|
1
|
Karimzadeh F, Soltani Fard E, Nadi A,
Malekzadeh R, Elahian F and Mirzaei SA: Advances in skin gene
therapy: Utilizing innovative dressing scaffolds for wound healing,
a comprehensive review. J Mater Chem B. 12:6033–6062. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Shi N, Li N, Duan X and Niu H: Interaction
between the gut microbiome and mucosal immune system. Mil Med Res.
4:142017.PubMed/NCBI
|
|
3
|
Wang J, He M, Yang M and Ai X: Gut
microbiota as a key regulator of intestinal mucosal immunity. Life
Sci. 345:1226122024. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Ezenabor EH, Adeyemi AA and Adeyemi OS:
Gut microbiota and metabolic syndrome: Relationships and
opportunities for new therapeutic strategies. Scientifica (Cairo).
2024:42220832024. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Saarialho-Kere U: The gut-skin axis. J
Pediatr Gastroenterol Nutr. 39(Suppl 3): S734–S735. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Lee HR and Sung JH: Multiorgan-on-a-chip
for the realization of gut-skin axis. Biotechnol Bioeng.
119:2590–2601. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Szanto M, Dozsa A, Antal D, Szabo K,
Kemeny L and Bai P: Targeting the gut-skin axis-Probiotics as new
tools for skin disorder management? Exp Dermatol. 28:1210–1218.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Suaini NHA, Siah KTH and Tham EH: Role of
the gut-skin axis in IgE-mediated food allergy and atopic diseases.
Curr Opin Gastroenterol. 37:557–564. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Alesa DI, Alshamrani HM, Alzahrani YA,
Alamssi DN, Alzahrani NS and Almohammadi ME: The role of gut
microbiome in the pathogenesis of psoriasis and the therapeutic
effects of probiotics. J Family Med Prim Care. 8:3496–3503. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Gomaa EZ: Human gut microbiota/microbiome
in health and diseases: A review. Antonie Van Leeuwenhoek.
113:2019–2040. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Adak A and Khan MR: An insight into gut
microbiota and its functionalities. Cell Mol Life Sci. 76:473–493.
2019. View Article : Google Scholar
|
|
12
|
Zmora N, Suez J and Elinav E: You are what
you eat: Diet, health, and the gut microbiota. Nat Rev
Gastroenterol Hepatol. 16:35–56. 2019. View Article : Google Scholar
|
|
13
|
Milani C, Duranti S, Bottacini F, Casey E,
Turroni F, Mahony J, Belzer C, Delgado Palacio S, Arboleya Montes
S, Mancabelli L, et al: The first microbial colonizers of the human
gut: Composition, activities, and health implications of the infant
gut microbiota. Microbiol Mol Biol Rev. 81:e00036–17. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Aggarwal N, Kitano S, Puah GRY, Kittelmann
S, Hwang IY and Chang MW: Microbiome and human health: Current
understanding, engineering, and enabling technologies. Chem Rev.
123:31–72. 2023. View Article : Google Scholar :
|
|
15
|
Banaszak M, Gorna I, Wozniak D,
Przyslawski J and Drzymala-Czyz S: Association between gut
dysbiosis and the occurrence of SIBO, LIBO, SIFO and IMO.
Microorganisms. 11:5732023. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Lee HJ and Kim M: Skin barrier function
and the microbiome. Int J Mol Sci. 23:130712022. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Chen YE, Fischbach MA and Belkaid Y: Skin
microbiota-host interactions. Nature. 553:427–436. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Smythe P and Wilkinson HN: The skin
microbiome: Current landscape and future opportunities. Int J Mol
Sci. 24:39502023. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Mahmud MR, Akter S, Tamanna SK, Mazumder
L, Esti IZ, Banerjee S, Akter S, Hasan MR, Acharjee M, Hossain MS
and Pirttilä AM: Impact of gut microbiome on skin health: Gut-skin
axis observed through the lenses of therapeutics and skin diseases.
Gut Microbes. 14:20969952022. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Petersen C and Round JL: Defining
dysbiosis and its influence on host immunity and disease. Cell
Microbiol. 16:1024–1033. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Rygula I, Pikiewicz W, Grabarek BO, Wojcik
M and Kaminiow K: The role of the gut microbiome and microbial
dysbiosis in common skin diseases. Int J Mol Sci. 25:19842024.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Karimova M, Moyes D, Ide M and Setterfield
JF: The human microbiome in immunobullous disorders and lichen
planus. Clin Exp Dermatol. 47:522–528. 2022. View Article : Google Scholar
|
|
23
|
Ahlawat S, Asha and Sharma KK: Gut-organ
axis: A microbial outreach and networking. Lett Appl Microbiol.
72:636–668. 2021. View Article : Google Scholar
|
|
24
|
Guo Y, Chen X, Gong P, Li G, Yao W and
Yang W: The gut-organ-axis concept: Advances the application of
gut-on-chip technology. Int J Mol Sci. 24:40892023. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Yano JM, Yu K, Donaldson GP, Shastri GG,
Ann P, Ma L, Nagler CR, Ismagilov RF, Mazmanian SK and Hsiao EY:
Indigenous bacteria from the gut microbiota regulate host serotonin
biosynthesis. Cell. 161:264–276. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Salem I, Ramser A, Isham N and Ghannoum
MA: The gut microbiome as a major regulator of the gut-skin axis.
Front Microbiol. 9:14592018. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Komine M: Recent advances in psoriasis
research; The clue to mysterious relation to gut microbiome. Int J
Mol Sci. 21:25822020. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Buhas MC, Gavrilas LI, Candrea R, Catinean
A, Mocan A, Miere D and Tătaru A: Gut microbiota in psoriasis.
Nutrients. 14:29702022. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Frioux C, Ansorge R, Ozkurt E, Ghassemi
Nedjad C, Fritscher J, Quince C, Waszak SM and Hildebrand F:
Enterosignatures define common bacterial guilds in the human gut
microbiome. Cell Host Microbe. 31:1111–1125 e6. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Quaglio AEV, Grillo TG, De Oliveira ECS,
Di Stasi LC and Sassaki LY: Gut microbiota, inflammatory bowel
disease, and colorectal cancer. World J Gastroenterol.
28:4053–4060. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Manos J: The human microbiome in disease
and pathology. APMIS. 130:690–705. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Wu J, Wang K, Wang X, Pang Y and Jiang C:
The role of the gut microbiome and its metabolites in metabolic
diseases. Protein Cell. 12:360–373. 2021. View Article : Google Scholar :
|
|
33
|
Chen Y, Zhou J and Wang L: Role and
mechanism of gut microbiota in human disease. Front Cell Infect
Microbiol. 11:6259132021. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Olejniczak-Staruch I, Ciazynska M,
Sobolewska-Sztychny D, Narbutt J, Skibinska M and Lesiak A:
Alterations of the skin and gut microbiome in psoriasis and
psoriatic arthritis. Int J Mol Sci. 22:39982021. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Park DH, Kim JW, Park HJ and Hahm DH:
Comparative analysis of the microbiome across the gut-skin axis in
atopic dermatitis. Int J Mol Sci. 22:42282021. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Stec A, Sikora M, Maciejewska M,
Paralusz-Stec K, Michalska M, Sikorska E and Rudnicka L: Bacterial
metabolites: A link between gut microbiota and dermatological
diseases. Int J Mol Sci. 24:34942023. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Trompette A, Pernot J, Perdijk O,
Alqahtani RAA, Domingo JS, Camacho-Munoz D, Wong NC, Kendall AC,
Wiederkehr A, Nicod LP, et al: Gut-derived short-chain fatty acids
modulate skin barrier integrity by promoting keratinocyte
metabolism and differentiation. Mucosal Immunol. 15:908–926. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Fang Z, Pan T, Li L, Wang H, Zhu J, Zhang
H, Zhao J, Chen W and Lu W: Bifidobacterium longum mediated
tryptophan metabolism to improve atopic dermatitis via the gut-skin
axis. Gut Microbes. 14:20447232022. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Su X, Gao Y and Yang R: Gut
microbiota-derived tryptophan metabolites maintain gut and systemic
homeostasis. Cells. 11:22962022. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Kinashi Y and Hase K: Partners in leaky
gut syndrome: intestinal dysbiosis and autoimmunity. Front Immunol.
12:6737082021. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Marrs T, Jo JH, Perkin MR, Rivett DW,
Witney AA, Bruce KD, Logan K, Craven J, Radulovic S, Versteeg SA,
et al: Gut microbiota development during infancy: Impact of
introducing allergenic foods. J Allergy Clin Immunol. 147:613–621
e9. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Jiao Y, Wu L, Huntington ND and Zhang X:
Crosstalk between gut microbiota and innate immunity and its
implication in autoimmune diseases. Front Immunol. 11:2822020.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Dokoshi T, Chen Y, Cavagnero KJ, Rahman G,
Hakim D, Brinton S, Schwarz H, Brown EA, O'Neill A, Nakamura Y, et
al: Dermal injury drives a skin-to-gut axis that disrupts the
intestinal microbiome and intestinal immune homeostasis in mice.
Nat Commun. 15:30092024. View Article : Google Scholar
|
|
44
|
Long J, Gu J, Yang J, Chen P, Dai Y, Lin
Y, Wu M and Wu Y: Exploring the association between gut microbiota
and inflammatory skin diseases: A two-sample mendelian
randomization analysis. Microorganisms. 11:25862023. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Glutsch V, Hamm H and Goebeler M: Zinc and
skin: An update. J Dtsch Dermatol Ges. 17:589–596. 2019.PubMed/NCBI
|
|
46
|
Therrien A, Kelly CP and Silvester JA:
Celiac disease: Extraintestinal manifestations and associated
conditions. J Clin Gastroenterol. 54:8–21. 2020. View Article : Google Scholar
|
|
47
|
Ni Q, Zhang P, Li Q and Han Z: Oxidative
stress and gut microbiome in inflammatory skin diseases. Front Cell
Dev Biol. 10:8499852022. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Lee SY, Jhun J, Woo JS, Lee KH, Hwang SH,
Moon J, Park G, Choi SS, Kim SJ, Jung YJ, et al: Gut
microbiome-derived butyrate inhibits the immunosuppressive factors
PD-L1 and IL-10 in tumor-associated macrophages in gastric cancer.
Gut Microbes. 16:23008462024. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Xiao P, Hu Z, Lang J, Pan T, Mertens RT,
Zhang H, Guo K, Shen M, Cheng H, Zhang X, et al: Mannose metabolism
normalizes gut homeostasis by blocking the TNF-α-mediated
proinflammatory circuit. Cell Mol Immunol. 20:119–130. 2023.
View Article : Google Scholar
|
|
50
|
Yadegar A, Bar-Yoseph H, Monaghan TM,
Pakpour S, Severino A, Kuijper EJ, Smits WK, Terveer EM, Neupane S,
Nabavi-Rad A, et al: Fecal microbiota transplantation: current
challenges and future landscapes. Clin Microbiol Rev.
37:e00060222024. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Joachim A, Schwerd T, Holz H, Sokollik C,
Konrad LA, Jordan A, Lanzersdorfer R, Schmidt-Choudhury A, Hünseler
C and Adam R: Fecal Microbiota Transfer (FMT) in children and
adolescents-review and statement by the GPGE microbiome working
group. Z Gastroenterol. 60:963–969. 2022.PubMed/NCBI
|
|
52
|
Porcari S, Severino A, Rondinella D, Bibbo
S, Quaranta G, Masucci L, Maida M, Scaldaferri F, Sanguinetti M,
Gasbarrini A, et al: Fecal microbiota transplantation for recurrent
Clostridioides difficile infection in patients with concurrent
ulcerative colitis. J Autoimmun. 141:1030332023. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Porcari S, Baunwall SMD, Occhionero AS,
Ingrosso MR, Ford AC, Hvas CL, Gasbarrini A, Cammarota G and Ianiro
G: Fecal microbiota transplantation for recurrent C. difficile
infection in patients with inflammatory bowel disease: A systematic
review and meta-analysis. J Autoimmun. 141:1030362023. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Porcari S, Benech N, Valles-Colomer M,
Segata N, Gasbarrini A, Cammarota G, Sokol H and Ianiro G: Key
determinants of success in fecal microbiota transplantation: From
microbiome to clinic. Cell Host Microbe. 31:712–733. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Kim JH, Kim K and Kim W: Gut microbiota
restoration through fecal microbiota transplantation: A new atopic
dermatitis therapy. Exp Mol Med. 53:907–916. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Liu YH, Chen J, Chen X and Liu H: Factors
of faecal microbiota transplantation applied to cancer management.
J Drug Target. 32:101–114. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Arnold M, Singh D, Laversanne M, Vignat J,
Vaccarella S, Meheus F, Cust AE, de Vries E, Whiteman DC and Bray
F: Global burden of cutaneous melanoma in 2020 and projections to
2040. JAMA Dermatol. 158:495–503. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Baruch EN, Youngster I, Ben-Betzalel G,
Ortenberg R, Lahat A, Katz L, Adler K, Dick-Necula D, Raskin S,
Bloch N, et al: Fecal microbiota transplant promotes response in
immunotherapy-refractory melanoma patients. Science. 371:602–609.
2021. View Article : Google Scholar
|
|
59
|
Liu X, Luo Y, Chen X, Wu M, Xu X, Tian J,
Gao Y, Zhu J, Wang Z, Zhou Y, et al: Fecal microbiota
transplantation against moderate-to-severe atopic dermatitis: A
randomized, double-blind controlled exploratory trial. Allergy.
80:1377–1388. 2025. View Article : Google Scholar
|
|
60
|
Eshel A, Sharon I, Nagler A, Bomze D,
Danylesko I, Fein JA, Geva M, Henig I, Shimoni A, Zuckerman T, et
al: Origins of bloodstream infections following fecal microbiota
transplantation: A strain-level analysis. Blood Adv. 6:568–573.
2022. View Article : Google Scholar :
|
|
61
|
Gibson GR and Roberfroid MB: Dietary
modulation of the human colonic microbiota: Introducing the concept
of prebiotics. J Nutr. 125:1401–1412. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Hill C, Guarner F, Reid G, Gibson GR,
Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S,
et al: Expert consensus document. The International Scientific
Association for Probiotics and Prebiotics consensus statement on
the scope and appropriate use of the term probiotic. Nat Rev
Gastroenterol Hepatol. 11:506–514. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Manzoor S, Wani SM, Ahmad Mir S and Rizwan
D: Role of probiotics and prebiotics in mitigation of different
diseases. Nutrition. 96:1116022022. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Oniszczuk A, Oniszczuk T, Gancarz M and
Szymanska J: Role of gut microbiota, probiotics and prebiotics in
the cardiovascular diseases. Molecules. 26:11722021. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Rahmayani T, Putra IB and Jusuf NK: The
effect of oral probiotics on the interleukin-10 serum levels of
acne vulgaris. Open Access Maced J Med Sci. 7:3249–5322. 2019.
View Article : Google Scholar
|
|
66
|
Ouyang W and O'Garra A: IL-10 family
cytokines IL-10 and IL-22: From basic science to clinical
translation. Immunity. 50:871–891. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Buhas MC, Candrea R, Gavrilas LI, Miere D,
Tataru A, Boca A and Cătinean A: Transforming psoriasis care:
Probiotics and prebiotics as novel therapeutic approaches. Int J
Mol Sci. 24:112252023. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Stein-Thoeringer CK, Saini NY, Zamir E,
Blumenberg V, Schubert ML, Mor U, Fante MA, Schmidt S, Hayase E,
Hayase T, et al: A non-antibiotic-disrupted gut microbiome is
associated with clinical responses to CD19-CAR-T cell cancer
immunotherapy. Nat Med. 29:906–916. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Bender MJ, McPherson AC, Phelps CM, Pandey
SP, Laughlin CR, Shapira JH, Medina Sanchez L, Rana M, Richie TG,
Mims TS, et al: Dietary tryptophan metabolite released by
intratumoral Lactobacillus reuteri facilitates immune checkpoint
inhibitor treatment. Cell. 186:1846–1862 e26. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Raharja A, Mahil SK and Barker JN:
Psoriasis: A brief overview. Clin Med (Lond). 21:170–173. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Hidalgo-Cantabrana C, Gomez J, Delgado S,
Requena-Lopez S, Queiro-Silva R, Margolles A, Coto E, Sánchez B and
Coto-Segura P: Gut microbiota dysbiosis in a cohort of patients
with psoriasis. Br J Dermatol. 181:1287–1295. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Zang C, Liu J, Mao M, Zhu W, Chen W and
Wei B: Causal associations between gut microbiota and psoriasis: A
mendelian randomization study. Dermatol Ther (Heidelb).
13:2331–2343. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Zhao Q, Yu J, Zhou H, Wang X, Zhang C, Hu
J, Hu Y, Zheng H, Zeng F, Yue C, et al: Intestinal dysbiosis
exacerbates the pathogenesis of psoriasis-like phenotype through
changes in fatty acid metabolism. Signal Transduct Target Ther.
8:402023. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Sroka-Tomaszewska J and Trzeciak M:
Molecular mechanisms of atopic dermatitis pathogenesis. Int J Mol
Sci. 22:41302021. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Langan SM, Irvine AD and Weidinger S:
Atopic dermatitis. Lancet. 396:345–360. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Schuler CF IV, Tsoi LC, Billi AC, Harms
PW, Weidinger S and Gudjonsson JE: Genetic and immunological
pathogenesis of atopic dermatitis. J Invest Dermatol. 144:954–968.
2024. View Article : Google Scholar :
|
|
77
|
Lee SY, Lee E, Park YM and Hong SJ:
Microbiome in the gut-skin axis in atopic dermatitis. Allergy
Asthma Immunol Res. 10:354–362. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Frazier W and Bhardwaj N: Atopic
dermatitis: Diagnosis and treatment. Am Fam Physician. 101:590–598.
2020.PubMed/NCBI
|
|
79
|
Jiang W, Ni B, Liu Z, Liu X, Xie W, Wu IXY
and Li X: The role of probiotics in the prevention and treatment of
atopic dermatitis in children: An updated systematic review and
meta-analysis of randomized controlled trials. Paediatr Drugs.
22:535–549. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
D'Elios S, Trambusti I, Verduci E,
Ferrante G, Rosati S, Marseglia GL, Drago L and Peroni DG:
Probiotics in the prevention and treatment of atopic dermatitis.
Pediatr Allergy Immunol. 31(Suppl 26): S43–S45. 2020. View Article : Google Scholar
|
|
81
|
Umborowati MA, Damayanti D, Anggraeni S,
Endaryanto A, Surono IS, Effendy I and Prakoeswa CRS: The role of
probiotics in the treatment of adult atopic dermatitis: A
meta-analysis of randomized controlled trials. J Health Popul Nutr.
41:372022. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Fang Z, Lu W, Zhao J, Zhang H, Qian L,
Wang Q and Chen W: Probiotics modulate the gut microbiota
composition and immune responses in patients with atopic
dermatitis: A pilot study. Eur J Nutr. 59:2119–2130. 2020.
View Article : Google Scholar
|
|
83
|
Sanchez-Pellicer P, Navarro-Moratalla L,
Nunez-Delegido E, Ruzafa-Costas B, Aguera-Santos J and
Navarro-Lopez V: Acne, microbiome, and probiotics: The gut-skin
axis. Microorganisms. 10:13032022. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Vos T, Flaxman AD, Naghavi M, Lozano R,
Michaud C, Ezzati M, Shibuya K, Salomon JA, Abdalla S, Aboyans V,
et al: Years lived with disability (YLDs) for 1160 sequelae of 289
diseases and injuries, 1990-2010: A systematic analysis for the
Global Burden of Disease Study 2010. Lancet. 380:2163–2196. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Kutlu O, Karadag AS and Wollina U: Adult
acne versus adolescent acne: A narrative review with a focus on
epidemiology to treatment. An Bras Dermatol. 98:75–83. 2023.
View Article : Google Scholar :
|
|
86
|
Chilicka K, Rogowska AM, Szygula R,
Dziendziora-Urbinska I and Taradaj J: A comparison of the
effectiveness of azelaic and pyruvic acid peels in the treatment of
female adult acne: A randomized controlled trial. Sci Rep.
10:126122020. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Bowe W, Patel NB and Logan AC: Acne
vulgaris, probiotics, and the gut-brain-skin axis: From anecdote to
translational medicine. Beneficial Microbes. 5:185–199. 2014.
View Article : Google Scholar
|
|
88
|
Mohsin N, Hernandez LE, Martin MR, Does AV
and Nouri K: Acne treatment review and future perspectives.
Dermatol Ther. 35:e157192022. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Jung GW, Tse JE, Guiha I and Rao J:
Prospective, randomized, open-label trial comparing the safety,
efficacy, and tolerability of an acne treatment regimen with and
without a probiotic supplement and minocycline in subjects with
mild to moderate acne. J Cutan Med Surg. 17:114–122. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Fabbrocini G, Bertona M, Picazo O,
Pareja-Galeano H, Monfrecola G and Emanuele E: Supplementation with
Lactobacillus rhamnosus SP1 normalises skin expression of genes
implicated in insulin signalling and improves adult acne. Benef
Microbes. 7:625–630. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Eguren C, Navarro-Blasco A, Corral-Forteza
M, Reolid-Perez A, Seto-Torrent N, Garcia-Navarro A, Prieto-Merino
D, Núñez-Delegido E, Sánchez-Pellicer P and Navarro-López V: A
randomized clinical trial to evaluate the efficacy of an oral
probiotic in acne vulgaris. Acta Derm Venereol. 104:adv332062024.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
van Zuuren EJ, Arents BWM, van der Linden
MMD, Vermeulen S, Fedorowicz Z and Tan J: Rosacea: New concepts in
classification and treatment. Am J Clin Dermatol. 22:457–465. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Ivanic MG, Oulee A, Norden A, Javadi SS,
Gold MH and Wu JJ: Neurogenic rosacea treatment: A literature
review. J Drugs Dermatol. 22:566–575. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Haber R and El Gemayel M: Comorbidities in
rosacea: A systematic review and update. J Am Acad Dermatol.
78:786–792 e8. 2018. View Article : Google Scholar
|
|
95
|
Jun YK, Yu DA, Han YM, Lee SR, Koh SJ and
Park H: The relationship between rosacea and inflammatory bowel
disease: A systematic review and meta-analysis. Dermatol Ther
(Heidelb). 13:1465–1475. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Li M, He SX, He YX, Hu XH and Zhou Z:
Detecting potential causal relationship between inflammatory bowel
disease and rosacea using bi-directional Mendelian randomization.
Sci Rep. 13:149102023. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Manzhalii E, Hornuss D and Stremmel W:
Intestinal-borne dermatoses significantly improved by oral
application of Escherichia coli Nissle 1917. World J Gastroenterol.
22:5415–5421. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Fortuna MC, Garelli V, Pranteda G,
Romaniello F, Cardone M, Carlesimo M and Rossi A: A case of scalp
rosacea treated with low-dose doxycycline and probiotic therapy and
literature review on therapeutic options. Dermatol Ther.
29:249–251. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Zuberbier T, Abdul Latiff AH, Abuzakouk M,
Aquilina S, Asero R, Baker D, Ballmer-Weber B, Bangert C,
Ben-Shoshan M, Bernstein JA, et al: The international
EAACI/GA(2)LEN/EuroGuiDerm/APAAACI guideline for the definition,
classification, diagnosis, and management of urticaria. Allergy.
77:734–766. 2022. View Article : Google Scholar
|
|
100
|
Kaplan A, Lebwohl M, Gimenez-Arnau AM,
Hide M, Armstrong AW and Maurer M: Chronic spontaneous urticaria:
Focus on pathophysiology to unlock treatment advances. Allergy.
78:389–401. 2023. View Article : Google Scholar
|
|
101
|
Kolkhir P, Gimenez-Arnau AM, Kulthanan K,
Peter J, Metz M and Maurer M: Urticaria. Nat Rev Dis Primers.
8:612022. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Wang D, Guo S, He H, Gong L and Cui H: Gut
microbiome and serum metabolome analyses identify unsaturated fatty
acids and butanoate metabolism induced by gut microbiota in
patients with chronic spontaneous urticaria. Front Cell Infect
Microbiol. 10:242020. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Luo Z, Jin Z, Tao X, Wang T, Wei P, Zhu C
and Wang Z: Combined microbiome and metabolome analysis of gut
microbiota and metabolite interactions in chronic spontaneous
urticaria. Front Cell Infect Microbiol. 12:10947372023. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Fu HY, Yu HD, Bai YP, Yue LF, Wang HM and
Li LL: Effect and safety of probiotics for treating urticaria: A
systematic review and meta-analysis. J Cosmet Dermatol.
22:2663–2670. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Bi XD, Lu BZ, Pan XX, Liu S and Wang JY:
Adjunct therapy with probiotics for chronic urticaria in children:
Randomised placebo-controlled trial. Allergy Asthma Clin Immunol.
17:392021. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Spritz RA and Santorico SA: The genetic
basis of vitiligo. J Invest Dermatol. 141:265–273. 2021. View Article : Google Scholar
|
|
107
|
Bergqvist C and Ezzedine K: Vitiligo: A
review. Dermatology. 236:571–592. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Frisoli ML, Essien K and Harris JE:
Vitiligo: Mechanisms of pathogenesis and treatment. Annu Rev
Immunol. 38:621–648. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Kussainova A, Kassym L, Akhmetova A,
Glushkova N, Sabirov U, Adilgozhina S, Tuleutayeva R and Semenova
Y: Vitiligo and anxiety: A systematic review and meta-analysis.
PLoS One. 15:e02414452020. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Hadi A, Wang JF, Uppal P, Penn LA and
Elbuluk N: Comorbid diseases of vitiligo: A 10-year cross-sectional
retrospective study of an urban US population. J Am Acad Dermatol.
82:628–633. 2020. View Article : Google Scholar
|
|
111
|
Ni Q, Ye Z, Wang Y, Chen J, Zhang W, Ma C,
Li K, Liu Y, Liu L, Han Z, et al: Gut microbial dysbiosis and
plasma metabolic profile in individuals with vitiligo. Front
Microbiol. 11:5922482020. View Article : Google Scholar :
|
|
112
|
Luan M, Niu M, Yang P, Han D, Zhang Y, Li
W, He Q, Zhao Y, Mao B, Chen J, et al: Metagenomic sequencing
reveals altered gut microbial compositions and gene functions in
patients with non-segmental vitiligo. BMC Microbiol. 23:2652023.
View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Siegel RL, Miller KD, Wagle NS and Jemal
A: Cancer statistics, 2023. CA Cancer J Clin. 73:17–48.
2023.PubMed/NCBI
|
|
114
|
Arivazhagan N, Mukunthan MA,
Sundaranarayana D, Shankar A, Vinoth Kumar S, Kesavan R,
Chandrasekaran S, Shyamala Devi M, Maithili K, Barakkath Nisha U
and Abebe TG: Analysis of skin cancer and patient healthcare using
data mining techniques. Comput Intell Neurosci. 2022:22502752022.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Hasan N, Nadaf A, Imran M, Jiba U, Sheikh
A, Almalki WH, Almujri SS, Mohammed YH, Kesharwani P and Ahmad FJ:
Skin cancer: Understanding the journey of transformation from
conventional to advanced treatment approaches. Mol Cancer.
22:1682023. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Jindal M, Kaur M, Nagpal M, Singh M,
Aggarwal G and Dhingra GA: Skin cancer management: Current scenario
and future perspectives. Curr Drug Saf. 18:143–158. 2023.
View Article : Google Scholar
|
|
117
|
Abbas O, Miller DD and Bhawan J: Cutaneous
malignant melanoma: Update on diagnostic and prognostic biomarkers.
Am J Dermatopathol. 36:363–379. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Mrazek J, Mekadim C, Kucerova P, Svejstil
R, Salmonova H, Vlasakova J, Tarasová R, Čížková J and Červinková
M: Melanoma-related changes in skin microbiome. Folia Microbiol
(Praha). 64:435–442. 2019. View Article : Google Scholar
|
|
119
|
Mekadim C, Skalnikova HK, Cizkova J,
Cizkova V, Palanova A, Horak V and Mrazek J: Dysbiosis of skin
microbiome and gut microbiome in melanoma progression. BMC
Microbiol. 22:632022. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Jia D, Wang Q, Qi Y, Jiang Y, He J, Lin Y,
Sun Y, Xu J, Chen W, Fan L, et al: Microbial metabolite enhances
immunotherapy efficacy by modulating T cell stemness in pan-cancer.
Cell. 187:1651–1665 e21. 2024. View Article : Google Scholar
|
|
121
|
Zhou CB, Zhou YL and Fang JY: Gut
microbiota in cancer immune response and immunotherapy. Trends
Cancer. 7:647–660. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Andrews MC, Duong CPM, Gopalakrishnan V,
Iebba V, Chen WS, Derosa L, Khan MAW, Cogdill AP, White MG, Wong
MC, et al: Gut microbiota signatures are associated with toxicity
to combined CTLA-4 and PD-1 blockade. Nat Med. 27:1432–1441. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Spencer CN, McQuade JL, Gopalakrishnan V,
McCulloch JA, Vetizou M, Cogdill AP, Khan MAW, Zhang X, White MG,
Peterson CB, et al: Dietary fiber and probiotics influence the gut
microbiome and melanoma immunotherapy response. Science.
374:1632–1640. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Routy B, Lenehan JG, Miller WH Jr, Jamal
R, Messaoudene M, Daisley BA, Hes C, Al KF, Martinez-Gili L,
Punčochář M, et al: Author correction: Fecal microbiota
transplantation plus anti-PD-1 immunotherapy in advanced melanoma:
A phase I trial. Nat Med. 30:6042024. View Article : Google Scholar
|
|
125
|
Ingram J: Editor's choice: Rare skin
diseases themed issue. Br J Dermatol. 182:ix2020. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Buonavoglia A, Leone P, Dammacco R, Di
Lernia G, Petruzzi M, Bonamonte D, Vacca A, Racanelli V and
Dammacco F: Pemphigus and mucous membrane pemphigoid: An update
from diagnosis to therapy. Autoimmun Rev. 18:349–358. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Malik AM, Tupchong S, Huang S, Are A, Hsu
S and Otaparthi K: An updated review of pemphigus diseases.
Medicina (Kaunas). 57:10802021. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Kridin K: Pemphigus group: overview,
epidemiology, mortality, and comorbidities. Immunol Res.
66:255–270. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Yamagami J: B-cell targeted therapy of
pemphigus. J Dermatol. 50:124–131. 2023. View Article : Google Scholar
|
|
130
|
Huang S, Mao J, Zhou L, Xiong X and Deng
Y: The imbalance of gut microbiota and its correlation with plasma
inflammatory cytokines in pemphigus vulgaris patients. Scand J
Immunol. 90:e127992019. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Han Z, Fan Y, Wu Q, Guo F, Li S, Hu X and
Zuo YG: Comparison of gut microbiota dysbiosis between pemphigus
vulgaris and bullous pemphigoid. Int Immunopharmacol.
128:1114702024. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Ioannides D, Vakirlis E, Kemeny L,
Marinovic B, Massone C, Murphy R, Nast A, Ronnevig J, Ruzicka T,
Cooper SM, et al: European S1 guidelines on the management of
lichen planus: A cooperation of the European Dermatology Forum with
the European academy of dermatology and venereology. J Eur Acad
Dermatol Venereol. 34:1403–1414. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Chen K, Qin Y, Yan L, Dong Y, Lv S, Xu J,
Kang N, Luo Z, Liu Y, Pu J, et al: Variations in salivary
microbiota and metabolic phenotype related to oral lichen planus
with psychiatric symptoms. BMC Oral Health. 25:9932025. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Jacques L, Kornik R, Bennett DD and
Eschenbach DA: Diagnosis and management of vulvovaginal lichen
planus. Obstet Gynecol Surv. 75:624–635. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
van Hees CLM and van der Meij EH: Lichen
planus. Ned Tijdschr Tandheelkd. 130:221–226. 2023.In Dutch.
View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Husein-ElAhmed H, Gieler U and Steinhoff
M: Lichen planus: A comprehensive evidence-based analysis of
medical treatment. J Eur Acad Dermatol Venereol. 33:1847–1862.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Georgescu SR, Mitran CI, Mitran MI,
Nicolae I, Matei C, Ene CD, Popa GL and Tampa M: Oxidative stress
in cutaneous lichen planus narrative review. J Clin Med.
10:26922021. View Article : Google Scholar
|
|
138
|
Li SZ, Wu QY, Fan Y, Guo F, Hu XM and Zuo
YG: Gut microbiome dysbiosis in patients with pemphigus and
correlation with pathogenic autoantibodies. Biomolecules.
14:8802024. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Roy S, Nag S, Saini A and Choudhury L:
Association of human gut microbiota with rare diseases: A close
peek through. Intractable Rare Dis Res. 11:52–62. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Kamal Y, Abdelwhab A, Salem ST and Fakhr
M: Evaluation of the efficacy of supplementary probiotic capsules
with topical clobetasol propionate 0.05% versus topical clobetasol
propionate 0.05% in the treatment of oral lichen planus (a
randomized clinical trial). BMC Oral Health. 25:3442025. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Shanahan F, Ghosh TS and O'Toole PW: The
healthy microbiome-what is the definition of a healthy gut
microbiome? Gastroenterology. 160:483–494. 2021. View Article : Google Scholar
|
|
142
|
Shalon D, Culver RN, Grembi JA, Folz J,
Treit PV, Shi H, Rosenberger FA, Dethlefsen L, Meng X, Yaffe E, et
al: Profiling the human intestinal environment under physiological
conditions. Nature. 617:581–591. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Schmidt TSB, Raes J and Bork P: The human
gut microbiome: From association to modulation. Cell.
172:1198–1215. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
McCallum G and Tropini C: The gut
microbiota and its biogeography. Nat Rev Microbiol. 22:105–118.
2024. View Article : Google Scholar
|
|
145
|
Wang J and Jia H: Metagenome-wide
association studies: fine-mining the microbiome. Nat Rev Microbiol.
14:508–522. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Uitterlinden AG: An introduction to
genome-wide association studies: GWAS for dummies. Semin Reprod
Med. 34:196–204. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Li L, Yang S, Li R, Su J, Zhou X, Zhu X
and Gao R: Unraveling shared and unique genetic causal relationship
between gut microbiota and four types of uterine-related diseases:
Bidirectional mendelian inheritance approaches to dissect the
'gut-uterus axis'. Ann Epidemiol. 100:16–26. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Asnicar F, Thomas AM, Passerini A, Waldron
L and Segata N: Machine learning for microbiologists. Nat Rev
Microbiol. 22:191–205. 2024. View Article : Google Scholar
|
|
149
|
Ma J, Fang Y, Li S, Zeng L, Chen S, Li Z,
Ji G, Yang X and Wu W: Interpretable machine learning algorithms
reveal gut microbiome features associated with atopic dermatitis.
Front Immunol. 16:15280462025. View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Al-Bakri AG, Akour AA and Al-Delaimy WK:
Knowledge, attitudes, ethical and social perspectives towards fecal
microbiota transplantation (FMT) among Jordanian healthcare
providers. BMC Med Ethics. 22:192021. View Article : Google Scholar
|
|
151
|
Benech N, Barbut F, Fitzpatrick F, Krutova
M, Davies K, Druart C, Cordaillat-Simmons M, Heritage J, Guery B
and Kuijper E; ESGCD and ESGHAMI: Update on microbiota-derived
therapies for recurrent Clostridioides difficile infections. Clin
Microbiol Infect. 30:462–468. 2024. View Article : Google Scholar
|
|
152
|
Sada RM, Matsuo H, Motooka D, Kutsuna S,
Hamaguchi S, Yamamoto G and Ueda A: Clostridium butyricum
Bacteremia associated with probiotic use, Japan. Emerg Infect Dis.
30:665–671. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
153
|
Zawistowska-Rojek A and Tyski S: Are
probiotics safe for humans? Pol J Microbiol. 67:251–258. 2018.
View Article : Google Scholar
|
|
154
|
Gouriet F, Million M, Henri M, Fournier PE
and Raoult D: Lactobacillus rhamnosus bacteremia: An emerging
clinical entity. Eur J Clin Microbiol Infect Dis. 31:2469–2480.
2021. View Article : Google Scholar
|
|
155
|
Harty DW, Oakey HJ, Patrikakis M, Hume EB
and Knox KW: Pathogenic potential of lactobacilli. Int J Food
Microbiol. 24:179–189. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
156
|
Bartalesi F, Veloci S, Baragli F,
Mantengoli E, Guidi S, Bartolesi AM, Mannino R, Pecile P and
Bartoloni A: Successful tigecycline lock therapy in a Lactobacillus
rhamnosus catheter-related bloodstream infection. Infection.
40:331–334. 2012. View Article : Google Scholar
|
|
157
|
Jin DM, Morton JT and Bonneau R:
Meta-analysis of the human gut microbiome uncovers shared and
distinct microbial signatures between diseases. mSystems.
9:e00295242024. View Article : Google Scholar : PubMed/NCBI
|
|
158
|
Camacho DM, Collins KM, Powers RK,
Costello JC and Collins JJ: Next-generation machine learning for
biological networks. Cell. 173:1581–1592. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
159
|
Su Q, Liu Q, Lau RI, Zhang J, Xu Z, Yeoh
YK, Leung TWH, Tang W, Zhang L, Liang JQY, et al: Faecal
microbiome-based machine learning for multi-class disease
diagnosis. Nat Commun. 13:68182022. View Article : Google Scholar : PubMed/NCBI
|
|
160
|
Chuang YF, Fan KC, Su YY, Wu MF, Chiu YL,
Liu YC and Lin CC: Precision probiotics supplement strategy in an
aging population based on gut microbiome composition. Brief
Bioinform. 25:bbae3512024. View Article : Google Scholar
|
|
161
|
Guimaraes JT, Balthazar CF, Scudino H,
Pimentel TC, Esmerino EA, Ashokkumar M, Freitas MQ and Cruz AG:
High-intensity ultrasound: A novel technology for the development
of probiotic and prebiotic dairy products. Ultrason Sonochem.
57:12–21. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
162
|
Balthazar CF, Guimaraes JF, Coutinho NM,
Pimentel TC, Ranadheera CS, Santillo A, Albenzio M, Cruz AG and
Sant'Ana AS: The future of functional food: Emerging technologies
application on prebiotics, probiotics, and postbiotics. Compr Rev
Food Sci Food Saf. 21:2560–2586. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
163
|
Kucukgoz K and Trzaskowska M: Nondairy
probiotic products: Functional foods that require more attention.
Nutrients. 14:7532022. View Article : Google Scholar : PubMed/NCBI
|
|
164
|
Shumye Gebre T, Admassu Emire S, Okomo
Aloo S, Chelliah R, Vijayalakshmi S and Hwan Oh D: Unveiling the
potential of African fermented cereal-based beverages: Probiotics,
functional drinks, health benefits and bioactive components. Food
Res Int. 191:1146562024. View Article : Google Scholar : PubMed/NCBI
|