Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
November-2025 Volume 56 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2025 Volume 56 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Contribution of insulin‑like growth factor‑1 to tendon repair (Review)

  • Authors:
    • Yixuan Chen
    • Yuchen Zhu
    • Siqi Song
    • Yushi Hu
  • View Affiliations / Copyright

    Affiliations: School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan 641418, P.R. China
    Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 195
    |
    Published online on: September 11, 2025
       https://doi.org/10.3892/ijmm.2025.5636
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Tendinopathy is a common musculoskeletal disorder that markedly diminishes both physical performance and overall quality of life across age groups, imposing considerable socio‑economic burdens. Insulin‑like growth factor‑1 (IGF‑1) functions as a protective cytokine with significant involvement in multiple pathological conditions, including tendinopathy. The present review integrated current evidence on the role of IGF‑1 in tendon repair. IGF‑1 actively participates in every phase of tendon repair, making it a central driver of the injury response. When administered for tendon repair, IGF‑1 binds to IGF‑1R on target cell membranes, initiating sequential phosphorylation cascades that transmit signals from the membrane to the nucleus, while IGFBPs finely modulate this process. These intricate signaling pathways ultimately yield beneficial effects such as reduced inflammation, enhanced cell proliferation and migration and increased collagen synthesis, thereby promoting restoration of tendon structure and integrity. IGF‑1 has emerged as one of the most promising growth factors in tendon regenerative strategies. Nevertheless, clarification of critical parameters such as administration dosage and timing remains necessary to optimize its therapeutic value and to fully delineate its contribution to tendon repair.
View Figures

Figure 1

Article retrieval flow chart with
inclusion and exclusion process. IGF-1, insulin-like growth
factor-1.

Figure 2

A streamlined representation of the
signaling action of IGF-1 upon binding to its receptor has been
made, showing mainly the relevant activities involved in tendon
repair and omitting other mechanistic processes. IGF-1R and IR
primarily exist in the form of mixed receptors in skeletal muscle
tissue. The biological function of IGF-1 is mainly produced by
binding to IGF-1R. When IGF-1 specifically binds to the α subunit
of IGF-1R, it leads to morphological changes in its β subunit,
thereby activating receptor casein activity. The activated
receptors trigger phosphorylation of several specific receptors,
including IRS and SHC. Some signaling molecules containing the SH2
domain can recognize phosphorylated tyrosine residues in these
receptors. These combinations lead to the activation of downstream
signaling pathways such as PI3K/AKT, ERK, JAK, PLC and ras mitogen
activated protease. IGF-1, insulin-like growth factor-1; IGF-1R,
insulin-like growth factor-1 receptor; IR, insulin receptor; IRS,
IR substrates; SHC, Src homology collagen; SH2, Src homology 2;
PI3K/AKT, phosphatidylinositol 3-kinase/serine/threonine kinase (or
protein kinase B); ERK, extracellular regulated protein kinases;
JAK, Janus kinase; PLC, phospholipase C; IP3,inositol triphosphate;
Ca2+, calcium; mTOR, mammalian target of rapamycin;
4EBP, eIF4E binding protein; S6K1, p70S6 kinase 1; NO, nitric
oxide; NF-κB, nuclear factor-κB; STAT, signal transducers and
activators of transcription; MAPK, the Ras-mitogen-activated
protein kinase.

Figure 3

The important regulatory role of
IGFBPs in the IGF-1 system for tendon repair. (A) The structural
domains of IGFBPs. IGFBP contains conserved N-terminal and
C-terminal structural domains, as well as variable junction domains
between them; the N domain contains the IGF-binding motif and the C
domain contains the thyroglobulin type I repeat sequence. (B) The
different effects of IGFBPs on IGF-1 during tendon repair. IGF-1,
insulin-like growth factor-1; IGFBPs, insulin-like growth
factor-binding proteins.

Figure 4

The mechanisms of IGF-1 in tendon
repair. IGF-1 acts on the molecular structure of tendons by
regulating related signal transduction. IGF-1 participates in
tendon repair by regulating important factors such as IL-4, IL-10,
TGF-β, key proteins such as S6K1 and 4EBP, as well as important
signaling pathways such as ERK, PI3K/AKT, NF-κB and PLC. They play
important roles in the anti-inflammatory, cell proliferation, and
matrix remodeling processes of tendon repair. IGF-1, insulin-like
growth factor-1; IL-4, interleukin-4; IL-10, Interleukin-10; ERK,
extracellular regulated protein kinases; S6K1, p70S6 kinase 1;
PI3K/AKT, phosphatidylinositol 3-kinase/serine/threonine kinase (or
protein kinase B); 4EBP, eIF4E binding protein; PLC, phospholipase
C; TGF-β, transforming growth factor-β; STAT, signal transducer and
activator of transcription; NF-κB, nuclear factor-κB.
View References

1 

Perruccio AV, Yip C, Badley EM and Power JD: Musculoskeletal disorders: A neglected group at public health and epidemiology meetings? Am J Public Health. 107:1584–1585. 2017. View Article : Google Scholar : PubMed/NCBI

2 

Foster HE, Scott C, Tiderius CJ and Dobbs MB; Members of the Paediatric Global Musculoskeletal Task Force: Improving musculoskeletal health for children and young people-a 'call to action'. Best Pract Res Clin Rheumatol. 34:1015662020. View Article : Google Scholar

3 

Wunderli SL, Blache U and Snedeker JG: Tendon explant models for physiologically relevant in vitro study of tissue biology-a perspective. Connect Tissue Res. 61:262–277. 2020. View Article : Google Scholar : PubMed/NCBI

4 

Olesen JL, Heinemeier KM, Langberg H, Magnusson SP, Kjaer M and Flyvbjerg A: Expression, content, and localization of insulin-like growth factor I in human achilles tendon. Connect Tissue Res. 47:200–206. 2006. View Article : Google Scholar : PubMed/NCBI

5 

Disser NP, Sugg KB, Talarek JR, Sarver DC, Rourke BJ and Mendias CL: Insulin-like growth factor 1 signaling in tenocytes is required for adult tendon growth. FASEB J. 33:12680–12695. 2019. View Article : Google Scholar : PubMed/NCBI

6 

Kostrominova TY, Calve S, Arruda EM and Larkin LM: Ultrastructure of myotendinous junctions in tendon-skeletal muscle constructs engineered in vitro. Histol Histopathol. 24:541–550. 2009.PubMed/NCBI

7 

Chen Y, Jiang L, Lyu K, Lu J, Long L, Wang X, Liu T and Li S: A promising candidate in tendon healing events-PDGF-BB. Biomolecules. 12:15182002. View Article : Google Scholar

8 

Peniche Silva CJ, Balmayor ER and van Griensven M: Reprogramming tendon healing: A guide to novel molecular tools. Front Bioeng Biotechnol. 12:13797732024. View Article : Google Scholar : PubMed/NCBI

9 

Wang Y and Li J: Current progress in growth factors and extracellular vesicles in tendon healing. Int Wound J. 20:3871–3883. 2023. View Article : Google Scholar : PubMed/NCBI

10 

Millar NL, Silbernagel KG, Thorborg K, Kirwan PD, Galatz LM, Abrams GD, Murrell GAC, McInnes IB and Rodeo SA: Tendinopathy. Nat Rev Dis Primers. 7:12021. View Article : Google Scholar : PubMed/NCBI

11 

Chen Y, Lyu K, Lu J, Jiang L, Zhu B, Liu X, Li Y, Liu X, Long L, Wang X, et al: Biological response of extracorporeal shock wave therapy to tendinopathy in vivo (review). Front Vet Sci. 9:8518942022. View Article : Google Scholar : PubMed/NCBI

12 

Rieber J, Meier-Bürgisser G, Miescher I, Weber FE, Wolint P, Yao Y, Ongini E, Milionis A, Snedeker JG, Calcagni M and Buschmann J: Bioactive and elastic emulsion electrospun DegraPol tubes delivering IGF-1 for tendon rupture repair. Int J Mol Sci. 24:102722023. View Article : Google Scholar : PubMed/NCBI

13 

Dahlgren LA, van der Meulen MC, Bertram JE, Starrak GS and Nixon AJ: Insulin-like growth factor-I improves cellular and molecular aspects of healing in a collagenase-induced model of flexor tendinitis. J Orthop Res. 20:910–919. 2002. View Article : Google Scholar : PubMed/NCBI

14 

Li H, Li Y, Xiang L, Luo S, Zhang Y and Li S: Therapeutic potential of GDF-5 for enhancing tendon regenerative healing. Regen Ther. 26:290–298. 2024. View Article : Google Scholar : PubMed/NCBI

15 

Muench LN, Tamburini L, Kriscenski D, Landry A, Berthold DP, Kia C, Cote MP, McCarthy MB and Mazzocca AD: The effect of insulin and insulin-like growth factor 1 (IGF-1) on cellular proliferation and migration of human subacromial bursa tissue. Arthrosc Sports Med Rehabil. 3:e781–e789. 2021. View Article : Google Scholar : PubMed/NCBI

16 

Hansson HA, Dahlin LB, Lundborg G, Löwenadler B, Paleus S and Skottner A: Transiently increased insulin-like growth factor I immunoreactivity in tendons after vibration trauma. An immunohistochemical study on rats. Scand J Plast Reconstr Surg Hand Surg. 22:1–6. 1998.

17 

Hansen M, Boesen A, Holm L, Flyvbjerg A, Langberg H and Kjaer M: Local administration of insulin-like growth factor-I (IGF-I) stimulates tendon collagen synthesis in humans. Scand J Med Sci Sports. 23:614–619. 2013. View Article : Google Scholar

18 

Huang R, Shi J, Wei R and Li J: Challenges of insulin-like growth factor-1 testing. Crit Rev Clin Lab Sci. 61:388–403. 2024. View Article : Google Scholar : PubMed/NCBI

19 

Miller BS, Rogol AD and Rosenfeld RG: The history of the insulin-like growth factor system. Horm Res Paediatr. 95:619–630. 2022. View Article : Google Scholar : PubMed/NCBI

20 

Chanson P, Arnoux A, Mavromati M, Brailly-Tabard S, Massart C, Young J, Piketty ML and Souberbielle JC; VARIETE Investigators: Reference values for IGF-I serum concentrations: Comparison of six immunoassays. J Clin Endocrinol Metab. 101:3450–3458. 2016. View Article : Google Scholar : PubMed/NCBI

21 

Clemmons DR: Value of insulin-like growth factor system markers in the assessment of growth hormone status. Endocrinol Metab Clin North Am. 36:109–129. 2007. View Article : Google Scholar : PubMed/NCBI

22 

Pantazis K, Roupas ND, Panagopoulos A, Theodoraki S, Tsintoni A and Kyriazopoulou V: Spontaneous rupture of the long head of the biceps tendon in a woman with hypothyroidism: A case report. J Med Case Rep. 10:22016. View Article : Google Scholar : PubMed/NCBI

23 

Li J, Zhou X, Chen J, Eliasson P, Kingham PJ and Backman LJ: Secretome from myoblasts statically loaded at low intensity promotes tenocyte proliferation via the IGF-1 receptor pathway. FASEB J. 37:e232032023. View Article : Google Scholar : PubMed/NCBI

24 

Gillery P, Leperre A, Maquart FX and Borel JP: Insulin-like growth factor-I (IGF-I) stimulates protein synthesis and collagen gene expression in monolayer and lattice cultures of fibroblasts. J Cell Physiol. 152:389–396. 1992. View Article : Google Scholar : PubMed/NCBI

25 

Profka E, Rodari G, Giacchetti F and Giavoli C: GH deficiency and replacement therapy in hypopituitarism: Insight into the relationships with other hypothalamic-pituitary axes. Front Endocrinol (Lausanne). 12:6787782021. View Article : Google Scholar : PubMed/NCBI

26 

Hansen M, Kongsgaard M, Holm L, Skovgaard D, Magnusson SP, Qvortrup K, Larsen JO, Aagaard P, Dahl M, Serup A, et al: Effect of estrogen on tendon collagen synthesis, tendon structural characteristics, and biomechanical properties in postmenopausal women. J Appl Physiol (1985). 106:1385–1393. 2009. View Article : Google Scholar

27 

Hansen M and Kjaer M: Sex hormones and tendon. Adv Exp Med Biol. 920:139–149. 2016. View Article : Google Scholar : PubMed/NCBI

28 

Tang Y, Leng Q, Xiang X, Zhang L, Yang Y and Qiu L: Use of ultrasound-targeted microbubble destruction to transfect IGF-1 cDNA to enhance the regeneration of rat wounded Achilles tendon in vivo. Gene Ther. 22:610–618. 2015. View Article : Google Scholar : PubMed/NCBI

29 

Caliari SR and Harley BA: The effect of anisotropic collagen-GAG scaffolds and growth factor supplementation on tendon cell recruitment, alignment, and metabolic activity. Biomaterials. 32:5330–5340. 2011. View Article : Google Scholar : PubMed/NCBI

30 

Li Y, Yu X, Lin S, Li X, Zhang S and Song YH: Insulin-like growth factor 1 enhances the migratory capacity of mesenchymal stem cells. Biochem Biophys Res Commun. 356:780–784. 2007. View Article : Google Scholar : PubMed/NCBI

31 

Miescher I, Rieber J, Calcagni M and Buschmann J: In vitro and in vivo effects of IGF-1 delivery strategies on tendon healing: A review. Int J Mol Sci. 24:23702023. View Article : Google Scholar : PubMed/NCBI

32 

Prabhath A, Vernekar VN, Esdaille CJ, Eisenberg E, Lebaschi A, Badon M, Seyedsalehi A, Dzidotor G, Tang X, Dyment N, et al: Pegylated insulin-like growth factor-1 biotherapeutic delivery promotes rotator cuff regeneration in a rat model. J Biomed Mater Res A. 110:1356–1371. 2022. View Article : Google Scholar : PubMed/NCBI

33 

Caliari SR and Harley BA: Composite growth factor supplementation strategies to enhance tenocyte bioactivity in aligned collagen-GAG scaffolds. Tissue Eng Part A. 19:1100–1112. 2013. View Article : Google Scholar :

34 

Herchenhan A, Bayer ML, Eliasson P, Magnusson SP and Kjaer M: Insulin-like growth factor I enhances collagen synthesis in engineered human tendon tissue. Growth Horm IGF Res. 25:13–19. 2015. View Article : Google Scholar

35 

Armakolas N, Armakolas A, Antonopoulos A, Dimakakos A, Stathaki M and Koutsilieris M: The role of the IGF-1 Ec in myoskeletal system and osteosarcoma pathophysiology. Crit Rev Oncol Hematol. 108:137–145. 2016. View Article : Google Scholar : PubMed/NCBI

36 

Yang SY and Goldspink G: Different roles of the IGF-I Ec peptide (MGF) and mature IGF-I in myoblast proliferation and differentiation. FEBS Lett. 522:156–160. 2002. View Article : Google Scholar : PubMed/NCBI

37 

Nicholls AR and Holt RI: Growth hormone and insulin-like growth factor-1. Front Horm Res. 47:101–114. 2016. View Article : Google Scholar : PubMed/NCBI

38 

Le Roith D, Bondy C, Yakar S, Liu JL and Butler A: The somatomedin hypothesis: 2001. Endocr Rev. 22:53–74. 2001. View Article : Google Scholar : PubMed/NCBI

39 

Pfäffle R and Kiess W: GH and IGF-1 replacement in children. Handb Exp Pharmacol. 261:67–86. 2020. View Article : Google Scholar : PubMed/NCBI

40 

Lelbach A, Muzes G and Feher J: The insulin-like growth factor system: IGFs, IGF-binding proteins and IGFBP-proteases. Acta Physiol Hung. 92:97–107. 2005. View Article : Google Scholar : PubMed/NCBI

41 

Werner H, Weinstein D and Bentov I: Similarities and differences between insulin and IGF-I: Structures, receptors, and signalling pathways. Arch Physiol Biochem. 114:17–22. 2008. View Article : Google Scholar : PubMed/NCBI

42 

Hakuno F and Takahashi SI: IGF1 receptor signaling pathways. J Mol Endocrinol. 61:T69–T86. 2018. View Article : Google Scholar : PubMed/NCBI

43 

Belfiore A, Frasca F, Pandini G, Sciacca L and Vigneri R: Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocr Rev. 30:586–623. 2009. View Article : Google Scholar : PubMed/NCBI

44 

Hanks SK, Quinn AM and Hunter T: The protein kinase family: Conserved features and deduced phylogeny of the catalytic domains. Science. 241:42–52. 1988. View Article : Google Scholar : PubMed/NCBI

45 

Jones JI and Clemmons DR: Insulin-like growth factors and their binding proteins: Biological actions. Endocr Rev. 16:3–34. 1995.PubMed/NCBI

46 

Kelley KM, Oh Y, Gargosky SE, Gucev Z, Matsumoto T, Hwa V, Ng L, Simpson DM and Rosenfeld RG: Insulin-like growth factor-binding proteins (IGFBPs) and their regulatory dynamics. Int J Biochem Cell Biol. 28:619–637. 1996. View Article : Google Scholar : PubMed/NCBI

47 

Crane JL and Cao X: Function of matrix IGF-1 in coupling bone resorption and formation. J Mol Med (Berl). 92:107–115. 2014. View Article : Google Scholar

48 

Firth SM and Baxter RC: Cellular actions of the insulin-like growth factor binding proteins. Endocr Rev. 23:824–854. 2002. View Article : Google Scholar : PubMed/NCBI

49 

Baxter RC: Insulin-like growth factor binding protein-3 (IGFBP-3): Novel ligands mediate unexpected functions. J Cell Commun Signal. 7:179–189. 2013. View Article : Google Scholar : PubMed/NCBI

50 

Clemmons DR: Role of IGF-binding proteins in regulating IGF responses to changes in metabolism. J Mol Endocrinol. 61:T139–T169. 2018. View Article : Google Scholar : PubMed/NCBI

51 

Dahlgren LA and Nixon AJ: Cloning and expression of equine insulin-like growth factor binding proteins in normal equine tendon. Am J Vet Res. 66:300–306. 2005. View Article : Google Scholar : PubMed/NCBI

52 

Allard JB and Duan C: IGF-binding proteins: Why do they exist and why are there so many? Front Endocrinol (Lausanne). 9:1172018. View Article : Google Scholar : PubMed/NCBI

53 

Bach LA: IGF-binding proteins. J Mol Endocrinol. 61:T11–T28. 2018. View Article : Google Scholar

54 

Lee PD, Giudice LC, Conover CA and Powell DR: Insulin-like growth factor binding protein-1: Recent findings and new directions. Proc Soc Exp Biol Med. 216:319–357. 1997. View Article : Google Scholar : PubMed/NCBI

55 

Dahlgren LA, Mohammed HO and Nixon AJ: Expression of insulin-like growth factor binding proteins in healing tendon lesions. J Orthop Res. 24:183–192. 2006. View Article : Google Scholar : PubMed/NCBI

56 

Olesen JL, Heinemeier KM, Gemmer C, Kjaer M, Flyvbjerg A and Langberg H: Exercise-dependent IGF-I, IGFBPs, and type I collagen changes in human peritendinous connective tissue determined by microdialysis. J Appl Physiol (1985). 102:214–220. 2007. View Article : Google Scholar

57 

Shen X, Xi G, Maile LA, Wai C, Rosen CJ and Clemmons DR: Insulin-like growth factor (IGF) binding protein 2 functions coordinately with receptor protein tyrosine phosphatase β and the IGF-I receptor to regulate IGF-I-stimulated signaling. Mol Cell Biol. 32:4116–4130. 2012. View Article : Google Scholar : PubMed/NCBI

58 

Ranke MB: Insulin-like growth factor binding-protein-3 (IGFBP-3). Best Pract Res Clin Endocrinol Metab. 29:701–711. 2015. View Article : Google Scholar : PubMed/NCBI

59 

Rajaram S, Baylink DJ and Mohan S: Insulin-like growth factor-binding proteins in serum and other biological fluids: Regulation and functions. Endocr Rev. 18:801–831. 1997.PubMed/NCBI

60 

Camacho-Hubner C, Busby WH Jr, McCusker RH, Wright G and Clemmons DR: Identification of the forms of insulin-like growth factor-binding proteins produced by human fibroblasts and the mechanisms that regulate their secretion. J Biol Chem. 267:11949–11956. 1992. View Article : Google Scholar : PubMed/NCBI

61 

Wang H, Yu R, Wang M, Wang S, Ouyang X, Yan Z, Chen S, Wang W, Wu F and Fan C: Insulin-like growth factor binding protein 4 loaded electrospun membrane ameliorating tendon injury by promoting retention of IGF-1. J Control Release. 356:162–174. 2023. View Article : Google Scholar : PubMed/NCBI

62 

Olesen JL, Heinemeier KM, Haddad F, Langberg H, Flyvbjerg A, Kjaer M and Baldwin KM: Expression of insulin-like growth factor I, insulin-like growth factor binding proteins, and collagen mRNA in mechanically loaded plantaris tendon. J Appl Physiol (1985). 101:183–188. 2006. View Article : Google Scholar : PubMed/NCBI

63 

Turlo AJ, Mueller-Breckenridge AJ, Zamboulis DE, Tew SR, Canty-Laird EG and Clegg PD: Insulin-like growth factor binding protein (IGFBP6) is a cross-species tendon marker. Eur Cell Mater. 38:123–136. 2019. View Article : Google Scholar : PubMed/NCBI

64 

Boonen S, Rosen C, Bouillon R, Sommer A, McKay M, Rosen D, Adams S, Broos P, Lenaerts J, Raus J, et al: Musculoskeletal effects of the recombinant human IGF-I/IGF binding protein-3 complex in osteoporotic patients with proximal femoral fracture: A double-blind, placebo-controlled pilot study. J Clin Endocrinol Metab. 87:1593–1599. 2002. View Article : Google Scholar : PubMed/NCBI

65 

Sharma P and Maffulli N: Tendon injury and tendinopathy: Healing and repair. J Bone Joint Surg Am. 87:187–202. 2005.PubMed/NCBI

66 

Cardoso TB, Pizzari T, Kinsella R, Hope D and Cook JL: Current trends in tendinopathy management. Best Pract Res Clin Rheumatol. 33:122–140. 2019. View Article : Google Scholar : PubMed/NCBI

67 

Mazzocca AD, McCarthy MB, Chowaniec D, Cote MP, Judson CH, Apostolakos J, Solovyova O, Beitzel K and Arciero RA: Bone marrow-derived mesenchymal stem cells obtained during arthroscopic rotator cuff repair surgery show potential for tendon cell differentiation after treatment with insulin. Arthroscopy. 27:1459–1471. 2011. View Article : Google Scholar : PubMed/NCBI

68 

Abrahamsson SO: Similar effects of recombinant human insulin-like growth factor-I and II on cellular activities in flexor tendons of young rabbits: Experimental studies in vitro. J Orthop Res. 15:256–262. 1997. View Article : Google Scholar : PubMed/NCBI

69 

Li S, Wu Y, Jiang G, Tian X, Hong J, Chen S, Yan R, Feng G and Cheng Z: Intratendon delivery of leukocyte-rich platelet-rich plasma at early stage promotes tendon repair in a rabbit Achilles tendinopathy model. J Tissue Eng Regen Med. 14:452–463. 2020. View Article : Google Scholar

70 

Zhang X, Hu F, Li J, Chen L, Mao YF, Li QB, Nie CY, Lin C and Xiao J: IGF-1 inhibits inflammation and accelerates angiogenesis via Ras/PI3K/IKK/NF-κB signaling pathways to promote wound healing. Eur J Pharm Sci. 200:1068472024. View Article : Google Scholar

71 

Tonkin J, Temmerman L, Sampson RD, Gallego-Colon E, Barberi L, Bilbao D, Schneider MD, Musarò A and Rosenthal N: Monocyte/macrophage-derived IGF-1 orchestrates murine skeletal muscle regeneration and modulates autocrine polarization. Mol Ther. 23:1189–1200. 2015. View Article : Google Scholar : PubMed/NCBI

72 

Dakin SG, Dudhia J and Smith RK: Resolving an inflammatory concept: The importance of inflammation and resolution in tendinopathy. Vet Immunol Immunopathol. 158:121–127. 2014. View Article : Google Scholar : PubMed/NCBI

73 

Yang QQ, Zhang L, Zhou YL and Tang JB: Morphological changes of macrophages and their potential contribution to tendon healing. Colloids Surf B Biointerfaces. 209:1121452022. View Article : Google Scholar

74 

Arvind V and Huang AH: Reparative and maladaptive inflammation in tendon healing. Front Bioeng Biotechnol. 9:7190472021. View Article : Google Scholar : PubMed/NCBI

75 

Molloy T, Wang Y and Murrell G: The roles of growth factors in tendon and ligament healing. Sports Med. 33:381–394. 2003. View Article : Google Scholar : PubMed/NCBI

76 

Spies M, Nesic O, Barrow RE, Perez-Polo JR and Herndon DN: Liposomal IGF-1 gene transfer modulates pro- and anti-inflammatory cytokine mRNA expression in the burn wound. Gene Ther. 8:1409–1415. 2001. View Article : Google Scholar : PubMed/NCBI

77 

Yenush L and White MF: The IRS-signalling system during insulin and cytokine action. Bioessays. 19:491–500. 1997. View Article : Google Scholar : PubMed/NCBI

78 

Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS and Albelda SM: Polarization of tumor-associated neutrophil phenotype by TGF-beta: 'N1' versus 'N2' TAN. Cancer Cell. 16:183–194. 2009. View Article : Google Scholar : PubMed/NCBI

79 

Nederlof R, Reidel S, Spychala A, Gödecke S, Heinen A, Lautwein T, Petzsch P, Köhrer K and Gödecke A: Insulin-like growth factor 1 attenuates the pro-inflammatory phenotype of neutrophils in myocardial infarction. Front Immunol. 13:9080232022. View Article : Google Scholar : PubMed/NCBI

80 

Lee WJ: IGF-I exerts an anti-inflammatory effect on skeletal muscle cells through down-regulation of TLR4 signaling. Immune Netw. 11:223–226. 2011. View Article : Google Scholar : PubMed/NCBI

81 

Zhang X, Xing H, Qi F, Liu H, Gao L and Wang X: Local delivery of insulin/IGF-1 for bone regeneration: Carriers, strategies, and effects. Nanotheranostics. 4:242–255. 2020. View Article : Google Scholar : PubMed/NCBI

82 

Khasnavis S, Jana A, Roy A, Mazumder M, Bhushan B, Wood T, Ghosh S, Watson R and Pahan K: Suppression of nuclear factor-κB activation and inflammation in microglia by physically modified saline. J Biol Chem. 287:29529–29542. 2012. View Article : Google Scholar : PubMed/NCBI

83 

Hayden MS and Ghosh S: NF-κB, the first quarter-century: Remarkable progress and outstanding questions. Genes Dev. 26:203–234. 2012. View Article : Google Scholar : PubMed/NCBI

84 

Abraham AC, Shah SA, Golman M, Song L, Li X, Kurtaliaj I, Akbar M, Millar NL, Abu-Amer Y, Galatz LM and Thomopoulos S: Targeting the NF-κB signaling pathway in chronic tendon disease. Sci Transl Med. 11:eaav43192019. View Article : Google Scholar

85 

Pakshir P and Hinz B: The big five in fibrosis: Macrophages, myofibroblasts, matrix, mechanics, and miscommunication. Matrix Biol. 68-69:81–93. 2018. View Article : Google Scholar : PubMed/NCBI

86 

Abate M, Silbernagel KG, Siljeholm C, Di Iorio A, De Amicis D, Salini V, Werner S and Paganelli R: Pathogenesis of tendinopathies: Inflammation or degeneration? Arthritis Res Ther. 11:2352009. View Article : Google Scholar : PubMed/NCBI

87 

Lane RA, Migotsky N, Havlioglu N, Iannucci LE, Shen H, Lake S, Sakiyama-Elbert SE, Thomopoulos S and Gelberman RH: The effects of NF-κB suppression on the early healing response following intrasynovial tendon repair in a canine model. J Orthop Res. 41:2295–2304. 2023. View Article : Google Scholar : PubMed/NCBI

88 

Colasanti M and Persichini T: Nitric oxide: An inhibitor of NF-kappaB/Rel system in glial cells. Brain Res Bull. 52:155–161. 2000. View Article : Google Scholar : PubMed/NCBI

89 

Mariotto S, de Prati AC, Cavalieri E, Amelio E, Marlinghaus E and Suzuki H: Extracorporeal shock wave therapy in inflammatory diseases: Molecular mechanism that triggers anti-inflammatory action. Curr Med Chem. 16:2366–2372. 2009. View Article : Google Scholar : PubMed/NCBI

90 

Steinman RM and Hemmi H: Dendritic cells: Translating innate to adaptive immunity. Curr Top Microbiol Immunol. 311:17–58. 2006.PubMed/NCBI

91 

Cooper DM, Radom-Aizik S, Schwindt C and Zaldivar F Jr: Dangerous exercise: Lessons learned from dysregulated inflammatory responses to physical activity. J Appl Physiol (1985). 103:700–709. 2007. View Article : Google Scholar : PubMed/NCBI

92 

Chilton PM, Embry CA and Mitchell TC: Effects of Differences in lipid A structure on TLR4 pro-inflammatory signaling and inflammasome activation. Front Immunol. 3:1542012. View Article : Google Scholar : PubMed/NCBI

93 

Koh W, Shin JS, Lee J, Lee IH, Lee SK, Ha IH and Chung HJ: Anti-inflammatory effect of Cortex Eucommiae via modulation of the toll-like receptor 4 pathway in lipopolysaccharide-stimulated RAW 264.7 macrophages. J Ethnopharmacol. 209:255–263. 2017. View Article : Google Scholar : PubMed/NCBI

94 

Ruan A, Wang Q, Ma Y, Zhang D, Yang L, Wang Z, Xie Q and Yin Y: Efficacy and mechanism of electroacupuncture treatment of rabbits with different degrees of knee osteoarthritis: A study based on synovial innate immune response. Front Physiol. 12:6421782021. View Article : Google Scholar : PubMed/NCBI

95 

Jun T, Ruipeng G and Bin X: TLR4 knockdown by miRNA-140-5p improves tendinopathy: An in vitro study. Arch Med Sci. 20:582–601. 2020.PubMed/NCBI

96 

Liu-Bryan R and Terkeltaub R: Chondrocyte innate immune myeloid differentiation factor 88-dependent signaling drives procatabolic effects of the endogenous Toll-like receptor 2/Toll-like receptor 4 ligands low molecular weight hyaluronan and high mobility group box chromosomal protein 1 in mice. Arthritis Rheum. 62:2004–2012. 2010. View Article : Google Scholar : PubMed/NCBI

97 

Madera-Salcedo IK, Cruz SL and Gonzalez-Espinosa C: Morphine prevents lipopolysaccharide-induced TNF secretion in mast cells blocking IκB kinase activation and SNAP-23 phosphorylation: Correlation with the formation of a β-arrestin/TRAF6 complex. J Immunol. 191:3400–3409. 2013. View Article : Google Scholar : PubMed/NCBI

98 

Jin X, Yu Y, Lin Y, Yang J and Chen Z: Tendon-regulating and bone-setting manipulation promotes the recovery of synovial inflammation in rabbits with knee osteoarthritis via the TLR4-MyD88-NF-κB signaling pathway. Ann Transl Med. 11:2452023. View Article : Google Scholar

99 

Emmerson E, Campbell L, Davies FC, Ross NL, Ashcroft GS, Krust A, Chambon P and Hardman MJ: Insulin-like growth factor-1 promotes wound healing in estrogen-deprived mice: New insights into cutaneous IGF-1R/ERα cross talk. J Invest Dermatol. 132:2838–2848. 2012. View Article : Google Scholar : PubMed/NCBI

100 

Wu T, Qi W, Shan H, Tu B, Jiang S, Lu Y and Wang F: Ginsenoside Rg1 enhances the healing of injured tendon in achilles tendinitis through the activation of IGF1R signaling mediated by oestrogen receptor. J Ginseng Res. 46:526–535. 2022. View Article : Google Scholar : PubMed/NCBI

101 

Nogara PRB, Godoy-Santos AL, Fonseca FCP, Cesar-Netto C, Carvalho KC, Baracat EC, Maffulli N, Pontin PA and Santos MCL: Association of estrogen receptor β polymorphisms with posterior tibial tendon dysfunction. Mol Cell Biochem. 471:63–69. 2020. View Article : Google Scholar : PubMed/NCBI

102 

Leblanc DR, Schneider M, Angele P, Vollmer G and Docheva D: The effect of estrogen on tendon and ligament metabolism and function. J Steroid Biochem Mol Biol. 172:106–116. 2017. View Article : Google Scholar : PubMed/NCBI

103 

Lee AV, Weng CN, Jackson JG and Yee D: Activation of estrogen receptor-mediated gene transcription by IGF-I in human breast cancer cells. J Endocrinol. 152:39–47. 1997. View Article : Google Scholar : PubMed/NCBI

104 

Chen WF, Zhou LP, Chen L, Wu L, Gao QG and Wong MS: Involvement of IGF-I receptor and estrogen receptor pathways in the protective effects of ginsenoside Rg1 against Aβ25-35-induced toxicity in PC12 cells. Neurochem Int. 62:1065–1071. 2013. View Article : Google Scholar : PubMed/NCBI

105 

Pham QL, Tong A, Rodrigues LN, Zhao Y, Surblyte M, Ramos D, Brito J, Rahematpura A and Voronov RS: Ranking migration cue contributions to guiding individual fibroblasts faced with a directional decision in simple microfluidic bifurcations. Integr Biol (Camb). 11:208–220. 2019. View Article : Google Scholar : PubMed/NCBI

106 

Wang C, Sun Y, Cong S and Zhang F: Insulin-like growth factor-1 promotes human uterine leiomyoma cell proliferation via PI3K/AKT/mTOR pathway. Cells Tissues Organs. 212:194–202. 2023. View Article : Google Scholar

107 

Schiaffino S and Mammucari C: Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: Insights from genetic models. Skelet Muscle. 1:42011. View Article : Google Scholar : PubMed/NCBI

108 

Yang L, Wang H, Liu L and Xie A: The role of insulin/IGF-1/PI3K/Akt/GSK3β signaling in parkinson's disease dementia. Front Neurosci. 12:732018. View Article : Google Scholar

109 

Gumucio JP and Mendias CL: Atrogin-1, MuRF-1 and sarcopenia. Endocrine. 43:12–21. 2013. View Article : Google Scholar

110 

Reddy D, Kumavath R, Ghosh P and Barh D: Lanatoside C induces G2/M cell cycle arrest and suppresses cancer cell growth by attenuating MAPK, Wnt, JAK-STAT, and PI3K/AKT/mTOR signaling pathways. Biomolecules. 9:7922019. View Article : Google Scholar : PubMed/NCBI

111 

Li H, Dan C, Gong X, Zeng W, Yao Q, Yang Y, Gong X, Wang L, Chen C and Huang L: Sorghumol triterpene inhibits the growth of circulating renal cancer cells by promoting cell apoptosis, G2/M cell cycle arrest and downregulating m-TOR/PI3K/AKT signalling pathway. J BUON. 24:310–314. 2019.PubMed/NCBI

112 

Basta MD, Menko AS and Walker JL: PI3K isoform-specific regulation of leader and follower cell function for collective migration and proliferation in response to injury. Cells. 11:35152022. View Article : Google Scholar : PubMed/NCBI

113 

Fukata M and Kaibuchi K: Rho-family GTPases in cadherin-mediated cell-cell adhesion. Nat Rev Mol Cell Biol. 2:887–897. 2001. View Article : Google Scholar : PubMed/NCBI

114 

Boros J, Donaldson IJ, O'Donnell A, Odrowaz ZA, Zeef L, Lupien M, Meyer CA, Liu XS, Brown M and Sharrocks AD: Elucidation of the ELK1 target gene network reveals a role in the coordinate regulation of core components of the gene regulation machinery. Genome Res. 19:1963–1973. 2009. View Article : Google Scholar : PubMed/NCBI

115 

Bahrami S and Drabløs F: Gene regulation in the immediate-early response process. Adv Biol Regul. 62:37–49. 2016. View Article : Google Scholar : PubMed/NCBI

116 

Ebi H, Costa C, Faber AC, Nishtala M, Kotani H, Juric D, Della Pelle P, Song Y, Yano S, Mino-Kenudson M, et al: PI3K regulates MEK/ERK signaling in breast cancer via the Rac-GEF, P-Rex1. Proc Natl Acad Sci USA. 110:21124–21129. 2013. View Article : Google Scholar : PubMed/NCBI

117 

De Fea K and Roth RA: Modulation of insulin receptor substrate-1 tyrosine phosphorylation and function by mitogen-activated protein kinase. J Biol Chem. 272:31400–31406. 1997. View Article : Google Scholar

118 

Villarruel C, Aguilar PS and Ponce Dawson S: High rates of calcium-free diffusion in the cytosol of living cells. Biophys J. 120:3960–3972. 2021. View Article : Google Scholar : PubMed/NCBI

119 

Pinto MC, Kihara AH, Goulart VA, Tonelli FM, Gomes KN, Ulrich H and Resende RR: Calcium signaling and cell proliferation. Cell Signal. 27:2139–2149. 2015. View Article : Google Scholar : PubMed/NCBI

120 

Paupe V and Prudent J: New insights into the role of mitochondrial calcium homeostasis in cell migration. Biochem Biophys Res Commun. 500:75–86. 2018. View Article : Google Scholar :

121 

El Boustany C, Katsogiannou M, Delcourt P, Dewailly E, Prevarskaya N, Borowiec AS and Capiod T: Differential roles of STIM1, STIM2 and Orai1 in the control of cell proliferation and SOCE amplitude in HEK293 cells. Cell Calcium. 47:350–359. 2010. View Article : Google Scholar : PubMed/NCBI

122 

Borowiec AS, Bidaux G, Tacine R, Dubar P, Pigat N, Delcourt P, Mignen O and Capiod T: Are Orai1 and Orai3 channels more important than calcium influx for cell proliferation? Biochim Biophys Acta. 1843:464–472. 2014. View Article : Google Scholar

123 

Eisner LE, Rosario R, Andarawis-Puri N and Arruda EM: The role of the non-collagenous extracellular matrix in tendon and ligament mechanical behavior: A review. J Biomech Eng. 144:0508012022. View Article : Google Scholar :

124 

Chen Z, Chen P and Zheng M, Gao J, Liu D, Wang A, Zheng Q, Leys T, Tai A and Zheng M: Challenges and perspectives of tendon-derived cell therapy for tendinopathy: From bench to bedside. Stem Cell Res Ther. 13:4442022. View Article : Google Scholar : PubMed/NCBI

125 

Langberg H, Skovgaard D, Petersen LJ, Bulow J and Kjaer M: Type I collagen synthesis and degradation in peritendinous tissue after exercise determined by microdialysis in humans. J Physiol. 521:299–306. 1999. View Article : Google Scholar : PubMed/NCBI

126 

Tsuzaki M, Brigman BE, Yamamoto J, Lawrence WT, Simmons JG, Mohapatra NK, Lund PK, Van Wyk J, Hannafin JA, Bhargava MM and Banes AJ: Insulin-like growth factor-I is expressed by avian flexor tendon cells. J Orthop Res. 18:546–556. 2000. View Article : Google Scholar : PubMed/NCBI

127 

Wen SY, Ng SC, Noriega L, Chen TJ, Chen CJ, Lee SD, Huang CY and Kuo WW: Echinacoside promotes collagen synthesis and survival via activation of IGF-1 signaling to alleviate UVB-induced dermal fibroblast photoaging. Biofactors. 51:e21522025. View Article : Google Scholar : PubMed/NCBI

128 

Kuemmerle JF: Insulin-like growth factors in the gastrointestinal tract and liver. Endocrinol Metab Clin North Am. 41:409–423. vii2012. View Article : Google Scholar : PubMed/NCBI

129 

Li P, Liang ML, Zhu Y, Gong YY, Wang Y, Heng D and Lin L: Resveratrol inhibits collagen I synthesis by suppressing IGF-1R activation in intestinal fibroblasts. World J Gastroenterol. 20:4648–4661. 2014. View Article : Google Scholar : PubMed/NCBI

130 

Svegliati-Baroni G, Ridolfi F, Di Sario A, Casini A, Marucci L, Gaggiotti G, Orlandoni P, Macarri G, Perego L, Benedetti A and Folli F: Insulin and insulin-like growth factor-1 stimulate proliferation and type I collagen accumulation by human hepatic stellate cells: Differential effects on signal transduction pathways. Hepatology. 29:1743–1751. 1999. View Article : Google Scholar : PubMed/NCBI

131 

Dazert E and Hall MN: mTOR signaling in disease. Curr Opin Cell Biol. 23:744–755. 2011. View Article : Google Scholar : PubMed/NCBI

132 

Laplante M and Sabatini DM: mTOR signaling in growth control and disease. Cell. 149:274–293. 2012. View Article : Google Scholar : PubMed/NCBI

133 

Holz MK, Ballif BA, Gygi SP and Blenis J: mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell. 123:569–580. 2005. View Article : Google Scholar : PubMed/NCBI

134 

Dorrello NV, Peschiaroli A, Guardavaccaro D, Colburn NH, Sherman NE and Pagano M: S6K1- and betaTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth. Science. 314:467–471. 2006. View Article : Google Scholar : PubMed/NCBI

135 

Ma XM, Yoon SO, Richardson CJ, Jülich K and Blenis J: SKAR links pre-mRNA splicing to mTOR/S6K1-mediated enhanced translation efficiency of spliced mRNAs. Cell. 133:303–313. 2008. View Article : Google Scholar : PubMed/NCBI

136 

Gingras AC, Gygi SP, Raught B, Polakiewicz RD, Abraham RT, Hoekstra MF, Aebersold R and Sonenberg N: Regulation of 4E-BP1 phosphorylation: A novel two-step mechanism. Genes Dev. 13:1422–1437. 1999. View Article : Google Scholar : PubMed/NCBI

137 

Saxton RA and Sabatini DM: mTOR signaling in growth, metabolism, and disease. Cell. 169:361–371. 2017. View Article : Google Scholar : PubMed/NCBI

138 

Cong XX, Rao XS, Lin JX, Liu XC, Zhang GA, Gao XK, He MY, Shen WL, Fan W, Pioletti D, et al: Activation of AKT-mTOR signaling directs tenogenesis of mesenchymal stem cells. Stem Cells. 36:527–539. 2018. View Article : Google Scholar : PubMed/NCBI

139 

Frank CB, Hart DA and Shrive NG: Molecular biology and biomechanics of normal and healing ligaments-a review. Osteoarthritis Cartilage. 7:130–140. 1999. View Article : Google Scholar : PubMed/NCBI

140 

Hagerty P, Lee A, Calve S, Lee CA, Vidal M and Baar K: The effect of growth factors on both collagen synthesis and tensile strength of engineered human ligaments. Biomaterials. 33:6355–6361. 2012. View Article : Google Scholar : PubMed/NCBI

141 

Dahlgren LA, Mohammed HO and Nixon AJ: Temporal expression of growth factors and matrix molecules in healing tendon lesions. J Orthop Res. 23:84–92. 2005. View Article : Google Scholar

142 

Durgam SS, Stewart AA, Pondenis HC, Gutierrez-Nibeyro SM, Evans RB and Stewart MC: Comparison of equine tendon- and bone marrow-derived cells cultured on tendon matrix with or without insulin-like growth factor-I supplementation. Am J Vet Res. 73:153–161. 2012. View Article : Google Scholar

143 

Musson DS, Tay ML, Chhana A, Pool B, Coleman B, Naot D and Cornish J: Lactoferrin and parathyroid hormone are not harmful to primary tenocytes in vitro, but PDGF may be. Muscles Ligaments Tendons J. 7:215–222. 2017. View Article : Google Scholar : PubMed/NCBI

144 

Banes AJ, Tsuzaki M, Hu P, Brigman B, Brown T, Almekinders L, Lawrence WT and Fischer T: PDGF-BB, IGF-I and mechanical load stimulate DNA synthesis in avian tendon fibroblasts in vitro. J Biomech. 28:1505–1513. 1995. View Article : Google Scholar : PubMed/NCBI

145 

Qiu Y, Wang X, Zhang Y, Carr AJ, Zhu L, Xia Z and Sabokbar A: In vitro two-dimensional and three-dimensional tenocyte culture for tendon tissue engineering. J Tissue Eng Regen Med. 10:E216–E226. 2016. View Article : Google Scholar

146 

Costa MA, Wu C, Pham BV, Chong AK, Pham HM and Chang J: Tissue engineering of flexor tendons: Optimization of tenocyte proliferation using growth factor supplementation. Tissue Eng. 12:1937–1943. 2006. View Article : Google Scholar : PubMed/NCBI

147 

Raghavan SS, Woon CYL, Kraus A, Megerle K, Pham H and Chang J: Optimization of human tendon tissue engineering: Synergistic effects of growth factors for use in tendon scaffold repopulation. Plast Reconstr Surg. 129:479–489. 2012. View Article : Google Scholar : PubMed/NCBI

148 

Olesen JL, Hansen M, Turtumoygard IF, Hoffner R, Schjerling P, Christensen J, Mendias CL, Magnusson PS and Kjaer M: No treatment benefits of local administration of insulin-like growth factor-1 in addition to heavy slow resistance training in tendinopathic human patellar tendons: A randomized, double-blind, placebo-controlled trial with 1-year follow-up. Am J Sports Med. 49:2361–2370. 2021. View Article : Google Scholar : PubMed/NCBI

149 

Qiu Y, Wang X, Zhang Y, Rout R, Carr AJ, Zhu L, Xia Z and Sabokbar A: Development of a refined tenocyte differentiation culture technique for tendon tissue engineering. Cells Tissues Organs. 197:27–36. 2013. View Article : Google Scholar

150 

Cubbon RM, Kearney MT and Wheatcroft SB: Endothelial IGF-1 receptor signalling in diabetes and insulin resistance. Trends Endocrinol Metab. 27:96–104. 2016. View Article : Google Scholar

151 

Wang M, Zhang J, Li H, Li Y and Li Z: Insulin-like growth factor-1 (IGF-1) empowering tendon regenerative therapies. Front Bioeng Biotechnol. 13:14928112025. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Chen Y, Zhu Y, Song S and Hu Y: Contribution of insulin‑like growth factor‑1 to tendon repair (Review). Int J Mol Med 56: 195, 2025.
APA
Chen, Y., Zhu, Y., Song, S., & Hu, Y. (2025). Contribution of insulin‑like growth factor‑1 to tendon repair (Review). International Journal of Molecular Medicine, 56, 195. https://doi.org/10.3892/ijmm.2025.5636
MLA
Chen, Y., Zhu, Y., Song, S., Hu, Y."Contribution of insulin‑like growth factor‑1 to tendon repair (Review)". International Journal of Molecular Medicine 56.5 (2025): 195.
Chicago
Chen, Y., Zhu, Y., Song, S., Hu, Y."Contribution of insulin‑like growth factor‑1 to tendon repair (Review)". International Journal of Molecular Medicine 56, no. 5 (2025): 195. https://doi.org/10.3892/ijmm.2025.5636
Copy and paste a formatted citation
x
Spandidos Publications style
Chen Y, Zhu Y, Song S and Hu Y: Contribution of insulin‑like growth factor‑1 to tendon repair (Review). Int J Mol Med 56: 195, 2025.
APA
Chen, Y., Zhu, Y., Song, S., & Hu, Y. (2025). Contribution of insulin‑like growth factor‑1 to tendon repair (Review). International Journal of Molecular Medicine, 56, 195. https://doi.org/10.3892/ijmm.2025.5636
MLA
Chen, Y., Zhu, Y., Song, S., Hu, Y."Contribution of insulin‑like growth factor‑1 to tendon repair (Review)". International Journal of Molecular Medicine 56.5 (2025): 195.
Chicago
Chen, Y., Zhu, Y., Song, S., Hu, Y."Contribution of insulin‑like growth factor‑1 to tendon repair (Review)". International Journal of Molecular Medicine 56, no. 5 (2025): 195. https://doi.org/10.3892/ijmm.2025.5636
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team