Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
January-2026 Volume 57 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2026 Volume 57 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Purchase PDF
Review

Importance of B cells (Review)

  • Authors:
    • Zhiyuan Liu
    • Haoran Dai
    • Xiaoyu Cui
    • Yeping Liu
    • Zhaocheng Dong
  • View Affiliations / Copyright

    Affiliations: Beijing Hospital of Traditional Chinese Medicine, Beijing 100010, P.R. China, Macau University of Science and Technology, Macau SAR 999078, P.R. China, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
  • Article Number: 2
    |
    Published online on: October 22, 2025
       https://doi.org/10.3892/ijmm.2025.5673
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

As a key component of the immune system, B cells primarily mediate humoral immunity via the synthesis and secretion of antibodies. In addition, B cells contribute to immune responses via antigen presentation and cytokine secretion. B cell‑targeted therapy has potential for the treatment of autoimmune diseases. However, current B cell‑targeted therapies have limited efficacy when used as monotherapies in clinical settings. In an aim to provide in‑depth understanding of this limitation, the present review discusses the developmental and differentiation pathways of B cells and the mechanisms by which various B cell subsets participate in immune responses, as well as randomized controlled trials on B cell‑targeted therapies conducted on lupus nephritis, an autoimmune disease with a notable inflammatory response. The clinical benefits of these therapies remain modest. This suggests that while B cells may serve a pathogenic role, existing therapies fail to address the fundamental mechanisms underlying disease progression. Targeting the interactions between B and T cells, particularly by inhibiting B cell‑mediated antigen presentation, may represent a promising novel direction for B cell‑targeted therapy.
View Figures

Figure 1

B cell differentiation and
development. B cells in the fetal stage originate primarily from
the liver and are subsequently produced by the bone marrow. After
pro-B cells and pre-B cells, immature B cells are formed. Immature
B cells of liver origin develop into B-1 cells. Bone marrow-derived
immature B cells develop in the bone marrow or travel to peripheral
lymphoid organs such as the spleen to develop. B cells
differentiate into plasma or memory cells. HSC, hematopoietic stem
cell; CLP, common lymphoid progenitor. Created by BioRender
(license no. PG28LKLBS3).

Figure 2

Germinal center cycle. Contact of B
cells with antigens on fDCS in the light zone of germinal center
stimulates BCR signaling activation. Failure of the BCR to
recognize the antigen leads to apoptosis of the B cells. B cells
activated by BCR signaling present antigens to Tfh cells and
receive a second signal. If the signal is strong, B cells
differentiate directly into plasma cells. If the signal is weak, B
cells differentiated into memory cells. Otherwise, the remaining B
cells return to the dark zone, undergo somatic hypermutation and
antibody class switching. These B cells then come into contact with
antigens on the fDC to stimulate the activation of BCR signaling.
fDC, follicular dendritic cell; Tfh, follicular T helper cell.
Created by BioRender (no. HB28LKLMMQ).

Figure 3

B cell-targeted therapy. B cells have
few unique protein signaling pathways compared with other cells in
the body. Therefore, with the exception of BTK inhibitors that
inhibit BCR signaling, most B cell-targeted therapies target B or
plasma cell marker proteins. The marker proteins of B cells are
primarily CD19 and CD20. The main marker protein of plasma cells is
CD38. In addition, blocking BAFF and APRIL signaling is a
therapeutic option to target B cells. SYK, spleen tyrosine kinase;
BTK, Bruton agammaglobulinemia tyrosine kinase; BAFF-R, B cell
activating factor of the TNF family receptor; APRIL, TNF
superfamily member 13; TACI, transmembrane activator-1 and CMCL
interactor; BCMA, B cell maturation antigen. Created by BioRender
(license no. HQ28LKLWCB).

Figure 4

B cell targeted therapy reshapes
central immune tolerance. Autoimmune B cells present antigens to T
cells and differentiate into plasma cells that secrete
autoantibodies. The number of mature B cells is decreased by
directly eliminating B cells or inhibiting B cell maturation
through B cell-targeted therapy. B cells re-differentiate and
develop, allowing immature B cells to re-contact own antigens at
this stage, reshaping central immune tolerance to treat
antibody-mediated autoimmune disease. Created by BioRender (no.
IK28LKM3VQ).

Figure 5

Future therapies for autoimmune
disease. Targeted elimination of autoimmune B and T cells through
the antigen presentation process more accurately treats autoimmune
diseases and decreases the incidence of adverse events such as
infections and the risk of recurrence. Created by BioRender (no.
BQ28LKMBTY).
View References

1 

Chi H, Pepper M and Thomas PG: Principles and therapeutic applications of adaptive immunity. Cell. 187:2052–2078. 2024. View Article : Google Scholar : PubMed/NCBI

2 

Rastogi I, Jeon D, Moseman JE, Muralidhar A, Potluri HK and McNeel DG: Role of B cells as antigen presenting cells. Front Immunol. 13:9549362022. View Article : Google Scholar : PubMed/NCBI

3 

Mauri C and Bosma A: Immune regulatory function of B cells. Annu Rev Immunol. 30:221–241. 2012. View Article : Google Scholar : PubMed/NCBI

4 

Cyster JG and Allen CDC: B cell responses: cell interaction dynamics and decisions. Cell. 177:524–540. 2019. View Article : Google Scholar : PubMed/NCBI

5 

Barnas JL, Looney RJ and Anolik JH: B cell targeted therapies in autoimmune disease. Curr Opin Immunol. 61:92–99. 2019. View Article : Google Scholar : PubMed/NCBI

6 

Carter LM, Ehrenstein MR and Vital EM: Evolution and trajectory of B-cell targeted therapies in rheumatic diseases. Lancet Rheumatol. 7:e355–e367. 2025. View Article : Google Scholar : PubMed/NCBI

7 

Ronco P, Beck L, Debiec H, Fervenza FC, Hou FF, Jha V, Sethi S, Tong A, Vivarelli M and Wetzels J: Membranous nephropathy. Nat Rev Dis Primers. 7:692021. View Article : Google Scholar : PubMed/NCBI

8 

Wang Y, Liu J, Burrows PD and Wang JY: B cell development and maturation. Adv Exp Med Biol. 1254:1–22. 2020. View Article : Google Scholar : PubMed/NCBI

9 

Ghosn E, Yoshimoto M, Nakauchi H, Weissman IL and Herzenberg LA: Hematopoietic stem cell-independent hematopoiesis and the origins of innate-like B lymphocytes. Development. 146:dev1705712019. View Article : Google Scholar : PubMed/NCBI

10 

Chen J, Liao S, Xiao Z and Pan Q, Wang X, Shen K, Wang S, Yang L, Guo F, Liu HF and Pan Q: The development and improvement of immunodeficient mice and humanized immune system mouse models. Front Immunol. 13:10075792022. View Article : Google Scholar : PubMed/NCBI

11 

Bonaud A, Lemos JP, Espéli M and Balabanian K: Hematopoietic multipotent progenitors and plasma cells: Neighbors or roommates in the mouse bone marrow ecosystem? Front Immunol. 12:6585352021. View Article : Google Scholar : PubMed/NCBI

12 

Rumfelt LL, Zhou Y, Rowley BM, Shinton SA and Hardy RR: Lineage specification and plasticity in CD19- early B cell precursors. J Exp Med. 203:675–687. 2006. View Article : Google Scholar : PubMed/NCBI

13 

Luc S, Buza-Vidas N and Jacobsen SE: Biological and molecular evidence for existence of lymphoid-primed multipotent progenitors. Ann N Y Acad Sci. 1106:89–94. 2007. View Article : Google Scholar : PubMed/NCBI

14 

Zandi S, Mansson R, Tsapogas P, Zetterblad J, Bryder D and Sigvardsson M: EBF1 is essential for B-lineage priming and establishment of a transcription factor network in common lymphoid progenitors. J Immunol. 181:3364–3372. 2008. View Article : Google Scholar : PubMed/NCBI

15 

Otero DC and Rickert RC: CD19 function in early and late B cell development. II. CD19 facilitates the pro-B/pre-B transition. J Immunol. 171:5921–5930. 2003. View Article : Google Scholar : PubMed/NCBI

16 

Pieper K, Grimbacher B and Eibel H: B cell biology and development. J Allergy Clin Immunol. 131:959–971. 2013. View Article : Google Scholar : PubMed/NCBI

17 

Jimi E, Phillips RJ, Rincon M, Voll R, Karasuyama H, Flavell R and Ghosh S: Activation of NF-kappaB promotes the transition of large, CD43+ pre-B cells to small, CD43- pre-B cells. Int Immunol. 17:815–825. 2005. View Article : Google Scholar : PubMed/NCBI

18 

Claudio E, Saret S, Wang H and Siebenlist U: Cell-autonomous role for NF-kappa B in immature bone marrow B cells. J Immunol. 182:3406–3413. 2009. View Article : Google Scholar : PubMed/NCBI

19 

Malin S, McManus S, Cobaleda C, Novatchkova M, Delogu A, Bouillet P, Strasser A and Busslinger M: Role of STAT5 in controlling cell survival and immunoglobulin gene recombination during pro-B cell development. Nat Immunol. 11:171–179. 2010. View Article : Google Scholar : PubMed/NCBI

20 

Giltiay NV, Giordano D and Clark EA: The plasticity of newly formed B cells. J Immunol. 203:3095–3104. 2019. View Article : Google Scholar : PubMed/NCBI

21 

Mårtensson IL, Keenan RA and Licence S: The pre-B cell receptor. Curr Opin Immunol. 19:137–142. 2007. View Article : Google Scholar : PubMed/NCBI

22 

Bot A: Immunoglobulin deficient mice generated by gene targeting as models for studying the immune response. Int Rev Immunol. 13:327–340. 1996. View Article : Google Scholar : PubMed/NCBI

23 

Nemazee D: Mechanisms of central tolerance for B cells. Nat Rev Immunol. 17:281–294. 2017. View Article : Google Scholar : PubMed/NCBI

24 

Tsubata T: B cell tolerance and autoimmunity. F1000Res. 6:3912017. View Article : Google Scholar : PubMed/NCBI

25 

King LB and Monroe JG: Immunobiology of the immature B cell: Plasticity in the B-cell antigen receptor-induced response fine tunes negative selection. Immunol Rev. 176:86–104. 2000. View Article : Google Scholar : PubMed/NCBI

26 

Johnson JL, Scholz JL, Marshak-Rothstein A and Cancro MP: Molecular pattern recognition in peripheral B cell tolerance: lessons from age-associated B cells. Curr Opin Immunol. 61:33–38. 2019. View Article : Google Scholar : PubMed/NCBI

27 

Zhou Y, Zhang Y, Han J, Yang M, Zhu J and Jin T: Transitional B cells involved in autoimmunity and their impact on neuroimmunological diseases. J Transl Med. 18:1312020. View Article : Google Scholar : PubMed/NCBI

28 

Benitez A, Weldon AJ, Tatosyan L, Velkuru V, Lee S, Milford TA, Francis OL, Hsu S, Nazeri K, Casiano CM, et al: Differences in mouse and human nonmemory B cell pools. J Immunol. 192:4610–4619. 2014. View Article : Google Scholar : PubMed/NCBI

29 

Yeramilli VA and Knight KL: Somatically diversified and proliferating transitional B cells: Implications for peripheral B cell homeostasis. J Immunol. 186:6437–6444. 2011. View Article : Google Scholar : PubMed/NCBI

30 

Dieudonné Y, Gies V, Guffroy A, Keime C, Bird AK, Liesveld J, Barnas JL, Poindron V, Douiri N, Soulas-Sprauel P, et al: Transitional B cells in quiescent SLE: An early checkpoint imprinted by IFN. J Autoimmun. 102:150–158. 2019. View Article : Google Scholar : PubMed/NCBI

31 

Lechner M, Engleitner T, Babushku T, Schmidt-Supprian M, Rad R, Strobl LJ and Zimber-Strobl U: Notch2-mediated plasticity between marginal zone and follicular B cells. Nat Commun. 12:11112021. View Article : Google Scholar : PubMed/NCBI

32 

Smulski CR and Eibel H: BAFF and BAFF-receptor in B cell selection and survival. Front Immunol. 9:22852018. View Article : Google Scholar : PubMed/NCBI

33 

Gorelik L, Gilbride K, Dobles M, Kalled SL, Zandman D and Scott ML: Normal B cell homeostasis requires B cell activation factor production by radiation-resistant cells. J Exp Med. 198:937–945. 2003. View Article : Google Scholar : PubMed/NCBI

34 

Song H and Cerny J: Functional heterogeneity of marginal zone B cells revealed by their ability to generate both early antibody-forming cells and germinal centers with hypermutation and memory in response to a T-dependent antigen. J Exp Med. 198:1923–1935. 2003. View Article : Google Scholar : PubMed/NCBI

35 

Tay C, Liu YH, Kanellakis P, Kallies A, Li Y, Cao A, Hosseini H, Tipping P, Toh BH, Bobik A and Kyaw T: Follicular B cells promote atherosclerosis via T cell-mediated differentiation into plasma cells and secreting pathogenic immunoglobulin G. Arterioscler Thromb Vasc Biol. 38:e71–e84. 2018. View Article : Google Scholar : PubMed/NCBI

36 

Young C and Brink R: The unique biology of germinal center B cells. Immunity. 54:1652–1664. 2021. View Article : Google Scholar : PubMed/NCBI

37 

Lebecque S, de Bouteiller O, Arpin C, Banchereau J and Liu YJ: Germinal center founder cells display propensity for apoptosis before onset of somatic mutation. J Exp Med. 185:563–571. 1997. View Article : Google Scholar : PubMed/NCBI

38 

Cook MC: B cell biology, apoptosis, and autoantibodies to phospholipids. Thromb Res. 114:307–319. 2004. View Article : Google Scholar : PubMed/NCBI

39 

Eeva J and Pelkonen J: Mechanisms of B cell receptor induced apoptosis. Apoptosis. 9:525–531. 2004. View Article : Google Scholar : PubMed/NCBI

40 

Thoreau B, Chaigne B and Mouthon L: Role of B cell in the pathogenesis of systemic sclerosis. Front Immunol. 13:9334682022. View Article : Google Scholar : PubMed/NCBI

41 

Inoue T, Moran I, Shinnakasu R, Phan TG and Kurosaki T: Generation of memory B cells and their reactivation. Immunol Rev. 283:138–149. 2018. View Article : Google Scholar : PubMed/NCBI

42 

Inoue T, Shinnakasu R and Kurosaki T: Generation of high quality memory B cells. Front Immunol. 12:8258132022. View Article : Google Scholar : PubMed/NCBI

43 

Tanaka S and Baba Y: B cell receptor signaling. Adv Exp Med Biol. 1254:23–36. 2020. View Article : Google Scholar : PubMed/NCBI

44 

Hardy RR and Hayakawa K: B cell development pathways. Annu Rev Immunol. 19:595–621. 2001. View Article : Google Scholar : PubMed/NCBI

45 

Yoshimoto M: The ontogeny of murine B-1a cells. Int J Hematol. 111:622–627. 2020. View Article : Google Scholar : PubMed/NCBI

46 

Hayakawa K and Hardy RR: Development and function of B-1 cells. Curr Opin Immunol. 12:346–353. 2000. View Article : Google Scholar : PubMed/NCBI

47 

Li YS, Hayakawa K and Hardy RR: The regulated expression of B lineage associated genes during B cell differentiation in bone marrow and fetal liver. J Exp Med. 178:951–960. 1993. View Article : Google Scholar : PubMed/NCBI

48 

Holodick NE, Vizconde T and Rothstein TL: B-1a cell diversity: Nontemplated addition in B-1a cell Ig is determined by progenitor population and developmental location. J Immunol. 192:2432–2441. 2014. View Article : Google Scholar : PubMed/NCBI

49 

Juszczyński P, Nowak J and Warzocha K: Host immune response in B cell lymphomas: friend or foe? Arch Immunol Ther Exp (Warsz). 56:245–255. 2008. View Article : Google Scholar : PubMed/NCBI

50 

Dong Z, Liu Z, Dai H, Liu W, Feng Z, Zhao Q, Gao Y, Liu F, Zhang N, Dong X, et al: The potential role of regulatory B cells in idiopathic membranous nephropathy. J Immunol Res. 2020:76383652020. View Article : Google Scholar : PubMed/NCBI

51 

Piatelli M, Tanguay D, Rothstein T and Chiles T: Cell cycle control mechanisms in B-1 and B-2 lymphoid subsets. Immunol Res. 27:31–52. 2003. View Article : Google Scholar : PubMed/NCBI

52 

Hardy RR: B-1 B cell development. J Immunol. 177:2749–2754. 2006. View Article : Google Scholar : PubMed/NCBI

53 

Novaes E, Brito RR, Dos Santos Toledo M, Labussiere GM, Dupin TV, de Campos Reis NF, Perez EC and Xander P: B-1 cell response in immunity against parasites. Parasitol Res. 118:1343–1352. 2019. View Article : Google Scholar : PubMed/NCBI

54 

Tung JW and Herzenberg LA: Unraveling B-1 progenitors. Curr Opin Immunol. 19:150–155. 2007. View Article : Google Scholar : PubMed/NCBI

55 

Slack E, Balmer ML and Macpherson AJ: B cells as a critical node in the microbiota-host immune system network. Immunol Rev. 260:50–66. 2014. View Article : Google Scholar : PubMed/NCBI

56 

Osugui L, de Roo JJ, de Oliveira VC, Sodré ACP, Staal FJT and Popi AF: B-1 cells and B-1 cell precursors prompt different responses to Wnt signaling. PLoS One. 13:e01993322018. View Article : Google Scholar : PubMed/NCBI

57 

Rosser EC and Mauri C: Regulatory B cells: Origin, phenotype, and function. Immunity. 42:607–612. 2015. View Article : Google Scholar : PubMed/NCBI

58 

Alhakeem SS, Sindhava VJ, McKenna MK, Gachuki BW, Byrd JC, Muthusamy N and Bondada S: Role of B cell receptor signaling in IL-10 production by normal and malignant B-1 cells. Ann N Y Acad Sci. 1362:239–249. 2015. View Article : Google Scholar : PubMed/NCBI

59 

Zhang Y, Zhu G, Xiao H, Liu X, Han G, Chen G, Hou C, Shen B, Li Y, Ma N and Wang R: CD19 regulates ADAM28-mediated Notch2 cleavage to control the differentiation of marginal zone precursors to MZ B cells. J Cell Mol Med. 21:3658–3669. 2017. View Article : Google Scholar : PubMed/NCBI

60 

Barátki BL, Huber K, Sármay G, Matkó J and Kövesdi D: Inflammatory signal induced IL-10 production of marginal zone B-cells depends on CREB. Immunol Lett. 212:14–21. 2019. View Article : Google Scholar : PubMed/NCBI

61 

Liu D, Yin X, Olyha SJ, Nascimento MSL, Chen P, White T, Gowthaman U, Zhang T, Gertie JA, Zhang B, et al: IL-10-dependent crosstalk between murine marginal zone B cells, macrophages, and CD8α+ dendritic cells promotes listeria monocytogenes infection. Immunity. 51:64–76.e7. 2019. View Article : Google Scholar : PubMed/NCBI

62 

Bommer I, Muzzio DO, Zygmunt M and Jensen F: Progesterone and estradiol exert an inhibitory effect on the production of anti-inflammatory cytokine IL-10 by activated MZ B cells. J Reprod Immunol. 116:113–116. 2016. View Article : Google Scholar : PubMed/NCBI

63 

Matsumoto M, Baba A, Yokota T, Nishikawa H, Ohkawa Y, Kayama H, Kallies A, Nutt SL, Sakaguchi S, Takeda K, et al: Interleukin-10-producing plasmablasts exert regulatory function in autoimmune inflammation. Immunity. 41:1040–1051. 2014. View Article : Google Scholar : PubMed/NCBI

64 

van de Veen W, Stanic B, Wirz OF, Jansen K, Globinska A and Akdis M: Role of regulatory B cells in immune tolerance to allergens and beyond. J Allergy Clin Immunol. 138:654–665. 2016. View Article : Google Scholar : PubMed/NCBI

65 

Jansen K, Cevhertas L, Ma S, Satitsuksanoa P, Akdis M and van de Veen W: Regulatory B cells, A to Z. Allergy. 76:2699–2715. 2021. View Article : Google Scholar : PubMed/NCBI

66 

Catalán D, Mansilla MA, Ferrier A, Soto L, Oleinika K, Aguillón JC and Aravena O: Immunosuppressive mechanisms of regulatory B cells. Front Immunol. 12:6117952021. View Article : Google Scholar : PubMed/NCBI

67 

Wang RX, Yu CR, Dambuza IM, Mahdi RM, Dolinska MB, Sergeev YV, Wingfield PT, Kim SH and Egwuagu CE: Interleukin-35 induces regulatory B cells that suppress autoimmune disease. Nat Med. 20:633–641. 2014. View Article : Google Scholar : PubMed/NCBI

68 

Romero-Ramírez S, Navarro-Hernandez IC, Cervantes-Díaz R, Sosa-Hernández VA, Acevedo-Ochoa E, Kleinberg-Bild A, Valle-Rios R, Meza-Sánchez DE, Hernández-Hernández JM and Maravillas-Montero JL: Innate-like B cell subsets during immune responses: Beyond antibody production. J Leukoc Biol. 105:843–856. 2019. View Article : Google Scholar : PubMed/NCBI

69 

Palm AE and Kleinau S: Marginal zone B cells: From housekeeping function to autoimmunity? J Autoimmun. 119:1026272021. View Article : Google Scholar : PubMed/NCBI

70 

Dubreil L, Ledevin M, Hervet C, Menard D, Philippe C, Michel FJ, Larcher T, Meurens F and Bertho N: The internal conduit system of the swine inverted lymph node. Front Immunol. 13:8693842022. View Article : Google Scholar : PubMed/NCBI

71 

Phan TG, Green JA, Gray EE, Xu Y and Cyster JG: Immune complex relay by subcapsular sinus macrophages and noncognate B cells drives antibody affinity maturation. Nat Immunol. 10:786–793. 2009. View Article : Google Scholar : PubMed/NCBI

72 

Moran I, Grootveld AK, Nguyen A and Phan TG: Subcapsular sinus macrophages: The seat of innate and adaptive memory in murine lymph nodes. Trends Immunol. 40:35–48. 2019. View Article : Google Scholar : PubMed/NCBI

73 

Tay C, Kanellakis P, Hosseini H, Cao A, Toh BH, Bobik A and Kyaw T: B cell and CD4 T cell interactions promote development of atherosclerosis. Front Immunol. 10:30462020. View Article : Google Scholar : PubMed/NCBI

74 

Maddur MS, Sharma M, Hegde P, Stephen-Victor E, Pulendran B, Kaveri SV and Bayry J: Human B cells induce dendritic cell maturation and favour Th2 polarization by inducing OX-40 ligand. Nat Commun. 5:40922014. View Article : Google Scholar : PubMed/NCBI

75 

Ise W and Kurosaki T: Regulation of plasma cell differentiation. Adv Exp Med Biol. 1254:63–74. 2020. View Article : Google Scholar : PubMed/NCBI

76 

Shinnakasu R and Kurosaki T: Regulation of memory B and plasma cell differentiation. Curr Opin Immunol. 45:126–131. 2017. View Article : Google Scholar : PubMed/NCBI

77 

Horns F, Vollmers C, Croote D, Mackey SF, Swan GE, Dekker CL, Davis MM and Quake SR: Lineage tracing of human B cells reveals the in vivo landscape of human antibody class switching. Elife. 5:e165782016. View Article : Google Scholar : PubMed/NCBI

78 

Chi X, Li Y and Qiu X: V(D)J recombination, somatic hypermutation and class switch recombination of immunoglobulins: mechanism and regulation. Immunology. 160:233–247. 2020. View Article : Google Scholar : PubMed/NCBI

79 

Li G, Zan H, Xu Z and Casali P: Epigenetics of the antibody response. Trends Immunol. 34:460–470. 2013. View Article : Google Scholar : PubMed/NCBI

80 

Durham SR and Penagos M: Sublingual or subcutaneous immunotherapy for allergic rhinitis? J Allergy Clin Immunol. 137:339–349.e10. 2016. View Article : Google Scholar : PubMed/NCBI

81 

Kim EH, Yang L, Ye P, Guo R, Li Q, Kulis MD and Burks AW: Long-term sublingual immunotherapy for peanut allergy in children: Clinical and immunologic evidence of desensitization. J Allergy Clin Immunol. 144:1320–1326.e1. 2019. View Article : Google Scholar : PubMed/NCBI

82 

Figo DD, Cordeiro Macedo PR, Gadermaier G, Remuzgo C, Castro FFM, Kalil J, Galvão CES and Santos KS: IgE and IgG4 epitopes of dermatophagoides and blomia allergens before and after sublingual immunotherapy. Int J Mol Sci. 24:41732023. View Article : Google Scholar : PubMed/NCBI

83 

Heeringa JJ, McKenzie CI, Varese N, Hew M, Bakx ATCM, Aui PM, Rolland JM, O'Hehir RE and van Zelm MC: Induction of IgG2 and IgG4 B-cell memory following sublingual immunotherapy for ryegrass pollen allergy. Allergy. 75:1121–1132. 2020. View Article : Google Scholar : PubMed/NCBI

84 

Fujieda S, Lin YQ, Saxon A and Zhang K: Multiple types of chimeric germ-line Ig heavy chain transcripts in human B cells: Evidence for trans-splicing of human Ig RNA. J Immunol. 157:3450–3459. 1996. View Article : Google Scholar : PubMed/NCBI

85 

Abd El-Aleem SA, Saber EA, Aziz NM, El-Sherif H, Abdelraof AM and Djouhri L: Follicular dendritic cells. J Cell Physiol. 237:2019–2033. 2022. View Article : Google Scholar : PubMed/NCBI

86 

Rezk SA, Nathwani BN, Zhao X and Weiss LM: Follicular dendritic cells: Origin, function, and different disease-associated patterns. Hum Pathol. 44:937–950. 2013. View Article : Google Scholar : PubMed/NCBI

87 

Laidlaw BJ and Cyster JG: Transcriptional regulation of memory B cell differentiation. Nat Rev Immunol. 21:209–220. 2021. View Article : Google Scholar : PubMed/NCBI

88 

Mayer CT, Gazumyan A, Kara EE, Gitlin AD, Golijanin J, Viant C, Pai J, Oliveira TY, Wang Q, Escolano A, et al: The microanatomic segregation of selection by apoptosis in the germinal center. Science. 358:eaao26022017. View Article : Google Scholar : PubMed/NCBI

89 

Stewart I, Radtke D, Phillips B, McGowan SJ and Bannard O: Germinal center B cells replace their antigen receptors in dark zones and fail light zone entry when immunoglobulin gene mutations are damaging. Immunity. 49:477–489.e7. 2018. View Article : Google Scholar : PubMed/NCBI

90 

Kuo TC, Shaffer AL, Haddad J Jr, Choi YS, Staudt LM and Calame K: Repression of BCL-6 is required for the formation of human memory B cells in vitro. J Exp Med. 204:819–830. 2007. View Article : Google Scholar : PubMed/NCBI

91 

Suan D, Kräutler NJ, Maag JLV, Butt D, Bourne K, Hermes JR, Avery DT, Young C, Statham A, Elliott M, et al: CCR6 defines memory B cell precursors in mouse and human germinal centers, revealing light-zone location and predominant low antigen affinity. Immunity. 47:1142–1153.e4. 2017. View Article : Google Scholar : PubMed/NCBI

92 

Laidlaw BJ, Schmidt TH, Green JA, Allen CD, Okada T and Cyster JG: The Eph-related tyrosine kinase ligand Ephrin-B1 marks germinal center and memory precursor B cells. J Exp Med. 214:639–649. 2017. View Article : Google Scholar : PubMed/NCBI

93 

Ise W, Fujii K, Shiroguchi K, Ito A, Kometani K, Takeda K, Kawakami E, Yamashita K, Suzuki K, Okada T and Kurosaki T: T follicular helper cell-germinal center B cell interaction strength regulates entry into plasma cell or recycling germinal center cell fate. Immunity. 48:702–715.e4. 2018. View Article : Google Scholar : PubMed/NCBI

94 

Radtke D and Bannard O: Expression of the plasma cell transcriptional regulator blimp-1 by dark zone germinal center B cells during periods of proliferation. Front Immunol. 9:31062019. View Article : Google Scholar : PubMed/NCBI

95 

Nakagawa R, Toboso-Navasa A, Schips M, Young G, Bhaw-Rosun L, Llorian-Sopena M, Chakravarty P, Sesay AK, Kassiotis G, Meyer-Hermann M and Calado DP: Permissive selection followed by affinity-based proliferation of GC light zone B cells dictates cell fate and ensures clonal breadth. Proc Natl Acad Sci USA. 118:e20164251182021. View Article : Google Scholar : PubMed/NCBI

96 

Huang C: Germinal center reaction. Adv Exp Med Biol. 1254:47–53. 2020. View Article : Google Scholar : PubMed/NCBI

97 

Kumar A, Priya A, Ahmed T, Grundström C, Negi N and Grundström T: Regulation of the DNA repair complex during somatic hypermutation and class-switch recombination. J Immunol. 200:4146–4156. 2018. View Article : Google Scholar : PubMed/NCBI

98 

Silver J, Zuo T, Chaudhary N, Kumari R, Tong P, Giguere S, Granato A, Donthula R, Devereaux C and Wesemann DR: Stochasticity enables BCR-independent germinal center initiation and antibody affinity maturation. J Exp Med. 215:77–90. 2018. View Article : Google Scholar : PubMed/NCBI

99 

Yeap LS and Meng FL: Cis- and trans-factors affecting AID targeting and mutagenic outcomes in antibody diversification. Adv Immunol. 141:51–103. 2019. View Article : Google Scholar : PubMed/NCBI

100 

Inoue T and Kurosaki T: Memory B cells. Nat Rev Immunol. 24:5–17. 2024. View Article : Google Scholar : PubMed/NCBI

101 

Cancro MP and Tomayko MM: Memory B cells and plasma cells: The differentiative continuum of humoral immunity. Immunol Rev. 303:72–82. 2021. View Article : Google Scholar : PubMed/NCBI

102 

Elsner RA and Shlomchik MJ: Germinal center and extrafollicular B cell responses in vaccination, immunity, and autoimmunity. Immunity. 53:1136–1150. 2020. View Article : Google Scholar : PubMed/NCBI

103 

Ise W and Kurosaki T: Plasma cell differentiation during the germinal center reaction. Immunol Rev. 288:64–74. 2019. View Article : Google Scholar : PubMed/NCBI

104 

Wu H, Deng Y, Feng Y, Long D, Ma K, Wang X, Zhao M, Lu L and Lu Q: Epigenetic regulation in B cell maturation and its dysregulation in autoimmunity. Cell Mol Immunol. 15:676–684. 2018. View Article : Google Scholar : PubMed/NCBI

105 

Yu K: AID function in somatic hypermutation and class switch recombination. Acta Biochim Biophys Sin (Shanghai). 54:759–766. 2022. View Article : Google Scholar : PubMed/NCBI

106 

Elias C, Chen C and Cherukuri A: Regulatory B cells in solid organ transplantation: From immune monitoring to immunotherapy. Transplantation. 108:1080–1089. 2024. View Article : Google Scholar : PubMed/NCBI

107 

Cherukuri A and Rothstein DM: Regulatory and transitional B cells: Potential biomarkers and therapeutic targets in organ transplantation. Curr Opin Organ Transplant. 27:385–391. 2022. View Article : Google Scholar : PubMed/NCBI

108 

Zhang Y, Wang W, Liu Q, Jiang J, Zhao P, Huang C, Li Y and Fu Y: CD19+CD73+ B cells infiltration indicates poor prognosis and unfavorable responses to immunotherapy in gastric cancer. Int Immunopharmacol. 141:1130022024. View Article : Google Scholar : PubMed/NCBI

109 

Veh J, Ludwig C, Schrezenmeier H and Jahrsdörfer B: Regulatory B cells-immunopathological and prognostic potential in humans. Cells. 13:3572024. View Article : Google Scholar : PubMed/NCBI

110 

Zhou CJ, Xie BL, Han HY, Wang Y, Wang YH, Hong JY, Wei YX, Liu ZG, Feng Y, Yang G and Yang PC: Short-chain fatty acids promote immunotherapy by modulating immune regulatory property in B cells. J Immunol Res. 2021:26843612021. View Article : Google Scholar : PubMed/NCBI

111 

Caielli S, Wan Z and Pascual V: Systemic lupus erythematosus pathogenesis: Interferon and beyond. Annu Rev Immunol. 41:533–560. 2023. View Article : Google Scholar : PubMed/NCBI

112 

Anders HJ, Saxena R, Zhao MH, Parodis I, Salmon JE and Mohan C: Lupus nephritis. Nat Rev Dis Primers. 6:72020. View Article : Google Scholar : PubMed/NCBI

113 

Zhang Y, Tian J, Xiao F, Zheng L, Zhu X, Wu L, Zhao C, Wang S, Rui K, Zou H and Lu L: B cell-activating factor and its targeted therapy in autoimmune diseases. Cytokine Growth Factor Rev. 64:57–70. 2022. View Article : Google Scholar : PubMed/NCBI

114 

Arbitman L, Furie R and Vashistha H: B cell-targeted therapies in systemic lupus erythematosus. J Autoimmun. 132:1028732022. View Article : Google Scholar : PubMed/NCBI

115 

Chang A, Clark MR and Ko K: Cellular aspects of the pathogenesis of lupus nephritis. Curr Opin Rheumatol. 33:197–204. 2021. View Article : Google Scholar : PubMed/NCBI

116 

Jiang N, Jin S, Yu C, Zhao J, Wang Q, Tian X, Li M and Zeng X: Efficacy and safety of immunosuppressive agents for adults with lupus nephritis: a systematic review and network meta-analysis. Front Immunol. 14:12322442023. View Article : Google Scholar : PubMed/NCBI

117 

Palmer SC, Tunnicliffe DJ, Singh-Grewal D, Mavridis D, Tonelli M, Johnson DW, Craig JC, Tong A and Strippoli GFM: Induction and maintenance immunosuppression treatment of proliferative lupus nephritis: A network meta-analysis of randomized trials. Am J Kidney Dis. 70:324–336. 2017. View Article : Google Scholar : PubMed/NCBI

118 

Duxbury B, Combescure C and Chizzolini C: Rituximab in systemic lupus erythematosus: An updated systematic review and meta-analysis. Lupus. 22:1489–1503. 2013. View Article : Google Scholar : PubMed/NCBI

119 

Dooley MA, Houssiau F, Aranow C, D'Cruz DP, Askanase A, Roth DA, Zhong ZJ, Cooper S, Freimuth WW and Ginzler EM; BLISS-52-76 Study Groups, : Effect of belimumab treatment on renal outcomes: results from the phase 3 belimumab clinical trials in patients with SLE. Lupus. 22:63–72. 2013. View Article : Google Scholar : PubMed/NCBI

120 

Yap DYH and Chan TM: B cell abnormalities in systemic lupus erythematosus and lupus nephritis-role in pathogenesis and effect of immunosuppressive treatments. Int J Mol Sci. 20:62312019. View Article : Google Scholar : PubMed/NCBI

121 

Almaani S and Rovin BH: B cell therapy in lupus nephritis: An overview. Nephrol Dial Transplant. 34:22–29. 2019. View Article : Google Scholar : PubMed/NCBI

122 

Cassia M, Alberici F, Gallieni M and Jayne D: Lupus nephritis and B cell targeting therapy. Expert Rev Clin Immunol. 13:951–962. 2017. View Article : Google Scholar : PubMed/NCBI

123 

Sekine H, Watanabe H and Gilkeson GS: Enrichment of anti-glomerular antigen antibody-producing cells in the kidneys of MRL/MpJ-Fas(lpr) mice. J Immunol. 172:3913–3921. 2004. View Article : Google Scholar : PubMed/NCBI

124 

Espeli M, Bökers S, Giannico G, Dickinson HA, Bardsley V, Fogo AB and Smith KG: Local renal autoantibody production in lupus nephritis. J Am Soc Nephrol. 22:296–305. 2011. View Article : Google Scholar : PubMed/NCBI

125 

Marinov AD, Wang H, Bastacky SI, van Puijenbroek E, Schindler T, Speziale D, Perro M, Klein C, Nickerson KM and Shlomchik MJ: The type II anti-CD20 antibody obinutuzumab (GA101) is more effective than rituximab at depleting B cells and treating disease in a murine lupus model. Arthritis Rheumatol. 73:826–836. 2021. View Article : Google Scholar : PubMed/NCBI

126 

Neubert K, Meister S, Moser K, Weisel F, Maseda D, Amann K, Wiethe C, Winkler TH, Kalden JR, Manz RA and Voll RE: The proteasome inhibitor bortezomib depletes plasma cells and protects mice with lupus-like disease from nephritis. Nat Med. 14:748–755. 2008. View Article : Google Scholar : PubMed/NCBI

127 

Ichikawa HT, Conley T, Muchamuel T, Jiang J, Lee S, Owen T, Barnard J, Nevarez S, Goldman BI, Kirk CJ, et al: Beneficial effect of novel proteasome inhibitors in murine lupus via dual inhibition of type I interferon and autoantibody-secreting cells. Arthritis Rheum. 64:493–503. 2012. View Article : Google Scholar : PubMed/NCBI

128 

Seavey MM, Lu LD, Stump KL, Wallace NH and Ruggeri BA: Novel, orally active, proteasome inhibitor, delanzomib (CEP-18770), ameliorates disease symptoms and glomerulonephritis in two preclinical mouse models of SLE. Int Immunopharmacol. 12:257–270. 2012. View Article : Google Scholar : PubMed/NCBI

129 

Shlomchik MJ, Madaio MP, Ni D, Trounstein M and Huszar D: The role of B cells in lpr/lpr-induced autoimmunity. J Exp Med. 180:1295–1306. 1994. View Article : Google Scholar : PubMed/NCBI

130 

Chan OT, Hannum LG, Haberman AM, Madaio MP and Shlomchik MJ: A novel mouse with B cells but lacking serum antibody reveals an antibody-independent role for B cells in murine lupus. J Exp Med. 189:1639–1648. 1999. View Article : Google Scholar : PubMed/NCBI

131 

Yu C, Chen S, Zhou B, Zhang H, Su X, Luo Y and Yang L: A novel BAFF antagonist, BAFF-Trap, effectively alleviates the disease progression of systemic lupus erythematosus in MRL/lpr mice. Mol Immunol. 129:1–11. 2021. View Article : Google Scholar : PubMed/NCBI

132 

Kayagaki N, Yan M, Seshasayee D, Wang H, Lee W, French DM, Grewal IS, Cochran AG, Gordon NC, Yin J, et al: BAFF/BLyS receptor 3 binds the B cell survival factor BAFF ligand through a discrete surface loop and promotes processing of NF-kappaB2. Immunity. 17:515–524. 2002. View Article : Google Scholar : PubMed/NCBI

133 

Ma K, Du W, Wang X, Yuan S, Cai X, Liu D, Li J and Lu L: Multiple functions of B cells in the pathogenesis of systemic lupus erythematosus. Int J Mol Sci. 20:60212019. View Article : Google Scholar : PubMed/NCBI

134 

Bruhns P and Jönsson F: Mouse and human FcR effector functions. Immunol Rev. 268:25–51. 2015. View Article : Google Scholar : PubMed/NCBI

135 

Dekkers G, Bentlage AEH, Stegmann TC, Howie HL, Lissenberg-Thunnissen S, Zimring J, Rispens T and Vidarsson G: Affinity of human IgG subclasses to mouse Fc gamma receptors. MAbs. 9:767–773. 2017. View Article : Google Scholar : PubMed/NCBI

136 

Meffre E and O'Connor KC: Impaired B-cell tolerance checkpoints promote the development of autoimmune diseases and pathogenic autoantibodies. Immunol Rev. 292:90–101. 2019. View Article : Google Scholar : PubMed/NCBI

137 

Talaat RM, Mohamed SF, Bassyouni IH and Raouf AA: Th1/Th2/Th17/Treg cytokine imbalance in systemic lupus erythematosus (SLE) patients: Correlation with disease activity. Cytokine. 72:146–153. 2015. View Article : Google Scholar : PubMed/NCBI

138 

Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT and Sahebkar A: Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 233:6425–6440. 2018. View Article : Google Scholar : PubMed/NCBI

139 

Zhao Q, Dai H, Liu X, Jiang H, Liu W, Feng Z, Zhang N, Gao Y, Dong Z, Zhou X, et al: Helper T cells in idiopathic membranous nephropathy. Front Immunol. 12:6656292021. View Article : Google Scholar : PubMed/NCBI

140 

Deng B, Deng L, Liu M, Zhao Z, Huang H, Tu X, Liang E, Tian R, Wang X, Wang R, et al: Elevated circulating CD19+CD24hiCD38hi B cells display pro-inflammatory phenotype in idiopathic membranous nephropathy. Immunol Lett. 261:58–65. 2023. View Article : Google Scholar : PubMed/NCBI

141 

Ramachandran R, Kaundal U, Girimaji N, Rakha A, Rathi M, Gupta KL, Kohli HS and Jha V: Regulatory B cells are reduced and correlate with disease activity in primary membranous nephropathy. Kidney Int Rep. 5:872–878. 2020. View Article : Google Scholar : PubMed/NCBI

142 

Ginzler EM, Wax S, Rajeswaran A, Copt S, Hillson J, Ramos E and Singer NG: Atacicept in combination with MMF and corticosteroids in lupus nephritis: Results of a prematurely terminated trial. Arthritis Res Ther. 14:R332012. View Article : Google Scholar : PubMed/NCBI

143 

Gauckler P, Shin JI, Alberici F, Audard V, Bruchfeld A, Busch M, Cheung CK, Crnogorac M, Delbarba E, Eller K, et al: Rituximab in membranous nephropathy. Kidney Int Rep. 6:881–893. 2021. View Article : Google Scholar : PubMed/NCBI

144 

Maritati F, Peyronel F and Vaglio A: IgG4-related disease: A clinical perspective. Rheumatology (Oxford). 59 (Suppl 3):iii123–iii131. 2020. View Article : Google Scholar : PubMed/NCBI

145 

Barrett C, Willcocks LC, Jones RB, Tarzi RM, Henderson RB, Cai G, Gisbert SI, Belson AS and Savage CO: Effect of belimumab on proteinuria and anti-phospholipase A2 receptor autoantibody in primary membranous nephropathy. Nephrol Dial Transplant. 35:599–606. 2020. View Article : Google Scholar : PubMed/NCBI

146 

Heesters BA, van der Poel CE, Das A and Carroll MC: Antigen presentation to B cells. Trends Immunol. 37:844–854. 2016. View Article : Google Scholar : PubMed/NCBI

147 

Costa BA, Ortiz RJ, Lesokhin AM and Richter J: Soluble B cell maturation antigen in multiple myeloma. Am J Hematol. 99:727–738. 2024. View Article : Google Scholar : PubMed/NCBI

148 

Tomas NM, Schnarre A, Dehde S, Lucas R, Hermans-Borgmeyer I, Kretz O, Koellner SMS, Wiech T, Koch-Nolte F, Seifert L, et al: Introduction of a novel chimeric active immunization mouse model of PLA2R1-associated membranous nephropathy. Kidney Int. 104:916–928. 2023. View Article : Google Scholar : PubMed/NCBI

149 

Bonilla FA and Oettgen HC: Adaptive immunity. J Allergy Clin Immunol. 125 (2 Suppl 2):S33–S40. 2010. View Article : Google Scholar : PubMed/NCBI

150 

Ewanchuk BW and Yates RM: The phagosome and redox control of antigen processing. Free Radic Biol Med. 125:53–61. 2018. View Article : Google Scholar : PubMed/NCBI

151 

Perrin P, Jongsma ML, Neefjes J and Berlin I: The labyrinth unfolds: Architectural rearrangements of the endolysosomal system in antigen-presenting cells. Curr Opin Immunol. 58:1–8. 2019. View Article : Google Scholar : PubMed/NCBI

152 

Rawlings DJ, Metzler G, Wray-Dutra M and Jackson SW: Altered B cell signalling in autoimmunity. Nat Rev Immunol. 17:421–436. 2017. View Article : Google Scholar : PubMed/NCBI

153 

Khan U and Ghazanfar H: T lymphocytes and autoimmunity. Int Rev Cell Mol Biol. 341:125–168. 2018. View Article : Google Scholar : PubMed/NCBI

154 

Mintz MA and Cyster JG: T follicular helper cells in germinal center B cell selection and lymphomagenesis. Immunol Rev. 296:48–61. 2020. View Article : Google Scholar : PubMed/NCBI

155 

Aloui C, Prigent A, Sut C, Tariket S, Hamzeh-Cognasse H, Pozzetto B, Richard Y, Cognasse F, Laradi S and Garraud O: The signaling role of CD40 ligand in platelet biology and in platelet component transfusion. Int J Mol Sci. 15:22342–22364. 2014. View Article : Google Scholar : PubMed/NCBI

156 

Karnell JL, Rieder SA, Ettinger R and Kolbeck R: Targeting the CD40-CD40L pathway in autoimmune diseases: Humoral immunity and beyond. Adv Drug Deliv Rev. 141:92–103. 2019. View Article : Google Scholar : PubMed/NCBI

157 

Toubi E and Shoenfeld Y: The role of CD40-CD154 interactions in autoimmunity and the benefit of disrupting this pathway. Autoimmunity. 37:457–464. 2004. View Article : Google Scholar : PubMed/NCBI

158 

Komura K, Fujimoto M, Yanaba K, Matsushita T, Matsushita Y, Horikawa M, Ogawa F, Shimizu K, Hasegawa M, Takehara K and Sato S: Blockade of CD40/CD40 ligand interactions attenuates skin fibrosis and autoimmunity in the tight-skin mouse. Ann Rheum Dis. 67:867–872. 2008. View Article : Google Scholar : PubMed/NCBI

159 

Touma Z, Urowitz MB and Gladman DD: Systemic lupus erythematosus: An update on current pharmacotherapy and future directions. Expert Opin Biol Ther. 13:723–732. 2013. View Article : Google Scholar : PubMed/NCBI

160 

Narain S and Furie R: Update on clinical trials in systemic lupus erythematosus. Curr Opin Rheumatol. 28:477–487. 2016. View Article : Google Scholar : PubMed/NCBI

161 

Robles-Carrillo L, Meyer T, Hatfield M, Desai H, Dávila M, Langer F, Amaya M, Garber E, Francis JL, Hsu YM and Amirkhosravi A: Anti-CD40L immune complexes potently activate platelets in vitro and cause thrombosis in FCGR2A transgenic mice. J Immunol. 185:1577–1583. 2010. View Article : Google Scholar : PubMed/NCBI

162 

Visvanathan S, Daniluk S, Ptaszyński R, Müller-Ladner U, Ramanujam M, Rosenstock B, Eleftheraki AG, Vinisko R, Petříková A, Kellner H, et al: Effects of BI 655064, an antagonistic anti-CD40 antibody, on clinical and biomarker variables in patients with active rheumatoid arthritis: A randomised, double-blind, placebo-controlled, phase IIa study. Ann Rheum Dis. 78:754–760. 2019. View Article : Google Scholar : PubMed/NCBI

163 

Jayne DR, Steffgen J, Romero-Diaz J, Bajema I, Boumpas DT, Noppakun K, Amano H, Gomez HM, Satirapoj B, Avihingsanon Y, et al: Clinical and biomarker responses to BI 655064, an antagonistic anti-CD40 antibody, in patients with active lupus nephritis: A randomized, double-blind, placebo-controlled, phase II trial. Arthritis Rheumatol. 75:1983–1993. 2023. View Article : Google Scholar : PubMed/NCBI

164 

Sakamoto E, Katahira Y, Mizoguchi I, Watanabe A, Furusaka Y, Sekine A, Yamagishi M, Sonoda J, Miyakawa S, Inoue S, et al: Chemical- and drug-induced allergic, inflammatory, and autoimmune diseases via haptenation. Biology (Basel). 12:1232023.PubMed/NCBI

165 

Rana PS, Murphy EV, Kort J and Driscoll JJ: Road testing new CAR design strategies in multiple myeloma. Front Immunol. 13:9571572022. View Article : Google Scholar : PubMed/NCBI

166 

Hosseini A, Gharibi T, Marofi F, Babaloo Z and Baradaran B: CTLA-4: From mechanism to autoimmune therapy. Int Immunopharmacol. 80:1062212020. View Article : Google Scholar : PubMed/NCBI

167 

Mikuš M, Goldštajn MŠ, Brlečić I, Dumančić S, Laganà AS, Chiantera V, Vujić G and Ćorić M: CTLA4-linked autoimmunity in the pathogenesis of endometriosis and related infertility: A systematic review. Int J Mol Sci. 23:109022022. View Article : Google Scholar : PubMed/NCBI

168 

Edner NM, Carlesso G, Rush JS and Walker LSK: Targeting co-stimulatory molecules in autoimmune disease. Nat Rev Drug Discov. 19:860–883. 2020. View Article : Google Scholar : PubMed/NCBI

169 

Van Coillie S, Wiernicki B and Xu J: Molecular and cellular functions of CTLA-4. Adv Exp Med Biol. 1248:7–32. 2020. View Article : Google Scholar : PubMed/NCBI

170 

Hervey PS and Keam SJ: Abatacept. BioDrugs. 20:53–62. 2006. View Article : Google Scholar : PubMed/NCBI

171 

Esensten JH, Helou YA, Chopra G, Weiss A and Bluestone JA: CD28 costimulation: From mechanism to therapy. Immunity. 44:973–988. 2016. View Article : Google Scholar : PubMed/NCBI

172 

Blair HA and Deeks ED: Abatacept: A review in rheumatoid arthritis. Drugs. 77:1221–1233. 2017. View Article : Google Scholar : PubMed/NCBI

173 

Brunner HI, Wong R, Nys M, Kou TD, Dominique A, Martini A, Lovell DJ and Ruperto N; Paediatric Rheumatology International Trials Organisation (PRINTO) the Pediatric Rheumatology Collaborative Study Group (PRCSG), : Abatacept: A review of the treatment of polyarticular-course juvenile idiopathic arthritis. Paediatr Drugs. 22:653–672. 2020. View Article : Google Scholar : PubMed/NCBI

174 

Vicente-Rabaneda EF, Atienza-Mateo B, Blanco R, Cavagna L, Ancochea J, Castañeda S and González-Gay MÁ: Efficacy and safety of abatacept in interstitial lung disease of rheumatoid arthritis: A systematic literature review. Autoimmun Rev. 20:1028302021. View Article : Google Scholar : PubMed/NCBI

175 

Lorenzetti R, Janowska I, Smulski CR, Frede N, Henneberger N, Walter L, Schleyer MT, Hüppe JM, Staniek J, Salzer U, et al: Abatacept modulates CD80 and CD86 expression and memory formation in human B-cells. J Autoimmun. 101:145–152. 2019. View Article : Google Scholar : PubMed/NCBI

176 

Gazeau P, Alegria GC, Devauchelle-Pensec V, Jamin C, Lemerle J, Bendaoud B, Brooks WH, Saraux A, Cornec D and Renaudineau Y: Memory B cells and response to abatacept in rheumatoid arthritis. Clin Rev Allergy Immunol. 53:166–176. 2017. View Article : Google Scholar : PubMed/NCBI

177 

Scarsi M, Paolini L, Ricotta D, Pedrini A, Piantoni S, Caimi L, Tincani A and Airò P: Abatacept reduces levels of switched memory B cells, autoantibodies, and immunoglobulins in patients with rheumatoid arthritis. J Rheumatol. 41:666–672. 2014. View Article : Google Scholar : PubMed/NCBI

178 

Furie R, Nicholls K, Cheng TT, Houssiau F, Burgos-Vargas R, Chen SL, Hillson JL, Meadows-Shropshire S, Kinaszczuk M and Merrill JT: Efficacy and safety of abatacept in lupus nephritis: A twelve-month, randomized, double-blind study. Arthritis Rheumatol. 66:379–389. 2014. View Article : Google Scholar : PubMed/NCBI

179 

ACCESS Trial Group, : Treatment of lupus nephritis with abatacept: The abatacept and cyclophosphamide combination efficacy and safety study. Arthritis Rheumatol. 66:3096–3104. 2014. View Article : Google Scholar : PubMed/NCBI

180 

Bocharnikov AV, Keegan J, Wacleche VS, Cao Y, Fonseka CY, Wang G, Muise ES, Zhang KX, Arazi A, Keras G, et al: PD-1hiCXCR5-T peripheral helper cells promote B cell responses in lupus via MAF and IL-21. JCI Insight. 4:e1300622019. View Article : Google Scholar : PubMed/NCBI

181 

Szabó K, Jámbor I, Pázmándi K, Nagy N, Papp G and Tarr T: Altered circulating follicular T helper cell subsets and follicular t regulatory cells are indicators of a derailed B cell response in lupus, which could be modified by targeting IL-21R. Int J Mol Sci. 23:122092022. View Article : Google Scholar : PubMed/NCBI

182 

Giles JR, Kashgarian M, Koni PA and Shlomchik MJ: B cell-specific MHC class II deletion reveals multiple nonredundant roles for B cell antigen presentation in murine lupus. J Immunol. 195:2571–2579. 2015. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • Purchase
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Liu Z, Dai H, Cui X, Liu Y and Dong Z: Importance of B cells (Review). Int J Mol Med 57: 2, 2026.
APA
Liu, Z., Dai, H., Cui, X., Liu, Y., & Dong, Z. (2026). Importance of B cells (Review). International Journal of Molecular Medicine, 57, 2. https://doi.org/10.3892/ijmm.2025.5673
MLA
Liu, Z., Dai, H., Cui, X., Liu, Y., Dong, Z."Importance of B cells (Review)". International Journal of Molecular Medicine 57.1 (2026): 2.
Chicago
Liu, Z., Dai, H., Cui, X., Liu, Y., Dong, Z."Importance of B cells (Review)". International Journal of Molecular Medicine 57, no. 1 (2026): 2. https://doi.org/10.3892/ijmm.2025.5673
Copy and paste a formatted citation
x
Spandidos Publications style
Liu Z, Dai H, Cui X, Liu Y and Dong Z: Importance of B cells (Review). Int J Mol Med 57: 2, 2026.
APA
Liu, Z., Dai, H., Cui, X., Liu, Y., & Dong, Z. (2026). Importance of B cells (Review). International Journal of Molecular Medicine, 57, 2. https://doi.org/10.3892/ijmm.2025.5673
MLA
Liu, Z., Dai, H., Cui, X., Liu, Y., Dong, Z."Importance of B cells (Review)". International Journal of Molecular Medicine 57.1 (2026): 2.
Chicago
Liu, Z., Dai, H., Cui, X., Liu, Y., Dong, Z."Importance of B cells (Review)". International Journal of Molecular Medicine 57, no. 1 (2026): 2. https://doi.org/10.3892/ijmm.2025.5673
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team