You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
|
Morais LH, Schreiber HL 4th and Mazmanian SK: The gut microbiota-brain axis in behaviour and brain disorders. Nat Rev Microbiol. 19:241–255. 2021. View Article : Google Scholar | |
|
Chanpong A, Borrelli O and Thapar N: Recent advances in understanding the roles of the enteric nervous system. Fac Rev. 11:72022. View Article : Google Scholar : PubMed/NCBI | |
|
Carabotti M, Scirocco A, Maselli MA and Severi C: The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol. 28:203–209. 2015.PubMed/NCBI | |
|
Schluter J, Peled JU, Taylor BP, Markey KA, Smith M, Taur Y, Niehus R, Staffas A, Dai A, Fontana E, et al: The gut microbiota is associated with immune cell dynamics in humans. Nature. 588:303–307. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Gwak MG and Chang SY: Gut-brain connection: Microbiome, gut barrier, and environmental sensors. Immune Netw. 21:e202021. View Article : Google Scholar : PubMed/NCBI | |
|
Appleton J: The Gut-brain axis: Influence of microbiota on mood and mental health. Integr Med (Encinitas). 17:28–32. 2018. | |
|
Pucci A and Batterham RL: Endocrinology of the gut and the regulation of body weight and metabolism. Endotext. Feingold KR, Anawalt B, Blackman MR, et al: MDText. com, Inc. Copyright © 2000-2025. MDText.com, Inc.; South Dartmouth (MA): 2000 | |
|
Konsman JP: Cytokines in the Brain and Neuroinflammation: We Didn't Starve the Fire! Pharmaceuticals (Basel). 15:1402022. View Article : Google Scholar : PubMed/NCBI | |
|
Köhler A, Delbauve S, Smout J, Torres D and Flamand V: Very early-life exposure to microbiota-induced TNF drives the maturation of neonatal pre-cDC1. Gut. 70:511–521. 2021. View Article : Google Scholar | |
|
Hrncir T: Gut microbiota dysbiosis: Triggers, consequences, diagnostic and therapeutic options. Microorganisms. 10:5782022. View Article : Google Scholar : PubMed/NCBI | |
|
Quansah M, David MA, Martins R, El-Omar E, Aliberti SM, Capunzo M, Jensen SO and Tayebi M: The beneficial effects of lactobacillus strains on gut microbiome in Alzheimer's disease: A systematic review. Healthcare. 13:742025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang X, Wang Y, Liu W, Wang T, Wang L, Hao L, Ju M and Xiao R: Diet quality, gut microbiota, and microRNAs associated with mild cognitive impairment in middle-aged and elderly Chinese population. Am J Clin Nutr. 114:429–440. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Li B, He Y, Ma J, Huang P, Du J, Cao L, Wang Y, Xiao Q, Tang H and Chen S: Mild cognitive impairment has similar alterations as Alzheimer's disease in gut microbiota. Alzheimers Dement. 15:1357–1366. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Tan AH, Lim SY and Lang AE: The microbiome-gut-brain axis in Parkinson disease-from basic research to the clinic. Nat Rev Neurol. 18:476–495. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Casella G, Tontini GE, Bassotti G, Pastorelli L, Villanacci V, Spina L, Baldini V and Vecchi M: Neurological disorders and inflammatory bowel diseases. World J Gastroenterol. 20:8764–8782. 2014.PubMed/NCBI | |
|
Yaqubi K, Kostev K, Klein I, Schüssler S, May P, Luedde T, Roderburg C and Loosen SH: Inflammatory bowel disease is associated with an increase in the incidence of multiple sclerosis: A retrospective cohort study of 24,934 patients. Eur J Med Res. 29:1862024. View Article : Google Scholar : PubMed/NCBI | |
|
Hughes HK, Rose D and Ashwood P: The gut microbiota and dysbiosis in autism spectrum disorders. Curr Neurol Neurosci Rep. 18:812018. View Article : Google Scholar : PubMed/NCBI | |
|
Naspolini NF, Natividade AP, Asmus CIF, Moreira JC, Dominguez-Bello MG and Meyer A: Early-life gut microbiome is associated with behavioral disorders in the Rio birth cohort. Sci Rep. 15:86742025. View Article : Google Scholar : PubMed/NCBI | |
|
Doenyas C, Clarke G and Cserjési R: Gut-brain axis and neuropsychiatric health: Recent advances. Sci Rep. 15:34152025. View Article : Google Scholar : PubMed/NCBI | |
|
Holmes GM and Blanke EN: Gastrointestinal dysfunction after spinal cord injury. Exp Neurol. 320:1130092019. View Article : Google Scholar : PubMed/NCBI | |
|
Su Y, Wang D, Liu N, Yang J, Sun R and Zhang Z: Clostridium butyricum improves cognitive dysfunction in ICV-STZ-induced Alzheimer's disease mice via suppressing TLR4 signaling pathway through the gut-brain axis. PLoS One. 18:e02860862023. View Article : Google Scholar : PubMed/NCBI | |
|
Fan Y and Pedersen O: Gut microbiota in human metabolic health and disease. Nat Rev Microbiol. 19:55–71. 2021. View Article : Google Scholar | |
|
Ahmed H, Leyrolle Q, Koistinen V, Kärkkäinen O, Layé S, Delzenne N and Hanhineva K: Microbiota-derived metabolites as drivers of gut-brain communication. Gut Microbes. 14:21028782022. View Article : Google Scholar : PubMed/NCBI | |
|
Oleskin AV and Shenderov BA: Neuromodulatory effects and targets of the SCFAs and gasotransmitters produced by the human symbiotic microbiota. Microb Ecol Health Dis. 27:309712016.PubMed/NCBI | |
|
Ramesh G, MacLean AG and Philipp MT: Cytokines and chemokines at the crossroads of neuroinflammation, neurodegeneration, and neuropathic pain. Mediators Inflamm. 2013:4807392013. View Article : Google Scholar : PubMed/NCBI | |
|
Person H and Keefer L: Psychological comorbidity in gastrointestinal diseases: Update on the brain-gut-microbiome axis. Prog Neuropsychopharmacol Biol Psychiatry. 107:1102092021. View Article : Google Scholar : | |
|
Mayer EA, Nance K and Chen S: The gut-brain axis. Annu Rev Med. 73:439–453. 2022. View Article : Google Scholar | |
|
Makris AP, Karianaki M, Tsamis KI and Paschou SA: The role of the gut-brain axis in depression: Endocrine, neural, and immune pathways. Hormones (Athens). 20:1–12. 2021. View Article : Google Scholar | |
|
Ohara TE and Hsiao EY: Microbiota-neuroepithelial signalling across the gut-brain axis. Nat Rev Microbiol. 23:371–384. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Rastogi S and Singh A: Gut microbiome and human health: Exploring how the probiotic genus Lactobacillus modulate immune responses. Front Pharmacol. 13:10421892022. View Article : Google Scholar : PubMed/NCBI | |
|
Parizadeh M and Arrieta MC: The global human gut microbiome: Genes, lifestyles, and diet. Trends Mol Med. 29:789–801. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Procházková N, Laursen MF, La Barbera G, Tsekitsidi E, Jørgensen MS, Rasmussen MA, Raes J, Licht TR, Dragsted LO and Roager HM: Gut physiology and environment explain variations in human gut microbiome composition and metabolism. Nat Microbiol. 9:3210–3225. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Gomaa EZ: Human gut microbiota/microbiome in health and diseases: A review. Antonie Van Leeuwenhoek. 113:2019–2040. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Kearns R: Gut-brain axis and neuroinflammation: The role of gut permeability and the kynurenine pathway in neurological disorders. Cell Mol Neurobiol. 44:642024. View Article : Google Scholar : PubMed/NCBI | |
|
Kearns R: The kynurenine pathway in gut permeability and inflammation. Inflammation. 48:1063–1077. 2025. View Article : Google Scholar | |
|
Koh A, De Vadder F, Kovatcheva-Datchary P and Bäckhed F: From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell. 165:1332–1345. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Fock E and Parnova R: Mechanisms of Blood-brain barrier protection by Microbiota-derived short-chain fatty acids. Cells. 12:6572023. View Article : Google Scholar : PubMed/NCBI | |
|
Jia M, Fan Y, Ma Q, Yang D, Wang Y, He X, Zhao B, Zhan X, Qi Z, Ren Y, et al: Gut microbiota dysbiosis promotes cognitive impairment via bile acid metabolism in major depressive disorder. Transl Psychiatry. 14:5032024. View Article : Google Scholar : PubMed/NCBI | |
|
Hou Y, Li J and Ying S: Tryptophan metabolism and gut microbiota: A novel regulatory axis integrating the microbiome, immunity, and cancer. Metabolites. 13:11662023. View Article : Google Scholar : PubMed/NCBI | |
|
Luczynski P, McVey Neufeld KA, Oriach CS, Clarke G, Dinan TG and Cryan JF: Growing up in a Bubble: Using Germ-free animals to assess the influence of the gut microbiota on brain and behavior. Int J Neuropsychopharmacol. 19:pyw0202016. View Article : Google Scholar : PubMed/NCBI | |
|
Mhanna A, Martini N, Hmaydoosh G, Hamwi G, Jarjanazi M, Zaifah G, Kazzazo R, Haji Mohamad A and Alshehabi Z: The correlation between gut microbiota and both neurotransmitters and mental disorders: A narrative review. Medicine. 103:e371142024. View Article : Google Scholar : PubMed/NCBI | |
|
Gu F, Wu Y, Liu Y, Dou M, Jiang Y and Liang H: Lactobacillus casei improves depression-like behavior in chronic unpredictable mild stress-induced rats by the BDNF-TrkB signal pathway and the intestinal microbiota. Food Funct. 11:6148–6157. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Hwang YK and Oh JS: Interaction of the vagus nerve and serotonin in the Gut-brain axis. Int J Mol Sci. 26:11602025. View Article : Google Scholar : PubMed/NCBI | |
|
Sorboni SG, Moghaddam HS, Jafarzadeh-Esfehani R and Soleimanpour S: A comprehensive review on the role of the gut microbiome in human neurological disorders. Clin Microbiol Rev. 35:e00338202022. View Article : Google Scholar : PubMed/NCBI | |
|
Cryan JF, O'Riordan KJ, Sandhu K, Peterson V and Dinan TG: The gut microbiome in neurological disorders. Lancet Neurol. 19:179–194. 2020. View Article : Google Scholar | |
|
Liu C, Yang SY, Wang L and Zhou F: The gut microbiome: Implications for neurogenesis and neurological diseases. Neural Regen Res. 17:53–58. 2022. View Article : Google Scholar | |
|
Socała K, Doboszewska U, Szopa A, Serefko A, Włodarczyk M, Zielińska A, Poleszak E, Fichna J and Wlaź P: The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders. Pharmacol Res. 172:1058402021. View Article : Google Scholar | |
|
Hirschberg S, Gisevius B, Duscha A and Haghikia A: Implications of diet and the gut microbiome in neuroinflammatory and neurodegenerative diseases. Int J Mol Sci. 20:31092019. View Article : Google Scholar : PubMed/NCBI | |
|
Ivan IF, Irincu VL, Diaconu Ș, Falup-Pecurariu O, Ciopleiaș B and Falup-Pecurariu C: Gastro-intestinal dysfunctions in Parkinson's disease (review). Exp Ther Med. 22:10832021. View Article : Google Scholar : PubMed/NCBI | |
|
Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE, Challis C, Schretter CE, Rocha S, Gradinaru V, et al: Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson's disease. Cell. 167:1469–1480.e12. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Perez-Pardo P, Dodiya HB, Engen PA, Forsyth CB, Huschens AM, Shaikh M, Voigt RM, Naqib A, Green SJ, Kordower JH, et al: Role of TLR4 in the gut-brain axis in Parkinson's disease: A translational study from men to mice. Gut. 68:829–843. 2019. View Article : Google Scholar | |
|
Srivastav S, Neupane S, Bhurtel S, Katila N, Maharjan S, Choi H, Hong JT and Choi DY: Probiotics mixture increases butyrate, and subsequently rescues the nigral dopaminergic neurons from MPTP and rotenone-induced neurotoxicity. J Nutr Biochem. 69:73–86. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Lei Q, Wu T, Wu J, Hu X, Guan Y, Wang Y, Yan J and Shi G: Roles of α-synuclein in gastrointestinal microbiome dysbiosis-related Parkinson's disease progression (review). Mol Med Rep. 24:7342021. View Article : Google Scholar | |
|
Honarpisheh P, Reynolds CR, Blasco Conesa MP, Moruno Manchon JF, Putluri N, Bhattacharjee MB, Urayama A, McCullough LD and Ganesh BP: Dysregulated gut homeostasis observed prior to the accumulation of the brain amyloid-β in Tg2576 mice. Int J Mol Sci. 21:17112020. View Article : Google Scholar | |
|
Kim N, Jeon SH, Ju IG, Gee MS, Do J, Oh MS and Lee JK: Transplantation of gut microbiota derived from Alzheimer's disease mouse model impairs memory function and neurogenesis in C57BL/6 mice. Brain Behav Immun. 98:357–365. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Shi H, Ge X, Ma X, Zheng M, Cui X, Pan W, Zheng P, Yang X, Zhang P, Hu M, et al: A fiber-deprived diet causes cognitive impairment and hippocampal microglia-mediated synaptic loss through the gut microbiota and metabolites. Microbiome. 9:2232021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang T, Wang T, Chen X, Zhao Z and Chen Z: Gut microbiota relieves inflammation in the substantia nigra of chronic Parkinson's disease by protecting the function of dopamine neurons. Exp Ther Med. 23:522022. View Article : Google Scholar | |
|
Castelli V, d'Angelo M, Quintiliani M, Benedetti E, Cifone MG and Cimini A: The emerging role of probiotics in neurodegenerative diseases: New hope for Parkinson's disease? Neural Regen Res. 16:628–634. 2021. View Article : Google Scholar | |
|
Yuan T, Chu C, Shi R, Cui T, Zhang X, Zhao Y, Shi X, Hui Y, Pan J, Qian R, et al: ApoE-dependent protective effects of sesamol on High-Fat Diet-induced behavioral disorders: Regulation of the microbiome-Gut-brain axis. J Agric Food Chem. 67:6190–6201. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Shi H, Wang Q, Zheng M, Hao S, Lum JS, Chen X, Huang XF, Yu Y and Zheng K: Supplement of microbiota-accessible carbohydrates prevents neuroinflammation and cognitive decline by improving the gut microbiota-brain axis in diet-induced obese mice. J Neuroinflammation. 17:772020. View Article : Google Scholar : PubMed/NCBI | |
|
Bianchimano P, Britton GJ, Wallach DS, Smith EM, Cox LM, Liu S, Iwanowski K, Weiner HL, Faith JJ, Clemente JC and Tankou SK: Mining the microbiota to identify gut commensals modulating neuroinflammation in a mouse model of multiple sclerosis. Microbiome. 10:1742022. View Article : Google Scholar : PubMed/NCBI | |
|
Celorrio M and Friess SH: Gut-brain axis in traumatic brain injury: Impact on neuroinflammation. Neural Regen Res. 17:1007–1008. 2022. View Article : Google Scholar | |
|
Theleritis C, Stefanou MI, Demetriou M, Alevyzakis E, Triantafyllou K, Smyrnis N, Spandidos DA and Rizos E: Association of gut dysbiosis with first-episode psychosis (review). Mol Med Rep. 30:1302024. View Article : Google Scholar | |
|
Torres-Chávez ME, Torres-Carrillo NM, Monreal-Lugo AV, Garnés-Rancurello S, Murugesan S, Gutiérrez-Hurtado IA, Beltrán-Ramírez JR, Sandoval-Pinto E and Torres-Carrillo N: Association of intestinal dysbiosis with susceptibility to multiple sclerosis: Evidence from different population studies (review). Biomed Rep. 19:932023. View Article : Google Scholar : PubMed/NCBI | |
|
Lee CW, Hsu LF, Wu IL, Wang YL, Chen WC, Liu YJ, Yang LT, Tan CL, Luo YH, Wang CC, et al: Exposure to polystyrene microplastics impairs hippocampus-dependent learning and memory in mice. J Hazard Mater. 430:1284312022. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan S, Yang J, Jian Y, Lei Y, Yao S, Hu Z, Liu X, Tang C and Liu W: Treadmill exercise modulates intestinal microbes and suppresses LPS displacement to alleviate neuroinflammation in the brains of APP/PS1 Mice. Nutrients. 14:41342022. View Article : Google Scholar : PubMed/NCBI | |
|
Hu X, Jin H, Yuan S, Ye T, Chen Z, Kong Y, Liu J, Xu K and Sun J: Fecal microbiota transplantation inhibited neuroinflammation of traumatic brain injury in mice via regulating the gut-brain axis. Front Cell Infect Microbiol. 13:12546102023. View Article : Google Scholar : PubMed/NCBI | |
|
Li X, Zheng P, Cao W, Cao Y, She X, Yang H, Ma K, Wu F, Gao X, Fu Y, et al: Lactobacillus rhamnosus GG ameliorates noise-induced cognitive deficits and systemic inflammation in rats by modulating the gut-brain axis. Front Cell Infect Microbiol. 13:10673672023. View Article : Google Scholar : PubMed/NCBI | |
|
Wei H, Yu C, Zhang C, Ren Y, Guo L, Wang T, Chen F, Li Y, Zhang X, Wang H and Liu J: Butyrate ameliorates chronic alcoholic central nervous damage by suppressing microglia-mediated neuroinflammation and modulating the microbiome-gut-brain axis. Biomed Pharmacother. 160:1143082023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu G, Zhao J, Wang G and Chen W: Bifidobacterium breve HNXY26M4 attenuates cognitive deficits and neuroinflammation by regulating the Gut-brain axis in APP/PS1 mice. J Agric Food Chem. 71:4646–4655. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
de Theije CG, Koelink PJ, Korte-Bouws GA, Lopes da Silva S, Korte SM, Olivier B, Garssen J and Kraneveld AD: Intestinal inflammation in a murine model of autism spectrum disorders. Brain Behav Immun. 37:240–247. 2014. View Article : Google Scholar | |
|
Stilling RM, Ryan FJ, Hoban AE, Shanahan F, Clarke G, Claesson MJ, Dinan TG and Cryan JF: Microbes & neurodevelopment-Absence of microbiota during early life increases activity-related transcriptional pathways in the amygdala. Brain Behav Immun. 50:209–220. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Kantarcioglu AS, Kiraz N and Aydin A: Microbiota-gut-brain axis: Yeast species isolated from stool samples of children with suspected or diagnosed autism spectrum disorders and in vitro susceptibility against nystatin and fluconazole. Mycopathologia. 181:1–7. 2016. View Article : Google Scholar | |
|
Abuljadayel D, Alotibi A, Algothmi K, Basingab F, Alhazmi S, Almuhammadi A, Alharthi A, Alyoubi R and Bahieldin A: Gut microbiota of children with autism spectrum disorder and healthy siblings: A comparative study. Exp Ther Med. 28:4302024. View Article : Google Scholar : PubMed/NCBI | |
|
Dai W, Liu J, Qiu Y, Teng Z, Li S, Yuan H, Huang J, Xiang H, Tang H, Wang B, et al: Gut microbial dysbiosis and cognitive impairment in bipolar disorder: Current evidence. Front Pharmacol. 13:8935672022. View Article : Google Scholar : PubMed/NCBI | |
|
Bioque M, González-Rodríguez A, Garcia-Rizo C, Cobo J, Monreal JA, Usall J, Soria V; PNECAT Group; Labad J: Targeting the microbiome-gut-brain axis for improving cognition in schizophrenia and major mood disorders: A narrative review. Prog Neuropsychopharmacol Biol Psychiatry. 105:1101302021. View Article : Google Scholar | |
|
Reddy-Thootkur M, Kraguljac NV and Lahti AC: The role of glutamate and GABA in cognitive dysfunction in schizophrenia and mood disorders-A systematic review of magnetic resonance spectroscopy studies. Schizophr Res. 249:74–84. 2022. View Article : Google Scholar | |
|
Reininghaus EZ, Wetzlmair LC, Fellendorf FT, Platzer M, Queissner R, Birner A, Pilz R, Hamm C, Maget A, Koidl C, et al: The impact of probiotic supplements on cognitive parameters in euthymic individuals with bipolar disorder: A pilot study. Neuropsychobiology. 1–8. 2018. View Article : Google Scholar : Epub ahead of print. PubMed/NCBI | |
|
Pulikkan J, Maji A, Dhakan DB, Saxena R, Mohan B, Anto MM, Agarwal N, Grace T and Sharma VK: Gut microbial dysbiosis in indian children with autism spectrum disorders. Microb Ecol. 76:1102–1114. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Bojović K, Ignjatović ÐI, Soković Bajić S, Vojnović Milutinović D, Tomić M, Golić N and Tolinački M: Gut microbiota dysbiosis associated with altered production of short chain fatty acids in children with neurodevelopmental disorders. Front Cell Infect Microbiol. 10:2232020. View Article : Google Scholar | |
|
Slob EM A, Brew BK, Vijverberg SJH, Dijs T, van Beijsterveldt CEM, Koppelman GH, Bartels M, Dolan CV, Larsson H, Lundström S, et al: Early-life antibiotic use and risk of attention-deficit hyperactivity disorder and autism spectrum disorder: Results of a discordant twin study. Int J Epidemiol. 50:475–484. 2021. View Article : Google Scholar | |
|
Bundgaard-Nielsen C, Lauritsen MB, Knudsen JK, Rold LS, Larsen MH, Hindersson P, Villadsen AB, Leutscher PDC, Hagstrøm S, Nyegaard M and Sørensen S: Children and adolescents with attention deficit hyperactivity disorder and autism spectrum disorder share distinct microbiota compositions. Gut Microbes. 15:22119232023. View Article : Google Scholar : PubMed/NCBI | |
|
Liu S, Gao J, Zhu M, Liu K and Zhang HL: Gut microbiota and dysbiosis in Alzheimer's disease: Implications for pathogenesis and treatment. Mol Neurobiol. 57:5026–5043. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Gonçalves CL, Vasconcelos FFP, Wessler LB, Lemos IS, Candiotto G, Lin J, Matias MBD, Rico EP and Streck EL: Exposure to a high dose of amoxicillin causes behavioral changes and oxidative stress in young zebrafish. Metab Brain Dis. 35:1407–1416. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Volkova A, Ruggles K, Schulfer A, Gao Z, Ginsberg SD and Blaser MJ: Effects of early-life penicillin exposure on the gut microbiome and frontal cortex and amygdala gene expression. iScience. 24:1027972021. View Article : Google Scholar : PubMed/NCBI | |
|
Benakis C, Brea D, Caballero S, Faraco G, Moore J, Murphy M, Sita G, Racchumi G, Ling L, Pamer EG, et al: Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδ T cells. Nat Med. 22:516–523. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Dou Z, Rong X, Zhao E, Zhang L and Lv Y: Neuroprotection of resveratrol against focal cerebral ischemia/reperfusion injury in mice through a mechanism targeting Gut-brain axis. Cell Mol Neurobiol. 39:883–898. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Bonsack B, Jiang RH and Borlongan CV: A gut feeling about stroke reveals gut-brain axis' active role in homeostasis and dysbiosis. J Cereb Blood Flow Metab. 40:1132–1134. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Yang H, Hou S, Xia Y and Wang YQ: Influence of the brain-gut axis on neuroinflammation in cerebral ischemia-reperfusion injury (Review). Int J Mol Med. 53:302024. View Article : Google Scholar : | |
|
Park MJ, Pilla R, Panta A, Pandey S, Sarawichitr B, Suchodolski J and Sohrabji F: Reproductive senescence and ischemic stroke remodel the gut microbiome and modulate the effects of estrogen treatment in female rats. Transl Stroke Res. 11:812–830. 2020. View Article : Google Scholar | |
|
Sadler R, Cramer JV, Heindl S, Kostidis S, Betz D, Zuurbier KR, Northoff BH, Heijink M, Goldberg MP, Plautz EJ, et al: Short-chain fatty acids improve poststroke recovery via immunological mechanisms. J Neurosci. 40:1162–1173. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Aswendt M, Green C, Sadler R, Llovera G, Dzikowski L, Heindl S, Gomez de Agüero M, Diedenhofen M, Vogel S, Wieters F, et al: The gut microbiota modulates brain network connectivity under physiological conditions and after acute brain ischemia. iScience. 24:1030952021. View Article : Google Scholar : PubMed/NCBI | |
|
Ji W, Zhu Y, Kan P, Cai Y, Wang Z, Wu Z and Yang P: Analysis of intestinal microbial communities of cerebral infarction and ischemia patients based on high throughput sequencing technology and glucose and lipid metabolism. Mol Med Rep. 16:5413–5417. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Henry N, Frank J, McLouth C, Trout AL, Morris A, Chen J, Stowe AM, Fraser JF and Pennypacker K: Short chain fatty acids taken at time of thrombectomy in acute ischemic stroke patients are independent of stroke severity but associated with inflammatory markers and worse symptoms at discharge. Front Immunol. 12:7973022021. View Article : Google Scholar | |
|
Jiang W, Gong L, Liu F, Ren Y and Mu J: Alteration of gut microbiome and correlated lipid metabolism in Post-stroke depression. Front Cell Infect Microbiol. 11:6639672021. View Article : Google Scholar : PubMed/NCBI | |
|
Huang C, Li Y, Feng X, Li D, Li X, Ouyang Q, Dai W, Wu G, Zhou Q, Wang P, et al: Distinct gut microbiota composition and functional category in children with cerebral palsy and epilepsy. Front Pediatr. 7:3942019. View Article : Google Scholar : PubMed/NCBI | |
|
Lindefeldt M, Eng A, Darban H, Bjerkner A, Zetterström CK, Allander T, Andersson B, Borenstein E, Dahlin M and Prast-Nielsen S: The ketogenic diet influences taxonomic and functional composition of the gut microbiota in children with severe epilepsy. NPJ Biofilms Microbiomes. 5:52019. View Article : Google Scholar : PubMed/NCBI | |
|
He Z, Cui BT, Zhang T, Li P, Long CY, Ji GZ and Zhang FM: Fecal microbiota transplantation cured epilepsy in a case with Crohn's disease: The first report. World J Gastroenterol. 23:3565–3568. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Avorio F, Cerulli Irelli E, Morano A, Fanella M, Orlando B, Albini M, Basili LM, Ruffolo G, Fattouch J, Manfredi M, et al: Functional gastrointestinal disorders in patients with epilepsy: Reciprocal influence and impact on seizure occurrence. Front Neurol. 12:7051262021. View Article : Google Scholar : PubMed/NCBI | |
|
Citraro R, Lembo F, De Caro C, Tallarico M, Coretti L, Iannone LF, Leo A, Palumbo D, Cuomo M, Buommino E, et al: First evidence of altered microbiota and intestinal damage and their link to absence epilepsy in a genetic animal model, the WAG/Rij rat. Epilepsia. 62:529–541. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Gallucci A, Patel DC, Thai K, Trinh J, Gude R, Shukla D and Campbell SL: Gut metabolite S-equol ameliorates hyperexcitability in entorhinal cortex neurons following Theiler murine encephalomyelitis virus-induced acute seizures. Epilepsia. 62:1829–1841. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Antón M, Rodríguez-González A, Ballesta A, González N, Del Pozo A, de Fonseca FR, Gómez-Lus ML, Leza JC, García-Bueno B, Caso JR and Orio L: Alcohol binge disrupts the rat intestinal barrier: The partial protective role of oleoylethanolamide. Br J Pharmacol. 175:4464–4479. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Hoyles L, Snelling T, Umlai UK, Nicholson JK, Carding SR, Glen RC and McArthur S: Microbiome-host systems interactions: Protective effects of propionate upon the blood-brain barrier. Microbiome. 6:552018. View Article : Google Scholar : PubMed/NCBI | |
|
Ceccarelli G, Brenchley JM, Cavallari EN, Scheri GC, Fratino M, Pinacchio C, Schietroma I, Fard SN, Scagnolari C, Mezzaroma I, et al: Impact of High-dose multi-strain probiotic supplementation on neurocognitive performance and central nervous system immune activation of HIV-1 infected individuals. Nutrients. 9:12692017. View Article : Google Scholar : PubMed/NCBI | |
|
Rincel M, Aubert P, Chevalier J, Grohard PA, Basso L, Monchaux de Oliveira C, Helbling JC, Lévy É, Chevalier G, Leboyer M, et al: Multi-hit early life adversity affects gut microbiota, brain and behavior in a sex-dependent manner. Brain Behav Immun. 80:179–192. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Cuskelly A, Hoedt EC, Harms L, Talley NJ, Tadros MA, Keely S and Hodgson DM: Neonatal immune challenge influences the microbiota and behaviour in a sexually dimorphic manner. Brain Behav Immun. 103:232–242. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Saunders JM, Moreno JL, Ibi D, Sikaroodi M, Kang DJ, Muñoz-Moreno R, Dalmet SS, García-Sastre A, Gillevet PM, Dozmorov MG, et al: Gut microbiota manipulation during the prepubertal period shapes behavioral abnormalities in a mouse neurodevelopmental disorder model. Sci Rep. 10:46972020. View Article : Google Scholar : PubMed/NCBI | |
|
Duan H, Wang L, Huangfu M and Li H: The impact of microbiota-derived short-chain fatty acids on macrophage activities in disease: Mechanisms and therapeutic potentials. Biomed Pharmacother. 165:1152762023. View Article : Google Scholar : PubMed/NCBI | |
|
Chauhan V, Chauhan NK, Dutta S, Pathak D and Nongthomba U: Comparative In-silico analysis of microbial dysbiosis discern potential metabolic link in neurodegenerative diseases. Front Neurosci. 17:11534222023. View Article : Google Scholar : PubMed/NCBI | |
|
Zancan V, Nasello M, Bigi R, Reniè R, Buscarinu MC, Mechelli R, Ristori G, Salvetti M and Bellucci G: Gut microbiota composition is causally linked to multiple sclerosis: A mendelian randomization analysis. Microorganisms. 12:14762024. View Article : Google Scholar : PubMed/NCBI | |
|
Emery DC, Davies M, Cerajewska TL, Taylor J, Hazell M, Paterson A, Allen-Birt SJ and West NX: High resolution 16S rRNA gene next generation sequencing study of brain areas associated with Alzheimer's and Parkinson's disease. Front Aging Neurosci. 14:10262602022. View Article : Google Scholar : PubMed/NCBI | |
|
Boles JS, Krueger ME, Jernigan JE, Cole CL, Neighbarger NK, Uriarte Huarte O and Tansey MG: A leaky gut dysregulates gene networks in the brain associated with immune activation, oxidative stress, and myelination in a mouse model of colitis. Brain Behav Immun. 117:473–492. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Luck B, Horvath TD, Engevik KA, Ruan W, Haidacher SJ, Hoch KM, Oezguen N, Spinler JK, Haag AM, Versalovic J and Engevik MA: Neurotransmitter profiles are altered in the gut and brain of mice Mono-associated with Bifidobacterium dentium. Biomolecules. 11:10912021. View Article : Google Scholar : PubMed/NCBI | |
|
Pandey S, Singh A, Chaudhari N, Nampoothiri LP and Kumar GN: Protection against 1,2-di-methylhydrazine-induced systemic oxidative stress and altered brain neurotransmitter status by probiotic Escherichia coli CFR 16 secreting pyrroloquinoline quinone. Curr Microbiol. 70:690–697. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu Y, Huan F and Wang J, Xie X, Yu G, Wang X, Jiang L, Gao R, Xiao H, Ding H and Wang J: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine Induced Parkinson's disease in mouse: Potential association between neurotransmitter disturbance and gut microbiota dysbiosis. ACS Chem Neurosci. 11:3366–3376. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Li W, Xu M, Liu Y, Zhang S, Wang J, Zhang Z, Xiao G, Wang R, Zhang J and Xue H: Lactiplantibacillus plantarum GOLDGUT-HNU082 alleviates CUMS-Induced Depressive-like behaviors in mice by modulating the gut microbiota and neurotransmitter levels. Foods. 14:8132025. View Article : Google Scholar : PubMed/NCBI | |
|
Guo Y, Zhu X, Zeng M, Qi L, Tang X, Wang D, Zhang M, Xie Y, Li H, Yang X and Chen D: A diet high in sugar and fat influences neurotransmitter metabolism and then affects brain function by altering the gut microbiota. Transl Psychiatry. 11:3282021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Z, Peng Q, Huo D, Jiang S, Ma C, Chang H, Chen K, Li C, Pan Y and Zhang J: Melatonin regulates the neurotransmitter secretion disorder induced by caffeine through the Microbiota-Gut-brain axis in zebrafish (Danio rerio). Front Cell Dev Biol. 9:6781902021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang W, Chen F, Zhang L, Wen F, Yu Q, Li P and Zhang A: Neurotransmitter disturbances caused by methylmercury exposure: Microbiota-gut-brain interaction. Sci Total Environ. 873:1623582023. View Article : Google Scholar : PubMed/NCBI | |
|
Mortensen NP, Moreno Caffaro M, Patel PR, Snyder RW, Watson SL, Aravamudhan S, Montgomery SA, Lefever T, Sumner SJ and Fennell TR: Biodistribution, cardiac and neurobehavioral assessments, and neurotransmitter quantification in juvenile rats following oral administration of aluminum oxide nanoparticles. J Appl Toxicol. 41:1316–1329. 2021. View Article : Google Scholar : | |
|
Huang J, Liu S, Li P, Wei L, Lin G, Lin J, Luo Y, Liu Y, Mao Y, Ruan H, et al: Multi-omics analysis of gut-brain axis reveals novel microbial and neurotransmitter signatures in patients with arteriosclerotic cerebral small vessel disease. Pharmacol Res. 208:1073852024. View Article : Google Scholar : PubMed/NCBI | |
|
Margetts G, Kleidonas S, Zaibi NS, Zaibi MS and Edwards KD: Evidence for anti-inflammatory effects and modulation of neurotransmitter metabolism by Salvia officinalis L. BMC Complement Med Ther. 22:1312022. View Article : Google Scholar : PubMed/NCBI | |
|
Kumari M, Dasriya VL, Nataraj BH, Nagpal R and Behare PV: Lacticaseibacillus rhamnosus-derived exopolysaccharide Attenuates D-Galactose-Induced oxidative stress and inflammatory brain injury and modulates gut microbiota in a mouse model. Microorganisms. 10:20462022. View Article : Google Scholar : PubMed/NCBI | |
|
Bock HJ, Lee NK and Paik HD: Neuroprotective effects of Heat-killed levilactobacillus brevis KU15152 on H2O2-induced oxidative stress. J Microbiol Biotechnol. 33:1189–1196. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Cansız D, Ünal İ, Üstündağ ÜV, Alturfan AA, Altinoz MA, Elmacı İ and Emekli-Alturfan E: Caprylic acid ameliorates rotenone induced inflammation and oxidative stress in the gut-brain axis in Zebrafish. Mol Biol Rep. 48:5259–5273. 2021. View Article : Google Scholar | |
|
Pan S, Wei H, Yuan S, Kong Y, Yang H and Zhang Y, Cui X, Chen W, Liu J and Zhang Y: Probiotic Pediococcus pentosaceus ameliorates MPTP-induced oxidative stress via regulating the gut microbiota-gut-brain axis. Front Cell Infect Microbiol. 12:10228792022. View Article : Google Scholar : PubMed/NCBI | |
|
Dong B, Qi Y, Sundas H, Yang R, Zhou J and Li Z: Soy protein increases cognitive level in mice by modifying hippocampal nerve growth, oxidative stress, and intestinal microbiota. J Sci Food Agric. 103:4085–4094. 2023. View Article : Google Scholar | |
|
Nikrad N, Farhangi MA, Fard Tabrizi FP, Vaezi M, Mahmoudpour A and Mesgari-Abbasi M: The effect of calorie-restriction along with thylakoid membranes of spinach on the gut-brain Axis Pathway and oxidative stress biomarkers in obese women with polycystic ovary syndrome: A randomized, Double-blind, placebo-controlled clinical trial. J Ovarian Res. 16:2162023. View Article : Google Scholar : PubMed/NCBI | |
|
Rode J, Yang L, König J, Hutchinson AN, Wall R, Venizelos N, Brummer RJ, Rangel I and Vumma R: Butyrate rescues oxidative Stress-induced transport deficits of tryptophan: Potential implication in affective or Gut-Brain axis disorders. Neuropsychobiology. 80:253–263. 2021. View Article : Google Scholar | |
|
He J, Xu P, Xu T, Yu H, Wang L, Chen R, Zhang K, Yao Y, Xie Y, Yang Q, et al: Therapeutic potential of hydrogen-rich water in zebrafish model of Alzheimer's disease: Targeting oxidative stress, inflammation, and the gut-brain axis. Front Aging Neurosci. 16:15150922024. View Article : Google Scholar | |
|
Di Chiano M, Rocchetti MT, Spano G, Russo P, Allegretta C, Milior G, Gadaleta RM, Sallustio F, Pontrelli P, Gesualdo L, et al: Lactobacilli Cell-free supernatants modulate inflammation and oxidative stress in human microglia via NRF2-SOD1 signaling. Cell Mol Neurobiol. 44:602024. View Article : Google Scholar : PubMed/NCBI | |
|
Hsu YC, Huang YY, Tsai SY, Kuo YW, Lin JH, Ho HH, Chen JF, Hsia KC and Sun Y: Efficacy of probiotic supplements on Brain-derived neurotrophic factor, inflammatory biomarkers, oxidative stress and cognitive function in patients with Alzheimer's dementia: A 12-week randomized, double-blind active-controlled study. Nutrients. 16:162023. View Article : Google Scholar | |
|
Akhgarjand C, Vahabi Z, Shab-Bidar S, Anoushirvani A and Djafarian K: The effects of probiotic supplements on oxidative stress and inflammation in subjects with mild and moderate Alzheimer's disease: A randomized, double-blind, placebo-controlled study. Inflammopharmacology. 32:1413–1420. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
García-Sanmartín J, Bobadilla M, Mirpuri E, Grifoll V, Pérez-Clavijo M and Martínez A: Agaricus Mushroom-enriched diets modulate the Microbiota-Gut-brain axis and reduce brain oxidative stress in mice. Antioxidants (Basel). 11:6952022. View Article : Google Scholar : PubMed/NCBI | |
|
Chenghan M, Wanxin L, Bangcheng Z, Yao H, Qinxi L, Ting Z, Xiaojie L, Kun Z, Yingqian Z and Zhihui Z: Short-chain fatty acids mediate gut microbiota-brain communication and protect the blood-brain barrier integrity. Ann N Y Acad Sci. 1545:116–131. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Stachulski AV, Knausenberger TB, Shah SN, Hoyles L and McArthur S: A host-gut microbial amino acid co-metabolite, p-cresol glucuronide, promotes blood-brain barrier integrity in vivo. Tissue Barriers. 11:20731752023. View Article : Google Scholar | |
|
Connell E, Le Gall G, McArthur S, Lang L, Breeze B, Pontifex MG, Sami S, Pourtau L, Gaudout D, Müller M and Vauzour D: (Poly)phenol-rich grape and blueberry extract prevents LPS-induced disruption of the blood-brain barrier through the modulation of the gut microbiota-derived uremic toxins. Neurochem Int. 180:1058782024. View Article : Google Scholar : PubMed/NCBI | |
|
He J, Liu Y, Li J, Zhao Y, Jiang H, Luo S and He G: Intestinal changes in permeability, tight junction and mucin synthesis in a mouse model of Alzheimer's disease. Int J Mol Med. 52:1132023. View Article : Google Scholar : PubMed/NCBI | |
|
Fiorentino M, Sapone A, Senger S, Camhi SS, Kadzielski SM, Buie TM, Kelly DL, Cascella N and Fasano A: Blood-brain barrier and intestinal epithelial barrier alterations in autism spectrum disorders. Mol Autism. 7:492016. View Article : Google Scholar : PubMed/NCBI | |
|
Sun N, Hu H, Wang F, Li L, Zhu W, Shen Y, Xiu J and Xu Q: Antibiotic-induced microbiome depletion in adult mice disrupts blood-brain barrier and facilitates brain infiltration of monocytes after bone-marrow transplantation. Brain Behav Immun. 92:102–114. 2021. View Article : Google Scholar | |
|
Nelson JW, Phillips SC, Ganesh BP, Petrosino JF, Durgan DJ and Bryan RM: The gut microbiome contributes to blood-brain barrier disruption in spontaneously hypertensive stroke prone rats. FASEB J. 35:e212012021. View Article : Google Scholar : PubMed/NCBI | |
|
Knox EG, Aburto MR, Tessier C, Nagpal J, Clarke G, O'Driscoll CM and Cryan JF: Microbial-derived metabolites induce actin cytoskeletal rearrangement and protect Blood-brain barrier function. iScience. 25:1056482022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Tan Q, Pan M, Yu J, Wu S, Tu W, Li M and Jiang S: Minimally invasive vagus nerve stimulation modulates mast cell degranulation via the microbiota-gut-brain axis to ameliorate blood-brain barrier and intestinal barrier damage following ischemic stroke. Int Immunopharmacol. 132:1120302024. View Article : Google Scholar : PubMed/NCBI | |
|
Marungruang N, Arévalo Sureda E, Lefrançoise A, Weström B, Nyman M, Prykhodko O and Fåk Hållenius F: Impact of dietary induced precocious gut maturation on cecal microbiota and its relation to the blood-brain barrier during the postnatal period in rats. Neurogastroenterol Motil. 30:e132852018. View Article : Google Scholar : PubMed/NCBI | |
|
Schalla MA, Oerter S, Cubukova A, Metzger M, Appelt-Menzel A and Stengel A: Locked out: Phoenixin-14 does not cross a Stem-Cell-derived blood-brain barrier model. Brain Sci. 13:9802023. View Article : Google Scholar : PubMed/NCBI | |
|
Solch RJ, Aigbogun JO, Voyiadjis AG, Talkington GM, Darensbourg RM, O'Connell S, Pickett KM, Perez SR and Maraganore DM: Mediterranean diet adherence, gut microbiota, and Alzheimer's or Parkinson's disease risk: A systematic review. J Neurol Sci. 434:1201662022. View Article : Google Scholar : PubMed/NCBI | |
|
Lussier DM, Woolf EC, Johnson JL, Brooks KS, Blattman JN and Scheck AC: Enhanced immunity in a mouse model of malignant glioma is mediated by a therapeutic ketogenic diet. BMC Cancer. 16:3102016. View Article : Google Scholar : PubMed/NCBI | |
|
Berding K, Vlckova K, Marx W, Schellekens H, Stanton C, Clarke G, Jacka F, Dinan TG and Cryan JF: Diet and the Microbiota-Gut-Brain axis: Sowing the seeds of good mental health. Adv Nutr. 12:1239–1285. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zuo Z, Fan H, Tang XD, Chen YM, Xun LT, Li Y, Song ZJ and Zhai HQ: Effect of different treatments and alcohol addiction on gut microbiota in minimal hepatic encephalopathy patients. Exp Ther Med. 14:4887–4895. 2017.PubMed/NCBI | |
|
Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, Bienenstock J and Cryan JF: Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA. 108:16050–16055. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Chong HX, Yusoff NAA, Hor YY, Lew LC, Jaafar MH, Choi SB, Yusoff MSB, Wahid N, Abdullah MFIL, Zakaria N, et al: Lactobacillus plantarum DR7 alleviates stress and anxiety in adults: A randomised, double-blind, placebo-controlled study. Benef Microbes. 10:355–373. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Lew LC, Hor YY, Yusoff NAA, Choi SB, Yusoff MSB, Roslan NS, Ahmad A, Mohammad JAM, Abdullah MFIL, Zakaria N, et al: Probiotic Lactobacillus plantarum P8 alleviated stress and anxiety while enhancing memory and cognition in stressed adults: A randomised, double-blind, placebo-controlled study. Clin Nutr. 38:2053–2064. 2019. View Article : Google Scholar | |
|
Karakula-Juchnowicz H, Rog J, Juchnowicz D, Łoniewski I, Skonieczna-Żydecka K, Krukow P, Futyma-Jedrzejewska M and Kaczmarczyk M: The study evaluating the effect of probiotic supplementation on the mental status inflammation, and intestinal barrier in major depressive disorder patients using gluten-free or gluten-containing diet (SANGUT study): A 12-week, randomized, double-blind, and placebo-controlled clinical study protocol. Nutr J. 18:502019. View Article : Google Scholar | |
|
Cheng Y, Tan G, Zhu Q, Wang C, Ruan G, Ying S, Qie J, Hu X, Xiao Z, Xu F, et al: Efficacy of fecal microbiota transplantation in patients with Parkinson's disease: Clinical trial results from a randomized, placebo-controlled design. Gut Microbes. 15:22842472023. View Article : Google Scholar : PubMed/NCBI | |
|
Dalile B, Vervliet B, Bergonzelli G, Verbeke K and Van Oudenhove L: Colon-delivered short-chain fatty acids attenuate the cortisol response to psychosocial stress in healthy men: A randomized, placebo-controlled trial. Neuropsychopharmacology. 45:2257–2266. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Lei Y, Tang L, Chen Q, Wu L, He W, Tu D, Wang S, Chen Y, Liu S and Xie Z: Disulfiram ameliorates nonalcoholic steatohepatitis by modulating the gut microbiota and bile acid metabolism. Nat Commun. 13:68622022. View Article : Google Scholar : PubMed/NCBI | |
|
Fleck AK, Hucke S, Teipel F, Eschborn M, Janoschka C, Liebmann M, Wami H, Korn L, Pickert G, Hartwig M, et al: Dietary conjugated linoleic acid links reduced intestinal inflammation to amelioration of CNS autoimmunity. Brain. 144:1152–1166. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Martin FP, Cominetti O, Berger B, Combremont S, Marquis J, Xie G, Jia W, Pinto-Sanchez MI, Bercik P and Bergonzelli G: Metabolome-associated psychological comorbidities improvement in irritable bowel syndrome patients receiving a probiotic. Gut Microbes. 16:23477152024. View Article : Google Scholar : PubMed/NCBI | |
|
Mysonhimer AR, Cannavale CN, Bailey MA, Khan NA and Holscher HD: Prebiotic consumption alters microbiota but not biological markers of stress and inflammation or mental health symptoms in healthy adults: A randomized, controlled, cross-over trial. J Nutr. 153:1283–1296. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Li Y, Zhao J, Li L, Wang Y, Chen F, Li Y, Cheng R, He F, Ze X and Shen X: Effects of Bifidobacterium breve 207-1 on regulating lifestyle behaviors and mental wellness in healthy adults based on the microbiome-gut-brain axis: A randomized, double-blind, placebo-controlled trial. Eur J Nutr. 63:2567–2585. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Casertano M, Dekker M, Valentino V, De Filippis F, Fogliano V and Ercolini D: Gaba-producing lactobacilli boost cognitive reactivity to negative mood without improving cognitive performance: A human Double-Blind Placebo-Controlled Cross-Over study. Brain Behav Immun. 122:256–265. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Caradonna E, Nemni R, Bifone A, Gandolfo P, Costantino L, Giordano L, Mormone E, Macula A, Cuomo M, Difruscolo R, et al: The Brain-gut axis, an important player in alzheimer and parkinson disease: A narrative review. J Clin Med. 13:41302024. View Article : Google Scholar : PubMed/NCBI | |
|
Almheiri RT, Hajjar B, Alkhaaldi SMI, Rabeh N, Aljoudi S, Abd-Elrahman KS and Hamdan H: Beyond weight loss: Exploring the neurological ramifications of altered gut microbiota post-bariatric surgery. J Transl Med. 23:2232025. View Article : Google Scholar : PubMed/NCBI | |
|
Park KJ and Gao Y: Gut-brain axis and neurodegeneration: Mechanisms and therapeutic potentials. Front Neurosci. 18:14813902024. View Article : Google Scholar : PubMed/NCBI | |
|
Manfredi JN, Gupta SK, Vyavahare S, Deak F, Lu X, Buddha L, Wankhade U, Lohakare J, Isales C and Fulzele S: Gut microbiota dysbiosis in Alzheimer's disease (AD): Insights from human clinical studies and the mouse AD models. Physiol Behav. 290:1147782025. View Article : Google Scholar | |
|
Qi A, Liu L, Zhang J, Chen S, Xu S, Chen Y, Zhang L and Cai C: Plasma metabolic analysis reveals the dysregulation of Short-chain fatty acid metabolism in Parkinson's disease. Mol Neurobiol. 60:2619–2631. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Nakhal MM, Yassin LK, Alyaqoubi R, Saeed S, Alderei A, Alhammadi A, Alshehhi M, Almehairbi A, Al Houqani S, BaniYas S, et al: The Microbiota-Gut-Brain axis and neurological disorders: A comprehensive review. Life. 14:12342024. View Article : Google Scholar : PubMed/NCBI | |
|
Vaz M and Silvestre S: Alzheimer's disease: Recent treatment strategies. Eur J Pharmacol. 887:1735542020. View Article : Google Scholar : PubMed/NCBI | |
|
Forssten SD, Ouwehand AC, Griffin SM and Patterson E: One giant leap from mouse to man: The Microbiota-Gut-Brain axis in mood disorders and translational challenges moving towards human clinical trials. Nutrients. 14:5682022. View Article : Google Scholar : PubMed/NCBI | |
|
Schächtle MA and Rosshart SP: The Microbiota-Gut-Brain axis in health and disease and its implications for translational research. Front Cell Neurosci. 15:6981722021. View Article : Google Scholar : PubMed/NCBI | |
|
Ericsson AC and Franklin CL: Manipulating the gut microbiota: Methods and challenges. ILAR J. 56:205–217. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
McGonigle P and Ruggeri B: Animal models of human disease: Challenges in enabling translation. Biochem Pharmacol. 87:162–171. 2014. View Article : Google Scholar | |
|
Woodworth MH, Sitchenko KL, Carpentieri C, Friedman-Moraco RJ, Wang T and Kraft CS: Ethical considerations in microbial therapeutic clinical trials. New Bioeth. 23:210–218. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng Y, Tan G, Zhu Q, Wang C, Ruan G, Ying S, Qie J, Hu X, Xiao Z, Xu F, et al: Efficacy of fecal microbiota transplantation in patients with Parkinson's disease: Clinical trial results from a randomized, placebo-controlled design. Gut Microbes. 15:22842472023. View Article : Google Scholar : PubMed/NCBI | |
|
Blivet G, Relano-Gines A, Wachtel M and Touchon J: A randomized, double-blind, and sham-controlled trial of an innovative brain-gut photobiomodulation therapy: Safety and patient compliance. J Alzheimers Dis. 90:811–822. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Rode J, Edebol Carlman HMT, König J, Hutchinson AN, Thunberg P, Persson J and Brummer RJ: Multi-strain probiotic mixture affects brain morphology and resting state brain function in healthy subjects: An RCT. Cells. 11:29222022. View Article : Google Scholar : PubMed/NCBI | |
|
Kilinçarslan S and Evrensel A: The effect of fecal microbiota transplantation on psychiatric symptoms among patients with inflammatory bowel disease: An experimental study. Actas Esp Psiquiatr. 48:1–7. 2020.PubMed/NCBI | |
|
Laeeq T, Vongsavath T, Tun KM and Hong AS: The potential role of fecal microbiota transplant in the reversal or stabilization of multiple sclerosis symptoms: A literature review on efficacy and safety. Microorganisms. 11:28402023. View Article : Google Scholar : PubMed/NCBI | |
|
Loh JS, Mak WQ, Tan LKS, Ng CX, Chan HH, Yeow SH, Foo JB, Ong YS, How CW and Khaw KY: Microbiota-gut-brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduct Target Ther. 9:372024. View Article : Google Scholar : PubMed/NCBI | |
|
Zmora N, Zilberman-Schapira G, Suez J, Mor U, Dori-Bachash M, Bashiardes S, Kotler E, Zur M, Regev-Lehavi D, Brik RB, et al: Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell. 174:1388–1405.e21. 2018. View Article : Google Scholar : PubMed/NCBI |