You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
|
Buie MJ, Quan J, Windsor JW, Coward S, Hansen TM, King JA, Kotze PG, Gearry RB, Ng SC, Mak JWY, et al: Global hospitalization trends for Crohn's disease and ulcerative colitis in the 21st century: A systematic review with temporal analyses. Clin Gastroenterol Hepatol. 21:2211–2221. 2023. View Article : Google Scholar | |
|
Ordás I, Eckmann L, Talamini M, Baumgart DC and Sandborn WJ: Ulcerative colitis. Lancet. 380:1606–1619. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Leppkes M and Neurath MF: Cytokines in inflammatory bowel diseases - Update 2020. Pharmacol Res. 158:1048352020. View Article : Google Scholar : PubMed/NCBI | |
|
Le Berre C, Loeuille D and Peyrin-Biroulet L: Combination therapy with vedolizumab and tofacitinib in a patient with ulcerative colitis and spondyloarthropathy. Clin Gastroenterol Hepatol. 17:794–796. 2019. View Article : Google Scholar | |
|
Abdalla MI and Levesque BG: Progress in corticosteroid use in the Era of biologics with room for improvement. Am J Gastroenterol. 116:1187–1188. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Quansah E, Gardey E, Ramoji A, Meyer-Zedler T, Goehrig B, Heutelbeck A, Hoeppener S, Schmitt M, Waldner M, Stallmach A and Popp J: Intestinal epithelial barrier integrity investigated by label-free techniques in ulcerative colitis patients. Sci Rep. 13:26812023. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Q, Chen T, Xiao H, Wang F, Li C, Hu N, Bao L, Tong X, Feng Y, Xu Y, et al: APEX1 in intestinal epithelium triggers neutrophil infiltration and intestinal barrier damage in ulcerative colitis. Free Radic Biol Med. 225:359–373. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Peterson LW and Artis D: Intestinal epithelial cells: Regulators of barrier function and immune homeostasis. Nat Rev Immunol. 14:141–153. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Jiminez JA, Uwiera TC, Douglas Inglis G and Uwiera RR: Animal models to study acute and chronic intestinal inflammation in mammals. Gut Pathog. 7:292015. View Article : Google Scholar : PubMed/NCBI | |
|
Yan H and Ajuwon KM: Butyrate modifies intestinal barrier function in IPEC-J2 cells through a selective upregulation of tight junction proteins and activation of the Akt signaling pathway. PLoS One. 12:e01795862017. View Article : Google Scholar : PubMed/NCBI | |
|
Mehandru S and Colombel JF: The intestinal barrier, an arbitrator turned provocateur in IBD. Nat Rev Gastroenterol Hepatol. 18:83–84. 2021. View Article : Google Scholar | |
|
Su L, Nalle SC, Shen L, Turner ES, Singh G, Breskin LA, Khramtsova EA, Khramtsova G, Tsai PY, Fu YX, et al: TNFR2 activates MLCK-dependent tight junction dysregulation to cause apoptosis-mediated barrier loss and experimental colitis. Gastroenterology. 145:407–415. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Fukuda T, Majumder K, Zhang H, Turner PV, Matsui T and Mine Y: Adenine inhibits TNF-α signaling in intestinal epithelial cells and reduces mucosal inflammation in a dextran sodium sulfate-induced colitis mouse model. J Agric Food Chem. 64:4227–4234. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Li W, Chen D, Zhu Y, Ye Q, Hua Y, Jiang P, Xiang Y, Xu Y, Pan Y, Yang H, et al: Alleviating pyroptosis of intestinal epithelial cells to restore mucosal integrity in ulcerative colitis by targeting delivery of 4-Octyl-itaconate. ACS Nano. 18:16658–16673. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Chi F, Zhang G, Ren N, Zhang J, Du F, Zheng X, Zhang C, Lin Z, Li R, Shi X and Zhu Y: The anti-alcoholism drug disulfiram effectively ameliorates ulcerative colitis through suppressing oxidative stresses-associated pyroptotic cell death and cellular inflammation in colonic cells. Int Immunopharmacol. 111:1091172022. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y, Yan W, Chen Y, Zhu J, Wang J, Jin H, Wu H, Zhang G, Zhan S, Xi Q, et al: SLC6A14 facilitates epithelial cell ferroptosis via the C/EBPβ-PAK6 axis in ulcerative colitis. Cell Mol Life Sci. 79:5632022. View Article : Google Scholar | |
|
Zhang J, Cen L, Zhang X, Tang C, Chen Y, Zhang Y, Yu M, Lu C, Li M, Li S, et al: MPST deficiency promotes intestinal epithelial cell apoptosis and aggravates inflammatory bowel disease via AKT. Redox Biol. 56:1024692022. View Article : Google Scholar : PubMed/NCBI | |
|
Foerster EG, Mukherjee T, Cabral-Fernandes L, Rocha JDB, Girardin SE and Philpott DJ: How autophagy controls the intestinal epithelial barrier. Autophagy. 18:86–103. 2022. View Article : Google Scholar : | |
|
Xu M, Tao J, Yang Y, Tan S, Liu H, Jiang J, Zheng F and Wu B: Ferroptosis involves in intestinal epithelial cell death in ulcerative colitis. Cell Death Dis. 11:862020. View Article : Google Scholar : PubMed/NCBI | |
|
Ma ZR, Li ZL, Zhang N, Lu B, Li XW, Huang YH, Nouhoum D, Liu XS, Xiao KC, Cai LT, et al: Inhibition of GSDMD-mediated pyroptosis triggered by Trichinella spiralis intervention contributes to the alleviation of DSS-induced ulcerative colitis in mice. Parasit Vectors. 16:2802023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang JM, Yang J, Xia WY, Wang YM, Zhu YB, Huang Q, Feng T, Xie LS, Li SH, Liu SQ, et al: Comprehensive analysis of PANoptosis-related gene signature of ulcerative colitis. Int J Mol Sci. 25:3482023. View Article : Google Scholar | |
|
Akanyibah FA, Zhu Y, Jin T, Ocansey DKW, Mao F and Qiu W: The function of necroptosis and its treatment target in IBD. Mediators Inflamm. 2024:72753092024. View Article : Google Scholar : PubMed/NCBI | |
|
Iwanaga T and Takahashi-Iwanaga H: Disposal of intestinal apoptotic epithelial cells and their fate via divergent routes. Biomed Res. 43:59–72. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Soroosh A, Fang K, Hoffman JM, Law IKM, Videlock E, Lokhandwala ZA, Zhao JJ, Hamidi S, Padua DM, Frey MR, et al: Loss of miR-24-3p promotes epithelial cell apoptosis and impairs the recovery from intestinal inflammation. Cell Death Dis. 13:82021. View Article : Google Scholar : PubMed/NCBI | |
|
Wolf P, Schoeniger A and Edlich F: Pro-apoptotic complexes of BAX and BAK on the outer mitochondrial membrane. Biochim Biophys Acta Mol Cell Res. 1869:1193172022. View Article : Google Scholar : PubMed/NCBI | |
|
Sheridan C, Delivani P, Cullen SP and Martin SJ: Bax- or Bak-induced mitochondrial fission can be uncoupled from cytochrome C release. Mol Cell. 31:570–585. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou M, Li Y, Hu Q, Bai XC, Huang W, Yan C, Scheres SH and Shi Y: Atomic structure of the apoptosome: mechanism of cytochrome c- and dATP-mediated activation of Apaf-1. Genes Dev. 29:2349–2361. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Albalawi GA, Albalawi MZ, Alsubaie KT, Albalawi AZ, Elewa MAF, Hashem KS and Al-Gayyar MMH: Curative effects of crocin in ulcerative colitis via modulating apoptosis and inflammation. Int Immunopharmacol. 118:1101382023. View Article : Google Scholar : PubMed/NCBI | |
|
Lin S, Zhang X, Zhu X, Jiao J, Wu Y, Li Y and Zhao L: Fusobacterium nucleatum aggravates ulcerative colitis through promoting gut microbiota dysbiosis and dysmetabolism. J Periodontol. 94:405–418. 2023. View Article : Google Scholar | |
|
Li Y, Ma M, Wang X, Li J, Fang Z, Li J, Yang B, Lu Y, Xu X and Li Y: Celecoxib alleviates the DSS-induced ulcerative colitis in mice by enhancing intestinal barrier function, inhibiting ferroptosis and suppressing apoptosis. Immunopharmacol Immunotoxicol. 46:240–254. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Iwamoto M, Makiyama K, Koji T, Kohno S and Nakane PK: Expression of Fas and Fas-ligand in epithelium of ulcerative colitis. Nihon Rinsho. 54:1970–1974. 1996.In Japanese. PubMed/NCBI | |
|
Souza HS, Tortori CJ, Castelo-Branco MT, Carvalho AT, Margallo VS, Delgado CF, Dines I and Elia CC: Apoptosis in the intestinal mucosa of patients with inflammatory bowel disease: Evidence of altered expression of FasL and perforin cytotoxic pathways. Int J Colorectal Dis. 20:277–286. 2005. View Article : Google Scholar | |
|
Tang R, Jiang L, Ji Q, Kang P, Liu Y, Miao P, Xu X and Tang M: Resveratrol targeting MDM2/P53/PUMA axis to inhibit colonocyte apoptosis in DSS-induced ulcerative colitis mice. Front Pharmacol. 16:15729062025. View Article : Google Scholar : PubMed/NCBI | |
|
Chen J: The Cell-Cycle Arrest and Apoptotic Functions of p53 in Tumor Initiation and Progression. Cold Spring Harb Perspect Med. 6:a0261042016. View Article : Google Scholar : PubMed/NCBI | |
|
Eissa N, Hussein H, Diarra A, Elgazzar O, Gounni AS, Bernstein CN and Ghia JE: Semaphorin 3E regulates apoptosis in the intestinal epithelium during the development of colitis. Biochem Pharmacol. 166:264–273. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Parker A, Vaux L, Patterson AM, Modasia A, Muraro D, Fletcher AG, Byrne HM, Maini PK, Watson AJM and Pin C: Elevated apoptosis impairs epithelial cell turnover and shortens villi in TNF-driven intestinal inflammation. Cell Death Dis. 10:1082019. View Article : Google Scholar : PubMed/NCBI | |
|
Yan R, Liang X and Hu J: MALAT1 promotes colonic epithelial cell apoptosis and pyroptosis by sponging miR-22-3p to enhance NLRP3 expression. PeerJ. 12:e184492024. View Article : Google Scholar : PubMed/NCBI | |
|
Yang L, Wu G, Wu Q, Peng L and Yuan L: METTL3 overexpression aggravates LPS-induced cellular inflammation in mouse intestinal epithelial cells and DSS-induced IBD in mice. Cell Death Discov. 8:622022. View Article : Google Scholar : PubMed/NCBI | |
|
Wu MM, Wang QM, Huang BY, Mai CT, Wang CL, Wang TT and Zhang XJ: Dioscin ameliorates murine ulcerative colitis by regulating macrophage polarization. Pharmacol Res. 172:1057962021. View Article : Google Scholar : PubMed/NCBI | |
|
Palmela C, Chevarin C, Xu Z, Torres J, Sevrin G, Hirten R, Barnich N, Ng SC and Colombel JF: Adherent-invasive Escherichia coli in inflammatory bowel disease. Gut. 67:574–587. 2018. View Article : Google Scholar | |
|
Chen B, Wang Y, Niu Y and Li S: Acalypha australis L. Extract attenuates DSS-induced ulcerative colitis in mice by regulating inflammatory factor release and blocking NF-κB activation. J Med Food. 26:663–671. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Lasa JS, Olivera PA, Danese S and Peyrin-Biroulet L: Efficacy and safety of biologics and small molecule drugs for patients with moderate-to-severe ulcerative colitis: A systematic review and network meta-analysis. Lancet Gastroenterol Hepatol. 7:161–170. 2022. View Article : Google Scholar | |
|
Geng Z, Zuo L, Li J, Yin L, Yang J, Duan T, Wang L, Zhang X, Song X, Wang Y and Hu J: Ginkgetin improved experimental colitis by inhibiting intestinal epithelial cell apoptosis through EGFR/PI3K/AKT signaling. FASEB J. 38:e238172024. View Article : Google Scholar : PubMed/NCBI | |
|
Lokman MS, Kassab RB, Salem FAM, Elshopakey GE, Hussein A, Aldarmahi AA, Theyab A, Alzahrani KJ, Hassan KE, Alsharif KF, et al: Asiatic acid rescues intestinal tissue by suppressing molecular, biochemical, and histopathological changes associated with the development of ulcerative colitis. Biosci Rep. 44:BSR202320042024. View Article : Google Scholar : PubMed/NCBI | |
|
He Z, Liu J and Liu Y: Daphnetin attenuates intestinal inflammation, oxidative stress, and apoptosis in ulcerative colitis via inhibiting REG3A-dependent JAK2/STAT3 signaling pathway. Environ Toxicol. 38:2132–2142. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Hu Q, Xie J, Jiang T, Gao P, Chen Y, Zhang W, Yan J, Zeng J, Ma X and Zhao Y: Paeoniflorin alleviates DSS-induced ulcerative colitis by suppressing inflammation, oxidative stress, and apoptosis via regulating serum metabolites and inhibiting CDC42/JNK signaling pathway. Int Immunopharmacol. 142(Pt A): 1130392024. View Article : Google Scholar : PubMed/NCBI | |
|
Gao F, Wu S, Zhang K, Xu Z, Zhang X, Zhu Z and Quan F: Goat milk exosomes ameliorate ulcerative colitis in mice through modulation of the intestinal barrier, gut microbiota, and metabolites. J Agric Food Chem. 72:23196–23210. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu F, Wei C, Wu H, Shuai B, Yu T, Gao F, Yuan Y, Zuo D, Liu X, Zhang L and Fan H: Hypoxic mesenchymal stem cell-derived exosomes alleviate ulcerative colitis injury by limiting intestinal epithelial cells reactive oxygen species accumulation and DNA damage through HIF-1α. Int Immunopharmacol. 113(Pt A): 1094262022. View Article : Google Scholar : PubMed/NCBI | |
|
Li H, Fan C, Lu H, Feng C, He P, Yang X, Xiang C, Zuo J and Tang W: Protective role of berberine on ulcerative colitis through modulating enteric glial cells-intestinal epithelial cells-immune cells interactions. Acta Pharm Sin B. 10:447–461. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Gao C, Liu L, Zhou Y, Bian Z, Wang S and Wang Y: Novel drug delivery systems of Chinese medicine for the treatment of inflammatory bowel disease. Chin Med. 14:232019. View Article : Google Scholar : PubMed/NCBI | |
|
Liu C, Gong Q, Liu W, Zhao Y, Yan X and Yang T: Berberine-loaded PLGA nanoparticles alleviate ulcerative colitis by targeting IL-6/IL-6R axis. J Transl Med. 22:9632024. View Article : Google Scholar : PubMed/NCBI | |
|
Buck A, Rezaei K, Quazi A, Goldmeier G, Silverglate B and Grossberg GT: The donepezil transdermal system for the treatment of patients with mild, moderate, or severe Alzheimer's disease: A critical review. Expert Rev Neurother. 24:607–614. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Gwon HJ, Cho W, Choi SW, Lim DS, Tanriverdi EÇ, Abd El-Aty AM, Jeong JH and Jung TW: Donepezil improves skeletal muscle insulin resistance in obese mice via the AMPK/FGF21-mediated suppression of inflammation and ferroptosis. Arch Pharm Res. 47:940–953. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Li A, Zhang J, Chen K, Wang J, Xu A and Wang Z: Donepezil attenuates inflammation and apoptosis in ulcerative colitis via regulating LRP1/AMPK/NF-κB signaling. Pathol Int. 73:549–559. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Li C, Xu Y, Gao T, Zhang S, Lin Z, Gu S, Fang Y, Yuan X, Yu S, Jiang Q, et al: Ruxolitinib alleviates inflammation, apoptosis, and intestinal barrier leakage in ulcerative colitis via STAT3. Inflamm Bowel Dis. 29:1191–1201. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Tang R, Xu J, Zhang B, Liu J, Liang C, Hua J, Meng Q, Yu X and Shi S: Ferroptosis, necroptosis, and pyroptosis in anticancer immunity. J Hematol Oncol. 13:1102020. View Article : Google Scholar : PubMed/NCBI | |
|
Newton K: RIPK1 and RIPK3: Critical regulators of inflammation and cell death. Trends Cell Biol. 25:347–353. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Degterev A, Ofengeim D and Yuan J: Targeting RIPK1 for the treatment of human diseases. Proc Natl Acad Sci USA. 116:9714–9722. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang W, Zhu C, Liao Y, Zhou M, Xu W and Zou Z: Caspase-8 in inflammatory diseases: A potential therapeutic target. Cell Mol Biol Lett. 29:1302024. View Article : Google Scholar : PubMed/NCBI | |
|
Mifflin L, Ofengeim D and Yuan J: Receptor-interacting protein kinase 1 (RIPK1) as a therapeutic target. Nat Rev Drug Discov. 19:553–571. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou Y, Xiang Y, Liu S, Li C, Dong J, Kong X, Ji X, Cheng X and Zhang L: RIPK3 signaling and its role in regulated cell death and diseases. Cell Death Discov. 10:2002024. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan J, Amin P and Ofengeim D: Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat Rev Neurosci. 20:19–33. 2019. View Article : Google Scholar : | |
|
Karlowitz R and van Wijk SJL: Surviving death: emerging concepts of RIPK3 and MLKL ubiquitination in the regulation of necroptosis. FEBS J. 290:37–54. 2023. View Article : Google Scholar | |
|
Mohammed S, Thadathil N, Selvarani R, Nicklas EH, Wang D, Miller BF, Richardson A and Deepa SS: Necroptosis contributes to chronic inflammation and fibrosis in aging liver. Aging Cell. 20:e135122021. View Article : Google Scholar : PubMed/NCBI | |
|
Jia Z, Xu C, Shen J, Xia T, Yang J and He Y: The natural compound celastrol inhibits necroptosis and alleviates ulcerative colitis in mice. Int Immunopharmacol. 29:552–559. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Lehle AS, Farin HF, Marquardt B, Michels BE, Magg T, Li Y, Liu Y, Ghalandary M, Lammens K, Hollizeck S, et al: Intestinal inflammation and dysregulated immunity in patients with inherited caspase-8 deficiency. Gastroenterology. 156:275–278. 2019. View Article : Google Scholar | |
|
Pierdomenico M, Negroni A, Stronati L, Vitali R, Prete E, Bertin J, Gough PJ, Aloi M and Cucchiara S: Necroptosis is active in children with inflammatory bowel disease and contributes to heighten intestinal inflammation. Am J Gastroenterol. 109:279–287. 2014. View Article : Google Scholar | |
|
Liu L, Liang L, Yang C, Zhou Y and Chen Y: Extracellular vesicles of Fusobacterium nucleatum compromise intestinal barrier through targeting RIPK1-mediated cell death pathway. Gut Microbes. 13:1–20. 2021. View Article : Google Scholar | |
|
Liu C, Wang H, Han L, Zhu Y, Ni S, Zhi J, Yang X, Zhi J, Sheng T, Li H and Hu Q: Targeting P2Y(14)R protects against necroptosis of intestinal epithelial cells through PKA/CREB/RIPK1 axis in ulcerative colitis. Nat Commun. 15:20832024. View Article : Google Scholar : PubMed/NCBI | |
|
Dunker W, Ye X, Zhao Y, Liu L, Richardson A and Karijolich J: TDP-43 prevents endogenous RNAs from triggering a lethal RIG-I-dependent interferon response. Cell Rep. 35:1089762021. View Article : Google Scholar : PubMed/NCBI | |
|
Maelfait J, Liverpool L and Rehwinkel J: Nucleic acid sensors and programmed cell death. J Mol Biol. 432:552–568. 2020. View Article : Google Scholar : | |
|
Li Y, Zou C, Chen C, Li S, Zhu Z, Fan Q, Pang R, Li F, Chen Z, Wang Z, et al: Myeloid-derived MIF drives RIPK1-mediated cerebromicrovascular endothelial cell death to exacerbate ischemic brain injury. Proc Natl Acad Sci USA. 120:e22190911202023. View Article : Google Scholar : PubMed/NCBI | |
|
Soppert J, Kraemer S, Beckers C, Averdunk L, Möllmann J, Denecke B, Goetzenich A, Marx G, Bernhagen J and Stoppe C: Soluble CD74 reroutes MIF/CXCR4/AKT-mediated survival of cardiac myofibroblasts to necroptosis. J Am Heart Assoc. 7:e0093842018. View Article : Google Scholar : PubMed/NCBI | |
|
Bao J, Ye B and Ren Y: ABIN1 inhibits inflammation through necroptosis-dependent pathway in ulcerative colitis. Genet Res (Camb). 2022:93135592022. View Article : Google Scholar : PubMed/NCBI | |
|
Duan C, Xu X, Lu X, Wang L and Lu Z: RIP3 knockdown inhibits necroptosis of human intestinal epithelial cells via TLR4/MyD88/NF-κB signaling and ameliorates murine colitis. BMC Gastroenterol. 22:1372022. View Article : Google Scholar | |
|
Zhong Y, Tu Y, Ma Q, Chen L, Zhang W, Lu X, Yang S, Wang Z and Zhang L: Curcumin alleviates experimental colitis in mice by suppressing necroptosis of intestinal epithelial cells. Front Pharmacol. 14:11706372023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Lei H, Hu X and Dong W: Hesperetin ameliorates DSS-induced colitis by maintaining the epithelial barrier via blocking RIPK3/MLKL necroptosis signaling. Eur J Pharmacol. 873:1729922020. View Article : Google Scholar : PubMed/NCBI | |
|
Shen X, Chen H, Wen T, Liu L, Yang Y, Xie F and Wang L: A natural chalcone cardamonin inhibits necroptosis and ameliorates dextran sulfate sodium (DSS)-induced colitis by targeting RIPK1/3 kinases. Eur J Pharmacol. 954:1758402023. View Article : Google Scholar : PubMed/NCBI | |
|
Li Z, Wang H, Wang Z and Geng Y: Pine pollen polysaccharides' and sulfated polysaccharides' effects on UC mice through modulation of cell tight junctions and RIPK3-dependent necroptosis pathways. Molecules. 27:76822022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Zhang B, Liu S, Xu E and Wang Z: The traditional herb Sargentodoxa cuneata alleviates DSS-induced colitis by attenuating epithelial barrier damage via blocking necroptotic signaling. J Ethnopharmacol. 319(Pt 3): 1173732024. View Article : Google Scholar | |
|
Zhou XL, Yang J, Qu XJ, Meng J, Miao RR and Cui SX: M10, a Myricetin-3-O-b-D-lactose sodium salt, prevents ulcerative colitis through inhibiting necroptosis in mice. Front Pharmacol. 11:5573122020. View Article : Google Scholar : PubMed/NCBI | |
|
Peng C, Wu C, Xu X, Pan L, Lou Z, Zhao Y, Jiang H, He Z and Ruan B: Indole-3-carbinol ameliorates necroptosis and inflammation of intestinal epithelial cells in mice with ulcerative colitis by activating aryl hydrocarbon receptor. Exp Cell Res. 404:1126382021. View Article : Google Scholar : PubMed/NCBI | |
|
Zeng YS, Peng J, Gao XF, Tian D, Zhan W, Liu J, Hu XJ, Huang S, Tian ST, Qiu L, et al: A novel gut-restricted RIPK1 inhibitor, SZ-15, ameliorates DSS-induced ulcerative colitis. Eur J Pharmacol. 937:1753812022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang C, He A, Liu S, He Q, Luo Y, He Z, Chen Y, Tao A and Yan J: Inhibition of HtrA2 alleviated dextran sulfate sodium (DSS)-induced colitis by preventing necroptosis of intestinal epithelial cells. Cell Death Dis. 10:3442019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang C, Luo Y, He Q, Liu S, He A and Yan J: A pan-RAF inhibitor LY3009120 inhibits necroptosis by preventing phosphorylation of RIPK1 and alleviates dextran sulfate sodium-induced colitis. Clin Sci (Lond). 133:919–932. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Kayagaki N, Webster JD and Newton K: Control of cell death in health and disease. Annu Rev Pathol. 19:157–180. 2024. View Article : Google Scholar | |
|
Krzyzowska M, Shestakov A, Eriksson K and Chiodi F: Role of Fas/FasL in regulation of inflammation in vaginal tissue during HSV-2 infection. Cell Death Dis. 2:e1322011. View Article : Google Scholar : PubMed/NCBI | |
|
Ma D, Wang X, Liu J, Cui Y, Luo S and Wang F: The development of necroptosis: What we can learn. Cell Stress Chaperones. 28:969–987. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Nakano H, Murai S and Moriwaki K: Regulation of the release of damage-associated molecular patterns from necroptotic cells. Biochem J. 479:677–685. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Ma M, Jiang W and Zhou R: DAMPs and DAMP-sensing receptors in inflammation and diseases. Immunity. 57:752–771. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Chen M, Rong R and Xia X: Spotlight on pyroptosis: role in pathogenesis and therapeutic potential of ocular diseases. J Neuroinflammation. 19:1832022. View Article : Google Scholar : PubMed/NCBI | |
|
Wei X, Xie F, Zhou X, Wu Y, Yan H, Liu T, Huang J, Wang F, Zhou F and Zhang L: Role of pyroptosis in inflammation and cancer. Cell Mol Immunol. 19:971–992. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Fu J and Wu H: Structural mechanisms of NLRP3 inflammasome assembly and activation. Annu Rev Immunol. 41:301–316. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Biasizzo M and Kopitar-Jerala N: Interplay Between NLRP3 Inflammasome and Autophagy. Front Immunol. 11:5918032020. View Article : Google Scholar : PubMed/NCBI | |
|
Que X, Zheng S, Song Q, Pei H and Zhang P: Fantastic voyage: The journey of NLRP3 inflammasome activation. Genes Dis. 11:819–829. 2024. View Article : Google Scholar | |
|
Nabavi-Rad A, Sadeghi A, Asadzadeh Aghdaei H, Yadegar A, Smith SM and Zali MR: The double-edged sword of probiotic supplementation on gut microbiota structure in Helicobacter pylori management. Gut Microbes. 14:21086552022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Yuan H, Shen D, Liu S, Kong W, Zheng K, Yang J and Ge L: Artemisinin attenuated ischemic stroke induced pyroptosis by inhibiting ROS/TXNIP/NLRP3/Caspase-1 signaling pathway. Biomed Pharmacother. 177:1168942024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang MY, Jiang YX, Yang YC, Liu JY, Huo C, Ji XL and Qu YQ: Cigarette smoke extract induces pyroptosis in human bronchial epithelial cells through the ROS/NLRP3/caspase-1 pathway. Life Sci. 269:1190902021. View Article : Google Scholar : PubMed/NCBI | |
|
Burdette BE, Esparza AN, Zhu H and Wang S: Gasdermin D in pyroptosis. Acta Pharm Sin B. 11:2768–2782. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Y, Li S, Liu K, Zhang Y, Zhu F, Ben T, Chen Z and Zhi F: Lipocalin-2-mediated intestinal epithelial cells pyroptosis via NF-κB/NLRP3/GSDMD signaling axis adversely affects inflammation in colitis. Biochim Biophys Acta Mol Basis Dis. 1870:1672792024. View Article : Google Scholar | |
|
Jena KK, Mambu J, Boehmer D, Sposito B, Millet V, de Sousa Casal J, Muendlein HI, Spreafico R, Fenouil R, Spinelli L, et al: Type III interferons induce pyroptosis in gut epithelial cells and impair mucosal repair. Cell. 187:7533–7550.e23. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Liu X, Zhou M, Dai Z, Luo S, Shi Y, He Z and Chen Y: Salidroside alleviates ulcerative colitis via inhibiting macrophage pyroptosis and repairing the dysbacteriosis-associated Th17/Treg imbalance. Phytother Res. 37:367–382. 2023. View Article : Google Scholar | |
|
Zhang S, Zhong R, Tang S, Chen L and Zhang H: Metabolic regulation of the Th17/Treg balance in inflammatory bowel disease. Pharmacol Res. 203:1071842024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang D, Ge F, Ji J, Li YJ, Zhang FR, Wang SY, Zhang SJ, Zhang DM and Chen M: β-sitosterol alleviates dextran sulfate sodium-induced experimental colitis via inhibition of NLRP3/Caspase-1/GSDMD-mediated pyroptosis. Front Pharmacol. 14:12184772023. View Article : Google Scholar | |
|
Shen J, Zhao Y and Cui W: Astragalus mongholicus Bunge extract improves ulcerative colitis by promoting PLCB2 to inhibit colonic epithelial cell pyroptosis. J Ethnopharmacol. 334:1185542024. View Article : Google Scholar : PubMed/NCBI | |
|
Shao M, Yan Y, Zhu F, Yang X, Qi Q, Yang F, Hao T, Lin Z, He P, Zhou Y, et al: Artemisinin analog SM934 alleviates epithelial barrier dysfunction via inhibiting apoptosis and caspase-1-mediated pyroptosis in experimental colitis. Front Pharmacol. 13:8490142022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang W, Wang W, Shen C, Wang X, Pu Z and Yin Q: Network pharmacology for systematic understanding of Schisandrin B reduces the epithelial cells injury of colitis through regulating pyroptosis by AMPK/Nrf2/NLRP3 inflammasome. Aging (Albany NY). 13:23193–23209. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao P, Ning J, Huang J and Huang X: Mechanism of resveratrol on LPS/ATP-induced pyroptosis and inflammatory response in HT29 cells. Autoimmunity. 57:24270942024. View Article : Google Scholar : PubMed/NCBI | |
|
Chang Y, Zhang Y, Jiang Y, Zhao L, Lv C, Huang Q, Guan J and Jin S: From hair to colon: Hair follicle-derived MSCs alleviate pyroptosis in DSS-Induced ulcerative colitis by releasing exosomes in a paracrine manner. Oxid Med Cell Longev. 2022:90975302022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang D, Xue H, Tan J, Liu P, Qiao C, Pang C and Zhang L: Bone marrow mesenchymal stem cells-derived exosomes containing miR-539-5p inhibit pyroptosis through NLRP3/caspase-1 signalling to alleviate inflammatory bowel disease. Inflamm Res. 71:833–846. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Yan R, Liang X and Hu J: miR-141-3p alleviates ulcerative colitis by targeting SUGT1 to inhibit colonic epithelial cell pyroptosis. Autoimmunity. 56:22209882023. View Article : Google Scholar : PubMed/NCBI | |
|
Oraby MA, Abdel Mageed SS, Amr Raouf A, Abdelshafy DA, Ahmed EF, Khalil RT, Mangoura SA and Fadaly DS: Remdesivir ameliorates ulcerative colitis-propelled cell inflammation and pyroptosis in acetic acid rats by restoring SIRT6/FoxC1 pathway. Int Immunopharmacol. 137:1124652024. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Wu H, Zhou J, Jiang R, Zhuo Z, Yang Q, Chen H and Sha W: Ruscogenin attenuates ulcerative colitis in mice by inhibiting caspase-1-dependent pyroptosis via the TLR4/NF-κB signaling pathway. Biomedicines. 12:9892024. View Article : Google Scholar | |
|
Chen L, Liu D, Mao M, Liu W, Wang Y, Liang Y, Cao W and Zhong X: Betaine ameliorates acute sever ulcerative colitis by inhibiting oxidative stress induced inflammatory pyroptosis. Mol Nutr Food Res. 66:e22003412022. View Article : Google Scholar : PubMed/NCBI | |
|
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Mou Y, Wang J, Wu J, He D, Zhang C, Duan C and Li B: Ferroptosis, a new form of cell death: Opportunities and challenges in cancer. J Hematol Oncol. 12:342019. View Article : Google Scholar : PubMed/NCBI | |
|
Chen AC, Donovan A, Ned-Sykes R and Andrews NC: Noncanonical role of transferrin receptor 1 is essential for intestinal homeostasis. Proc Natl Acad Sci USA. 112:11714–11719. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Lomphithak T, Sae-Fung A, Sprio S, Tampieri A, Jitkaew S and Fadeel B: Exploiting the ferroaddiction of pancreatic cancer cells using Fe-doped nanoparticles. Nanomedicine. 55:1027142024. View Article : Google Scholar : PubMed/NCBI | |
|
Cai H, Chen S, Zhu Y, Zhuang S, Wang J, Niu X, Cui T, Huang H, Ao R, Yu M, et al: A pH/STEAP cascade-responsive nanomedicine with self-supplied peroxide for precise chemodynamic therapy. Adv Healthc Mater. 14:e25007522025. View Article : Google Scholar : PubMed/NCBI | |
|
Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS and Stockwell BR: Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci USA. 113:E4966–E4975. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB, et al: Regulation of ferroptotic cancer cell death by GPX4. Cell. 156:317–331. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Sun SP, Lu YF, Li H, Weng CY, Chen JJ, Lou YJ, Lyu D and Lyu B: AMPK activation alleviated dextran sulfate sodium-induced colitis by inhibiting ferroptosis. J Dig Dis. 24:213–223. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Guo M, Du X and Wang X: Inhibition of ferroptosis: A new direction in the treatment of ulcerative colitis by traditional Chinese medicine. J Ethnopharmacol. 324:1177872024. View Article : Google Scholar : PubMed/NCBI | |
|
Huang F, Zhang S, Li X, Huang Y, He S and Luo L: STAT3-mediated ferroptosis is involved in ulcerative colitis. Free Radic Biol Med. 188:375–385. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y, Zhang P, Chen W and Chen G: Ferroptosis mediated DSS-induced ulcerative colitis associated with Nrf2/HO-1 signaling pathway. Immunol Lett. 225:9–15. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu J, Wu Y, Ge X, Chen X and Mei Q: Discovery and validation of ferroptosis-associated genes of ulcerative colitis. J Inflamm Res. 17:4467–4482. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Yokote A, Imazu N, Umeno J, Kawasaki K, Fujioka S, Fuyuno Y, Matsuno Y, Moriyama T, Miyawaki K, Akashi K, et al: Ferroptosis in the colon epithelial cells as a therapeutic target for ulcerative colitis. J Gastroenterol. 58:868–882. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Lam IH, Chan CI, Han M, Li L and Yu HH: ACSL4 mediates inflammatory bowel disease and contributes to LPS-induced intestinal epithelial cell dysfunction by activating ferroptosis and inflammation. Open Med (Wars). 19:202409932024. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y, Wang J, Li J, Zhu J, Wang R, Xi Q, Wu H, Shi T and Chen W: Astragalus polysaccharide prevents ferroptosis in a murine model of experimental colitis and human Caco-2 cells via inhibiting NRF2/HO-1 pathway. Eur J Pharmacol. 911:1745182021. View Article : Google Scholar | |
|
Ni J, Zhang L, Feng G, Bao W, Wang Y, Huang Y, Chen T, Chen J, Cao X, You K, et al: Vanillic acid restores homeostasis of intestinal epithelium in colitis through inhibiting CA9/STIM1-mediated ferroptosis. Pharmacol Res. 202:1071282024. View Article : Google Scholar : PubMed/NCBI | |
|
Long D, Mao C, Huang Y, Xu Y and Zhu Y: Ferroptosis in ulcerative colitis: Potential mechanisms and promising therapeutic targets. Biomed Pharmacother. 175:1167222024. View Article : Google Scholar : PubMed/NCBI | |
|
Wu X, Zhao L, Yu Z and Zhang K: Buddlejasaponin IVb Alleviates DSS-Induced ulcerative colitis through the Nrf2/GPX4 pathway and gut microbiota modulation. J Agric Food Chem. 72:23183–23195. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Ji W, Zhang Y, Qian X, Hu C and Huo Y: Palmatine alleviates inflammation and modulates ferroptosis against dextran sulfate sodium (DSS)-induced ulcerative colitis. Int Immunopharmacol. 143(Pt 2): 1133962024. View Article : Google Scholar : PubMed/NCBI | |
|
Wu Y, Ran L, Yang Y, Gao X, Peng M, Liu S, Sun L, Wan J, Wang Y, Yang K, et al: Deferasirox alleviates DSS-induced ulcerative colitis in mice by inhibiting ferroptosis and improving intestinal microbiota. Life Sci. 314:1213122023. View Article : Google Scholar | |
|
Porter JB: A risk-benefit assessment of iron-chelation therapy. Drug Saf. 17:407–421. 1997. View Article : Google Scholar | |
|
Di Paola A, Tortora C, Argenziano M, Marrapodi MM and Rossi F: Emerging roles of the iron chelators in inflammation. Int J Mol Sci. 23:79772022. View Article : Google Scholar : PubMed/NCBI | |
|
Chen H, Qian Y, Jiang C, Tang L, Yu J, Zhang L, Dai Y and Jiang G: Butyrate ameliorated ferroptosis in ulcerative colitis through modulating Nrf2/GPX4 signal pathway and improving intestinal barrier. Biochim Biophys Acta Mol Basis Dis. 1870:1669842024. View Article : Google Scholar | |
|
Gao S, Sun C and Kong J: Vitamin D attenuates ulcerative colitis by inhibiting ACSL4-mediated ferroptosis. Nutrients. 15:48452023. View Article : Google Scholar : PubMed/NCBI | |
|
Shi J, Ji S, Xu M, Wang Y and Shi H: Selenium inhibits ferroptosis in ulcerative colitis through the induction of Nrf2/Gpx4. Clin Res Hepatol Gastroenterol. 48:1024672024. View Article : Google Scholar : PubMed/NCBI | |
|
Gao BB, Wang L, Li LZ, Fei ZQ, Wang YY, Zou XM, Huang MC, Lei SS and Li B: Beneficial effects of oxymatrine from Sophora flavescens on alleviating Ulcerative colitis by improving inflammation and ferroptosis. J Ethnopharmacol. 332:1183852024. View Article : Google Scholar : PubMed/NCBI | |
|
Li W, Wang Y, Zhang Y, Fan Y, Liu J, Zhu K, Jiang S and Duan J: Lizhong decoction ameliorates ulcerative colitis by inhibiting ferroptosis of enterocytes via the Nrf2/SLC7A11/GPX4 pathway. J Ethnopharmacol. 326:1179662024. View Article : Google Scholar : PubMed/NCBI | |
|
Wei Z, Hang S, Wiredu Ocansey DK, Zhang Z, Wang B, Zhang X and Mao F: Human umbilical cord mesenchymal stem cells derived exosome shuttling mir-129-5p attenuates inflammatory bowel disease by inhibiting ferroptosis. J Nanobiotechnology. 21:1882023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu Y, Qin H, Sun C, Shao B, Li G, Qin Y, Kong D, Ren S, Wang H, Wang Z, et al: Endometrial regenerative cell-derived exosomes attenuate experimental colitis through downregulation of intestine ferroptosis. Stem Cells Int. 2022:30141232022. View Article : Google Scholar : PubMed/NCBI | |
|
Takabatake Y, Kimura T, Takahashi A and Isaka Y: Autophagy and the kidney: health and disease. Nephrol Dial Transplant. 29:1639–1647. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Anding AL and Baehrecke EH: Autophagy in cell life and cell death. Curr Top Dev Biol. 114:67–91. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Mizushima N and Komatsu M: Autophagy: renovation of cells and tissues. Cell. 147:728–741. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Klionsky DJ, Cregg JM, Dunn WA Jr, Emr SD, Sakai Y, Sandoval IV, Sibirny A, Subramani S, Thumm M, Veenhuis M and Ohsumi Y: A unified nomenclature for yeast autophagy-related genes. Dev Cell. 5:539–545. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Mizushima N: A brief history of autophagy from cell biology to physiology and disease. Nat Cell Biol. 20:521–527. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Yu L, Chen Y and Tooze SA: Autophagy pathway: Cellular and molecular mechanisms. Autophagy. 14:207–215. 2018. View Article : Google Scholar : | |
|
Shen HM and Mizushima N: At the end of the autophagic road: An emerging understanding of lysosomal functions in autophagy. Trends Biochem Sci. 39:61–71. 2014. View Article : Google Scholar | |
|
Takeshige K, Baba M, Tsuboi S, Noda T and Ohsumi Y: Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J Cell Biol. 119:301–311. 1992. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Z and Wang H: Probiotics alleviate inflammatory bowel disease in mice by regulating intestinal microorganisms-bile acid-NLRP3 inflammasome pathway. Acta Biochim Pol. 68:687–693. 2021.PubMed/NCBI | |
|
Zhang C, Yan J, Xiao Y, Shen Y, Wang J, Ge W and Chen Y: Inhibition of autophagic degradation process contributes to claudin-2 expression increase and epithelial tight junction dysfunction in TNF-α treated cell monolayers. Int J Mol Sci. 18:572017. | |
|
Hu X, Deng J, Yu T, Chen S, Ge Y, Zhou Z, Guo Y, Ying H, Zhai Q, Chen Y, et al: ATF4 deficiency promotes intestinal inflammation in mice by reducing uptake of glutamine and expression of antimicrobial peptides. Gastroenterology. 156:1098–1111. 2019. View Article : Google Scholar | |
|
Chen Z, Gu Q and Chen R: miR-146a-5p regulates autophagy and NLRP3 inflammasome activation in epithelial barrier damage in the in vitro cell model of ulcerative colitis through the RNF8/Notch1/mTORC1 pathway. Immunobiology. 228:1523862023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou M, Xu W, Wang J, Yan J, Shi Y, Zhang C, Ge W, Wu J, Du P and Chen Y: Boosting mTOR-dependent autophagy via upstream TLR4-MyD88-MAPK signalling and downstream NF-κB pathway quenches intestinal inflammation and oxidative stress injury. EBioMedicine. 35:345–360. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Martinon F, Burns K and Tschopp J: The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 10:417–426. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Takahama M, Akira S and Saitoh T: Autophagy limits activation of the inflammasomes. Immunol Rev. 281:62–73. 2018. View Article : Google Scholar | |
|
Shen T, Li S, Cai LD, Liu JL, Wang CY, Gan WJ, Li XM, Wang JR, Sun LN, Deng M, et al: Erbin exerts a protective effect against inflammatory bowel disease by suppressing autophagic cell death. Oncotarget. 9:12035–12049. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Pan SM, Wang CL, Hu ZF, Zhang ML, Pan ZF, Zhou RY, Wang XJ, Huang SW, Li YY, Wang Q, et al: Baitouweng decoction repairs the intestinal barrier in DSS-induced colitis mice via regulation of AMPK/mTOR-mediated autophagy. J Ethnopharmacol. 318(Pt A): 1168882024. View Article : Google Scholar | |
|
Zhang H, Lang W, Liu X, Bai J, Jia Q and Shi Q: Procyanidin A1 alleviates DSS-induced ulcerative colitis via regulating AMPK/mTOR/p70S6K-mediated autophagy. J Physiol Biochem. 78:213–227. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Watanabe-Yasuoka Y, Gotou A, Shimizu S and Sashihara T: Lactiplantibacillus plantarum OLL2712 Induces Autophagy via MYD88 and strengthens tight junction integrity to promote the barrier function in intestinal epithelial cells. Nutrients. 15:26552023. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Deng S, Sun L, He H, Zhou Q, Fan H, Yang C and Yang J: Compound sophorae decoction mitigates DSS-induced ulcerative colitis by activating autophagy through PI3K-AKT pathway: A integrative research combining network pharmacology and in vivo animal model validation. J Ethnopharmacol. 337:1188852025. View Article : Google Scholar | |
|
Qiao D, Liu X, Zhang Y, Zhang Z, Tang Y, Chen Q, Shi Y, Chen Y, Tang Z and Dai Y: Jianpi-Qingchang decoction alleviates ulcerative colitis by modulating endoplasmic reticulum stress-related autophagy in intestinal epithelial cells. Biomed Pharmacother. 158:1141332023. View Article : Google Scholar | |
|
Zhao L, Jiang T, Zhang Y and Shen Z: Epimedium polysaccharides ameliorate ulcerative colitis by inhibiting oxidative stress and regulating autophagy. J Sci Food Agric. 105:2655–2670. 2025. View Article : Google Scholar | |
|
Xu Y, Tian Y, Li F, Wang Y, Yang J, Gong H, Wan X and Ouyang M: Circular RNA HECTD1 mitigates ulcerative colitis by promoting enterocyte autophagy Via miR-182-5p/HuR axis. Inflamm Bowel Dis. 28:273–288. 2022. View Article : Google Scholar | |
|
Chen B, Carr L and Dun XP: Dynamic expression of Slit1-3 and Robo1-2 in the mouse peripheral nervous system after injury. Neural Regen Res. 15:948–958. 2020. View Article : Google Scholar | |
|
Wang L, Zheng J, Pathak JL, Chen Y, Liang D, Yang L, Sun H, Zhong M, Wu L, Li L, et al: SLIT2 overexpression in periodontitis intensifies inflammation and alveolar bone loss, possibly via the activation of MAPK pathway. Front Cell Dev Biol. 8:5932020. View Article : Google Scholar : PubMed/NCBI | |
|
Xie J, Li L, Deng S, Chen J, Gu Q, Su H, Wen L, Wang S, Lin C, Qi C, et al: Slit2/Robo1 mitigates dss-induced ulcerative colitis by activating autophagy in intestinal stem cell. Int J Biol Sci. 16:1876–1887. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wei S, Zhang J, Wu X, Chen M, Huang H, Zeng S, Xiang Z, Li X and Dong W: Fusobacterium nucleatum Extracellular Vesicles Promote Experimental Colitis by Modulating Autophagy via the miR-574-5p/CARD3 Axis. Inflamm Bowel Dis. 29:9–26. 2023. View Article : Google Scholar | |
|
Wang XJ, Zhang D, Yang YT, Li XY, Li HN, Zhang XP, Long JY, Lu YQ, Liu L, Yang G, et al: Suppression of microRNA-222-3p ameliorates ulcerative colitis and colitis-associated colorectal cancer to protect against oxidative stress via targeting BRG1 to activate Nrf2/HO-1 signaling pathway. Front Immunol. 14:10898092023. View Article : Google Scholar : PubMed/NCBI | |
|
Liang H, Zhang F, Wang W, Zhao W, Zhou J, Feng Y, Wu J, Li M, Bai X, Zeng Z, et al: Heat shock transcription factor 2 promotes mitophagy of intestinal epithelial cells through PARL/PINK1/Parkin pathway in ulcerative colitis. Front Pharmacol. 13:8934262022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu P, Ke ZR, Chen JX, Li SJ, Ma TL and Fan XL: Advances in mechanism and regulation of PANoptosis: Prospects in disease treatment. Front Immunol. 14:11200342023. View Article : Google Scholar : PubMed/NCBI | |
|
Qi Z, Zhu L, Wang K and Wang N: PANoptosis: Emerging mechanisms and disease implications. Life Sci. 333:1221582023. View Article : Google Scholar : PubMed/NCBI | |
|
Sun X, Yang Y, Meng X, Li J, Liu X and Liu H: PANoptosis: Mechanisms, biology, and role in disease. Immunol Rev. 321:246–262. 2024. View Article : Google Scholar | |
|
You YP, Yan L, Ke HY, Li YP, Shi ZJ, Zhou ZY, Yang HY, Yuan T, Gan YQ, Lu N, et al: Baicalin inhibits PANoptosis by blocking mitochondrial Z-DNA formation and ZBP1-PANoptosome assembly in macrophages. Acta Pharmacol Sin. 46:430–447. 2025. View Article : Google Scholar | |
|
Shi C, Cao P, Wang Y, Zhang Q, Zhang D, Wang Y, Wang L and Gong Z: PANoptosis: A cell death characterized by pyroptosis, apoptosis, and necroptosis. J Inflamm Res. 16:1523–1532. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Malireddi RKS, Kesavardhana S, Karki R, Kancharana B, Burton AR and Kanneganti TD: RIPK1 distinctly regulates yersinia-induced inflammatory cell death, PANoptosis. Immunohorizons. 4:789–796. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Newton K, Wickliffe KE, Dugger DL, Maltzman A, Roose-Girma M, Dohse M, Kőműves L, Webster JD and Dixit VM: Cleavage of RIPK1 by caspase-8 is crucial for limiting apoptosis and necroptosis. Nature. 574:428–431. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng Z, Deng W, Bai Y, Miao R, Mei S, Zhang Z, Pan Y, Wang Y, Min R, Deng F, et al: The lysosomal rag-ragulator complex licenses RIPK1 and caspase-8-mediated pyroptosis by yersinia. Science. 372:eabg02692021. View Article : Google Scholar | |
|
Van Opdenbosch N, Van Gorp H, Verdonckt M, Saavedra PHV, de Vasconcelos NM, Gonçalves A, Vande Walle L, Demon D, Matusiak M, Van Hauwermeiren F, et al: Caspase-1 engagement and TLR-Induced c-FLIP expression suppress ASC/Caspase-8-Dependent apoptosis by inflammasome sensors NLRP1b and NLRC4. Cell Rep. 21:3427–3444. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Gutierrez KD, Davis MA, Daniels BP, Olsen TM, Ralli-Jain P, Tait SW, Gale M Jr and Oberst A: MLKL activation triggers NLRP3-mediated processing and release of IL-1β independently of gasdermin-D. J Immunol. 198:2156–2164. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Ye Z, Deng M, Yang Y, Song Y, Weng L, Qi W, Ding P, Huang Y, Yu C, Wang Y, et al: Epithelial mitochondrial fission-mediated PANoptosis is crucial for ulcerative colitis and its inhibition by saquinavir through Drp1. Pharmacol Res. 210:1075382024. View Article : Google Scholar : PubMed/NCBI |