You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
![]() |
|
Chi H, Pepper M and Thomas PG: Principles and therapeutic applications of adaptive immunity. Cell. 187:2052–2078. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Rastogi I, Jeon D, Moseman JE, Muralidhar A, Potluri HK and McNeel DG: Role of B cells as antigen presenting cells. Front Immunol. 13:9549362022. View Article : Google Scholar : PubMed/NCBI | |
|
Mauri C and Bosma A: Immune regulatory function of B cells. Annu Rev Immunol. 30:221–241. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Cyster JG and Allen CDC: B cell responses: cell interaction dynamics and decisions. Cell. 177:524–540. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Barnas JL, Looney RJ and Anolik JH: B cell targeted therapies in autoimmune disease. Curr Opin Immunol. 61:92–99. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Carter LM, Ehrenstein MR and Vital EM: Evolution and trajectory of B-cell targeted therapies in rheumatic diseases. Lancet Rheumatol. 7:e355–e367. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Ronco P, Beck L, Debiec H, Fervenza FC, Hou FF, Jha V, Sethi S, Tong A, Vivarelli M and Wetzels J: Membranous nephropathy. Nat Rev Dis Primers. 7:692021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Liu J, Burrows PD and Wang JY: B cell development and maturation. Adv Exp Med Biol. 1254:1–22. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Ghosn E, Yoshimoto M, Nakauchi H, Weissman IL and Herzenberg LA: Hematopoietic stem cell-independent hematopoiesis and the origins of innate-like B lymphocytes. Development. 146:dev1705712019. View Article : Google Scholar : PubMed/NCBI | |
|
Chen J, Liao S, Xiao Z and Pan Q, Wang X, Shen K, Wang S, Yang L, Guo F, Liu HF and Pan Q: The development and improvement of immunodeficient mice and humanized immune system mouse models. Front Immunol. 13:10075792022. View Article : Google Scholar : PubMed/NCBI | |
|
Bonaud A, Lemos JP, Espéli M and Balabanian K: Hematopoietic multipotent progenitors and plasma cells: Neighbors or roommates in the mouse bone marrow ecosystem? Front Immunol. 12:6585352021. View Article : Google Scholar : PubMed/NCBI | |
|
Rumfelt LL, Zhou Y, Rowley BM, Shinton SA and Hardy RR: Lineage specification and plasticity in CD19- early B cell precursors. J Exp Med. 203:675–687. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Luc S, Buza-Vidas N and Jacobsen SE: Biological and molecular evidence for existence of lymphoid-primed multipotent progenitors. Ann N Y Acad Sci. 1106:89–94. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Zandi S, Mansson R, Tsapogas P, Zetterblad J, Bryder D and Sigvardsson M: EBF1 is essential for B-lineage priming and establishment of a transcription factor network in common lymphoid progenitors. J Immunol. 181:3364–3372. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Otero DC and Rickert RC: CD19 function in early and late B cell development. II. CD19 facilitates the pro-B/pre-B transition. J Immunol. 171:5921–5930. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Pieper K, Grimbacher B and Eibel H: B cell biology and development. J Allergy Clin Immunol. 131:959–971. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Jimi E, Phillips RJ, Rincon M, Voll R, Karasuyama H, Flavell R and Ghosh S: Activation of NF-kappaB promotes the transition of large, CD43+ pre-B cells to small, CD43- pre-B cells. Int Immunol. 17:815–825. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Claudio E, Saret S, Wang H and Siebenlist U: Cell-autonomous role for NF-kappa B in immature bone marrow B cells. J Immunol. 182:3406–3413. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Malin S, McManus S, Cobaleda C, Novatchkova M, Delogu A, Bouillet P, Strasser A and Busslinger M: Role of STAT5 in controlling cell survival and immunoglobulin gene recombination during pro-B cell development. Nat Immunol. 11:171–179. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Giltiay NV, Giordano D and Clark EA: The plasticity of newly formed B cells. J Immunol. 203:3095–3104. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Mårtensson IL, Keenan RA and Licence S: The pre-B cell receptor. Curr Opin Immunol. 19:137–142. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Bot A: Immunoglobulin deficient mice generated by gene targeting as models for studying the immune response. Int Rev Immunol. 13:327–340. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Nemazee D: Mechanisms of central tolerance for B cells. Nat Rev Immunol. 17:281–294. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Tsubata T: B cell tolerance and autoimmunity. F1000Res. 6:3912017. View Article : Google Scholar : PubMed/NCBI | |
|
King LB and Monroe JG: Immunobiology of the immature B cell: Plasticity in the B-cell antigen receptor-induced response fine tunes negative selection. Immunol Rev. 176:86–104. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Johnson JL, Scholz JL, Marshak-Rothstein A and Cancro MP: Molecular pattern recognition in peripheral B cell tolerance: lessons from age-associated B cells. Curr Opin Immunol. 61:33–38. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou Y, Zhang Y, Han J, Yang M, Zhu J and Jin T: Transitional B cells involved in autoimmunity and their impact on neuroimmunological diseases. J Transl Med. 18:1312020. View Article : Google Scholar : PubMed/NCBI | |
|
Benitez A, Weldon AJ, Tatosyan L, Velkuru V, Lee S, Milford TA, Francis OL, Hsu S, Nazeri K, Casiano CM, et al: Differences in mouse and human nonmemory B cell pools. J Immunol. 192:4610–4619. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Yeramilli VA and Knight KL: Somatically diversified and proliferating transitional B cells: Implications for peripheral B cell homeostasis. J Immunol. 186:6437–6444. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Dieudonné Y, Gies V, Guffroy A, Keime C, Bird AK, Liesveld J, Barnas JL, Poindron V, Douiri N, Soulas-Sprauel P, et al: Transitional B cells in quiescent SLE: An early checkpoint imprinted by IFN. J Autoimmun. 102:150–158. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Lechner M, Engleitner T, Babushku T, Schmidt-Supprian M, Rad R, Strobl LJ and Zimber-Strobl U: Notch2-mediated plasticity between marginal zone and follicular B cells. Nat Commun. 12:11112021. View Article : Google Scholar : PubMed/NCBI | |
|
Smulski CR and Eibel H: BAFF and BAFF-receptor in B cell selection and survival. Front Immunol. 9:22852018. View Article : Google Scholar : PubMed/NCBI | |
|
Gorelik L, Gilbride K, Dobles M, Kalled SL, Zandman D and Scott ML: Normal B cell homeostasis requires B cell activation factor production by radiation-resistant cells. J Exp Med. 198:937–945. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Song H and Cerny J: Functional heterogeneity of marginal zone B cells revealed by their ability to generate both early antibody-forming cells and germinal centers with hypermutation and memory in response to a T-dependent antigen. J Exp Med. 198:1923–1935. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Tay C, Liu YH, Kanellakis P, Kallies A, Li Y, Cao A, Hosseini H, Tipping P, Toh BH, Bobik A and Kyaw T: Follicular B cells promote atherosclerosis via T cell-mediated differentiation into plasma cells and secreting pathogenic immunoglobulin G. Arterioscler Thromb Vasc Biol. 38:e71–e84. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Young C and Brink R: The unique biology of germinal center B cells. Immunity. 54:1652–1664. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Lebecque S, de Bouteiller O, Arpin C, Banchereau J and Liu YJ: Germinal center founder cells display propensity for apoptosis before onset of somatic mutation. J Exp Med. 185:563–571. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Cook MC: B cell biology, apoptosis, and autoantibodies to phospholipids. Thromb Res. 114:307–319. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Eeva J and Pelkonen J: Mechanisms of B cell receptor induced apoptosis. Apoptosis. 9:525–531. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Thoreau B, Chaigne B and Mouthon L: Role of B cell in the pathogenesis of systemic sclerosis. Front Immunol. 13:9334682022. View Article : Google Scholar : PubMed/NCBI | |
|
Inoue T, Moran I, Shinnakasu R, Phan TG and Kurosaki T: Generation of memory B cells and their reactivation. Immunol Rev. 283:138–149. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Inoue T, Shinnakasu R and Kurosaki T: Generation of high quality memory B cells. Front Immunol. 12:8258132022. View Article : Google Scholar : PubMed/NCBI | |
|
Tanaka S and Baba Y: B cell receptor signaling. Adv Exp Med Biol. 1254:23–36. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Hardy RR and Hayakawa K: B cell development pathways. Annu Rev Immunol. 19:595–621. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Yoshimoto M: The ontogeny of murine B-1a cells. Int J Hematol. 111:622–627. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Hayakawa K and Hardy RR: Development and function of B-1 cells. Curr Opin Immunol. 12:346–353. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Li YS, Hayakawa K and Hardy RR: The regulated expression of B lineage associated genes during B cell differentiation in bone marrow and fetal liver. J Exp Med. 178:951–960. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Holodick NE, Vizconde T and Rothstein TL: B-1a cell diversity: Nontemplated addition in B-1a cell Ig is determined by progenitor population and developmental location. J Immunol. 192:2432–2441. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Juszczyński P, Nowak J and Warzocha K: Host immune response in B cell lymphomas: friend or foe? Arch Immunol Ther Exp (Warsz). 56:245–255. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Dong Z, Liu Z, Dai H, Liu W, Feng Z, Zhao Q, Gao Y, Liu F, Zhang N, Dong X, et al: The potential role of regulatory B cells in idiopathic membranous nephropathy. J Immunol Res. 2020:76383652020. View Article : Google Scholar : PubMed/NCBI | |
|
Piatelli M, Tanguay D, Rothstein T and Chiles T: Cell cycle control mechanisms in B-1 and B-2 lymphoid subsets. Immunol Res. 27:31–52. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Hardy RR: B-1 B cell development. J Immunol. 177:2749–2754. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Novaes E, Brito RR, Dos Santos Toledo M, Labussiere GM, Dupin TV, de Campos Reis NF, Perez EC and Xander P: B-1 cell response in immunity against parasites. Parasitol Res. 118:1343–1352. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Tung JW and Herzenberg LA: Unraveling B-1 progenitors. Curr Opin Immunol. 19:150–155. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Slack E, Balmer ML and Macpherson AJ: B cells as a critical node in the microbiota-host immune system network. Immunol Rev. 260:50–66. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Osugui L, de Roo JJ, de Oliveira VC, Sodré ACP, Staal FJT and Popi AF: B-1 cells and B-1 cell precursors prompt different responses to Wnt signaling. PLoS One. 13:e01993322018. View Article : Google Scholar : PubMed/NCBI | |
|
Rosser EC and Mauri C: Regulatory B cells: Origin, phenotype, and function. Immunity. 42:607–612. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Alhakeem SS, Sindhava VJ, McKenna MK, Gachuki BW, Byrd JC, Muthusamy N and Bondada S: Role of B cell receptor signaling in IL-10 production by normal and malignant B-1 cells. Ann N Y Acad Sci. 1362:239–249. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Zhu G, Xiao H, Liu X, Han G, Chen G, Hou C, Shen B, Li Y, Ma N and Wang R: CD19 regulates ADAM28-mediated Notch2 cleavage to control the differentiation of marginal zone precursors to MZ B cells. J Cell Mol Med. 21:3658–3669. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Barátki BL, Huber K, Sármay G, Matkó J and Kövesdi D: Inflammatory signal induced IL-10 production of marginal zone B-cells depends on CREB. Immunol Lett. 212:14–21. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Liu D, Yin X, Olyha SJ, Nascimento MSL, Chen P, White T, Gowthaman U, Zhang T, Gertie JA, Zhang B, et al: IL-10-dependent crosstalk between murine marginal zone B cells, macrophages, and CD8α+ dendritic cells promotes listeria monocytogenes infection. Immunity. 51:64–76.e7. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Bommer I, Muzzio DO, Zygmunt M and Jensen F: Progesterone and estradiol exert an inhibitory effect on the production of anti-inflammatory cytokine IL-10 by activated MZ B cells. J Reprod Immunol. 116:113–116. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Matsumoto M, Baba A, Yokota T, Nishikawa H, Ohkawa Y, Kayama H, Kallies A, Nutt SL, Sakaguchi S, Takeda K, et al: Interleukin-10-producing plasmablasts exert regulatory function in autoimmune inflammation. Immunity. 41:1040–1051. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
van de Veen W, Stanic B, Wirz OF, Jansen K, Globinska A and Akdis M: Role of regulatory B cells in immune tolerance to allergens and beyond. J Allergy Clin Immunol. 138:654–665. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Jansen K, Cevhertas L, Ma S, Satitsuksanoa P, Akdis M and van de Veen W: Regulatory B cells, A to Z. Allergy. 76:2699–2715. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Catalán D, Mansilla MA, Ferrier A, Soto L, Oleinika K, Aguillón JC and Aravena O: Immunosuppressive mechanisms of regulatory B cells. Front Immunol. 12:6117952021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang RX, Yu CR, Dambuza IM, Mahdi RM, Dolinska MB, Sergeev YV, Wingfield PT, Kim SH and Egwuagu CE: Interleukin-35 induces regulatory B cells that suppress autoimmune disease. Nat Med. 20:633–641. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Romero-Ramírez S, Navarro-Hernandez IC, Cervantes-Díaz R, Sosa-Hernández VA, Acevedo-Ochoa E, Kleinberg-Bild A, Valle-Rios R, Meza-Sánchez DE, Hernández-Hernández JM and Maravillas-Montero JL: Innate-like B cell subsets during immune responses: Beyond antibody production. J Leukoc Biol. 105:843–856. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Palm AE and Kleinau S: Marginal zone B cells: From housekeeping function to autoimmunity? J Autoimmun. 119:1026272021. View Article : Google Scholar : PubMed/NCBI | |
|
Dubreil L, Ledevin M, Hervet C, Menard D, Philippe C, Michel FJ, Larcher T, Meurens F and Bertho N: The internal conduit system of the swine inverted lymph node. Front Immunol. 13:8693842022. View Article : Google Scholar : PubMed/NCBI | |
|
Phan TG, Green JA, Gray EE, Xu Y and Cyster JG: Immune complex relay by subcapsular sinus macrophages and noncognate B cells drives antibody affinity maturation. Nat Immunol. 10:786–793. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Moran I, Grootveld AK, Nguyen A and Phan TG: Subcapsular sinus macrophages: The seat of innate and adaptive memory in murine lymph nodes. Trends Immunol. 40:35–48. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Tay C, Kanellakis P, Hosseini H, Cao A, Toh BH, Bobik A and Kyaw T: B cell and CD4 T cell interactions promote development of atherosclerosis. Front Immunol. 10:30462020. View Article : Google Scholar : PubMed/NCBI | |
|
Maddur MS, Sharma M, Hegde P, Stephen-Victor E, Pulendran B, Kaveri SV and Bayry J: Human B cells induce dendritic cell maturation and favour Th2 polarization by inducing OX-40 ligand. Nat Commun. 5:40922014. View Article : Google Scholar : PubMed/NCBI | |
|
Ise W and Kurosaki T: Regulation of plasma cell differentiation. Adv Exp Med Biol. 1254:63–74. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Shinnakasu R and Kurosaki T: Regulation of memory B and plasma cell differentiation. Curr Opin Immunol. 45:126–131. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Horns F, Vollmers C, Croote D, Mackey SF, Swan GE, Dekker CL, Davis MM and Quake SR: Lineage tracing of human B cells reveals the in vivo landscape of human antibody class switching. Elife. 5:e165782016. View Article : Google Scholar : PubMed/NCBI | |
|
Chi X, Li Y and Qiu X: V(D)J recombination, somatic hypermutation and class switch recombination of immunoglobulins: mechanism and regulation. Immunology. 160:233–247. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Li G, Zan H, Xu Z and Casali P: Epigenetics of the antibody response. Trends Immunol. 34:460–470. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Durham SR and Penagos M: Sublingual or subcutaneous immunotherapy for allergic rhinitis? J Allergy Clin Immunol. 137:339–349.e10. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Kim EH, Yang L, Ye P, Guo R, Li Q, Kulis MD and Burks AW: Long-term sublingual immunotherapy for peanut allergy in children: Clinical and immunologic evidence of desensitization. J Allergy Clin Immunol. 144:1320–1326.e1. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Figo DD, Cordeiro Macedo PR, Gadermaier G, Remuzgo C, Castro FFM, Kalil J, Galvão CES and Santos KS: IgE and IgG4 epitopes of dermatophagoides and blomia allergens before and after sublingual immunotherapy. Int J Mol Sci. 24:41732023. View Article : Google Scholar : PubMed/NCBI | |
|
Heeringa JJ, McKenzie CI, Varese N, Hew M, Bakx ATCM, Aui PM, Rolland JM, O'Hehir RE and van Zelm MC: Induction of IgG2 and IgG4 B-cell memory following sublingual immunotherapy for ryegrass pollen allergy. Allergy. 75:1121–1132. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Fujieda S, Lin YQ, Saxon A and Zhang K: Multiple types of chimeric germ-line Ig heavy chain transcripts in human B cells: Evidence for trans-splicing of human Ig RNA. J Immunol. 157:3450–3459. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Abd El-Aleem SA, Saber EA, Aziz NM, El-Sherif H, Abdelraof AM and Djouhri L: Follicular dendritic cells. J Cell Physiol. 237:2019–2033. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Rezk SA, Nathwani BN, Zhao X and Weiss LM: Follicular dendritic cells: Origin, function, and different disease-associated patterns. Hum Pathol. 44:937–950. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Laidlaw BJ and Cyster JG: Transcriptional regulation of memory B cell differentiation. Nat Rev Immunol. 21:209–220. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Mayer CT, Gazumyan A, Kara EE, Gitlin AD, Golijanin J, Viant C, Pai J, Oliveira TY, Wang Q, Escolano A, et al: The microanatomic segregation of selection by apoptosis in the germinal center. Science. 358:eaao26022017. View Article : Google Scholar : PubMed/NCBI | |
|
Stewart I, Radtke D, Phillips B, McGowan SJ and Bannard O: Germinal center B cells replace their antigen receptors in dark zones and fail light zone entry when immunoglobulin gene mutations are damaging. Immunity. 49:477–489.e7. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Kuo TC, Shaffer AL, Haddad J Jr, Choi YS, Staudt LM and Calame K: Repression of BCL-6 is required for the formation of human memory B cells in vitro. J Exp Med. 204:819–830. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Suan D, Kräutler NJ, Maag JLV, Butt D, Bourne K, Hermes JR, Avery DT, Young C, Statham A, Elliott M, et al: CCR6 defines memory B cell precursors in mouse and human germinal centers, revealing light-zone location and predominant low antigen affinity. Immunity. 47:1142–1153.e4. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Laidlaw BJ, Schmidt TH, Green JA, Allen CD, Okada T and Cyster JG: The Eph-related tyrosine kinase ligand Ephrin-B1 marks germinal center and memory precursor B cells. J Exp Med. 214:639–649. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Ise W, Fujii K, Shiroguchi K, Ito A, Kometani K, Takeda K, Kawakami E, Yamashita K, Suzuki K, Okada T and Kurosaki T: T follicular helper cell-germinal center B cell interaction strength regulates entry into plasma cell or recycling germinal center cell fate. Immunity. 48:702–715.e4. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Radtke D and Bannard O: Expression of the plasma cell transcriptional regulator blimp-1 by dark zone germinal center B cells during periods of proliferation. Front Immunol. 9:31062019. View Article : Google Scholar : PubMed/NCBI | |
|
Nakagawa R, Toboso-Navasa A, Schips M, Young G, Bhaw-Rosun L, Llorian-Sopena M, Chakravarty P, Sesay AK, Kassiotis G, Meyer-Hermann M and Calado DP: Permissive selection followed by affinity-based proliferation of GC light zone B cells dictates cell fate and ensures clonal breadth. Proc Natl Acad Sci USA. 118:e20164251182021. View Article : Google Scholar : PubMed/NCBI | |
|
Huang C: Germinal center reaction. Adv Exp Med Biol. 1254:47–53. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Kumar A, Priya A, Ahmed T, Grundström C, Negi N and Grundström T: Regulation of the DNA repair complex during somatic hypermutation and class-switch recombination. J Immunol. 200:4146–4156. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Silver J, Zuo T, Chaudhary N, Kumari R, Tong P, Giguere S, Granato A, Donthula R, Devereaux C and Wesemann DR: Stochasticity enables BCR-independent germinal center initiation and antibody affinity maturation. J Exp Med. 215:77–90. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Yeap LS and Meng FL: Cis- and trans-factors affecting AID targeting and mutagenic outcomes in antibody diversification. Adv Immunol. 141:51–103. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Inoue T and Kurosaki T: Memory B cells. Nat Rev Immunol. 24:5–17. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Cancro MP and Tomayko MM: Memory B cells and plasma cells: The differentiative continuum of humoral immunity. Immunol Rev. 303:72–82. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Elsner RA and Shlomchik MJ: Germinal center and extrafollicular B cell responses in vaccination, immunity, and autoimmunity. Immunity. 53:1136–1150. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Ise W and Kurosaki T: Plasma cell differentiation during the germinal center reaction. Immunol Rev. 288:64–74. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wu H, Deng Y, Feng Y, Long D, Ma K, Wang X, Zhao M, Lu L and Lu Q: Epigenetic regulation in B cell maturation and its dysregulation in autoimmunity. Cell Mol Immunol. 15:676–684. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Yu K: AID function in somatic hypermutation and class switch recombination. Acta Biochim Biophys Sin (Shanghai). 54:759–766. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Elias C, Chen C and Cherukuri A: Regulatory B cells in solid organ transplantation: From immune monitoring to immunotherapy. Transplantation. 108:1080–1089. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Cherukuri A and Rothstein DM: Regulatory and transitional B cells: Potential biomarkers and therapeutic targets in organ transplantation. Curr Opin Organ Transplant. 27:385–391. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Wang W, Liu Q, Jiang J, Zhao P, Huang C, Li Y and Fu Y: CD19+CD73+ B cells infiltration indicates poor prognosis and unfavorable responses to immunotherapy in gastric cancer. Int Immunopharmacol. 141:1130022024. View Article : Google Scholar : PubMed/NCBI | |
|
Veh J, Ludwig C, Schrezenmeier H and Jahrsdörfer B: Regulatory B cells-immunopathological and prognostic potential in humans. Cells. 13:3572024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou CJ, Xie BL, Han HY, Wang Y, Wang YH, Hong JY, Wei YX, Liu ZG, Feng Y, Yang G and Yang PC: Short-chain fatty acids promote immunotherapy by modulating immune regulatory property in B cells. J Immunol Res. 2021:26843612021. View Article : Google Scholar : PubMed/NCBI | |
|
Caielli S, Wan Z and Pascual V: Systemic lupus erythematosus pathogenesis: Interferon and beyond. Annu Rev Immunol. 41:533–560. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Anders HJ, Saxena R, Zhao MH, Parodis I, Salmon JE and Mohan C: Lupus nephritis. Nat Rev Dis Primers. 6:72020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Tian J, Xiao F, Zheng L, Zhu X, Wu L, Zhao C, Wang S, Rui K, Zou H and Lu L: B cell-activating factor and its targeted therapy in autoimmune diseases. Cytokine Growth Factor Rev. 64:57–70. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Arbitman L, Furie R and Vashistha H: B cell-targeted therapies in systemic lupus erythematosus. J Autoimmun. 132:1028732022. View Article : Google Scholar : PubMed/NCBI | |
|
Chang A, Clark MR and Ko K: Cellular aspects of the pathogenesis of lupus nephritis. Curr Opin Rheumatol. 33:197–204. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang N, Jin S, Yu C, Zhao J, Wang Q, Tian X, Li M and Zeng X: Efficacy and safety of immunosuppressive agents for adults with lupus nephritis: a systematic review and network meta-analysis. Front Immunol. 14:12322442023. View Article : Google Scholar : PubMed/NCBI | |
|
Palmer SC, Tunnicliffe DJ, Singh-Grewal D, Mavridis D, Tonelli M, Johnson DW, Craig JC, Tong A and Strippoli GFM: Induction and maintenance immunosuppression treatment of proliferative lupus nephritis: A network meta-analysis of randomized trials. Am J Kidney Dis. 70:324–336. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Duxbury B, Combescure C and Chizzolini C: Rituximab in systemic lupus erythematosus: An updated systematic review and meta-analysis. Lupus. 22:1489–1503. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Dooley MA, Houssiau F, Aranow C, D'Cruz DP, Askanase A, Roth DA, Zhong ZJ, Cooper S, Freimuth WW and Ginzler EM; BLISS-52-76 Study Groups, : Effect of belimumab treatment on renal outcomes: results from the phase 3 belimumab clinical trials in patients with SLE. Lupus. 22:63–72. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Yap DYH and Chan TM: B cell abnormalities in systemic lupus erythematosus and lupus nephritis-role in pathogenesis and effect of immunosuppressive treatments. Int J Mol Sci. 20:62312019. View Article : Google Scholar : PubMed/NCBI | |
|
Almaani S and Rovin BH: B cell therapy in lupus nephritis: An overview. Nephrol Dial Transplant. 34:22–29. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Cassia M, Alberici F, Gallieni M and Jayne D: Lupus nephritis and B cell targeting therapy. Expert Rev Clin Immunol. 13:951–962. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Sekine H, Watanabe H and Gilkeson GS: Enrichment of anti-glomerular antigen antibody-producing cells in the kidneys of MRL/MpJ-Fas(lpr) mice. J Immunol. 172:3913–3921. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Espeli M, Bökers S, Giannico G, Dickinson HA, Bardsley V, Fogo AB and Smith KG: Local renal autoantibody production in lupus nephritis. J Am Soc Nephrol. 22:296–305. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Marinov AD, Wang H, Bastacky SI, van Puijenbroek E, Schindler T, Speziale D, Perro M, Klein C, Nickerson KM and Shlomchik MJ: The type II anti-CD20 antibody obinutuzumab (GA101) is more effective than rituximab at depleting B cells and treating disease in a murine lupus model. Arthritis Rheumatol. 73:826–836. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Neubert K, Meister S, Moser K, Weisel F, Maseda D, Amann K, Wiethe C, Winkler TH, Kalden JR, Manz RA and Voll RE: The proteasome inhibitor bortezomib depletes plasma cells and protects mice with lupus-like disease from nephritis. Nat Med. 14:748–755. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Ichikawa HT, Conley T, Muchamuel T, Jiang J, Lee S, Owen T, Barnard J, Nevarez S, Goldman BI, Kirk CJ, et al: Beneficial effect of novel proteasome inhibitors in murine lupus via dual inhibition of type I interferon and autoantibody-secreting cells. Arthritis Rheum. 64:493–503. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Seavey MM, Lu LD, Stump KL, Wallace NH and Ruggeri BA: Novel, orally active, proteasome inhibitor, delanzomib (CEP-18770), ameliorates disease symptoms and glomerulonephritis in two preclinical mouse models of SLE. Int Immunopharmacol. 12:257–270. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Shlomchik MJ, Madaio MP, Ni D, Trounstein M and Huszar D: The role of B cells in lpr/lpr-induced autoimmunity. J Exp Med. 180:1295–1306. 1994. View Article : Google Scholar : PubMed/NCBI | |
|
Chan OT, Hannum LG, Haberman AM, Madaio MP and Shlomchik MJ: A novel mouse with B cells but lacking serum antibody reveals an antibody-independent role for B cells in murine lupus. J Exp Med. 189:1639–1648. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Yu C, Chen S, Zhou B, Zhang H, Su X, Luo Y and Yang L: A novel BAFF antagonist, BAFF-Trap, effectively alleviates the disease progression of systemic lupus erythematosus in MRL/lpr mice. Mol Immunol. 129:1–11. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Kayagaki N, Yan M, Seshasayee D, Wang H, Lee W, French DM, Grewal IS, Cochran AG, Gordon NC, Yin J, et al: BAFF/BLyS receptor 3 binds the B cell survival factor BAFF ligand through a discrete surface loop and promotes processing of NF-kappaB2. Immunity. 17:515–524. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Ma K, Du W, Wang X, Yuan S, Cai X, Liu D, Li J and Lu L: Multiple functions of B cells in the pathogenesis of systemic lupus erythematosus. Int J Mol Sci. 20:60212019. View Article : Google Scholar : PubMed/NCBI | |
|
Bruhns P and Jönsson F: Mouse and human FcR effector functions. Immunol Rev. 268:25–51. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Dekkers G, Bentlage AEH, Stegmann TC, Howie HL, Lissenberg-Thunnissen S, Zimring J, Rispens T and Vidarsson G: Affinity of human IgG subclasses to mouse Fc gamma receptors. MAbs. 9:767–773. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Meffre E and O'Connor KC: Impaired B-cell tolerance checkpoints promote the development of autoimmune diseases and pathogenic autoantibodies. Immunol Rev. 292:90–101. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Talaat RM, Mohamed SF, Bassyouni IH and Raouf AA: Th1/Th2/Th17/Treg cytokine imbalance in systemic lupus erythematosus (SLE) patients: Correlation with disease activity. Cytokine. 72:146–153. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT and Sahebkar A: Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 233:6425–6440. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao Q, Dai H, Liu X, Jiang H, Liu W, Feng Z, Zhang N, Gao Y, Dong Z, Zhou X, et al: Helper T cells in idiopathic membranous nephropathy. Front Immunol. 12:6656292021. View Article : Google Scholar : PubMed/NCBI | |
|
Deng B, Deng L, Liu M, Zhao Z, Huang H, Tu X, Liang E, Tian R, Wang X, Wang R, et al: Elevated circulating CD19+CD24hiCD38hi B cells display pro-inflammatory phenotype in idiopathic membranous nephropathy. Immunol Lett. 261:58–65. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Ramachandran R, Kaundal U, Girimaji N, Rakha A, Rathi M, Gupta KL, Kohli HS and Jha V: Regulatory B cells are reduced and correlate with disease activity in primary membranous nephropathy. Kidney Int Rep. 5:872–878. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Ginzler EM, Wax S, Rajeswaran A, Copt S, Hillson J, Ramos E and Singer NG: Atacicept in combination with MMF and corticosteroids in lupus nephritis: Results of a prematurely terminated trial. Arthritis Res Ther. 14:R332012. View Article : Google Scholar : PubMed/NCBI | |
|
Gauckler P, Shin JI, Alberici F, Audard V, Bruchfeld A, Busch M, Cheung CK, Crnogorac M, Delbarba E, Eller K, et al: Rituximab in membranous nephropathy. Kidney Int Rep. 6:881–893. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Maritati F, Peyronel F and Vaglio A: IgG4-related disease: A clinical perspective. Rheumatology (Oxford). 59 (Suppl 3):iii123–iii131. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Barrett C, Willcocks LC, Jones RB, Tarzi RM, Henderson RB, Cai G, Gisbert SI, Belson AS and Savage CO: Effect of belimumab on proteinuria and anti-phospholipase A2 receptor autoantibody in primary membranous nephropathy. Nephrol Dial Transplant. 35:599–606. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Heesters BA, van der Poel CE, Das A and Carroll MC: Antigen presentation to B cells. Trends Immunol. 37:844–854. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Costa BA, Ortiz RJ, Lesokhin AM and Richter J: Soluble B cell maturation antigen in multiple myeloma. Am J Hematol. 99:727–738. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Tomas NM, Schnarre A, Dehde S, Lucas R, Hermans-Borgmeyer I, Kretz O, Koellner SMS, Wiech T, Koch-Nolte F, Seifert L, et al: Introduction of a novel chimeric active immunization mouse model of PLA2R1-associated membranous nephropathy. Kidney Int. 104:916–928. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Bonilla FA and Oettgen HC: Adaptive immunity. J Allergy Clin Immunol. 125 (2 Suppl 2):S33–S40. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Ewanchuk BW and Yates RM: The phagosome and redox control of antigen processing. Free Radic Biol Med. 125:53–61. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Perrin P, Jongsma ML, Neefjes J and Berlin I: The labyrinth unfolds: Architectural rearrangements of the endolysosomal system in antigen-presenting cells. Curr Opin Immunol. 58:1–8. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Rawlings DJ, Metzler G, Wray-Dutra M and Jackson SW: Altered B cell signalling in autoimmunity. Nat Rev Immunol. 17:421–436. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Khan U and Ghazanfar H: T lymphocytes and autoimmunity. Int Rev Cell Mol Biol. 341:125–168. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Mintz MA and Cyster JG: T follicular helper cells in germinal center B cell selection and lymphomagenesis. Immunol Rev. 296:48–61. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Aloui C, Prigent A, Sut C, Tariket S, Hamzeh-Cognasse H, Pozzetto B, Richard Y, Cognasse F, Laradi S and Garraud O: The signaling role of CD40 ligand in platelet biology and in platelet component transfusion. Int J Mol Sci. 15:22342–22364. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Karnell JL, Rieder SA, Ettinger R and Kolbeck R: Targeting the CD40-CD40L pathway in autoimmune diseases: Humoral immunity and beyond. Adv Drug Deliv Rev. 141:92–103. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Toubi E and Shoenfeld Y: The role of CD40-CD154 interactions in autoimmunity and the benefit of disrupting this pathway. Autoimmunity. 37:457–464. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Komura K, Fujimoto M, Yanaba K, Matsushita T, Matsushita Y, Horikawa M, Ogawa F, Shimizu K, Hasegawa M, Takehara K and Sato S: Blockade of CD40/CD40 ligand interactions attenuates skin fibrosis and autoimmunity in the tight-skin mouse. Ann Rheum Dis. 67:867–872. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Touma Z, Urowitz MB and Gladman DD: Systemic lupus erythematosus: An update on current pharmacotherapy and future directions. Expert Opin Biol Ther. 13:723–732. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Narain S and Furie R: Update on clinical trials in systemic lupus erythematosus. Curr Opin Rheumatol. 28:477–487. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Robles-Carrillo L, Meyer T, Hatfield M, Desai H, Dávila M, Langer F, Amaya M, Garber E, Francis JL, Hsu YM and Amirkhosravi A: Anti-CD40L immune complexes potently activate platelets in vitro and cause thrombosis in FCGR2A transgenic mice. J Immunol. 185:1577–1583. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Visvanathan S, Daniluk S, Ptaszyński R, Müller-Ladner U, Ramanujam M, Rosenstock B, Eleftheraki AG, Vinisko R, Petříková A, Kellner H, et al: Effects of BI 655064, an antagonistic anti-CD40 antibody, on clinical and biomarker variables in patients with active rheumatoid arthritis: A randomised, double-blind, placebo-controlled, phase IIa study. Ann Rheum Dis. 78:754–760. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Jayne DR, Steffgen J, Romero-Diaz J, Bajema I, Boumpas DT, Noppakun K, Amano H, Gomez HM, Satirapoj B, Avihingsanon Y, et al: Clinical and biomarker responses to BI 655064, an antagonistic anti-CD40 antibody, in patients with active lupus nephritis: A randomized, double-blind, placebo-controlled, phase II trial. Arthritis Rheumatol. 75:1983–1993. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Sakamoto E, Katahira Y, Mizoguchi I, Watanabe A, Furusaka Y, Sekine A, Yamagishi M, Sonoda J, Miyakawa S, Inoue S, et al: Chemical- and drug-induced allergic, inflammatory, and autoimmune diseases via haptenation. Biology (Basel). 12:1232023.PubMed/NCBI | |
|
Rana PS, Murphy EV, Kort J and Driscoll JJ: Road testing new CAR design strategies in multiple myeloma. Front Immunol. 13:9571572022. View Article : Google Scholar : PubMed/NCBI | |
|
Hosseini A, Gharibi T, Marofi F, Babaloo Z and Baradaran B: CTLA-4: From mechanism to autoimmune therapy. Int Immunopharmacol. 80:1062212020. View Article : Google Scholar : PubMed/NCBI | |
|
Mikuš M, Goldštajn MŠ, Brlečić I, Dumančić S, Laganà AS, Chiantera V, Vujić G and Ćorić M: CTLA4-linked autoimmunity in the pathogenesis of endometriosis and related infertility: A systematic review. Int J Mol Sci. 23:109022022. View Article : Google Scholar : PubMed/NCBI | |
|
Edner NM, Carlesso G, Rush JS and Walker LSK: Targeting co-stimulatory molecules in autoimmune disease. Nat Rev Drug Discov. 19:860–883. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Van Coillie S, Wiernicki B and Xu J: Molecular and cellular functions of CTLA-4. Adv Exp Med Biol. 1248:7–32. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Hervey PS and Keam SJ: Abatacept. BioDrugs. 20:53–62. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Esensten JH, Helou YA, Chopra G, Weiss A and Bluestone JA: CD28 costimulation: From mechanism to therapy. Immunity. 44:973–988. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Blair HA and Deeks ED: Abatacept: A review in rheumatoid arthritis. Drugs. 77:1221–1233. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Brunner HI, Wong R, Nys M, Kou TD, Dominique A, Martini A, Lovell DJ and Ruperto N; Paediatric Rheumatology International Trials Organisation (PRINTO) the Pediatric Rheumatology Collaborative Study Group (PRCSG), : Abatacept: A review of the treatment of polyarticular-course juvenile idiopathic arthritis. Paediatr Drugs. 22:653–672. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Vicente-Rabaneda EF, Atienza-Mateo B, Blanco R, Cavagna L, Ancochea J, Castañeda S and González-Gay MÁ: Efficacy and safety of abatacept in interstitial lung disease of rheumatoid arthritis: A systematic literature review. Autoimmun Rev. 20:1028302021. View Article : Google Scholar : PubMed/NCBI | |
|
Lorenzetti R, Janowska I, Smulski CR, Frede N, Henneberger N, Walter L, Schleyer MT, Hüppe JM, Staniek J, Salzer U, et al: Abatacept modulates CD80 and CD86 expression and memory formation in human B-cells. J Autoimmun. 101:145–152. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Gazeau P, Alegria GC, Devauchelle-Pensec V, Jamin C, Lemerle J, Bendaoud B, Brooks WH, Saraux A, Cornec D and Renaudineau Y: Memory B cells and response to abatacept in rheumatoid arthritis. Clin Rev Allergy Immunol. 53:166–176. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Scarsi M, Paolini L, Ricotta D, Pedrini A, Piantoni S, Caimi L, Tincani A and Airò P: Abatacept reduces levels of switched memory B cells, autoantibodies, and immunoglobulins in patients with rheumatoid arthritis. J Rheumatol. 41:666–672. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Furie R, Nicholls K, Cheng TT, Houssiau F, Burgos-Vargas R, Chen SL, Hillson JL, Meadows-Shropshire S, Kinaszczuk M and Merrill JT: Efficacy and safety of abatacept in lupus nephritis: A twelve-month, randomized, double-blind study. Arthritis Rheumatol. 66:379–389. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
ACCESS Trial Group, : Treatment of lupus nephritis with abatacept: The abatacept and cyclophosphamide combination efficacy and safety study. Arthritis Rheumatol. 66:3096–3104. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Bocharnikov AV, Keegan J, Wacleche VS, Cao Y, Fonseka CY, Wang G, Muise ES, Zhang KX, Arazi A, Keras G, et al: PD-1hiCXCR5-T peripheral helper cells promote B cell responses in lupus via MAF and IL-21. JCI Insight. 4:e1300622019. View Article : Google Scholar : PubMed/NCBI | |
|
Szabó K, Jámbor I, Pázmándi K, Nagy N, Papp G and Tarr T: Altered circulating follicular T helper cell subsets and follicular t regulatory cells are indicators of a derailed B cell response in lupus, which could be modified by targeting IL-21R. Int J Mol Sci. 23:122092022. View Article : Google Scholar : PubMed/NCBI | |
|
Giles JR, Kashgarian M, Koni PA and Shlomchik MJ: B cell-specific MHC class II deletion reveals multiple nonredundant roles for B cell antigen presentation in murine lupus. J Immunol. 195:2571–2579. 2015. View Article : Google Scholar : PubMed/NCBI |