|
1
|
Perruccio AV, Yip C, Badley EM and Power
JD: Musculoskeletal disorders: A neglected group at public health
and epidemiology meetings? Am J Public Health. 107:1584–1585. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Foster HE, Scott C, Tiderius CJ and Dobbs
MB; Members of the Paediatric Global Musculoskeletal Task Force:
Improving musculoskeletal health for children and young people-a
'call to action'. Best Pract Res Clin Rheumatol. 34:1015662020.
View Article : Google Scholar
|
|
3
|
Wunderli SL, Blache U and Snedeker JG:
Tendon explant models for physiologically relevant in vitro study
of tissue biology-a perspective. Connect Tissue Res. 61:262–277.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Olesen JL, Heinemeier KM, Langberg H,
Magnusson SP, Kjaer M and Flyvbjerg A: Expression, content, and
localization of insulin-like growth factor I in human achilles
tendon. Connect Tissue Res. 47:200–206. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Disser NP, Sugg KB, Talarek JR, Sarver DC,
Rourke BJ and Mendias CL: Insulin-like growth factor 1 signaling in
tenocytes is required for adult tendon growth. FASEB J.
33:12680–12695. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Kostrominova TY, Calve S, Arruda EM and
Larkin LM: Ultrastructure of myotendinous junctions in
tendon-skeletal muscle constructs engineered in vitro. Histol
Histopathol. 24:541–550. 2009.PubMed/NCBI
|
|
7
|
Chen Y, Jiang L, Lyu K, Lu J, Long L, Wang
X, Liu T and Li S: A promising candidate in tendon healing
events-PDGF-BB. Biomolecules. 12:15182002. View Article : Google Scholar
|
|
8
|
Peniche Silva CJ, Balmayor ER and van
Griensven M: Reprogramming tendon healing: A guide to novel
molecular tools. Front Bioeng Biotechnol. 12:13797732024.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Wang Y and Li J: Current progress in
growth factors and extracellular vesicles in tendon healing. Int
Wound J. 20:3871–3883. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Millar NL, Silbernagel KG, Thorborg K,
Kirwan PD, Galatz LM, Abrams GD, Murrell GAC, McInnes IB and Rodeo
SA: Tendinopathy. Nat Rev Dis Primers. 7:12021. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Chen Y, Lyu K, Lu J, Jiang L, Zhu B, Liu
X, Li Y, Liu X, Long L, Wang X, et al: Biological response of
extracorporeal shock wave therapy to tendinopathy in vivo (review).
Front Vet Sci. 9:8518942022. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Rieber J, Meier-Bürgisser G, Miescher I,
Weber FE, Wolint P, Yao Y, Ongini E, Milionis A, Snedeker JG,
Calcagni M and Buschmann J: Bioactive and elastic emulsion
electrospun DegraPol tubes delivering IGF-1 for tendon rupture
repair. Int J Mol Sci. 24:102722023. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Dahlgren LA, van der Meulen MC, Bertram
JE, Starrak GS and Nixon AJ: Insulin-like growth factor-I improves
cellular and molecular aspects of healing in a collagenase-induced
model of flexor tendinitis. J Orthop Res. 20:910–919. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Li H, Li Y, Xiang L, Luo S, Zhang Y and Li
S: Therapeutic potential of GDF-5 for enhancing tendon regenerative
healing. Regen Ther. 26:290–298. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Muench LN, Tamburini L, Kriscenski D,
Landry A, Berthold DP, Kia C, Cote MP, McCarthy MB and Mazzocca AD:
The effect of insulin and insulin-like growth factor 1 (IGF-1) on
cellular proliferation and migration of human subacromial bursa
tissue. Arthrosc Sports Med Rehabil. 3:e781–e789. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Hansson HA, Dahlin LB, Lundborg G,
Löwenadler B, Paleus S and Skottner A: Transiently increased
insulin-like growth factor I immunoreactivity in tendons after
vibration trauma. An immunohistochemical study on rats. Scand J
Plast Reconstr Surg Hand Surg. 22:1–6. 1998.
|
|
17
|
Hansen M, Boesen A, Holm L, Flyvbjerg A,
Langberg H and Kjaer M: Local administration of insulin-like growth
factor-I (IGF-I) stimulates tendon collagen synthesis in humans.
Scand J Med Sci Sports. 23:614–619. 2013. View Article : Google Scholar
|
|
18
|
Huang R, Shi J, Wei R and Li J: Challenges
of insulin-like growth factor-1 testing. Crit Rev Clin Lab Sci.
61:388–403. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Miller BS, Rogol AD and Rosenfeld RG: The
history of the insulin-like growth factor system. Horm Res
Paediatr. 95:619–630. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Chanson P, Arnoux A, Mavromati M,
Brailly-Tabard S, Massart C, Young J, Piketty ML and Souberbielle
JC; VARIETE Investigators: Reference values for IGF-I serum
concentrations: Comparison of six immunoassays. J Clin Endocrinol
Metab. 101:3450–3458. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Clemmons DR: Value of insulin-like growth
factor system markers in the assessment of growth hormone status.
Endocrinol Metab Clin North Am. 36:109–129. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Pantazis K, Roupas ND, Panagopoulos A,
Theodoraki S, Tsintoni A and Kyriazopoulou V: Spontaneous rupture
of the long head of the biceps tendon in a woman with
hypothyroidism: A case report. J Med Case Rep. 10:22016. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Li J, Zhou X, Chen J, Eliasson P, Kingham
PJ and Backman LJ: Secretome from myoblasts statically loaded at
low intensity promotes tenocyte proliferation via the IGF-1
receptor pathway. FASEB J. 37:e232032023. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Gillery P, Leperre A, Maquart FX and Borel
JP: Insulin-like growth factor-I (IGF-I) stimulates protein
synthesis and collagen gene expression in monolayer and lattice
cultures of fibroblasts. J Cell Physiol. 152:389–396. 1992.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Profka E, Rodari G, Giacchetti F and
Giavoli C: GH deficiency and replacement therapy in
hypopituitarism: Insight into the relationships with other
hypothalamic-pituitary axes. Front Endocrinol (Lausanne).
12:6787782021. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Hansen M, Kongsgaard M, Holm L, Skovgaard
D, Magnusson SP, Qvortrup K, Larsen JO, Aagaard P, Dahl M, Serup A,
et al: Effect of estrogen on tendon collagen synthesis, tendon
structural characteristics, and biomechanical properties in
postmenopausal women. J Appl Physiol (1985). 106:1385–1393. 2009.
View Article : Google Scholar
|
|
27
|
Hansen M and Kjaer M: Sex hormones and
tendon. Adv Exp Med Biol. 920:139–149. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Tang Y, Leng Q, Xiang X, Zhang L, Yang Y
and Qiu L: Use of ultrasound-targeted microbubble destruction to
transfect IGF-1 cDNA to enhance the regeneration of rat wounded
Achilles tendon in vivo. Gene Ther. 22:610–618. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Caliari SR and Harley BA: The effect of
anisotropic collagen-GAG scaffolds and growth factor
supplementation on tendon cell recruitment, alignment, and
metabolic activity. Biomaterials. 32:5330–5340. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Li Y, Yu X, Lin S, Li X, Zhang S and Song
YH: Insulin-like growth factor 1 enhances the migratory capacity of
mesenchymal stem cells. Biochem Biophys Res Commun. 356:780–784.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Miescher I, Rieber J, Calcagni M and
Buschmann J: In vitro and in vivo effects of IGF-1 delivery
strategies on tendon healing: A review. Int J Mol Sci. 24:23702023.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Prabhath A, Vernekar VN, Esdaille CJ,
Eisenberg E, Lebaschi A, Badon M, Seyedsalehi A, Dzidotor G, Tang
X, Dyment N, et al: Pegylated insulin-like growth factor-1
biotherapeutic delivery promotes rotator cuff regeneration in a rat
model. J Biomed Mater Res A. 110:1356–1371. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Caliari SR and Harley BA: Composite growth
factor supplementation strategies to enhance tenocyte bioactivity
in aligned collagen-GAG scaffolds. Tissue Eng Part A. 19:1100–1112.
2013. View Article : Google Scholar :
|
|
34
|
Herchenhan A, Bayer ML, Eliasson P,
Magnusson SP and Kjaer M: Insulin-like growth factor I enhances
collagen synthesis in engineered human tendon tissue. Growth Horm
IGF Res. 25:13–19. 2015. View Article : Google Scholar
|
|
35
|
Armakolas N, Armakolas A, Antonopoulos A,
Dimakakos A, Stathaki M and Koutsilieris M: The role of the IGF-1
Ec in myoskeletal system and osteosarcoma pathophysiology. Crit Rev
Oncol Hematol. 108:137–145. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Yang SY and Goldspink G: Different roles
of the IGF-I Ec peptide (MGF) and mature IGF-I in myoblast
proliferation and differentiation. FEBS Lett. 522:156–160. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Nicholls AR and Holt RI: Growth hormone
and insulin-like growth factor-1. Front Horm Res. 47:101–114. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Le Roith D, Bondy C, Yakar S, Liu JL and
Butler A: The somatomedin hypothesis: 2001. Endocr Rev. 22:53–74.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Pfäffle R and Kiess W: GH and IGF-1
replacement in children. Handb Exp Pharmacol. 261:67–86. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Lelbach A, Muzes G and Feher J: The
insulin-like growth factor system: IGFs, IGF-binding proteins and
IGFBP-proteases. Acta Physiol Hung. 92:97–107. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Werner H, Weinstein D and Bentov I:
Similarities and differences between insulin and IGF-I: Structures,
receptors, and signalling pathways. Arch Physiol Biochem.
114:17–22. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Hakuno F and Takahashi SI: IGF1 receptor
signaling pathways. J Mol Endocrinol. 61:T69–T86. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Belfiore A, Frasca F, Pandini G, Sciacca L
and Vigneri R: Insulin receptor isoforms and insulin
receptor/insulin-like growth factor receptor hybrids in physiology
and disease. Endocr Rev. 30:586–623. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Hanks SK, Quinn AM and Hunter T: The
protein kinase family: Conserved features and deduced phylogeny of
the catalytic domains. Science. 241:42–52. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Jones JI and Clemmons DR: Insulin-like
growth factors and their binding proteins: Biological actions.
Endocr Rev. 16:3–34. 1995.PubMed/NCBI
|
|
46
|
Kelley KM, Oh Y, Gargosky SE, Gucev Z,
Matsumoto T, Hwa V, Ng L, Simpson DM and Rosenfeld RG: Insulin-like
growth factor-binding proteins (IGFBPs) and their regulatory
dynamics. Int J Biochem Cell Biol. 28:619–637. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Crane JL and Cao X: Function of matrix
IGF-1 in coupling bone resorption and formation. J Mol Med (Berl).
92:107–115. 2014. View Article : Google Scholar
|
|
48
|
Firth SM and Baxter RC: Cellular actions
of the insulin-like growth factor binding proteins. Endocr Rev.
23:824–854. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Baxter RC: Insulin-like growth factor
binding protein-3 (IGFBP-3): Novel ligands mediate unexpected
functions. J Cell Commun Signal. 7:179–189. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Clemmons DR: Role of IGF-binding proteins
in regulating IGF responses to changes in metabolism. J Mol
Endocrinol. 61:T139–T169. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Dahlgren LA and Nixon AJ: Cloning and
expression of equine insulin-like growth factor binding proteins in
normal equine tendon. Am J Vet Res. 66:300–306. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Allard JB and Duan C: IGF-binding
proteins: Why do they exist and why are there so many? Front
Endocrinol (Lausanne). 9:1172018. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Bach LA: IGF-binding proteins. J Mol
Endocrinol. 61:T11–T28. 2018. View Article : Google Scholar
|
|
54
|
Lee PD, Giudice LC, Conover CA and Powell
DR: Insulin-like growth factor binding protein-1: Recent findings
and new directions. Proc Soc Exp Biol Med. 216:319–357. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Dahlgren LA, Mohammed HO and Nixon AJ:
Expression of insulin-like growth factor binding proteins in
healing tendon lesions. J Orthop Res. 24:183–192. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Olesen JL, Heinemeier KM, Gemmer C, Kjaer
M, Flyvbjerg A and Langberg H: Exercise-dependent IGF-I, IGFBPs,
and type I collagen changes in human peritendinous connective
tissue determined by microdialysis. J Appl Physiol (1985).
102:214–220. 2007. View Article : Google Scholar
|
|
57
|
Shen X, Xi G, Maile LA, Wai C, Rosen CJ
and Clemmons DR: Insulin-like growth factor (IGF) binding protein 2
functions coordinately with receptor protein tyrosine phosphatase β
and the IGF-I receptor to regulate IGF-I-stimulated signaling. Mol
Cell Biol. 32:4116–4130. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Ranke MB: Insulin-like growth factor
binding-protein-3 (IGFBP-3). Best Pract Res Clin Endocrinol Metab.
29:701–711. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Rajaram S, Baylink DJ and Mohan S:
Insulin-like growth factor-binding proteins in serum and other
biological fluids: Regulation and functions. Endocr Rev.
18:801–831. 1997.PubMed/NCBI
|
|
60
|
Camacho-Hubner C, Busby WH Jr, McCusker
RH, Wright G and Clemmons DR: Identification of the forms of
insulin-like growth factor-binding proteins produced by human
fibroblasts and the mechanisms that regulate their secretion. J
Biol Chem. 267:11949–11956. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Wang H, Yu R, Wang M, Wang S, Ouyang X,
Yan Z, Chen S, Wang W, Wu F and Fan C: Insulin-like growth factor
binding protein 4 loaded electrospun membrane ameliorating tendon
injury by promoting retention of IGF-1. J Control Release.
356:162–174. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Olesen JL, Heinemeier KM, Haddad F,
Langberg H, Flyvbjerg A, Kjaer M and Baldwin KM: Expression of
insulin-like growth factor I, insulin-like growth factor binding
proteins, and collagen mRNA in mechanically loaded plantaris
tendon. J Appl Physiol (1985). 101:183–188. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Turlo AJ, Mueller-Breckenridge AJ,
Zamboulis DE, Tew SR, Canty-Laird EG and Clegg PD: Insulin-like
growth factor binding protein (IGFBP6) is a cross-species tendon
marker. Eur Cell Mater. 38:123–136. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Boonen S, Rosen C, Bouillon R, Sommer A,
McKay M, Rosen D, Adams S, Broos P, Lenaerts J, Raus J, et al:
Musculoskeletal effects of the recombinant human IGF-I/IGF binding
protein-3 complex in osteoporotic patients with proximal femoral
fracture: A double-blind, placebo-controlled pilot study. J Clin
Endocrinol Metab. 87:1593–1599. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Sharma P and Maffulli N: Tendon injury and
tendinopathy: Healing and repair. J Bone Joint Surg Am. 87:187–202.
2005.PubMed/NCBI
|
|
66
|
Cardoso TB, Pizzari T, Kinsella R, Hope D
and Cook JL: Current trends in tendinopathy management. Best Pract
Res Clin Rheumatol. 33:122–140. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Mazzocca AD, McCarthy MB, Chowaniec D,
Cote MP, Judson CH, Apostolakos J, Solovyova O, Beitzel K and
Arciero RA: Bone marrow-derived mesenchymal stem cells obtained
during arthroscopic rotator cuff repair surgery show potential for
tendon cell differentiation after treatment with insulin.
Arthroscopy. 27:1459–1471. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Abrahamsson SO: Similar effects of
recombinant human insulin-like growth factor-I and II on cellular
activities in flexor tendons of young rabbits: Experimental studies
in vitro. J Orthop Res. 15:256–262. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Li S, Wu Y, Jiang G, Tian X, Hong J, Chen
S, Yan R, Feng G and Cheng Z: Intratendon delivery of
leukocyte-rich platelet-rich plasma at early stage promotes tendon
repair in a rabbit Achilles tendinopathy model. J Tissue Eng Regen
Med. 14:452–463. 2020. View Article : Google Scholar
|
|
70
|
Zhang X, Hu F, Li J, Chen L, Mao YF, Li
QB, Nie CY, Lin C and Xiao J: IGF-1 inhibits inflammation and
accelerates angiogenesis via Ras/PI3K/IKK/NF-κB signaling pathways
to promote wound healing. Eur J Pharm Sci. 200:1068472024.
View Article : Google Scholar
|
|
71
|
Tonkin J, Temmerman L, Sampson RD,
Gallego-Colon E, Barberi L, Bilbao D, Schneider MD, Musarò A and
Rosenthal N: Monocyte/macrophage-derived IGF-1 orchestrates murine
skeletal muscle regeneration and modulates autocrine polarization.
Mol Ther. 23:1189–1200. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Dakin SG, Dudhia J and Smith RK: Resolving
an inflammatory concept: The importance of inflammation and
resolution in tendinopathy. Vet Immunol Immunopathol. 158:121–127.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Yang QQ, Zhang L, Zhou YL and Tang JB:
Morphological changes of macrophages and their potential
contribution to tendon healing. Colloids Surf B Biointerfaces.
209:1121452022. View Article : Google Scholar
|
|
74
|
Arvind V and Huang AH: Reparative and
maladaptive inflammation in tendon healing. Front Bioeng
Biotechnol. 9:7190472021. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Molloy T, Wang Y and Murrell G: The roles
of growth factors in tendon and ligament healing. Sports Med.
33:381–394. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Spies M, Nesic O, Barrow RE, Perez-Polo JR
and Herndon DN: Liposomal IGF-1 gene transfer modulates pro- and
anti-inflammatory cytokine mRNA expression in the burn wound. Gene
Ther. 8:1409–1415. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Yenush L and White MF: The IRS-signalling
system during insulin and cytokine action. Bioessays. 19:491–500.
1997. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Fridlender ZG, Sun J, Kim S, Kapoor V,
Cheng G, Ling L, Worthen GS and Albelda SM: Polarization of
tumor-associated neutrophil phenotype by TGF-beta: 'N1' versus 'N2'
TAN. Cancer Cell. 16:183–194. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Nederlof R, Reidel S, Spychala A, Gödecke
S, Heinen A, Lautwein T, Petzsch P, Köhrer K and Gödecke A:
Insulin-like growth factor 1 attenuates the pro-inflammatory
phenotype of neutrophils in myocardial infarction. Front Immunol.
13:9080232022. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Lee WJ: IGF-I exerts an anti-inflammatory
effect on skeletal muscle cells through down-regulation of TLR4
signaling. Immune Netw. 11:223–226. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Zhang X, Xing H, Qi F, Liu H, Gao L and
Wang X: Local delivery of insulin/IGF-1 for bone regeneration:
Carriers, strategies, and effects. Nanotheranostics. 4:242–255.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Khasnavis S, Jana A, Roy A, Mazumder M,
Bhushan B, Wood T, Ghosh S, Watson R and Pahan K: Suppression of
nuclear factor-κB activation and inflammation in microglia by
physically modified saline. J Biol Chem. 287:29529–29542. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Hayden MS and Ghosh S: NF-κB, the first
quarter-century: Remarkable progress and outstanding questions.
Genes Dev. 26:203–234. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Abraham AC, Shah SA, Golman M, Song L, Li
X, Kurtaliaj I, Akbar M, Millar NL, Abu-Amer Y, Galatz LM and
Thomopoulos S: Targeting the NF-κB signaling pathway in chronic
tendon disease. Sci Transl Med. 11:eaav43192019. View Article : Google Scholar
|
|
85
|
Pakshir P and Hinz B: The big five in
fibrosis: Macrophages, myofibroblasts, matrix, mechanics, and
miscommunication. Matrix Biol. 68-69:81–93. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Abate M, Silbernagel KG, Siljeholm C, Di
Iorio A, De Amicis D, Salini V, Werner S and Paganelli R:
Pathogenesis of tendinopathies: Inflammation or degeneration?
Arthritis Res Ther. 11:2352009. View
Article : Google Scholar : PubMed/NCBI
|
|
87
|
Lane RA, Migotsky N, Havlioglu N, Iannucci
LE, Shen H, Lake S, Sakiyama-Elbert SE, Thomopoulos S and Gelberman
RH: The effects of NF-κB suppression on the early healing response
following intrasynovial tendon repair in a canine model. J Orthop
Res. 41:2295–2304. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Colasanti M and Persichini T: Nitric
oxide: An inhibitor of NF-kappaB/Rel system in glial cells. Brain
Res Bull. 52:155–161. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Mariotto S, de Prati AC, Cavalieri E,
Amelio E, Marlinghaus E and Suzuki H: Extracorporeal shock wave
therapy in inflammatory diseases: Molecular mechanism that triggers
anti-inflammatory action. Curr Med Chem. 16:2366–2372. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Steinman RM and Hemmi H: Dendritic cells:
Translating innate to adaptive immunity. Curr Top Microbiol
Immunol. 311:17–58. 2006.PubMed/NCBI
|
|
91
|
Cooper DM, Radom-Aizik S, Schwindt C and
Zaldivar F Jr: Dangerous exercise: Lessons learned from
dysregulated inflammatory responses to physical activity. J Appl
Physiol (1985). 103:700–709. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Chilton PM, Embry CA and Mitchell TC:
Effects of Differences in lipid A structure on TLR4
pro-inflammatory signaling and inflammasome activation. Front
Immunol. 3:1542012. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Koh W, Shin JS, Lee J, Lee IH, Lee SK, Ha
IH and Chung HJ: Anti-inflammatory effect of Cortex Eucommiae via
modulation of the toll-like receptor 4 pathway in
lipopolysaccharide-stimulated RAW 264.7 macrophages. J
Ethnopharmacol. 209:255–263. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Ruan A, Wang Q, Ma Y, Zhang D, Yang L,
Wang Z, Xie Q and Yin Y: Efficacy and mechanism of
electroacupuncture treatment of rabbits with different degrees of
knee osteoarthritis: A study based on synovial innate immune
response. Front Physiol. 12:6421782021. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Jun T, Ruipeng G and Bin X: TLR4 knockdown
by miRNA-140-5p improves tendinopathy: An in vitro study. Arch Med
Sci. 20:582–601. 2020.PubMed/NCBI
|
|
96
|
Liu-Bryan R and Terkeltaub R: Chondrocyte
innate immune myeloid differentiation factor 88-dependent signaling
drives procatabolic effects of the endogenous Toll-like receptor
2/Toll-like receptor 4 ligands low molecular weight hyaluronan and
high mobility group box chromosomal protein 1 in mice. Arthritis
Rheum. 62:2004–2012. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Madera-Salcedo IK, Cruz SL and
Gonzalez-Espinosa C: Morphine prevents lipopolysaccharide-induced
TNF secretion in mast cells blocking IκB kinase activation and
SNAP-23 phosphorylation: Correlation with the formation of a
β-arrestin/TRAF6 complex. J Immunol. 191:3400–3409. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Jin X, Yu Y, Lin Y, Yang J and Chen Z:
Tendon-regulating and bone-setting manipulation promotes the
recovery of synovial inflammation in rabbits with knee
osteoarthritis via the TLR4-MyD88-NF-κB signaling pathway. Ann
Transl Med. 11:2452023. View Article : Google Scholar
|
|
99
|
Emmerson E, Campbell L, Davies FC, Ross
NL, Ashcroft GS, Krust A, Chambon P and Hardman MJ: Insulin-like
growth factor-1 promotes wound healing in estrogen-deprived mice:
New insights into cutaneous IGF-1R/ERα cross talk. J Invest
Dermatol. 132:2838–2848. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Wu T, Qi W, Shan H, Tu B, Jiang S, Lu Y
and Wang F: Ginsenoside Rg1 enhances the healing of injured tendon
in achilles tendinitis through the activation of IGF1R signaling
mediated by oestrogen receptor. J Ginseng Res. 46:526–535. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Nogara PRB, Godoy-Santos AL, Fonseca FCP,
Cesar-Netto C, Carvalho KC, Baracat EC, Maffulli N, Pontin PA and
Santos MCL: Association of estrogen receptor β polymorphisms with
posterior tibial tendon dysfunction. Mol Cell Biochem. 471:63–69.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Leblanc DR, Schneider M, Angele P, Vollmer
G and Docheva D: The effect of estrogen on tendon and ligament
metabolism and function. J Steroid Biochem Mol Biol. 172:106–116.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Lee AV, Weng CN, Jackson JG and Yee D:
Activation of estrogen receptor-mediated gene transcription by
IGF-I in human breast cancer cells. J Endocrinol. 152:39–47. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Chen WF, Zhou LP, Chen L, Wu L, Gao QG and
Wong MS: Involvement of IGF-I receptor and estrogen receptor
pathways in the protective effects of ginsenoside Rg1 against
Aβ25-35-induced toxicity in PC12 cells. Neurochem Int.
62:1065–1071. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Pham QL, Tong A, Rodrigues LN, Zhao Y,
Surblyte M, Ramos D, Brito J, Rahematpura A and Voronov RS: Ranking
migration cue contributions to guiding individual fibroblasts faced
with a directional decision in simple microfluidic bifurcations.
Integr Biol (Camb). 11:208–220. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Wang C, Sun Y, Cong S and Zhang F:
Insulin-like growth factor-1 promotes human uterine leiomyoma cell
proliferation via PI3K/AKT/mTOR pathway. Cells Tissues Organs.
212:194–202. 2023. View Article : Google Scholar
|
|
107
|
Schiaffino S and Mammucari C: Regulation
of skeletal muscle growth by the IGF1-Akt/PKB pathway: Insights
from genetic models. Skelet Muscle. 1:42011. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Yang L, Wang H, Liu L and Xie A: The role
of insulin/IGF-1/PI3K/Akt/GSK3β signaling in parkinson's disease
dementia. Front Neurosci. 12:732018. View Article : Google Scholar
|
|
109
|
Gumucio JP and Mendias CL: Atrogin-1,
MuRF-1 and sarcopenia. Endocrine. 43:12–21. 2013. View Article : Google Scholar
|
|
110
|
Reddy D, Kumavath R, Ghosh P and Barh D:
Lanatoside C induces G2/M cell cycle arrest and suppresses cancer
cell growth by attenuating MAPK, Wnt, JAK-STAT, and PI3K/AKT/mTOR
signaling pathways. Biomolecules. 9:7922019. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Li H, Dan C, Gong X, Zeng W, Yao Q, Yang
Y, Gong X, Wang L, Chen C and Huang L: Sorghumol triterpene
inhibits the growth of circulating renal cancer cells by promoting
cell apoptosis, G2/M cell cycle arrest and downregulating
m-TOR/PI3K/AKT signalling pathway. J BUON. 24:310–314.
2019.PubMed/NCBI
|
|
112
|
Basta MD, Menko AS and Walker JL: PI3K
isoform-specific regulation of leader and follower cell function
for collective migration and proliferation in response to injury.
Cells. 11:35152022. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Fukata M and Kaibuchi K: Rho-family
GTPases in cadherin-mediated cell-cell adhesion. Nat Rev Mol Cell
Biol. 2:887–897. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Boros J, Donaldson IJ, O'Donnell A,
Odrowaz ZA, Zeef L, Lupien M, Meyer CA, Liu XS, Brown M and
Sharrocks AD: Elucidation of the ELK1 target gene network reveals a
role in the coordinate regulation of core components of the gene
regulation machinery. Genome Res. 19:1963–1973. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Bahrami S and Drabløs F: Gene regulation
in the immediate-early response process. Adv Biol Regul. 62:37–49.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Ebi H, Costa C, Faber AC, Nishtala M,
Kotani H, Juric D, Della Pelle P, Song Y, Yano S, Mino-Kenudson M,
et al: PI3K regulates MEK/ERK signaling in breast cancer via the
Rac-GEF, P-Rex1. Proc Natl Acad Sci USA. 110:21124–21129. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
117
|
De Fea K and Roth RA: Modulation of
insulin receptor substrate-1 tyrosine phosphorylation and function
by mitogen-activated protein kinase. J Biol Chem. 272:31400–31406.
1997. View Article : Google Scholar
|
|
118
|
Villarruel C, Aguilar PS and Ponce Dawson
S: High rates of calcium-free diffusion in the cytosol of living
cells. Biophys J. 120:3960–3972. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Pinto MC, Kihara AH, Goulart VA, Tonelli
FM, Gomes KN, Ulrich H and Resende RR: Calcium signaling and cell
proliferation. Cell Signal. 27:2139–2149. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Paupe V and Prudent J: New insights into
the role of mitochondrial calcium homeostasis in cell migration.
Biochem Biophys Res Commun. 500:75–86. 2018. View Article : Google Scholar :
|
|
121
|
El Boustany C, Katsogiannou M, Delcourt P,
Dewailly E, Prevarskaya N, Borowiec AS and Capiod T: Differential
roles of STIM1, STIM2 and Orai1 in the control of cell
proliferation and SOCE amplitude in HEK293 cells. Cell Calcium.
47:350–359. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Borowiec AS, Bidaux G, Tacine R, Dubar P,
Pigat N, Delcourt P, Mignen O and Capiod T: Are Orai1 and Orai3
channels more important than calcium influx for cell proliferation?
Biochim Biophys Acta. 1843:464–472. 2014. View Article : Google Scholar
|
|
123
|
Eisner LE, Rosario R, Andarawis-Puri N and
Arruda EM: The role of the non-collagenous extracellular matrix in
tendon and ligament mechanical behavior: A review. J Biomech Eng.
144:0508012022. View Article : Google Scholar :
|
|
124
|
Chen Z, Chen P and Zheng M, Gao J, Liu D,
Wang A, Zheng Q, Leys T, Tai A and Zheng M: Challenges and
perspectives of tendon-derived cell therapy for tendinopathy: From
bench to bedside. Stem Cell Res Ther. 13:4442022. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Langberg H, Skovgaard D, Petersen LJ,
Bulow J and Kjaer M: Type I collagen synthesis and degradation in
peritendinous tissue after exercise determined by microdialysis in
humans. J Physiol. 521:299–306. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Tsuzaki M, Brigman BE, Yamamoto J,
Lawrence WT, Simmons JG, Mohapatra NK, Lund PK, Van Wyk J, Hannafin
JA, Bhargava MM and Banes AJ: Insulin-like growth factor-I is
expressed by avian flexor tendon cells. J Orthop Res. 18:546–556.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Wen SY, Ng SC, Noriega L, Chen TJ, Chen
CJ, Lee SD, Huang CY and Kuo WW: Echinacoside promotes collagen
synthesis and survival via activation of IGF-1 signaling to
alleviate UVB-induced dermal fibroblast photoaging. Biofactors.
51:e21522025. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Kuemmerle JF: Insulin-like growth factors
in the gastrointestinal tract and liver. Endocrinol Metab Clin
North Am. 41:409–423. vii2012. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Li P, Liang ML, Zhu Y, Gong YY, Wang Y,
Heng D and Lin L: Resveratrol inhibits collagen I synthesis by
suppressing IGF-1R activation in intestinal fibroblasts. World J
Gastroenterol. 20:4648–4661. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Svegliati-Baroni G, Ridolfi F, Di Sario A,
Casini A, Marucci L, Gaggiotti G, Orlandoni P, Macarri G, Perego L,
Benedetti A and Folli F: Insulin and insulin-like growth factor-1
stimulate proliferation and type I collagen accumulation by human
hepatic stellate cells: Differential effects on signal transduction
pathways. Hepatology. 29:1743–1751. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Dazert E and Hall MN: mTOR signaling in
disease. Curr Opin Cell Biol. 23:744–755. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Laplante M and Sabatini DM: mTOR signaling
in growth control and disease. Cell. 149:274–293. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Holz MK, Ballif BA, Gygi SP and Blenis J:
mTOR and S6K1 mediate assembly of the translation preinitiation
complex through dynamic protein interchange and ordered
phosphorylation events. Cell. 123:569–580. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Dorrello NV, Peschiaroli A, Guardavaccaro
D, Colburn NH, Sherman NE and Pagano M: S6K1- and betaTRCP-mediated
degradation of PDCD4 promotes protein translation and cell growth.
Science. 314:467–471. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Ma XM, Yoon SO, Richardson CJ, Jülich K
and Blenis J: SKAR links pre-mRNA splicing to mTOR/S6K1-mediated
enhanced translation efficiency of spliced mRNAs. Cell.
133:303–313. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Gingras AC, Gygi SP, Raught B, Polakiewicz
RD, Abraham RT, Hoekstra MF, Aebersold R and Sonenberg N:
Regulation of 4E-BP1 phosphorylation: A novel two-step mechanism.
Genes Dev. 13:1422–1437. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Saxton RA and Sabatini DM: mTOR signaling
in growth, metabolism, and disease. Cell. 169:361–371. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Cong XX, Rao XS, Lin JX, Liu XC, Zhang GA,
Gao XK, He MY, Shen WL, Fan W, Pioletti D, et al: Activation of
AKT-mTOR signaling directs tenogenesis of mesenchymal stem cells.
Stem Cells. 36:527–539. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Frank CB, Hart DA and Shrive NG: Molecular
biology and biomechanics of normal and healing ligaments-a review.
Osteoarthritis Cartilage. 7:130–140. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Hagerty P, Lee A, Calve S, Lee CA, Vidal M
and Baar K: The effect of growth factors on both collagen synthesis
and tensile strength of engineered human ligaments. Biomaterials.
33:6355–6361. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Dahlgren LA, Mohammed HO and Nixon AJ:
Temporal expression of growth factors and matrix molecules in
healing tendon lesions. J Orthop Res. 23:84–92. 2005. View Article : Google Scholar
|
|
142
|
Durgam SS, Stewart AA, Pondenis HC,
Gutierrez-Nibeyro SM, Evans RB and Stewart MC: Comparison of equine
tendon- and bone marrow-derived cells cultured on tendon matrix
with or without insulin-like growth factor-I supplementation. Am J
Vet Res. 73:153–161. 2012. View Article : Google Scholar
|
|
143
|
Musson DS, Tay ML, Chhana A, Pool B,
Coleman B, Naot D and Cornish J: Lactoferrin and parathyroid
hormone are not harmful to primary tenocytes in vitro, but PDGF may
be. Muscles Ligaments Tendons J. 7:215–222. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Banes AJ, Tsuzaki M, Hu P, Brigman B,
Brown T, Almekinders L, Lawrence WT and Fischer T: PDGF-BB, IGF-I
and mechanical load stimulate DNA synthesis in avian tendon
fibroblasts in vitro. J Biomech. 28:1505–1513. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Qiu Y, Wang X, Zhang Y, Carr AJ, Zhu L,
Xia Z and Sabokbar A: In vitro two-dimensional and
three-dimensional tenocyte culture for tendon tissue engineering. J
Tissue Eng Regen Med. 10:E216–E226. 2016. View Article : Google Scholar
|
|
146
|
Costa MA, Wu C, Pham BV, Chong AK, Pham HM
and Chang J: Tissue engineering of flexor tendons: Optimization of
tenocyte proliferation using growth factor supplementation. Tissue
Eng. 12:1937–1943. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Raghavan SS, Woon CYL, Kraus A, Megerle K,
Pham H and Chang J: Optimization of human tendon tissue
engineering: Synergistic effects of growth factors for use in
tendon scaffold repopulation. Plast Reconstr Surg. 129:479–489.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Olesen JL, Hansen M, Turtumoygard IF,
Hoffner R, Schjerling P, Christensen J, Mendias CL, Magnusson PS
and Kjaer M: No treatment benefits of local administration of
insulin-like growth factor-1 in addition to heavy slow resistance
training in tendinopathic human patellar tendons: A randomized,
double-blind, placebo-controlled trial with 1-year follow-up. Am J
Sports Med. 49:2361–2370. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
149
|
Qiu Y, Wang X, Zhang Y, Rout R, Carr AJ,
Zhu L, Xia Z and Sabokbar A: Development of a refined tenocyte
differentiation culture technique for tendon tissue engineering.
Cells Tissues Organs. 197:27–36. 2013. View Article : Google Scholar
|
|
150
|
Cubbon RM, Kearney MT and Wheatcroft SB:
Endothelial IGF-1 receptor signalling in diabetes and insulin
resistance. Trends Endocrinol Metab. 27:96–104. 2016. View Article : Google Scholar
|
|
151
|
Wang M, Zhang J, Li H, Li Y and Li Z:
Insulin-like growth factor-1 (IGF-1) empowering tendon regenerative
therapies. Front Bioeng Biotechnol. 13:14928112025. View Article : Google Scholar : PubMed/NCBI
|