

Li XJY, Zhou F, Li YJ, Xue XY, Qu JR, Fan GF, Liu J, Sun R, Wu JZ, Zheng Q and Liu RP: LncRNA H19-EZH2 interaction promotes liver fibrosis via reprogramming H3K27me3 profiles. Acta Pharmacol Sin. 44:2479–2491. 2023. View Article : Google Scholar : PubMed/NCBI

202 

Adase CA, Borkowski AW, Zhang LJ, Williams MR, Sato E, Sanford JA and Gallo RL: Non-coding Double-stranded RNA and antimicrobial peptide LL-37 induce growth factor expression from keratinocytes and endothelial cells. J Biol Chem. 291:11635–11646. 2016. View Article : Google Scholar : PubMed/NCBI

203 

Li X, Liu C, Zhu Y, Rao H, Liu M, Gui L, Feng W, Tang H, Xu J, Gao WQ and Li L: SETD2 epidermal deficiency promotes cutaneous wound healing via activation of AKT/mTOR Signalling. Cell Prolif. 54:e130452021. View Article : Google Scholar : PubMed/NCBI

204 

Jiang B, Tang Y, Wang H, Chen C, Yu W, Sun H, Duan M, Lin X and Liang P: Down-regulation of long non-coding RNA HOTAIR promotes angiogenesis via regulating miR-126/SCEL pathways in burn wound healing. Cell Death Dis. 11:612020. View Article : Google Scholar : PubMed/NCBI

205 

Singh S, Young A and McNaught CE: The physiology of wound healing. Surgery (Oxford). 35:473–477. 2017. View Article : Google Scholar

206 

Song R and Zhang L: Cardiac ECM: Its epigenetic regulation and role in heart development and repair. Int J Mol Sci. 21:86102020. View Article : Google Scholar : PubMed/NCBI

207 

Gao Y, Zhang S, Zhang X, Du Y, Ni T and Hao S: Crosstalk between metabolic and epigenetic modifications during cell carcinogenesis. iScience. 27:1113592024. View Article : Google Scholar : PubMed/NCBI

208 

Xue T, Qiu X, Liu H, Gan C, Tan Z, Xie Y, Wang Y and Ye T: Epigenetic regulation in fibrosis progress. Pharmacol Res. 173:1059102021. View Article : Google Scholar : PubMed/NCBI

209 

Shiva Shankar TV and Willems L: Epigenetic modulators mitigate angiogenesis through a complex transcriptomic network. Vascul Pharmacol. 60:57–66. 2014. View Article : Google Scholar : PubMed/NCBI

210 

Ma Y, Liu Z, Miao L, Jiang X, Ruan H, Xuan R and Xu S: Mechanisms underlying pathological scarring by fibroblasts during wound healing. Int Wound J. 20:2190–2206. 2023. View Article : Google Scholar : PubMed/NCBI

211 

Liu Y, Li L, Wang JY, Gao F, Lin X, Lin SS, Qiu ZY and Liang ZH: LncRNA GNAS-AS1 knockdown inhibits keloid cells growth by mediating the miR-188-5p/RUNX2 axis. Mol Cell Biochem. 478:707–719. 2023. View Article : Google Scholar : PubMed/NCBI

212 

Zou A, Liu P, Liu T and Li Q: Long non-coding RNA HOXA11-AS contributes to the formation of keloid by relieving the inhibition of miR-182-5p on ZNF217. Burns. 49:1157–1169. 2023. View Article : Google Scholar : PubMed/NCBI

213 

Kashiyama K, Mitsutake N, Matsuse M, Ogi T, Saenko VA, Ujifuku K, Utani A, Hirano A and Yamashita S: miR-196a downregulation increases the expression of type I and III collagens in keloid fibroblasts. J Invest Dermatol. 132:1597–1604. 2012. View Article : Google Scholar : PubMed/NCBI

214 

Li Y, Wang W, Wang Y and Ai H: FTO-mediated m6A demethylation of KLF4 promotes the proliferation and collagen deposition of keloid fibroblasts. Toxicol Res (Camb). 14:tfaf0582025. View Article : Google Scholar : PubMed/NCBI

215 

Yang R, Wang X, Zheng W, Chen W, Gan W, Qin X, Huang J, Chen X and Zhou S: Bioinformatics analysis and verification of m6A related genes based on the construction of keloid diagnostic model. Int Wound J. 20:2700–2717. 2023. View Article : Google Scholar : PubMed/NCBI

216 

Wilkinson HN and Hardman MJ: Wound healing: Cellular mechanisms and pathological outcomes. Open Biol. 10:2002232020. View Article : Google Scholar : PubMed/NCBI

217 

Rosenberg CS: Wound healing in the patient with diabetes mellitus. Nurs Clin North Am. 25:247–261. 1990. View Article : Google Scholar : PubMed/NCBI

218 

Swoboda L and Held J: Impaired wound healing in diabetes. J Wound Care. 31:882–885. 2022. View Article : Google Scholar : PubMed/NCBI

219 

Jaenisch R and Bird A: Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals. Nat Genet. 33 (Suppl):S245–S254. 2003. View Article : Google Scholar

220 

AlQahtani AD, O'Connor D, Domling A and Goda SK: Strategies for the production of long-acting therapeutics and efficient drug delivery for cancer treatment. Biomed Pharmacother. 113:1087502019. View Article : Google Scholar : PubMed/NCBI

221 

Fu Y, Timp W and Sedlazeck FJ: Computational analysis of DNA methylation from long-read sequencing. Nat Rev Genet. 26:620–634. 2025. View Article : Google Scholar : PubMed/NCBI

222 

Stephens KE, Miaskowski CA, Levine JD, Pullinger CR and Aouizerat BE: Epigenetic regulation and measurement of epigenetic changes. Biol Res Nurs. 15:373–381. 2013. View Article : Google Scholar : PubMed/NCBI

223 

Pajares MJ, Palanca-Ballester C, Urtasun R, Alemany-Cosme E, Lahoz A and Sandoval J: Methods for analysis of specific DNA methylation status. Methods. 187:3–12. 2021. View Article : Google Scholar : PubMed/NCBI

224 

Liu Z, Bian X, Luo L, Björklund ÅK, Li L, Zhang L, Chen Y, Guo L, Gao J, Cao C, et al: Spatiotemporal single-cell roadmap of human skin wound healing. Cell Stem Cell. 32:479–498.e8. 2025. View Article : Google Scholar : PubMed/NCBI

225 

McCutcheon SR, Rohm D, Iglesias N and Gersbach CA: Epigenome editing technologies for discovery and medicine. Nat Biotechnol. 42:1199–1217. 2024. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • Purchase
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Cheng J, Qian W, Chen F, Liu X, Fu M, Cao W and Zhou Y: Function of epigenetic modifications in wound healing and potential therapies (Review). Int J Mol Med 56: 190, 2025.
APA
Cheng, J., Qian, W., Chen, F., Liu, X., Fu, M., Cao, W., & Zhou, Y. (2025). Function of epigenetic modifications in wound healing and potential therapies (Review). International Journal of Molecular Medicine, 56, 190. https://doi.org/10.3892/ijmm.2025.5631
MLA
Cheng, J., Qian, W., Chen, F., Liu, X., Fu, M., Cao, W., Zhou, Y."Function of epigenetic modifications in wound healing and potential therapies (Review)". International Journal of Molecular Medicine 56.5 (2025): 190.
Chicago
Cheng, J., Qian, W., Chen, F., Liu, X., Fu, M., Cao, W., Zhou, Y."Function of epigenetic modifications in wound healing and potential therapies (Review)". International Journal of Molecular Medicine 56, no. 5 (2025): 190. https://doi.org/10.3892/ijmm.2025.5631
Copy and paste a formatted citation
x
Spandidos Publications style
Cheng J, Qian W, Chen F, Liu X, Fu M, Cao W and Zhou Y: Function of epigenetic modifications in wound healing and potential therapies (Review). Int J Mol Med 56: 190, 2025.
APA
Cheng, J., Qian, W., Chen, F., Liu, X., Fu, M., Cao, W., & Zhou, Y. (2025). Function of epigenetic modifications in wound healing and potential therapies (Review). International Journal of Molecular Medicine, 56, 190. https://doi.org/10.3892/ijmm.2025.5631
MLA
Cheng, J., Qian, W., Chen, F., Liu, X., Fu, M., Cao, W., Zhou, Y."Function of epigenetic modifications in wound healing and potential therapies (Review)". International Journal of Molecular Medicine 56.5 (2025): 190.
Chicago
Cheng, J., Qian, W., Chen, F., Liu, X., Fu, M., Cao, W., Zhou, Y."Function of epigenetic modifications in wound healing and potential therapies (Review)". International Journal of Molecular Medicine 56, no. 5 (2025): 190. https://doi.org/10.3892/ijmm.2025.5631
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team